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Abstract. In 2003, Schnorr introduced Random sampling to find very short lattice vectors, as an alterna-
tive to enumeration. An improved variant has been used in the past few years by Kashiwabara et al. to
solve the largest Darmstadt SVP challenges. However, the behaviour of random sampling and its vari-
ants is not well-understood: all analyses so far rely on a questionable heuristic assumption, namely that
the lattice vectors produced by some algorithm are uniformly distributed over certain parallelepipeds. In
this paper, we introduce lattice enumeration with discrete pruning, which generalizes random sampling
and its variants, and provides a novel geometric description based on partitions of the n-dimensional
space. We obtain what is arguably the first sound analysis of random sampling, by showing how dis-
crete pruning can be rigorously analyzed under the well-known Gaussian heuristic, in the same model
as the Gama-Nguyen-Regev analysis of pruned enumeration from EUROCRYPT ’10, albeit using differ-
ent tools: we show how to efficiently compute the volume of the intersection of a ball with a box, and to
efficiently approximate a large sum of many such volumes, based on statistical inference. Furthermore,
we show how to select good parameters for discrete pruning by enumerating integer points in an ellip-
soid. Our analysis is backed up by experiments and allows for the first time to reasonably estimate the
success probability of random sampling and its variants, and to make comparisons with previous forms
of pruned enumeration. Our work unifies random sampling and pruned enumeration and show that
they are complementary of each other: both have different characteristics and offer different trade-offs to
speed up enumeration.

1 Introduction

With the upcoming NIST standardization of post-quantum cryptography and the development of fully-
homomorphic encryption, it is becoming increasingly important to provice convincing security estimates
for lattice-based cryptosystems. To do so, we need to understand the best lattice algorithms, such as the
ones used to solve the largest numerical challenges. For NTRU challenges [33] and Darmstadt’s lattice
challenges [18], the largest records were solved (by respectively Ducas-Nguyen and Chen-Nguyen) using
algorithms (pruned enumeration [11] with state-of-the-art BKZ [5]) which are reasonably well-understood.
However, the seven largest records of Darmstadt’s SVP challenges [28] have been solved by Kashiwabara
and Teruya (using significant computational power, comparable for the largest challenge to that of RSA-
768) using an algorithm which is partially secret: an incomplete description can be found in [8]. The core
of the algorithm seems to be an improved variant of Schnorr’s random sampling method [30], which was
introduced as an alternative to enumeration [31] for finding extremely short lattice vectors.

Unfortunately, our understanding of random sampling and its variants is not satisfactory: all the anal-
yses [30,20,4,9,8] so far rely on several heuristic assumptions, the most questionable being the Randomness
Assumption, which says that the lattice vectors produced by some algorithm are uniformly distributed over
certain parallelepipeds. As noted by Ludwig [20], this assumption cannot hold, and a gap between theoret-
ical analyses and experimental results has been reported [20,8]. In some sense, the situation is reminiscent
of enumeration with pruning, which was introduced and partially analyzed in the mid-nineties by Schnorr
et al. [31,32], but arguably only well-understood in 2010, when Gama et al. [11] provided a novel geometric
description and presented its first sound analysis, which provided much better parameters.



At this point, we do not know if random sampling is better or worse than pruned enumeration, nei-
ther in theory nor in practice, which is rather puzzling, considering their importance for lattice algorithms,
which can be used to solve a wide range of problems, such as integer programming [15], factoring poly-
nomials with rational coefficients [16], integer relation finding [13], as well as problems in communication
theory (see [1,24] and references therein), and public-key cryptanalysis (see [22] and references therein).
Pruned enumeration is used in state-of-the-art implementations of BKZ [5,2].

Our results. We introduce lattice enumeration with discrete pruning, which generalizes naturally Schnorr’s
random sampling and all its variants, and provides a novel geometric description based on partitions of
the n-dimensional space. This new description allows us to rigorously analyze discrete pruning under the
well-known Gaussian heuristic, in the same model as the Gama-Nguyen-Regev [11] analysis of pruned
enumeration, albeit using different tools. This is the first sound analysis of random sampling and its vari-
ants, and our presentation unifies both pruned enumeration and random sampling, by viewing them as
two different ways of speeding up the classical enumeration algorithm. In other words, we improve the
understanding of random sampling to that of pruned enumeration.

To complement our theoretical analysis, we introduce three technical tools which allow, in practice, to
estimate success probabilities and optimize parameters for discrete pruning: this is the most difficult aspect
of discrete pruning, because given parameters, estimating the running time of discrete pruning is on the
other hand very easy. The first two tools are combined to estimate accurately and efficiently the success
probability: the first one computes efficiently the volume of the intersection of an n-dimensional ball with
a box, and the second one uses statistical inference to approximate efficiently large sums of such volumes
without computing individually each volume. Finally, the third tool is an efficient algorithm to generate
nearly-optimal parameters for discrete pruning in practice.

Our analysis is backed up by experiments, and allows us to make concrete comparisons with other
forms of pruned enumeration. As an example, our analysis shows that the Fukase-Kashiwabara variant [8]
outperforms Schnorr’s original algorithm and its variants by Buchmann-Ludwig [4,20]. Experimentally, we
find that discrete pruning is complementary with continuous pruning: whether one is more efficient than
the other depends on the exact setting, such as what is the lattice dimension, the radius of the enumeration
ball, the required time, etc.

Technical overview. A lattice is the set of all integer combinations of n linearly independent vectors b1, . . . , bn
in Rn. These vectors are known as a basis of the lattice. The most famous computational problem involv-
ing lattices is the shortest vector problem (SVP), which asks to find a nonzero lattice vector of smallest norm,
given a lattice basis as input. A basic approach is enumeration which dates back to the early 1980s with
work by Pohst [25], Kannan [15], and Fincke-Pohst [7] and is still actively investigated (e.g., [31,1,12,11,35]):
given a radius R > 0 and a basis B = (b1, . . . , bn) of a lattice L, enumeration computes all the points in
L ∩ S where S is the zero-centered ball of radius R, which allows to find a shortest lattice vector by com-
paring their norms. Enumeration goes through all lattice vectors ∑n

i=1 xibi, exhaustively searching in order
xn, xn−1 . . . x1 ∈ Z by projecting L onto suitable subspaces of increasing dimension: for instance, bounds
on xn are found by projecting L onto a line, and intersecting it with S. The running time of enumeration
depends on R and the quality of the basis, but is typically super-exponential in n.

To speed up the running time of enumeration, Schnorr, Euchner, and Hörner [31,32] suggested in the
1990s a modification of enumeration called pruned enumeration. We follow the geometric presentation of
Gama, Nguyen and Regev [11], who revisited pruned enumeration. Essentially, pruned enumeration is a
trade-off, defined by a pruning set P ⊆ Rn: P is chosen in such a way that enumerating all the points in
L ∩ S ∩ P is much faster than over L ∩ S, but this is only useful if L ∩ S ∩ P is non-trivial 6⊆ {0}, in which
case we have found a short non-zero lattice vector in L ∩ S. Under the Gaussian heuristic, L ∩ S ∩ P is
“expected” to be non-trivial when vol(S ∩ P) is sufficiently large with respect to the lattice. Here, the set
P is defined as an intersection of n cylinders such that P ⊆ S, thus vol(S ∩ P) = vol(P), and [11] shows
how to approximate efficiently vol(P), which allows to choose good parameters: furthermore, if vol(S ∩ P)
turns out to be too small to hope for a solution, one can simply repeat the process with many choices of P,
which may still be cheaper overall than the original enumeration.
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We introduce discrete pruning, which follows the same framework, except that the pruning set P is com-
pletely different. Instead of a cylinder-intersection, we consider a set P formed by regrouping finitely many
cells of suitable partitions of Rn, related to the lattice L: we show that random sampling and its variants
all fall in this category. In practice, P can be rewritten as the union of finitely many non-overlapping boxes,
where a box means a cube whose sides are not necessarily of equal length but are still perpendicular. To
analyze the algorithm, it therefore suffices to be able to compute vol(S∩H) where S is a ball and H is a box:
we give exact formulas as infinite series, asymptotical estimations and efficient numerical methods to com-
pute such volumes, which might be of independent interest. However, it actually suffices to approximate a
large sum ∑i vol(S ∩ Hi): we introduce the use of statistical inference to approximate such a sum, without
computing each term of the sum.

To select good parameters for the algorithm, we introduce a fast method based on enumerating integer
points in an ellipsoid, which allows to select a nearly-optimal pruning set P without resorting to computa-
tions of vol(S ∩ H).

Experimental results. Our experiments support our analysis of discrete pruning and explain very clearly why
the Fukase-Kashiwabara variant [8] of random sampling outperforms Schnorr’s random sampling [30] and
its Buchmann-Ludwig variant [4]: for typical parameters, the cells selected by [8] turn out to have a much
larger intersection with the ball S than the corresponding cells in [30,4]. Our algorithm for selecting discrete
pruning parameters provides parameters which are in practice at least slightly better than [8]: we stress that
our method is completely automatic, whereas [8] strongly relies on experiments and do not explain how
to select parameters in arbitrary dimension, which makes comparisons difficult. Our experiments suggest
that discrete pruning can be slower or faster than continuous pruning [31,32,11], depending on the exact
setting. First, the performances are impacted by the lattice dimension, the enumeration radius, and the
target running time. For instance, we find that the benefits of discrete pruning increase when the lattice
dimension grows, the target running time is small and the basis is not too reduced. Potentially, this might
improve BKZ-type algorithms, by speeding up the preprocessing of the enumeration subroutine, or by
incorporating high-dimensional discrete pruning in the reduction process itself. Second, our analysis shows
that the optimal basis reduction required by discrete pruning is different from the optimal basis reduction
required by continuous pruning: roughly speaking, the smaller the sum of squared Gram-Schmidt norms,
the better for discrete pruning. This means that to fully take advantage of discrete pruning, one may have
to modify the reduction algorithm, and not simply use LLL or BKZ: in fact, some of the secret modifications
of [8] may exactly target that, as it is clear that the reduction of [8] is a bit different from BKZ strategies.
Third, there are implementation differences between discrete pruning and continuous pruning. It appears
that discrete pruning is easier to parallelize, which may make it better suited to special hardware. Finding
good parameters for discrete pruning is also a bit easier than for continuous pruning: in particular, there
are less parameters to consider, which might be useful for blockwise reduction.

Future work. There are many interesting questions related to discrete pruning. First, one may wonder what
is the most efficient form of pruned enumeration, either asymptotically or in practice: we now know con-
tinuous pruning [31,32,11] and discrete pruning, and we showed how to compare both in practice, but a
theoretical asymptotical comparison is not easy. Can a combination of both, or another form of pruning be
more efficient? Second, is it possible to efficiently reduce a basis in such a way that the power of discrete
pruning is maximized? For instance, are there better ways to decrease the sum of squared Gram-Schmidt
norms?

We presented discrete pruning in the SVP case, i.e. to find short lattice vectors. The methodology can
be adapted to the CVP case, i.e. to find lattice vectors close to a given target: as a special case, [19] already
noticed that the Lindner-Peikert algorithm [17] can be viewed as the BDD adaptation of Schnorr’s random
sampling [30]. However, in the general case of discrete pruning, there appears to be a few differences: the
details will be investigated in future work.

Finally, our algorithm to select good discrete pruning parameters is based on enumerating integer points
in an ellipsoid: though the algorithm is extremely efficient in practice, we do not know at the moment how
to prove it, and it would be interesting to do so.
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Related work. Liu and Nguyen [19] also tried to view Schnorr’s random sampling as some form of pruning,
in the context of bounded distance decoding: however, their formalization does not rely on partitions, and
does not capture all the variants of random sampling, including the one of [8].

Roadmap. We start in Section 2 with some background and notation on lattices, and continue with a general
description of enumeration (with or without pruning) in Section 3. In Section 4, we present lattice enumer-
ation with discrete pruning based on partitions, show that it generalizes Schnorr’s random sampling and
its variants, and give our rigorous analysis. In Section 5, we address the technical problem of computing
the volume of the intersection of a ball with a box, which is required by our discrete pruning analysis. In
Section 6, we show how to select optimal parameters for discrete pruning. We present experimental results
in Section 7. In this full version, we provide missing proofs and additional information in the Appendix.

2 Preliminaries

General. For any finite set U, we denote by #U its number of elements. For any measurable subset S ⊆
Rn, we denote by vol(S) its volume. Throughout the paper, we use row representations of matrices. The
Euclidean norm of a vector v ∈ Rn is denoted ‖v‖. We denote by Balln(R) the n-dimensional zero-centered
Euclidean ball of radius R, whose volume is vol(Balln(R)) = Rn πn/2

Γ(n/2+1) .

Lattices. A lattice L is a discrete subgroup of Rm. Alternatively, we can define a lattice as the set L(b1, . . . , bn) =
{∑n

i=1 xibi : xi ∈ Z} of all integer combinations of n linearly independent vectors b1, . . . , bn ∈ Rm. This se-
quence of vectors is known as a basis of the lattice L. All the bases of L have the same number n of elements,
called the dimension or rank of L, and the n-dimensional volume of the parallelepiped {∑n

i=1 aibi : ai ∈ [0, 1)}
they generate. We call this volume the co-volume, or determinant, of L, and denote it by covol(L). The lat-
tice L is said to be full-rank if n = m. We denote by λ1(L) the first minimum of L, defined as the length of
a shortest nonzero vector of L. The most famous lattice problem is the shortest vector problem (SVP), which
asks to find a lattice vector of norm λ1(L).

Orthogonalization. For a basis B = (b1, . . . , bn) of a lattice L and i ∈ {1, . . . , n}, we denote by πi the or-
thogonal projection on span(b1, . . . , bi−1)

⊥. The Gram-Schmidt orthogonalization of the basis B is defined as
the orthogonal sequence of vectors B? = (b?

1 , . . . , b?
n), where b?

i := πi(bi). For each i we can write bi as
b?

i +∑i−1
j=1 µi,jb?

j for some unique µi,1, . . . , µi,i−1 ∈ R. Thus, we may represent the µi,j’s by a lower-triangular
matrix µ with unit diagonal. The projection of a lattice may not be a lattice, but for all i ∈ {1, . . . , n}, πi(L) is
an n + 1− i dimensional lattice generated by the basis πi(bi), . . . , πi(bn), with covol(πi(L)) = ∏n

j=i
∥∥b?

j

∥∥.

Reduced bases. Lattice reduction algorithms aim to transform an input basis into a “high quality” basis.
There are many ways to quantify the quality of bases produced by lattice reduction algorithms. One pop-
ular way is to consider the Gram-Schmidt norms ‖b?

1‖, . . . , ‖b?
n‖. Intuitively speaking, a good basis is one

in which this sequence does not decay too fast. In practice, it turns out that the Gram-Schmidt coefficients
of bases produced by the main reduction algorithms (such as LLL or BKZ) have a certain “typical shape”,
assuming the input basis is sufficiently random. This property was thoroughly investigated in [10,23]. This
typical shape is often used to estimate the running time of various algorithms. In particular, many theoret-
ical asymptotic analyses (as introduced by Schnorr [30]) assume for simplicity that this shape is given by
‖b?

i ‖/‖b?
i+1‖ = q where q depends on the reduction algorithm; although less precise, this approximation

called the geometric series assumption (GSA) is very close to the shape observed in practice.

Gaussian Heuristic. The classical Gaussian Heuristic provides an estimate on the number of lattice points
inside a “nice enough” set:

Heuristic 1 Given a full-rank lattice L ⊆ Rn and a measurable set S ⊆ Rn, the number of points in S ∩ L is
approximately vol(S)/covol(L).
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If the heuristic holds, we would expect λ1(L) to be close to GH(L) = vol(Balln(1))−1/ncovol(L)1/n, and
that there about αn points in L which have norm ≤ αGH(L). Some rigorous results along these lines are
known. For instance, for a fixed set S, if we consider random lattices of unit-covolume, and scale them to
have covol(L), Siegel [34] shows that the average number of points in S ∩ L is exactly vol(S)/covol(L).
Furthermore, it is known that λ1(L) is in some sense close to GH(L) for a random lattice (see [26]). Note,
however, that the heuristic can also be far off; for L = Zn, for instance, the heuristic estimates the number
of lattice points inside a ball of radius

√
n/10 around the origin to be less than 1, yet there are exponentially

many lattice points there (see [21] for more such examples). One should therefore experimentally verify
the use of the heuristic, as we shall do later. This is particulary necessary, as pruned enumeration relies on
strong versions of the heuristic, where the set S is not fixed, but actually depends on a basis of L.

Statistics. We denote by E() and V() respectively the expectation and the variance of a random variable.

Lemma 1. Let X be a random variable uniformly distributed over [α, β]. Then:

E(X2) =
α2 + β2 + αβ

3
and V(X2) =

4
45

α4 − 1
45

α3β− 2
15

α2β2 − 1
45

αβ3 +
4
45

β4

Proof. We have:

E(X2) =
1

β− α

∫ β

α
x2dx =

1
β− α

[
x3/3

]β

α
=

α2 + β2 + αβ

3

E(X4) =
1

β− α

∫ β

α
x4dx =

1
β− α

[
x5/5

]β

α
=

α4 + α3β + α2β2 + αβ3 + β4

5

Finally, V(X2) = E(X4)−E(X2)2. ut

Corollary 1. Let y ∈ R. Let X (resp. X′) be a random variable uniformly distributed over [y− 1/2, y + 1/2] (resp.
[y/2, (y + 1)/2]). Then:

E(X2) = y2 +
1

12
, E(X′2) = y2/4 + y/4 +

1
12

, V(X2) =
y2

3
+

1
180

, V(X′2) =
y2

48
+

y
48

+
1

180
.

In this paper, it is convenient to extend the expectation and variance this to any measurable set C of Rn by
using the squared norm, to measure how short is a random vector of C:

E{C} := Ex∈C(‖x‖2) V{C} := Vx∈C(‖x‖2).

Normal distribution. The CDF of the normal distribution of expectation 0 and variance 1 is the error function

erf(z) :=
2√
π

∫ z

0
e−t2

dt.

3 Enumeration with Pruning

In this section, we give an overview of lattice enumeration and pruning, and revisit the analysis model
of [11].
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3.1 Enumeration

Let L be a full-rank lattice in Rn. Enumeration [25,15,7] is an elementary algorithm which, given a basis
B = (b1, . . . , bn) of L and a radius R > 0, outputs all the points in L ∩ S where S = Balln(R): by comparing
all their norms, it is then possible to extract the shortest lattice vectors.

The main idea is to perform a recursive search using projections, which allows to reduce the dimension
of the lattice: if ‖v‖ ≤ R, then ‖πk(v)‖ ≤ R for all 1 ≤ k ≤ n. We start with the one-dimensional lattice
πn(L): it is trivial to enumerate all the points in πn(L) ∩ S. Assume that we enumerated all the points in
πk+1(L)∩ S for some k ≥ 1, then we can derive all the points in πk(L)∩ S by enumerating the intersection of
a one-dimensional lattice with a suitable ball, for each point in πk+1(L)∩ S. Concretely, it can be viewed as a
depth first search of a gigantic tree called the enumeration tree. The running-time of enumeration depends
on R and the quality of B, but it is typically super-exponential in n, even if L ∩ S is small.

We do not need to know more about enumeration: the interested reader is referred to [11] for more
details.

3.2 Enumeration with Pruning

We note that in high dimension, enumeration is likely to be unfeasible in general for any radius R� GH(L):
indeed, by the Gaussian heuristic, we expect #(L ∩ Balln(R)) to have about (R/GH(L))n points. For such
large radius R, it is therefore more meaningful to just ask for one solution (or say, a bounded number of
solutions) in L ∩ Balln(R), rather than all the points.

Enumeration with pruning is a natural method to speed up enumeration, which goes back to the work of
Schnorr et al. [31,32] in the 90s. We introduce its more general form: pruned enumeration uses an additional
parameter, namely a pruning set P ⊆ Rn, and outputs all points in L ∩ S ∩ P. The advantage is that for
suitable choices of P, enumerating L ∩ S ∩ P is much cheaper than enumerating L ∩ S.

If L ∩ S ∩ P 6⊆ {0}, then pruned enumeration provides non-trivial points in L ∩ S, which is the first goal
of pruned enumeration. Otherwise, it will return nothing or the zero vector, but we can simply repeat the
process with many different P’s until we find a non-trivial point, provided that there are many choices for
P. In fact, by repeating sufficiently many times this process, one might even be able to recover all of L ∩ S.

In order to analyze the algorithm, we need to predict when L ∩ S ∩ P ⊆ {0}: this is especially tricky,
since for all choices of P considered in the past, the enumeration of L∩ S∩ P was completely deterministic,
which makes the probability space unclear. Gama et al.[11] provided the first sound analysis of enumeration
with pruning, by viewing the pruning set P as a random variable: in practice, it depends on the choice of
basis B. Then we define the success probability of pruned enumeration as:

Pr
succ

= Pr
P
(L ∩ S ∩ P 6⊆ {0}),

that is, the probability that it outputs a non-trivial point in L ∩ S.
In general, this probability is very hard to compute. To estimate this probability, in the spirit of [11], we

make the following heuristic assumption inspired by the Gaussian heuristic applied to the lattice L and the
set S ∩ P:

Heuristic 2 For reasonable pruning sets P and lattices L, the success probability Pr(L ∩ S ∩ P 6⊆ {0}) is close to
min(1, vol(S∩ P)/covol(L)), and when this is close to 1, the cardinal of L∩ S∩ P is close to vol(S∩ P)/covol(L).

We stress that this well-defined heuristic is only a heuristic: it is easy to select pruning sets P for which the
heuristic cannot hold. But the experiments of [11] show that the heuristic typically holds for the pruning
sets considered by [11], and our experiments show that it also holds for typical pruning sets corresponding
to discrete pruning.

If the heuristic holds, then it suffices to be able to compute vol(S∩ P) to estimate the success probability
of pruned enumeration. To estimate the running time of the full algorithm, we need more information:

– An estimate of the cost of enumerating L ∩ S ∩ P.
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– An estimate of the cost of computing the (random) reduced basis B.

Gama et al. [11] introduced extreme pruning in which vol(S∩ P)/covol(L) converges to zero, yet the global
running time to find a non-zero short vector is much faster than enumeration, namely exponentially faster
asymptotically for the choice of [11].

3.3 Continuous Pruning

Until now, the most general form of pruning set P that has been used is the following generalization [11] of
pruned enumeration of [31,32], which was also concurrently used in [35]. There, P is defined by a function
f : {1, . . . , n} → [0, 1] and a lattice basis B = (b1, . . . , bn) as follows:

P = {x ∈ Rn s.t. ‖πn+1−i(x)‖ ≤ f (i)R for all 1 ≤ i ≤ n},

where the πi’s are the Gram-Schmidt projections defined by the basis B. We call continuous pruning this
form of pruned enumeration, by opposition with discrete pruning, which is the topic of this paper.

By definition, P ⊆ S so vol(S ∩ P) = vol(P). By suitable rotation, isometry and scaling, vol(P) can be
derived from R, n and the volume of the cylinder intersection defined by f :

C f =

{
(x1, . . . , xn) ∈ Rn s.t.

i

∑
j=1

x2
j ≤ f (i)2 for all 1 ≤ i ≤ n

}
.

Gama et al. [11] showed how to efficiently compute tight lower and upper bounds for vol(C f ), thanks to the
Dirichlet distribution and special integrals. Using Heur. 2, this allows to reasonably estimate the probability
of success.

Using the shape of P, [11] also estimated of the cost of enumerating L ∩ S ∩ P, by using the Gaussian
heuristic on projected lattices πi(L), as suggested in [12]: these estimates are usually accurate in practice.

To optimize the whole selection of parameters, one finally needs to take into account the cost of com-
puting the (random) reduced basis of B. For instance, this is done in [5,2], which illustrates the power of
continuous pruning in the context of lattice reduction.

Though continuous pruning has proved very successful, it is unknown if it is the most efficient form
of pruned enumeration: there might be better choices of pruning sets P, and this is the starting point of
discrete pruning, which we introduce next.

4 Enumeration with Discrete Pruning

We now introduce enumeration with discrete pruning, which generalizes Schnorr’s random sampling [30]
and its variants [8,4], and a provides a novel geometric description based on partitions, which is crucial for
our analysis.

4.1 Lattice Partitions

Discrete pruning is based on what we call a lattice partition:

Definition 1. Let L be a full-rank lattice in Qn. An L-partition is a partition C of Rn such that:

– The partition is countable: Rn = ∪t∈TC(t) where T is a countable set, and C(t) ∩ C(t′) = ∅ whenever t 6= t′.
– Each cell C(t) contains a single lattice point, which can be found efficiently: given any t ∈ T, one can compute in

polynomial time the single point of C(t) ∩ L. We call this process the cell enumeration.
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We call t ∈ T the tag of the cell C(t). Since Rn = ∪t∈TC(t), this means that any point in Rn also has a tag,
because it belongs to a unique cell C(t). Any lattice partition induces a (bijective) encoding of lattice points
onto T: any lattice point belongs to Rn, and therefore has a tag; reciprocally, given a tag t ∈ T, one can
compute the unique lattice point in C(t) by the cell enumeration.

The simplest examples of lattice partitions come from fundamental domains of lattices. In particular,
one can easily check that any basis B = (b1, . . . , bn) of L gives rise to two trivial lattice partitions with
T = Zn as follows:

– C(t) = tB +D where D = {∑n
i=1 xibi s.t. − 1/2 ≤ xi < 1/2} is a parallelepiped.

– C(t) = tB +D where D = {∑n
i=1 xib?

i s.t. − 1/2 ≤ xi < 1/2} is a box, i.e. a paralellepiped whose axes
are pairwise orthogonal.

However, these lattice partitions are not very useful, because C(t) ∩ L = {tB}, which means that we know
the lattice point directly from its tag: the cell enumeration is just a matrix/vector product.

The first non-trivial example of lattice partition is the following:

Lemma 2. Let B be a basis of a full-rank lattice L in Zn. Let T = Zn and for any t ∈ T, CZ(t) = tB? +D where
D = {∑n

i=1 xib?
i s.t. − 1/2 ≤ xi < 1/2}. Then (CZ(), T) with Alg. 1 is an L-partition, which we call Babai’s

partition.

Proof. We already know that (CZ(), T) is a L(B?)-partition because B? is a basis of L(B?). To show that it is
also a L-partition, it suffices to show that CZ(t)∩ L is always a singleton, which can be found in polynomial
time. To see this, note that Babai’s nearest plane algorithm [3] implies that for any t ∈ T, there is a unique
v ∈ L such that v− tB? ∈ D, and that v can be found in polynomial time. It follows that CZ(t) ∩ L = {v}.

ut

Algorithm 1 Cell enumeration for Babai’s partition from Babai’s Nearest Plane algorithm [3]
Input: A tag t ∈ Zn and a basis B = (b1, . . . , bn) ∈ Qn of a lattice L, with Gram-Schmidt orthogonalization B?.
Output: v ∈ L such that {v} = L ∩ CZ(t)
1: v← 0 and u← tB?

2: for i := n downto 1 do
3: Compute the integer c closest to 〈b?

i , u〉/〈b?
i , b?

i 〉
4: u← u− cbi and v← v + cbi
5: end for
6: Return v

Algorithm 2 Tagging for the natural partition
Input: A vector x = ∑n

i=1 xib?
i ∈ Rn where the b?

i ’s are the Gram-Schmidt vectors of a basis B = (b1, . . . , bn) of a
full-rank lattice L in Rn.

Output: A tag t ∈Nn such that x ∈ CN(t).
1: for i := n downto 1 do
2: if xi > 0 then
3: ti ← d2xie − 1
4: else
5: ti ← −b2xic
6: end if
7: end for
8: Return (t1, . . . , tn)

8



Algorithm 3 Cell enumeration for the natural partition
Input: A tag t ∈Nn and a basis B = (b1, . . . , bn) ∈ Qn of a lattice L, with Gram-Schmidt orthogonalization matrix µ.
Output: v ∈ L such that {v} = L ∩ CN(t)
1: for i := n downto 1 do
2: y← −∑n

j=i+1 ujµj,i

3: ui ← by + 0.5c
4: if ui < y then
5: ui ← ui − (−1)tidti/2e
6: else
7: ui ← ui + (−1)tidti/2e
8: end if
9: end for

10: Return ∑n
i=1 uibi

The encoding of lattice points induced by Babai’s partition is exactly the encoding onto Zn introduced
in [6]. The paper [8] defines a different encoding of lattice points onto Nn, which implicitly uses a different
lattice partition based on T = Nn rather than Zn, which we now define:

Lemma 3. Let B be a basis of a full-rank lattice L in Zn. Let T = Nn and for any t = (t1, . . . , tn) ∈ T, CN(t) =
{∑n

i=1 xib?
i s.t. − (ti + 1)/2 < xi ≤ −ti/2 or ti/2 < xi ≤ (ti + 1)/2}. Then (CN(), T) with Alg. 3 is an

L-partition, which we call the natural partition.

Proof. The fact that the cells CN(t) form a partition of Rn is obvious: the cells are clearly disjoint and any
point of Rn belongs to a cell (see Alg. 2). The only difficulty is to show that any cell contains one and only
one lattice point, and that it can be found efficiently: this is achieved by Alg. 3, which is a variant of Babai’s
nearest plane algorithm. ut

Fig. 1 displays Babai’s partition and the natural partition (with tags) in dimension two. The encoding of

O 𝐛2∗  

𝐛1 

𝐛2 
O 𝐛2∗  

𝐛1 

𝐛2 
(0,0) (1,0) (2,0) (2,0) (1,0) 

(0,1) (1,1) (2,1) (2,1) (1,1) 

(0,2) (1,2) (2,2) (2,2) (1,2) 

(0,1) (1,1) (2,1) (2,1) (1,1) 

(0,2) (1,2) (2,2) (2,2) (1,2) 

Fig. 1. Babai’s partition and the natural partition in dimension two: different cells are coloured differently.

lattice points derived from the natural partition is exactly the encoding introduced by Fukase and Kashi-
wabara in [8]. What is remarkable is that every cell of the natural partition is not connected, except the zero
cell: each cell CN(t) is the union of 2k boxes, where k is the number of non-zero coefficients in t, as illustrated
by Fig. 1.

To compare the Babai partition and the natural partition, we study the moments of their cells, which
follow from Cor. 1:

9



Corollary 2 (Moments of Babai’s partition). Let B be a basis of a full-rank lattice L in Rn. Let t = (t1, . . . , tn) ∈
Zn and the cell CZ(t) = tB? +D where D = {∑n

i=1 xib?
i s.t. − 1/2 ≤ xi < 1/2}. Then:

E{CZ(t)} =
n

∑
i=1

(
t2
i +

1
12

)
‖b?

i ‖2 and V{CZ(t)} =
n

∑
i=1

(
t2
i
3
+

1
180

)
‖b?

i ‖4

Corollary 3 (Moments of the natural partition). Let B be a basis of a full-rank lattice L in Rn. Let t = (t1, . . . , tn) ∈
Nn and the cell CN(t) = {∑n

i=1 xib?
i s.t. − (ti + 1)/2 < xi ≤ −ti/2 or ti/2 < xi ≤ (ti + 1)/2}. Then:

E{CN(t)} =
n

∑
i=1

(
t2
i
4
+

ti
4
+

1
12

)
‖b?

i ‖2 and V{CN(t)} =
n

∑
i=1

(
t2
i

48
+

ti
48

+
1

180

)
‖b?

i ‖4

This suggests that the natural partition is better than Babai’s partition: we will return to this topic in Sect. 6.

4.2 Discrete Pruning from Lattice Partitions

Any L-partition (C, T) defines a partition Rn = ∪t∈TC(t). Discrete pruning is simply obtained by choosing
a finite number of cells C(t) to enumerate, as done by Alg. 4: discrete pruning is parametrized by a finite
set U ⊆ T, which specifies which cells to enumerate. Discrete pruning is therefore a pruned enumeration

Algorithm 4 Discrete Pruning from Lattice Partitions
Input: A lattice partition (C(), T), a finite subset U ⊆ T and a radius R.
Output: L ∩ S ∩ P where S = Balln(R) and P = ∪t∈UC(t).
1: R = ∅
2: for t ∈ U do
3: Enumerate L ∩ C(t): if the output vector has norm ≤ R, add the vector to the setR.
4: end for

with pruning set:
P = ∪t∈UC(t)

The algorithm performs exactly k partition-enumerations, where k = #U is the number of cells of dis-
crete pruning, and each partition-enumeration runs in polynomial time by definition of the lattice partition.
So the running time is #U polynomial-time operations: one can decide how much time should be spent.

Since the running time is easy to evaluate, the only difficulty is to estimate the probability of success.
Based on Heuristic 2, the probability can be derived from:

vol(S ∩ P) = ∑
t∈U

vol(S ∩ C(t)). (1)

Thus, the problem is reduced to computing the volume vol(S ∩ C(t)) of the intersection of a ball with a
cell. If we want to maximize the probability of success for a given effort (i.e. for a fixed number k of cells),
it suffices to select the k cells which maximize vol(S ∩ C(t)) among all the cells: we will study this topic in
Sect. 6 for the natural partition.

The hardness of computing vol(S ∩ C(t)) depends on the lattice partition, but for Babai’s partition and
the natural partition, this can be reduced to computing the volume vol(S ∩ H) where S is a ball and H is a
box, which is exactly the topic of Sect. 5:

– In the case of Babai’s partition, each cell CZ(t) is already a box.
– In the case of the natural partition, each cell CZ(t) is the union of 2j symmetric (non-overlapping) boxes,

where j is the number of non-zero coefficients of t. It follows that vol(CZ(t)∩ S) = 2jvol(H ∩ S), where
H is any of these 2j boxes.

Interestingly, in Sect. 6.3, we show how to approximate well the sum of (1) without computing all the terms,
using only a constant number of terms.
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4.3 Revisiting Schnorr’s random sampling and the Fukase-Kashiwabara variant

Here, we show that Schnorr’s random sampling and its variants, including the Fukase-Kashiwabara vari-
ant, can all be viewed as special cases of discrete pruning.

Schnorr’s random sampling. Let B = (b1, . . . , bn) be a basis of a full-rank lattice L in Zn: denote by B? =
(b?

1 , . . . , b?
n) its Gram-Schmidt orthogonalization. Let 1 ≤ u ≤ n − 1 be an integer parameter. Schnorr’s

random sampling [30] outputs all points v ∈ L of the form ∑n
i=1 µib?

i such that µn = 1 and the remaining

µi ∈
{
[−1/2, 1/2( if i ≤ n− (u + 1)
[−1, 1( if n− u ≤ i ≤ n− 1

This is equivalent to pruned enumeration with a pruning set defined as the following (non-centered)
box of parameter u:

Pu =


n

∑
i=1

xib?
i s.t.

−1/2 ≤ xi < 1/2, if i ≤ n− (u + 1)
−1 ≤ xi < 1, if n− u ≤ i ≤ n− 1

1/2 ≤ xi < 3/2, if i = n

 (2)

Clearly vol(Pu) = 2ucovol(L). Curiously, the box Pu has slightly bigger moments than ∪t∈UuCN(t) where
Uu = {(0, ..., 0, tn−u, ..., tn−1, 1) ∈ {0, 1}n} is a finite set defining discrete pruning with the natural partition:
the corresponding pruning set also has volume 2ucovol(L). Schnorr’s box actually corresponds to discrete
pruning with the same finite set Uu of tags, but using a different hybrid lattice partition, which matches
the natural partition for the first n − 1 coordinates, and Babai’s partition for the n-th coordinate: namely,
T = Nn−1 ×Z and for any t ∈ T

CSchnorr(t) =

{
n

∑
i=1

xib?
i s.t.

−(ti + 1)/2 < xi ≤ −ti/2 or ti/2 < xi ≤ (ti + 1)/2 if i ≤ n− 1
−1/2 ≤ xn − tn < 1/2

.

}

Based on Heuristic 2, the success probability of random sampling can be deduced from vol(Pu ∩ S), where
Pu is a non-centered box and S is a ball: the computation of such volumes is exactly the topic of Sect. 5.
There, the following computations will be useful:

Lemma 4 (Moments of Schnorr’s box). Let B = (b1, . . . , bn) be a basis of a full-rank lattice L in Rn, and Pu be
Schnorr’s box of parameter u defined by (2). Then:

E{Pu} =
∑

n−(u+1)
i=1 ‖b?

i ‖2

12
+

∑n−1
i=n−u ‖b

?
i ‖2

3
+

13‖b?
n‖2

12

V{Pu} =
∑

n−(u+1)
i=1 ‖b?

i ‖4

180
+

∑n−1
i=n−u ‖b

?
i ‖4

45
+

61‖b?
n‖4

180

In some variants of random sampling (see [30,4]), one actually considers a random subset of Uu of size k
for some k � 2u: based on Heuristic 2, the success probability of random sampling can be deduced from
vol(C(t) ∩ S), where C(t) is the union of symmetric non-overlapping boxes. Again, the problem can be
reduced to the volume computation of Sect. 5.

It can easily be checked that the other variants by Buchmann-Ludwig [4] can also be viewed as discrete
pruning.

The Fukase-Kashiwabara variant. As mentioned previously, Fukase and Kashiwabara [8] recently intro-
duced an encoding of lattice points onto Nn, which turns out to be the encoding derived from the natural
partition. Their variant proceeds by enumerating all lattice points having certain encodings. In our termi-
nology, this can immediately be rewritten as discrete pruning with the natural partition, where the finite set
of tags has size approximately 5× 107.
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They do not provide a general algorithm to select tags: however, they explain which tags they selected to
solve the SVP challenges, so this only applies to certain settings and fixed dimensions. Here is an example
in dimension n in the range 120− 140. The selection proceeds in two stages:

– First, they select a large set of candidates V ⊆Nn, formed by all tags (t1, . . . , tn) ∈Nn such that:
• all ti ∈ {0, 1, 2}
• the total number of indexes i such that ti = 1 is ≤ 13, and the indexes i such that ti = 1 all belong to
{n− 55 + 1, . . . , n}.

• the total number of indexes i such that ti = 2 is ≤ 1, and the indexes i such that ti = 2 all belong to
{n− 15 + 1, . . . , n}.

– For each t ∈ V, they compute E{CN(t)} using the formula of Cor. 3.
– The final set U is formed by the 5× 107 tags t ∈ V which have the smallest E{CN(t)}.

4.4 Optimizations

If the discrete pruning set U has exactly k elements, then the running time is k polynomial-time operations.
However, from a practical point of view, it is important to decrease as much as possible the cost of the
polynomial-time operation.

First, one can abort the enumeration of a cell if we realize that the lattice vector inside the cell will be
outside the ball S: this is similar to what is done during enumeration.

Second, we can speed up the computation by regrouping cells. A good example is Schnorr’s random
sampling. We can view Schnorr’s pruning set Pu as the union of 2u cells, but when we want to enumerate
all lattice points inside S ∩ Pu, it is better to view it as a single box: discrete pruning can be rewritten here
as some variant of enumeration. More generally, depending on the set U of tags, we can recycle some
computations: similar tricks were used for pruned enumeration [11].

Third, we note that all the cell enumerations can be performed in parallel: discrete pruning is easier
to parallelize than continuous pruning. It seems that discrete pruning should be better suited to special
hardware than continuous pruning.

5 Ball-Box Intersections

In this section, we are interested in computing the volume of the intersection between a ball and a box, either
exactly by a formula or approximately by an algorithm. More precisely, we are interested in vol(B ∩ H),
where B is the ball of center c ∈ Rn and radius R, and H is the following box:

H = {(x1, . . . , xn) ∈ Rn s.t. αi ≤ xi ≤ βi},

where the αi’s and βi’s are given. Without loss of generality, we may assume that c = 0 after suitable
translation, and R = 1 after suitable scaling, because:

Vol

(
Balln(R) ∩

n

∏
j=1

[αj, β j]

)
= RnVol

(
Balln(1) ∩

n

∏
j=1

[
αj

R
,

β j

R

])
.

Hence, we are interested in:

Vol (Balln(1) ∩ H) = Vol

(
Balln(1) ∩

n

∏
i=1

[αi, βi]

)
=

n

∏
i=1

(βi − αi) Pr
(x1,...,xn)←∏n

i=1[αi ,βi ]

[
n

∑
i=1

x2
i ≤ 1

]
(3)

The section is organized as follows. In Sect. 5.1, we give a rigorous asymptotical estimate of (3) when the
box is sufficiently balanced, but we show that it is ill-suited to the case of discrete pruning. In Sect. 5.2, we
provide two exact formulas for (3) as infinite series, due to respectively Constales and Tibken [27]: these
infinite series give rise to approximation algorithms by truncating the series. In Sect. 5.3, we give a heuristic
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method to approximate (3), based on fast inverse Laplace transforms: this method is referred as FILT in
the remaining of the paper. Sect. 5.4 provides an experimental comparison of the running time of the three
methods of Sect. 5.2 and 5.3, in the context of discrete pruning: it turns out that in high dimension, the FILT
method outperforms the other two.

We note that Buchmann and Ludwig [4, Th. 1] (more details in [20, Th. 18]) implicitly adressed the
computation of (3): the main part of [4, Alg. 3] can be viewed as a heuristic approximation algorithm based
on the Discrete Fourier transform, but no experimental result seems to be reported in [4,20].

5.1 Asymptotical Analysis

The following result (proved in App. A.1 shows that the volume of the intersection of a ball with a “bal-
anced” box can be asymptotically computed, because the right-hand probability of (3) can be derived from
the central limit theorem:

Theorem 3. Let C1, C2 > 0 be constants. Let H = {x = (x1, . . . , xn) ∈ Rn s.t. αi ≤ xi ≤ βi}, where C1 ≤ βi− αi
and max(|αi|, |βi|) ≤ C2. Then Y = (‖x‖2 −E{H})/

√
V{H} has zero mean and variance one, and converges in

distribution to the normal distribution, i.e. for all y > 0:

lim
n→∞

Pr
x∈H

(
‖x‖2 ≤ E{H}+ y

√
V{H}

)
=

1
2

(
1 + erf(y/

√
2)
)

,

where

E{H} =
n

∑
i=1

(
α2

i + β2
i + αiβi

3

)
and V{H} =

n

∑
i=1

(
4
45

α4
i −

1
45

α3
i βi −

2
15

α2
i β2

i −
1
45

αiβ
3
i +

4
45

β4
i

)
.

Unfortunately, we cannot apply Th. 3 when the box H is Schnorr’s box which, after suitable rotation, corre-
sponds to:

– If i ≤ n− (u + 1), then βi = ‖b?
i ‖/2 and αi = −βi;

– If n− u ≤ i ≤ n− 1, then βi = ‖b?
i ‖ and αi = −βi;

– αn = ‖b?
n‖/2 and βn = 3/2‖b?

n‖

If the basis B is LLL-reduced, then the ‖b?
i ‖’s typically decrease geometrically, which means that the

(αi, βi)’s do not satisfy the assumptions of Th. 3. Furthermore, experiments show that in practice, the dis-
tribution of the Y defined in Th. 3 is not normal (see Fig. 2) as its left-tail is below that of the normal
distribution and its right-tail is over. Worse, the distance with the normal distribution actually increases
with the dimension: see Fig. 3. However, if we fix the dimension and apply stronger and stronger lattice re-
duction, we expect the box to become more and more “balanced”: this is confirmed by Fig. 4, which shows
that the more reduced the basis is, the closer Y is to the normal distribution.

If the box is “unbalanced”, it is always possible to upper bound and lower bound the right-hand prob-
ability of (3). For instance, an upper bound follows from Hoeffding’s bound:

Lemma 5. Let H = {x = (x1, . . . , xn) ∈ Rn s.t. αi ≤ xi ≤ βi}. Then for any y > 0:

Pr
x∈H

(
‖x‖2 ≤ E{H} − y

)
≤ e−2y2/ ∑n

i=1(βi−αi)
2
.

Proof. It suffices to apply Hoeffding’s bound with y > 0 and the n independent variables −Xi = −x2
i . ut

However, these upper bounds are typically very pessimistic for the type of boxes we are interested in. Recip-
rocally, in the spirit of Schnorr [30] (see also [4,9]), it is also possible to give a lower bound on the right-hand
probability of (3), by considering the largest sub-box J of H which is contained in Balln(1), in which case
vol(Balln(1) ∩ H) ≥ vol(J). This can lead to an asymptotic lower bound if we are able to conveniently
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Fig. 2. Comparison of the normal distribution with the experimental distribution of Y defined in Th. 3 with Schnorr’s
box (with u = 10) over an LLL-reduced basis in dimension 100. Both tails significantly deviate from normal tails. On
the right, there is a log-scale.

bound the side-lengths of H, i.e. the ‖b?
i ‖’s. This is why Schnorr [30] introduced the Geometric Series As-

sumption (GSA), but this only holds in an approximate sense, which creates some problems (see [4]): for
instance, the GSA implies that all ‖b?

i ‖ are always ≤ ‖b1‖ for i ≥ 2, but in practice, it can happen that
some b?

i is larger than b1. To prevent this problem, one can use instead absolute bounds: for instance, Fig. 5
shows that in practice, for a random LLL-reduced basis, maxB ‖b?

i ‖/‖b1‖ can be upper bounded by a ge-
ometric sequence indexed by i, with parameters independent of n. However, the lower bound obtained is
again typically very pessimistic for the type of boxes we are interested in.

5.2 Exact formulas

Here, we provide two exact formulas for the intersection volume as infinite series, by sligthly generalizing
the works of respectively Constales and Tibken [27], who studied the special case of a zero-centered cube.

Fourier series. We first generalize Constales’ method based on Fourier series. Let S(x) =
∫ x

0 sin(t2)dt and
C(x) =

∫ x
0 cos(t2)dt be the Fresnel integrals.

Theorem 4. Let αj ≤ β j for 1 ≤ j ≤ n. Let ` = ∑n
j=1 max(α2

j , β2
j ). Then:

vol(Balln(1) ∩
n

∏
j=1

[αj, β j]) =

∏n
j=1 |β j − αj| if ` ≤ 1(
1
2 −

∑n
j=1 α2

j +β2
j +αj β j

3` + 1
` +

1
π Im ∑∞

k=1
Φ(−2πk/`)

k e2iπk/`
)

∏n
j=1(β j − αj) if ` > 1

(4)

where Φ is defined as

Φ(ω) =
n

∏
j=1

(C(β j
√
|ω|)− C(αj

√
|ω|)) + isgn(ω)(S(β j

√
|ω|)− S(αj

√
|ω|))

(β j − αj)
√
|ω|

.

A proof can be found in App. A.2: it is just a slight generalization of the proof of Constales [27]. An ap-
proximation algorithm can be derived by truncating the infinite series of (4) to N terms: computing each
term costs approximately n operations, where an operation is dominated by the computation of a constant
number of Fresnel integrals. The computation of Fresnel integrals is classical: for instance, it can be done by
reduction to erf computations.
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Fig. 3. Evolution of the distribution of Y defined in Th. 3 with Schnorr’s box (with u = 10) over an LLL-reduced basis,
as the dimension increases: it becomes less and less normal.

Multidimensional Fourier transforms. We now generalize Tibken’s formula based on the n-dimensional
Fourier transform.

Theorem 5. Let αj ≤ β j for 1 ≤ j ≤ n. Then:

vol(Balln(1) ∩
n

∏
j=1

[αj, β j]) =
1

(4π)n/2

(
I( 1

2n+4 , 0)
Γ(n/2 + 1)

+
∞

∑
k=2

Ln/2
k (n/2 + 1)I( 1

2n+4 , k)
Γ(k + n/2 + 1)(2n + 4)k

)
(5)

where Lα
k (x) denotes the generalized Laguerre polynomial, Γ is the classical Gamma function and:

I(λ,0) = πn
n

∏
j=1

(
erf
(

β j

2
√

λ

)
− erf

(
αj

2
√

λ

))
and I(λ, k) = (−1)k

(
∂

∂λ

)k
I(λ, 0)

Again, an approximation algorithm can be derived by truncating the infinite series. The first term of (5)
is easy to compute from the erf, and turns out to give a much better approximation than the central limit
theorem for Schnorr’s box. But the right-hand sum terms are trickier to compute (see App. A.3 for details),
due to the derivative in the definition of I(λ, k) and the presence of Laguerre polynomials.

5.3 Numerical Approximation from Fast Inverse Laplace Transforms (FILT)

We now present the method we used in practice to approximate the volume, which is based on the Laplace
transform. The starting point is similar to the Fourier series approach, but it deviates afterwards. For a
function f (x) defined over x ≥ 0, its Laplace transform F = L{ f } is defined over C as F(s) =

∫ ∞
0 f (t)e−stdt.

The inverse transform is given by the Bromwich integral

f (t) =
1

2πi

∫ c+∞i

c−∞i
F(s)estds, (6)

where the integration is done along the vertical line Re(s) = c in the complex plane such that c is greater
than the real part of all singularities of F(s). If g(t) =

∫ t
0 f (τ)dτ, then L {g} (s) = 1

s { f } . Thus, if X is a non-
negative random variable with probability density function f (x), then its cumulative distribution function
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Fig. 4. Evolution of the distribution of Y defined in Th. 3 with Schnorr’s box (with u = 40) in dimension 250, with
varying reductions: it becomes closer to normal as the basis becomes more reduced

FX(x) satisfies: FX(x) = L−1
{

1
sL{ f }(s)

}
(x). Thus, if we denote by ρ∑n

j=1 x2
j

the probability density function

of ∑n
i=1 x2

i , then the right-hand probability of (3) is given by:

Pr
(x1,...,xn)←∏n

i=1[αi ,βi ]

[
n

∑
i=1

x2
i ≤ 1

]
= L−1

{
1
s
L{ρ∑n

i=1 x2
i
}(s)

}
(1). (7)

When xi is uniform over [αi, βi], the p.d.f. of x2
i is

ρx2
i
(z) =


1

2(βi − αi)
√

z
(α2

i ≤ z ≤ β2
i )

0 otherwise
.

Thus, the p.d.f. of x2
1 + · · ·+ x2

n is given by their convolution: ρx2
1+···+x2

n
(z) = ρx2

1
(z) ∗ · · · ∗ ρx2

n
(z), where

( f ∗ g)(t) =
∫ t

τ=0
f (τ)g(t− τ)dτ.

However, the Laplace transform of a convolution is simply the product of the transforms: if f1(t) and f2(t)
be two functions with Laplace transform F1(s) and F2(s) respectively, then

L { f1 ∗ f2} (s) = F1(s) · F2(s).

In our case, the Laplace transform of each individual pdf is given by

L
{

ρx2
i

}
(s) =

√
π
(
erf(βi

√
s)− erf(αi

√
s)
)

2(βi − αi)
√

s
. (8)

Thus,

L
{

ρ∑n
i=1 x2

i

}
(s) =

(π

s

)n/2 n

∏
i=1

(
erf(βi

√
s)− erf(αi

√
s)
)

2(βi − αi)
, (9)
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Fig. 5. Evolution of maxB ‖b?
i ‖/‖b1‖ over hundreds thousands LLL-reduced bases, as i ≥ 2 increases, in dimensions

100 (blue) and 150 (red): the right-hand graph is in log-scale.

and computing (7) is reduced to computing the inverse Laplace transform of (9) at 1, namely:

πn/2−1

2i

∫ c+∞i

c−∞i

es

sn/2+1

n

∏
j=1

(
erf(βi

√
s)− erf(αi

√
s)
)

2(βi − αi)
ds (10)

for a real number c within a certain range.
We used Hosono’s method [14] to invert the Laplace transform: given F(s), we want to compute its

inverse f (t). Let γ > γ0 in the region of convergence. Hosono used the following approximation of the
exponential function, for γ1 > γ0:

es ≈ E(s, γ1) :=
eγ1

2 cosh(γ1 − s)

which has singularity points at

sm = γ1 +

(
m− 1

2

)
πi for m ∈N.

Considering the integral along the sides of the box {γ1 + x + yi : |x| < a, |y| < R} for some small
number a and large number R. Letting R→ ∞, and by the residue theorem, we have

f (t) =
1

2πi

∫ c+∞i

c−∞i
F(s)estds ≈ eγ1

t

∞

∑
m=1

(−1)mImF
(

γ1 + (m− 1/2)πi
t

)
. (11)

Here, we used the fact that ReF and ImF are respectively odd and even functions when f (t) is a real func-
tion. Thus, by choosing a suitable γ1 and truncating the sum of (11) to N terms, we can obtain an approxi-
mation of the inverse Laplace transform f (t), and therefore approximate (10).

Choice of preimages. Since our function includes
√

s, we need to specify which square root over C, in such
a way that the function is continuous along the path (c−∞i, c + ∞i). Since the path is in Re > 0, we choose
the primal value of

√
s in the area | arg z| < π/4.
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Speeding up the convergence by Euler’s series transform. To approximate the sum

∞

∑
m=1

(−1)mFm :=
∞

∑
m=1

(−1)mImF
(

γ1 + (m− 1/2)πi
t

)
by a small number of terms, we apply the Euler’s series transform to its last terms

∞

∑
m=1

(−1)mFm ≈
k

∑
m=1

(−1)mFm + (−1)k
J

∑
j=1

(−1)j∆j−1Fk+1

2j

where ∆j−1Fk+1 is the forward difference ∑
j−1
i=0(−1)i(j−1

i )Fj+k−i. The van Wijngaarden transformation gives

us a simple algorithm. Let s0,j = ∑
k+j
m=k+1(−1)mFm for j = 0, 1, . . . J and compute s`+1,j = (s`,j + s`,j+1)/2

for all ` ≥ j. Finally, sJ,0 is an approximation of the partial sum.

5.4 Experimental Comparison

We give experimental results to compare the running time and accuracy required by the previous three
methods (namely, Constales’ formula (4), Tibken’s formula (5), and our FILT method (11) to approximate
the intersection volume (3): in each case, it depends on a number of terms, and only experiments can tell
how many terms are required in practice.

Accuracy of the FILT Method. We first report on the accuracy of the FILT method, which turns out to
require the least number of terms in practice. To check accuracy, we compared with a very good approxi-
mation of the volume, which we denote by ”convolution” in all the graphs: it was obtained with the Fourier
series method with a huge number of terms. To visualize results more easily, most of the graphs display an
approximation of a pdf, instead of a cdf: Fig. 6 shows the accuracy of FILT on (8) in dimension one, when
the function is the pdf of x2

j :

eγ1

t

N

∑
m=1

(−1)mImF
(

γ1 + (m− 1/2)πi
t

)
≈


1

2(β j − αj)
√

t
(α2

j ≤ z ≤ β2
j )

0 otherwise
. (12)

for γ1 and N, where

F(s) =

√
π
(
erf(β j

√
s)− erf(αj

√
s)
)

2(β j − αj)
√

s
.

For higher dimensions n = 3 and n = 10, Fig. 7 shows the accuracy of the method for evaluating (9).
When we apply (10) to (7) to compute the volume of the intersection, the method is very efficient: Fig. 8

shows the accuracy of the method in dimension 140 for the pdf and the CDF of the target random variable,
as the number N increases. Here, the box comes from a random natural cell of tag (0, . . . , 0, t131, . . . , t140)
where tj ∈ {0, 1, 2}.

Comparison with the methods of Constales and Tibken. For each dimension, we generated a random
LLL basis and considered the box H corresponding to the tag which as the 1000-th smallest expectation.
Then we compute the intersection volume V = Vol(Balln(0, 1.2 ·GH(L)) ∩ H) using the FILT method with
sufficiently many terms as the reference value r. Table 1 shows what is the number of required terms to
achieve a small relative error in practice, that is, the minimum k such that∣∣∣∣ r− sk

r

∣∣∣∣ < 10−5
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Fig. 6. Accuracy of (12) for (8) as the number N of terms increases.

Fig. 7. Accuracy of (11) for evaluating (9) as the number N of terms increases. On the left, n = 3. On the right, n = 10.

where sk is the approximation computed with k terms. All computations were done using cpp dec float<50>

of the boost library which can use 50-decimal floating-point numbers. For the computation of the Constales
and FILT method, the van Wijngaarden transformation (Sect. 5.3) is used to speed up the convergence. In
our FILT method, we used a heuristic value γ1 = max(50, 30 + 3

√
dim).

From Table 1, we conclude that the FILT method is the best method in practice for discrete pruning: its
running time is around 2s across dimension 40–150, and its required number of terms stays around 40. On
the other hand, Tibken’s method gets quickly impractical: our implementation requires a huge precompu-
tation table (see App. A.3 for details), which was not taken into account, and we see that the number of
terms increases, which creates a sharp increase in the running time. Constales’ method is very competitive

Method / Dimension 40 50 60 80 100 150

Constales ] terms 34 34 42 67 109 890
Time[sec.] 0.55 0.65 0.92 1.9 3.0 45.1

Tibken ] terms 34 39 54 - - -
Time[sec.] 5.9 19.5 362.5 - - -

FILT ] terms 39 46 46 46 43 34
Time[sec.] 1.06 1.54 1.72 1.96 2.06 1.88

Table 1. Required number of terms and running times for the three volume methods
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Fig. 8. Accuracy of the van Wijngaarden transformation in dimension 140. On the left, pdf; and on the right, CDF.

with FILT until dimension 80, and even faster in dimension ≤ 60, but its number of terms starts to increase
from dimension 60, to the point of making the method significantly slower than FILT in dimension 150.

We note that the running time of FILT (resp. Constales’ method) is dominated by the computation of
erf(·) (resp. S(·) and C(·)): interestingly, in the context of discrete pruning, when we want to compute the
intersection volumes for many tags over a fixed basis, we can recycle some computations because erf(βi

√
s)

only depends on ti. Since tags of interest typically have few non-zero coefficients, and that these non-zero
coefficients are small, there is a lot of overlap: given two tags t and u, there are many indices i such that
ti = ui. In practice, when computing the intersection volumes for sufficiently many tags over a common
basis, the total running time is decreased by a factor 10-20. So the running times of Table 1 can be further
decreased when it is applied to discrete pruning: the amortized running time for FILT is a fraction of a
second.

6 Optimizing Discrete Pruning with the Natural Partition

We saw in Sect. 4.2 that to optimize discrete pruning for a given effort (i.e. for a fixed number M of cells),
it suffices to select the M cells which maximize vol(S ∩ C(t)) among all the cells. In the case of the natural
partition, the computation of each vol(S ∩ C(t)) can be reduced to the computation of vol(S ∩ H) where H
is a sub-box of C(t). And we would like to identify which tags maximize vol(S ∩ H).

Sect. 5 gave methods to compute vol(S ∩ H) very efficiently, say less than one second. Unfortunately,
this is too inefficient to make an online selection, since we may want to process a huge number of cells.
Even if we preprocess the computation of tags by using a profile of the Gram-Schmidt norms ‖b?

i ‖, this will
be too slow.

In this section, we study practical heuristic methods to select optimal tags for the natural partition:
we use our volume computations of Sect. 5 to check the quality of our selection, so the results of Sect. 5
are very useful. The section is organized as follows. In Sect. 6.1, we observe a strong correlation between
vol(S ∩ C(t)) and E{CN(t)} for most tags t. This leads us to select the cells which minimize E{CN(t)},
which avoids any computation of vol(S ∩ C(t)): Sect. 6.1 explains how to do so efficiently. In Sect. 6.3, we
show how to check much more quickly the quality of a discrete pruning set: we show how to speed-up the
approximation of a large sum of intersection volumes vol(S ∩ C(t)), based on statistical inference, which is
crucial to estimate the success probability of discrete pruning. Finally, in Sect. 6.4 and 6.5, we compare the
quality of cells, depending on the discrete pruning set, and explain how to avoid bad cells.

6.1 Correlation between Intersection Volumes and Cell Expectations

Inspired by the tag selection of [8] (see Sect. 4.3), we experimentally studied the relationship between the
intersection volume vol(S ∩ C(t)) and the cell expectation E{CN(t)}. We found that for a fixed-radius cen-
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tered ball S, for random cells CN(t) of the natural partition, there exists a strong negative correlation be-
tween vol(S ∩ CN(t)) and E{CN(t)}: roughly speaking, the bigger the expectation E{CN(t)}, the smaller
the volume vol(S ∩ CN(t)), as shown in Fig. 9.

More precisely, for a BKZ-20 reduced basis of a 70-dimensional lattice, we computed the best 214 =
16, 384 cells with respect to E{CN(t)} (using Cor. 3), and vol(S ∩ CN(t)) where S is the ball of radius ‖b1‖.
The correlation coefficient of Pearson, Spearman and Kendall are 0.9974191, 0.83618071 and 0.72659780
respectively. The left-hand graph of Fig. 9 shows the intersection volumes of the best cells, sorted by expec-
tation: apart from a few exceptions, we see that the curve always decreases, which means that most of the
time, the bigger the expectation of the cell, the smaller is the intersection volume.

Fig. 9. Graphs of approximated cell-ball intersection volumes sorted by expectation

In other words, if we are only interested in selecting the cells with the largest intersection volumes,
we do not need to compute the volume, a near-optimal solution can be found by selecting the cells with
the smallest expectation (where the expectation is trivial to compute using Cor. 3), which we will do very
efficiently in the next subsection: the volume computation is only necessary when we want to estimate the
success probability, not for the selection of tags. We say near-optimal because though the cells with the
smallest expectation may not exactly be the cells with the largest intersection volume, most of them are. If
we use many cells but miss only a few good cells, it will not affect much the success probability. Note that
the selection of cells with the smallest expectation is independent of the radius of the ball S.

As an application of this heuristic supported by experiments, we give evidence that the natural parti-
tion is better than Babai’s partition: Alg. 5 shows how to transform efficiently any discrete pruning U for
Babai’s partition into a discrete pruning V (of the same size) for the natural partition, in such a way that
∑t∈U E(CZ(t)) ≥ ∑t∈V E(CN(t)). Thus, if we only consider the expectation of cells, we can ignore Babai’s
partition, and restrict ourselves to the natural partition.

Another interesting application is that for a fixed tag, one can decrease the expectation of its cell by
decreasing ∑n

i=1 ‖b?
i ‖2: this suggests that the smaller this quantity, the better for discrete pruning.

6.2 Finding the Cells of Lowest Expectations

Recall that the expectation of a cell of the natural partition is given by:

E{CN(t)} =
n

∑
i=1

(
t2
i
4
+

ti
4
+

1
12

)
‖b?

i ‖2
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Algorithm 5 Discrete Pruning: From Babai’s partition to the natural partition
Input: A finite set U ⊆ Zn defining a discrete pruning with Babai’s partition (CZ(), Zn) over a basis B of a lattice L.
Output: A finite set V ⊆ Nn of the same cardinal as U, defining a discrete pruning with the natural partition

(CN(), Nn) over B such that the finite union of cells has lower E than for U.
1: Partition the set U as U1, . . . , Um so that m is minimal and within any subset Ui, all the tags t ∈ Ui are the same in

absolute value, i.e. (|t1|, . . . , |tn|) is constant.
2: Define the bijection ν : Z→N by ν(z) = 2|z| − 1 if z is odd, and ν(z) = 2|z| otherwise.
3: for i = 1 to m do
4: for j = 1 to n do
5: Compute the number ej of tags t ∈ Ui such that tj < 0
6: Compute the number f j of tags t ∈ Ui such that tj > 0
7: if ej ≥ f j then
8: ε j ← 1
9: else

10: ε j ← −1
11: end if
12: end for
13: Vi ← ∅
14: for t ∈ Ui do
15: for j = 1 to n do
16: t′j ← ν(ε jtj)

17: end for
18: Vi ← Vi ∪ (t′1, . . . , t′n)
19: end for
20: end for
21: Return ∪n

i=1Vi.

We now explain how to compute the tags t ∈Nn which minimize this expectation.
For a fixed sequence (‖b?

i ‖)1≤i≤n, minimizing E{CN(t)} is equivalent to minimizing the function q(t1, . . . , tn) =

∑n
i=1(ti + 1/2)2‖b?

i ‖2 over Nn, which is the same as minimizing ‖∑n
i=1 tib?

i + ∑n
i=1 b?

i /2‖2: the minimal
value is ∑n

i=1 ‖b?
i ‖2/4 reached at 0.

Let L? be the lattice spanned by the b?
i ’s, which are pairwise orthogonal. Then finding the M cells with

the smallest expectation E{CN(t)} is equivalent to finding the M lattice points ∑n
i=1 tib?

i ∈ L? with positive
coefficients ti ∈ N which are the closest to u = −∑n

i=1 b?
i /2. To solve this problem, we solve a related

problem: find all the lattice points ∑n
i=1 tib?

i ∈ L? whose distance to u is less than a given bound, with the
restriction that all ti ∈ N. This is a special case of lattice enumeration in which the coefficients are positive
and the input basis vectors are orthogonal: it can be done by slightly modifying enumeration, as shown by
Alg. 6. Given a bound r > 0 and r1 ≤ r2 ≤ · · · ≤ rn, Alg. 6 generates all non-zero (x1, . . . , xn) ∈ Nn such
that ∑n

i=1(xi + 1/2)2ri ≤ r. Alg. 6 finds all the integer points ∈ Zn which are inside some ellipsoid and the
positive orthant (because each xi ≥ 0). We will explain later why require that r1 ≤ r2 ≤ · · · ≤ rn, but we
note that this is actually not a constraint: if the ri’s are not increasing, sort them by finding a permutation
π of {1, . . . , n} such that rπ(1) ≤ rπ(2) ≤ · · · ≤ rπ(n), then call Alg. 6 on (rπ(1) ≤ rπ(2) ≤ · · · ≤ rπ(n) and
r, and post-process any output (x1, . . . , xn) of Alg. 6 by returning instead (xπ−1(1), . . . , xπ−1(n)). Thus, by
choosing the ri’s as the ‖b?

i ‖2’s after suitable reordering, we can indeed use Alg. 6 to find all the lattice
points ∑n

i=1 tib?
i ∈ L? whose distance to u is less than a given bound, with the restriction that all ti ∈N.

Now we claim that if we call Alg. 6 with a suitable value of r we can indeed find the M cells with the
smallest expectation E{CN(t)} as follows:

– There are small intervals I such that for any r ∈ I, Alg. 6 will output only slightly more than M solutions.
Then we can sort all the solutions by expectation, and only output the best M tags.

– To find such an interval I slightly modify Algorithm 6 to obtain an algorithm that decides if the number
of non-zero (x1, . . . , xn) ∈ Nn such that ∑n

i=1(xi + 1/2)2ri ≤ r is larger or less than a given number,
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with an early-abort as soon as it has found enough solutions. This immediately gives us a suitable I by
binary search, using a logarithmic number of calls to the modified version of Algorithm 6. In practice,
a non-optimized implementation typically takes a few seconds to find say the best 50 millions tags.

To make this approach practical, it is crucial that Alg. 6 is very efficient. At first, this looks rather surprising:
Alg. 6 is doing enumeration with a lattice basis (b?

1 , . . . , b?
n) whose Gram-Schmidt norms are identical to

that of (b1, . . . , bn), with a non-trivial radius beyond the GH(L?). Even if we restrict to positive coefficients,
it looks impossible, because the running time of enumeration is typically predicted well by the Gaussian
heuristic (see [11]), using values that depend only the Gram-Schmidt norms: this means that, naively, we
might expect enumeration in L? to be as expensive as enumeration in L, in which case the whole approach
would be meaningless, because the goal of discrete pruning is to speed up enumeration. Fortunately, it
turns out that the usual predictions for the running time of enumeration do not apply to L?, because the
basis (b?

1 , . . . , b?
n) we use has a very special property: all its vectors are orthogonal, and it is known that

in lattices generated by orthogonal vectors, the number of lattice points in a ball can behave significantly
differently than usual (see [21]). Yet, that alone would not be sufficient in practice to guarantee efficiency:
this is where the constraint r1 ≤ r2 ≤ · · · ≤ rn matters. In our experiments with that constraint, if ` is the
number of solutions (i.e. the number of (x1, . . . , xn) ∈ Nn such that ∑n

i=1(xi + 1/2)2ri ≤ R), the running
time appears to be polynomial in `. More precisely, like all enumeration algorithms, Alg. 6 can be viewed
as a depth-first search of a tree, and the running time is less than O(L) polynomial-time operations, where
L is the total number of nodes of the tree. In practice, at least in the context of discrete pruning, the number
L seems to be bounded by O(`× n), and even `× n. This is contrast in the usual situation for which the
number of nodes of the enumeration tree is exponentially larger than the number of solutions. We leave it
as an open problem to show the efficiency of Alg. 6.

Algorithm 6 Enumeration of cells of low expectations
Input: (r1, . . . , rn) ∈ Rn such that 0 ≤ r1 ≤ r2 ≤ · · · ≤ rn and a bound r > 0.
Output: All (x1, . . . , xn) ∈Nn \ {0} such that ∑n

i=1(xi + 1/2)2ri ≤ r and all xi ≥ 0.
1: v2 = · · · = vn = ρn+1 = 0 // current coefficients
2: for k = n downto 2 do
3: ρk = ρk+1 + (vk + 1/2)2 · rk // partial squared norms
4: end for
5: k = v1 = 1;
6: while true do
7: ρk = ρk+1 + (vk + 1/2)2 · rk // compute squared norm of current node
8: if ρk ≤ r then
9: if k = 1 then

10: return (v1, . . . , vn); (solution found)
11: vk ← vk + 1
12: else
13: k← k− 1 // going down the tree
14: vk ← 0
15: end if
16: else
17: k← k + 1 // going up the tree
18: if k = n + 1 then
19: exit (no more solutions)
20: else
21: vk ← vk + 1
22: end if
23: end if
24: end while
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6.3 Faster Approximation of the Success Probability by Statistical Inference

As seen in Sect. 4.2, estimating the success probability of discrete pruning requires from (1) the computation
of ∑t∈U vol(S ∩ C(t)), where U is the set of tags. We saw in the previous section how to compute efficiently
vol(S ∩ C(t)) for the natural partition by reducing to the case of vol(H ∩ S) where H is box. Although this
computation is efficient, it is not sufficiently efficient to be applied billions of times within a few seconds.

Fortunately, the classical theory of statistical inference allows us to approximate ∑t∈U vol(S ∩ C(t)) rea-
sonably well without computing each term of the sum separately: it turns out that even a constant number
of terms is sufficient to obtain a good approximation in practice, and a good approximation is sufficient
for our heuristic estimate of the success probability of discrete pruning, since Heur. 2 is only a heuristic
estimate. To illustrate the presentation, we report experiments for a 70-dimensional LLL-reduced basis of a
random lattice L, radius R = 1.2GH(L), and a typical set of tags, namely 5,000,000 tags generated by Alg. 6.
Using the FILT method, we find that the sum ∑t∈U vol(S ∩ C(t)) of 5,000,000 volumes is approximately
35.03688covol(L) by computing each volume, and we will show how to approximate this value using only
1,000 volumes.

We want to approximate the sum µ = ∑t∈U vol(S∩C(t)), which is exactly the expectation of the discrete
random variable X = #U × vol(S ∩ C(t)), when t ranges over the finite set U.

Let X1, . . . , Xm be random variables chosen independently from the same distribution as X. Then the
sample mean X = (X1 + · · ·+ Xm)/m. Its expectation E(X) is exactly the target µ = ∑t∈U vol(S ∩ C(t)),
and its variance V(X) is V(X)/m. We want to know how close is X to its expectation µ.

Since the Xi’s are discrete, the central limit theorem implies that
√

m(X − µ) converges in distribution
(as m grows) to the centered normal distribution of standard deviation σ: Fig. 10 shows the distribution
of X and X (with m = 1000) for our example. This means that in practice, we can already expect to find

Fig. 10. Distribution of X/(#Ucovol(L)) (on the left) and the sample mean X (on the right) for m = 1000.

a reasonable approximation of µ by simpling selecting m tags t1, . . . , tm independently and uniformly at
random from the set U: the estimate would be #U

m ∑m
i=1 vol(S ∩ C(ti)), with an absolute error of magnitude

±σ/
√

m.
The strategy we described is known as simple sampling, because it is the simplest method to estimate the

expectation of X, but there are many other methods. In practice, we used a better yet still simple strategy,
known as stratified sampling, because we can take advantage of properties of the cells we select in practice.

In the simplest form of stratified sampling, the set of tags U can be partitioned into subsets, and one
selects a tag uniformly at random inside each subset and “extrapolate”, as before. More precisely, if the
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subsets are U1, . . . Um, then the (randomized) estimate is

X′ =
1
m

m

∑
i=1

#Ui × vol(S ∩ C(ti)), (13)

where each ti is selected uniformly at random from Ui. In our case, assume that we select the set U of tags
formed by the best M tags t with respect to E{CN(t)} for some M. Then we sort all these tags by increasing
expectation, and split the ordered sequence into m subsets U1, . . . , Um of nearly equal size. Thus, for all
(ti, tj) ∈ Ui ×Uj and i < j, we have: E{CN(ti)} ≤ E{CN(tj)}.

Fig. 11 shows that for the same value of m, the distribution of X′ is narrower than that of X, and therefore
stratified sampling gives a better estimate than simple sampling. Fig. 12 shows how accurate is (13), for

Fig. 11. Distributions of the estimate of simple sampling and stratified sampling.

increasing values of m, where there are 10,000 trials for each value of m. Using these sampling strategies
from statistical inference, it is now possible to estimate rather precisely the sum of volumes efficiently in
practice. A value of the order m = 1000 appears to be sufficient, even for much larger sets of tags. This is
consistent with common practice in statistical surveys.

By combining this fast approximation algorithm with Sect. 6.2, we can efficiently find out what is the
best trade-off for discrete pruning: by increasing order of magnitude of M, and starting with a small one,
we use Sect. 6.2 to identify the nearly-best M cells, and apply the fast approximation algorithm to estimate
the success probability for these M cells. We then deduce which M offers the best trade-off, after taking into
account the time of basis reduction, like in continuous pruning [11]. However, this optimization is easier
than for continuous pruning: the only parameter is M (or even its order of magnitude).

6.4 Comparison of cells

As we mentioned in Section 4.3, Schnor’s random sampling is essentially discrete pruning with the set of
tags Uu = {(0, ..., 0, t1, ..., tu, 1) ∈ {0, 1}n}. We have computed the intersection volume and the cell expec-
tations of these tags. The blue curve in Figure 9 shows the intersection volume sorted by cell expectation.
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Fig. 12. Accuracy of stratified sampling with m = 10, . . . , 5000. The right-hand side zooms in the region y ∈ [34, 36].

We compared Schnorr’s cells with the cells of Fukase-Kashiwabara [8], as selected by the process described
in Section 4.3. The experiments show that the intersection volumes are much bigger for the FK cells than
for Schnorr’s cells: the Fukase-Kashiwabara variant [8] outperforms Schnorr’s random sampling. We also
computed the best cells in terms of expectation, using our algorithm: in this limited experiments, we can see
in Fig. 9 that the FK tags are very close to our tags, but that tey are still different. For instance, if we consider
a typical BKZ-20 basis of a 250-dimensional random lattice, then among the best 5× 107 tags selected by
Alg. 6:

– about 70% of the tags have at least one coefficient 6∈ {0, 1} and cannot therefore be selected by Schnorr’s
random sampling.

– about 25% of the tags have at least two coefficients 6∈ {0, 1} and cannot therefore be selected by the
method outlined in [8].

Accordingly, we obtained several experiments in which the shortest vector found by discrete pruning had
a tag which did not mach the FK selection nor of course Schnorr’s selection.

6.5 Bad cells

To conclude this section, we note that discrete pruning can be slightly improved by removing what we call
bad cells. For instance, the lattice point inside the cell CN(0) is zero, which is useless. When selecting a set
of tags by lowest expectation, the set usually contains “a trivial” tag of the form of ei = (0, . . . , 0, 1, 0, . . . , 0).
When the basis B is size-reduced, it turns out that the lattice point inside the cell CN(t) is simply the trivial
vector bi, which is usually not very short for usual reduction algorithms, and can anyways be tested sepa-
rately. Although the cells of these tags have small expectation, they are not useful for discrete pruning: they
can be removed by precomputation.

7 Experiments

Most of our experiments were performed by a standard server with two Intel Xeon E5-2660 CPUs and 256-
GB RAMs. In this section, by random reduced basis, we mean a basis obtained by reducing the Hermite
normal form of lattices generated by the SVP challenge generator [28] with different seeds: each seed selects
a different lattice, and we only consider one reduced basis per lattice for a given reduction strength. The
LLL and BKZ reduced bases are computed by the NTL and progressive BKZ library [2], respectively.

Typical graphs of ‖b?
i ‖2 of LLL, PBKZ-20 and 60 are shown in Figure 13.
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Fig. 13. Typical graphs of ‖b?
i ‖ of LLL, PBKZ-20 and 60 reduced bases of a random 100-dimensional lattice.

For a lattice basis B, a set of tags T = {t1, . . . , tM}, and bounding radius R, define the symbol

V(B, T, R) =
M

∑
j=1

vol(CN(ti) ∩ Balln(R))
covol(L)

which, by Heur. 1, is a heuristic estimate of the number of lattice points contained in the union of cells.

7.1 Verifying heuristics on the success probability and number of solutions

For a lattice basis and a set {t1, . . . , tM} of tags, consider the union of corresponding cells, that is, the prun-
ing set: P = ∪N

i=1CN(ti). Heur. 1 suggests that the number of lattice points inside P and shorter than R is
roughly vol(P ∩ Balln(R))/covol(L).

We verified this estimate by using random LLL-reduced bases in dimension 100. For each basis Bi, we
generated 1,000 tags by Algorithm 6 and selected the best tags so that the total ratio vol(P∩Balln(R))/covol(L)
(with radius R = 1.2GH(L)) was larger than 0.001. About 300 or 400 tags are selected. For 17,386 bases and
6,281,800 tags generated as above, we display the result in Figure 14. By the red curve the relation between
accumulated volume, that is, for the set of first i tags Ti = {t1, . . . , ti}, ∑

ti⇐Lj

V(L, Ti, R = 1.2GH(Lj)). Here,

the notation ti ⇐ Lj means that ti is generated by Alg. 6 for the basis Lj. The blue curve is the number of
non-zero vectors which are contained in the boxes of the tag set Ti.

Fig. 14. Comparison between accumulated volume and actual number of found vectors
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7.2 Comparison with Classical Pruned Enumeration

We give experiments comparing discrete pruning with continuous pruning [11]. The parameters are: the
lattice dimension n, the number of tags M, the enumeration radius R = α ·GH(L) and the blocksize β of
BKZ lattice reduction.

The outline of the comparison is as follows: Generate an n-dimensional random lattice and reduce it by
BKZ-β. Generate the M best tags T = {t1, . . . , tM} by Algorithm 6 and compute the intersection volume
V(L, T, R = α ·GH(L)). For M > 1000, we use stratified sampling with m = 1000.

To compare with continuous pruning, we adapt Gama-Nguyen-Regev’s optimization method to mini-
mize the expected number of processed nodes

N =
1
2

n

∑
k=1

vol{(x1, . . . , xk) ∈ Rk : ∑`
i=1 x2

i < (R f (`) · αGH(L))2 for all ` ∈ [k]}
∏n

i=n−k+1 ‖b?
i ‖

.

subject to the volume of cylinder intersections

vol{(x1, . . . , xn) ∈ Rn : ∑`
i=1 x2

i < (R× f (`) · αGH(L))2 for ∀ ` ∈ [n]}
covol(L)

is larger than V(L, T, R) by optimizing the bounding coefficients f (1), . . . , f (n). Note that in the original
paper [11], their condition is the probability defined by the surface area of a cylinder intersection.

The cost estimation for discrete pruning is easy: the number of operations is essentially M ·n2/2 floating-
point operations since one conversion defined in Algorithm 1 requires n2/2 floating-point operations, like
Babai’s nearest plane algorithm. But the implementation can be massively parallelized (see [29] for the
special case of Schnorr’s random sampling). On the other hand, the cost estimation for continuous pruning
is a bit more tricky, since the actual cost to process one node, i.e., cost to decide whether the node is alive or
pruned, is proportional to the depth in the searching tree. To make a rigid comparison, we counted up the
actual number Ni of nodes at depth i processed during the enumeration by experiments and we define the
cost as ∑n

i=1 i · Ni.
With these settings, we tried 20 random bases for the same parameter set (n, M, R = α · GH(L), β):

Figure 15 shows the average ratio of the costs

1
20

19

∑
seed=0

M · n2/2
n

∑
i=1

i · Ni

which indicates when discrete pruning is faster or slower than continuous pruning, depending on whether
the ratio is ≤ 1 or ≥ 1.

The trends are clear from the figures. We find that the discrete pruning is faster than continuous pruning
when:

1. the number M of tags is small. This might be useful in extreme enumeration for approximating the
shortest vector problem.

2. The lattice dimension is high. Besides the speed factor, it might be useful because it is not easy to
run continuous pruning with a very low success probability in high dimension, as it is harder to find
suitable optimized bounding functions.

3. The lattice basis is not strongly BKZ-reduced.

On the other hand, the α parameter that sets the enumeration radius does not affect the trends.
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Fig. 15. Discrete pruning vs Continuous pruning: above the virtual horizontal line 100, discrete pruning is more ex-
pensive. (Upper left) 150-dim LLL-reduced bases with increasing α and M; (Upper right) LLL-reduced bases with
increasing dimension and α. M = 104 is fixed; (Lower left) 150-dim with increasing blocksize β of progressive BKZ and
α. M = 104 is fixed. Note that β = 0 corresponds to LLL. The virtual horizontal line 100 indicates when
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A Proofs and Additional Information for Sect. 5

A.1 Asymptotical Analysis

We prove Th. 3 of Sect. 5.1.
We have ‖x‖2 = ∑n

i=1 Xi where all the Xi = x2
i ’s are independent. Then E{H} = ∑n

i=1 E(Xi) and
V{H} = ∑n

i=1 V(Xi), where by Lemma 1:

E(Xi) =
α2

i + β2
i + αiβi

3
and V(Xi) =

4
45

α4
i −

1
45

α3
i βi −

2
15

α2
i β2

i −
1

45
αiβ

3
i +

4
45

β4
i

which proves the formulas for E{H} and V{H}. Let Yi = Xi −E(Xi) and Y = (∑n
i=1 Yi)/

√
V{H}. Then

E(Y) = 0 and V(Y) = 1. Because [αi, βi] ⊆ [−C2,+C2], we have, as n grows to infinity: ∑n
i=1 E(|Yi|3) =
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O(n). On the other hand, we claim that V(∑n
i=1 Xi) = Ω(n). Indeed, consider the polynomial f (x) =

4
45 x4 − 1

45 x3 − 2
15 x2 − 1

45 x + 4
45 . Then:

f (x) =
1

45
(x− 1)2(4x2 + 7x + 4) ≥ 1

45
(x− 1)2 15

16
= (x− 1)2/48.

We distinguish several cases:

– If αiβi = 0, then αi = 0 or βi = 0. If αi = 0, then V(Xi) = 4
45 β4

i ≥
4

45 C4
1 . Similarly, if βi = 0, then

V(Xi) ≥ 4
45 C4

1 .
– If αiβi < 0, consider the sign of αi + βi. If αi + βi ≥ 0, then βi ≥ C1/2, therefore:

V(Xi) = β4
i f (αi/βi) ≥ β4

i (αi/βi − 1)2/48 = β2
i (αi − βi)

2/48 ≥ (C1/2)2 × C2
1/48.

And we obtain a similar bound if αi + βi < 0 by using V(Xi) = α4
i f (βi/αi).

– Otherwise, αiβi > 0. If βi > 0, then βi > αi > 0 and therefore βi ≥ C1, thus

V(Xi) = β4
i f (αi/βi) ≥ β2

i (αi − βi)
2/48 ≥ C4

1/48.

We obtain a similar bound if βi < 0.

In all case, we can lower bound all V(Xi) by a strictly positive constant, and therefore ∑n
i=1 V(Xi) = Ω(n).

Hence:
∑n

i=1 E(|Yi|3)
(∑n

i=1 V(Xi))
3/2 =

O(n)
Ω(n3/2)

= O(1/
√

n).

Thus, the Xi’s satisfy Lyapunov conditions for δ = 1: the generalized central limit theorem ensures that the
random variable Y = (∑n

i=1 Yi)/
√

V{H} converges in distribution to a normal variable of expectation 0
and variance 1, which completes the proof. ut

A.2 Exact formulas

Proof of Th. 4. Let ` = ∑n
j=1 max(α2

j , β2
j ). If ` ≤ 1, then ∏n

j=1[αj, β j] ⊆ Balln(1), which proves the upper
part of (4).

We may now assume that ` > 1. Let x = (x1, . . . , xn) ∈ Rn be a random point in the box ∏n
j=1[αj, β j].

The characteristic function of x2
j is 1 at 0, and for ω 6= 0:

E(eiωx2
j ) =

1
β j − αj

∫ β j

αj

eiωy2
dy =

1
(β j − αj)

√
|ω|

∫ β j
√
|ω|

αj
√
|ω|

eisgn(ω)z2
dz

=
(C(βi

√
|ω|)− C(αj

√
|ω|)) + isgn(ω)(S(βi

√
|ω|)− S(αj

√
|ω|))

(β j − αj)
√
|ω|

,

where S(x) =
∫ x

0 sin(t2)dt and C(x) =
∫ x

0 cos(t2)dt are the Fresnel integrals. Thus, the characteristic func-
tion of ‖x‖2 is 1 at 0, and for ω 6= 0:

Φ(ω) =
n

∏
j=1

(C(βi
√
|ω|)− C(αj

√
|ω|)) + isgn(ω)(S(βi

√
|ω|)− S(αj

√
|ω|))

(β j − αj)
√
|ω|

.

Since 0 ≤ ‖x‖2 ≤ ∑n
j=1 max(α2

j , β2
j ) = `, the pdf of ‖x‖2 vanishes outside [0, `]. Then this pdf is equal

to its Fourier series over [0, `], i.e. ρ(t) = 1
` + 2Re ∑∞

k=1 cke2iπkt/` where the Fourier coefficients are ck =

Φ(−2πk/`)/`. By integration, we obtain the CDF of ‖x‖2 as its Fourier series:

A +
t
`
+

`

π
Im

∞

∑
k=1

ck
k

e2iπkt/`,
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where A is a constant which can be derived from integrating the CDF over [0, `], namely ` + iΦ′(0) =
A`+ `/2 where −iΦ′(0) = E(‖x‖2) = ∑n

j=1(α
2
j + β2

j + αjβ j)/3, therefore

A =
1
2
−

∑n
j=1 α2

j + β2
j + αjβ j

3`
.

To summarize, by evaluating the CDF at 1, which is inside [0, `]:

vol(Balln(1) ∩
n

∏
j=1

[αj, β j]) =

(
1
2
−

∑n
j=1 α2

j + β2
j + αjβ j

3`
+

1
`
+

`

π
Im

∞

∑
k=1

ck
k

e2iπk/`

)
n

∏
i=1

(βi − αi)

which completes the proof of (4).

Proof of Th. 5. We now generalize Tibken’s method based on the n-dimensional Fourier transform. If we
let χC() denote the characteristic function of a set C ⊆ Rn, then:

vol(Balln(1) ∩
n

∏
j=1

[αj, β j]) =
∫

Rn
χBalln(1)(y)χH(y)dny =

∫
Rn

χ̂Balln(1)(y)χ̂H(y)dny,

by Plancherel’s formula where f̂ (x) = (2π)−n/2
∫

Rn f (y)e−i〈x,y〉dy denotes the Fourier transform of a func-
tion f defined over Rn. By computing the Fourier transform of the characteristic functions of the ball and
the cube, we obtain a generalization of [27, (13)] as:

vol(Balln(1) ∩ H) =
1

(2π)n/2

∫
Rn

Jn/2(r)
rn/2

n

∏
j=1

sin(β jyj)− sin(αjyj)

yj
dny,

where r2 = ∑m
j=1 y2

j and Jn/2 denotes Bessel’s function. Finally, by exploiting a special formula [27, (24)]
relating Bessel’s function with Laguerre polynomials, we obtain the following generalization (5) of [27,
(33)]:

vol(Balln(1) ∩
n

∏
j=1

[αj, β j]) =
1

(4π)n/2

(
I( 1

2n+4 , 0)
Γ(n/2 + 1)

+
∞

∑
k=2

Ln/2
k (n/2 + 1)I( 1

2n+4 , k)
Γ(k + n/2 + 1)(2n + 4)k

)

where Lα
k (x) denotes the generalized Laguerre polynomial, Γ is the classical Gamma function and:

I(λ,0) = πn
n

∏
j=1

(
erf
(

β j

2
√

λ

)
− erf

(
αj

2
√

λ

))
and I(λ, k) = (−1)k

(
∂

∂λ

)k
I(λ, 0)

A.3 Computation of Tibken’s Formula

We now explain how we evaluated (5).
For fixed αi and βi, the log of I(λ, 0) is

log I(λ, 0) = n log π +
n

∑
j=1

log
[

erf
(

β j

2
√

λ

)
− erf

(
αj

2
√

λ

)]

Letting Jj(λ) := erf
(

β j

2
√

λ

)
− erf

(
αj

2
√

λ

)
, we have

I′(λ, 0)
I(λ, 0)

=
n

∑
j=1

J′j(λ)

Jj(λ)
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Thus, in order to find higher derivatives of I(λ, 0), it suffices to find the derivatives of
J′j (λ)
Jj(λ)

because of the

following recursive formula:(
∂

∂λ

)k
I(λ, 0) =

k−1

∑
i=0

(
k− 1

i

)
I(k−i)(λ, 0) ·

(
∂

∂λ

)i n

∑
j=1

J′j(λ)

Jj(λ)
.

Hence, separating terms, we need the derivatives of K(λ) = log J(λ) where J stands for each of the Jj’s.
Below, for a fixed function J, we again rely on a recursive formula to compute higher derivatives of K(λ).
Define the function Gi by

K(i) :=
J(i)

J
+ Gi.

Then, we have that G1 = 0, G2 = −(K′)2, . . . and the relation

Gi+1 = −K′K(i) + K′Gi + G′i .

Thus, Gi is an integer-coefficient polynomial in K, K′, . . . , Ki−1 which can be computed by a computer alge-
bra system. Provided a formula to J(i), this completes our recursive formula.

To get the higher derivatives of E(x) = erf(A/
√

x), we again use a computer algebra system starting
with

E′ = − A√
π

x−3/2e−A2/x

Let Fi(x) be the polynomial satisfying(
∂

∂λ

)k
E(x) =

A√
π

e−A2/x · Fi(x)
x−1/2+2i .

Then we have:

Fi+1(x) =
[

A2 +

(
1
2
− 2i

)
x
]

Fi(x) + x2F′i .

and the base case F1(x) = −1. Since A is a real number in general, Fi(x) is a real polynomial of degree i− 1.
In practice, the number of terms of the polynomial Gi seems to be at least subexponential. For i = 60, it

is about 106.

The figure below shows the accuracy of the method, by displaying the ratio between the partial sum
stopped at k = k′:

vol(Ball(0, 1) ∩
n

∏
j=1

[αj, β j]) =
1

2nπn/2

(
I( 1

2n+4 , 0)
Γ(n/2 + 1)

+
k′

∑
k=2

Ln/2
k (n/2 + 1)I( 1

2n+4 , k)
Γ(k + n/2 + 1)(2n + 4)k

)
(14)
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and the (accurate) volume computed by FILT.

Based on our experiments, the method would be very expensive for a mildly large dimension, say > 150.
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