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Abstract. We address the problems of whether t-circular-secure encryption can be based on (t −
1)-circular-secure encryption or on semantic (CPA) security, if t = 1. While for t = 1 a folklore
construction, based on CPA-secure encryption, can be used to build a 1-circular-secure encryption with
the same secret-key and message space, no such constructions are known for the bit-encryption case,
which is of particular importance in fully homomorphic encryption. Also, for t ≥ 2, all constructions of
t-circular-secure encryption (bitwise or otherwise) are based on specific assumptions.
We make progress toward these problems by ruling out all fully blackbox constructions of

– 1-seed circular-secure public-key bit encryption from CPA-secure public-key encryption;
– t-seed circular-secure public-key encryption from (t−1)-seed circular secure public-key encryption,

for any t ≥ 2.

Informally, seed-circular security is a variant of circular security in which the seed of the key-generation
algorithm, rather than the secret key itself, is encrypted. We also show how to extend our first result
to rule out a large and non-trivial class of constructions of 1-circular-secure bit encryption, which we
dub key-isolating constructions.
Our separation model follows that of Gertner, Malkin and Reingold (FOCS’01), which is a weaker
separation model than that of Impagliazzo and Rudich.
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1 Introduction

A public-key encryption scheme is 1-circular secure if it is CPA secure in the presence of an encryption
of the secret key under its corresponding public key. A more general notion is that of t-circular security
under which CPA security under t public keys pk0, . . . , pkt−1 is maintained even when each pki is used
to encrypt the secret key corresponding to pk(i+1 mod t). These notions are a special case of the notion of
key-dependent-message (KDM) security, under which more general functions of the secret key(s) may be
encrypted.

A primary foundational application of the notion of circular security (for any t) is in the context of fully
homomorphic encryption (FHE). Currently, with the exception of [CLTV15], all constructions of pure fully
homomorphic encryption go through a bootstrapping procedure, requiring a circular-security assumption on
a bootstrappable scheme built along the way (e.g., [Gen09,VDGHV10,BV11,BV14,GSW13,BGV14]).

When discussing circular security for an encryption scheme with secret-key space {0, 1}τ and plaintext
space {0, 1}η, an important feature is the relationship between τ and η: we call a scheme full-length if τ = η. It
is straightforward to build a full-length 1-circular-secure scheme from any CPA-secure scheme.3 This folklore
construction is based on the idea that the underlying plaintext m and public key pk can “communicate” to
see if m is pk’s secret key. Attempts to extend this idea to the t-circular security setting (for t > 1) have
so far met with less success and in fact to date all constructions of t-circular-secure schemes (full-length
or otherwise) are based on assumptions with certain algebraic properties or on obfuscation assumptions
[BHHO08,ACPS09,BG10,MTY11,Wee16,MPS16]. The main challenge involved is that the secret key of a
public key should now “communicate” with another public key in a way that a key cycle reveals no information
about the underlying secret keys. Implementing such an idea based on structure-free general primitives has
been unfruitful. One of the goals of our work is to formally explain this state of difficulty.

Unfortunately, the full-length assumption is not the end of the story since in many applications of circular
security, the secret key by design is encrypted bit-by-bit or block-by-block, where the size of each block
is considerably smaller than the secret-key size (e.g., [Gen09,VDGHV10]). In such cases the above folklore
construction (for t = 1) fails: the main difficulty is that since the secret key is no longer encrypted as a whole,
but as short blocks, we cannot perform the simple check described above. Of particular importance in such
settings is the notion of circular security for single-bit encryption schemes (which we call bit-circular security),
which, beyond FHE applications, is fundamental for the following reason: as shown by Applebaum [App14],
projection security, a notion slightly extending bit-circular security by also allowing for encryptions of negated
secret-key bits, is sufficient to obtain KDM security with respect to any (a priori fixed) function family. Thus,
understanding basic forms of KDM security in the bitwise setting is essential for the general understanding
of KDM security.

A series of papers, some quite recent, based on various specific assumptions give schemes that are CPA
secure, but not t-circular secure (for various values of t) [CGH12,BHW15,KW16,AP16]. While these results
provide strong evidence that t-circular security of any scheme cannot be reduced to the CPA security of the
same scheme, they do not shed light on the impossibility of positive constructions.

Finally, we mention that despite the foundational importance of the notion of bit-circular security, our
understanding of what it takes to obtain this notion (without relying on specific assumptions) is still lacking,
and there is little previous work addressing the problem. Haitner and Holenstein [HH09] rule out fully-
blackbox constructions of KDM-secure encryption with respect to quite large function families from trapdoor
permutations. Rothblum [Rot13] shows no fully-blackbox reduction can prove that CPA security of a bit-
encryption scheme implies circular security of the same scheme. We stress that the result of [Rot13] only
considers reductions to and from the same scheme, as opposed to our results which deal with constructions.

3 Assume, w.l.o.g, that the base CPA-secure scheme (G,E,D) has plaintext space {0, 1}n and that G uses an n-bit
seed, which is also the resulting secret key. Briefly, the idea is to modify E so that E(pk,m) will first check whether
G(m) produces pk as the public key, in which case it returns an encryption of an innocuous message.
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Before moving on, we remind the reader of the simple fact that bit t-circular security implies full-length
t-circular security (see Terminology 1). Briefly, the state of knowledge regarding circular security can be
summarized as follows:

– Full-length t-circular security based on CPA security: we have a simple construction for t = 1, but no
known constructions for t > 1.

– Bit t-circular security: all constructions (for any t) are based on specific assumptions [BHHO08,BG10]
and there is a preliminary blackbox separation for t = 1 from CPA security [Rot13].

In this work we ask the following two questions
(I) Can bit 1-circular security be based on CPA security?
(II) Can full-length t-circular security (for t > 1) be based on CPA security?

1.1 Our contributions and discussion

In this paper we make progress toward answering both questions above in the negative, by considering the
stronger notion of seed-circular security. In its simplest form, an encryption scheme is 1-seed circular secure
if it it is CPA secure in the presence of an encrypted version of the seed of the key-generation algorithm
under its corresponding public key. Similarly, we may define bit/full-length t-seed circular security; see
Terminology 1. Note that the assumption of t-seed circular security is indeed at least as strong as that
of t-circular security since any scheme meeting the former can slightly be changed to meet the latter by
altering the key-generation algorithm to return the underlying seed as its secret-key output and changing
the decryption algorithm accordingly. We first describe our main results and then discuss them in detail.

1. We prove there exists no fully blackbox construction (in the sense of [RTV04]) of 1-seed circular-secure
public-key bit encryption from CPA-secure public-key encryption (Theorem 10). We also show that this
separation holds so long as the constructed scheme has plaintext space {0, 1}c logn for any constant c
(Section 5.8).

2. We prove that full-length (t + 1)-seed circular security cannot be based in a fully-blackbox way on bit
t-seed circular security, for any t ≥ 1 (Theorem 13).

Our first result already rules out certain types of constructions for 1-circular-secure encryption, namely
those in which seeds and secret keys are the same. We show how to adapt this result to the setting of circular
security, to rule out a large and non-trivial class of constructions of 1-circular-secure bit encryption that we
call key-isolating constructions (Section 7). For example, the impossibility result of [Rot13] is obtained as a
special case of our septation for the circular-security setting. Moreover, we show that our separation extends
even if the base encryption scheme is CCA2 secure and the constructed scheme is only required to satisfy a
weak form of 1-seed circular security, under which the adversary is required to recover the seed (Section 5.8).

For our second result, choosing the target notion to be full-length (t+1)-seed circular security (as opposed
to bit (t + 1)-seed circular security) and the base notion to be bit t-seed circular security (as opposed to
full-length t-seed circular security) only makes our result stronger.

Discussion of results and notions. We first start by discussing the second result. We note that the
previously mentioned folklore contstruction, based on CPA security, indeed results in a full-length 1-seed
circular secure scheme, since the constructed scheme has the same seed and secret-key space. This shows
that the notion of seed-circular security (at least for the full-length case) is not so far-fetched, reinforcing
the significance of the separation result and providing partial justification for the lack of success in basing
full-length t-circular security, for t > 1, on CPA security. In fact, it suggests that an even less ambitious goal
than that of Question (II), namely of basing t-circular security on (t− 1)-circular security, may still be too
much to hope for.

As for the first result, we mention the following fact regarding the notion of bit 1-seed circular security.
Since one of the main applications of this notion is in the context of FHE, it is worth mentioning that if
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E = (G,E,D) is fully homomorphic (or homomorphic enough to evaluateG), then if E is 1-seed circular secure
it is also 1-circular secure, since one can use the properties of E to evaluate G homomorphically, thereby
producing an encrypted secret key from an encrypted seed. This reduction is, however, non-blackbox.

From a practical point of view, the notion of seed-circular security for specific schemes is not natural
insofar as such schemes typically come with public parameters (e.g., a group), and it is not meaningful to
talk about, say, encrypting the bits used to generate those parameters. Nevertheless, if generation of public
parameters is thought of as a separate process, many specific schemes have the property that their secret
keys are exactly their seeds. For example, both circular-secure schemes of [BHHO08,BG10] have the property
that with respect to fixed public parameters (which are a group plus l group elements), their secret keys
are just random l-bit-strings, being the same as their seeds. Thus, as a step toward proving full blackbox
impossibility for circular-secure encryption, it may be worthwhile to formulate a notion of encryption with
public parameters, and investigate whether our results extend to this case.

We conclude the discussion with the following observation. Our first result leaves us with an unexplained
gap, namely to what extent the plaintext size of the constructed scheme could be made bigger before obtaining
a positive (seed-)circular security result? For example, what happens if the construction is allowed to have
plaintexts that are ω(log n) bits long? We believe that filling this gap will further improve our understanding
of the notion of 1-(seed-)circular security.

Our separation model. All our separations follow the model of [GMR01]. We discuss the model for the
first result. For any candidate 1-seed circular-secure bit-encryption construction E = (G,E,D) we show the
existence of two oracles O = (g, e,d) and T such that (a) there exists a PPT oracle adversary AO,T that
breaks the 1-seed circular security of EO and (b) no PPT oracle adversary BO,T can break the CPA security
of O. This immediately implies that there exists no fully blackbox reduction. As common in separation
models we show the existence of O and T nonconstructively by proving results with respect to randomly
chosen O and T. We give an overview of our techniques and separation model in Section 4.

Most separation results in the literature actually rule out the existence of relativizing reductions, e.g.,
[IR89,Sim98,GKM+00,BPR+08,Vah10], which constitute a broader class of constructions than fully blackbox
ones. We stress that our results do not rule out relativizing reductions. Nonetheless, we are not aware of
any “natural” cryptographic construction that is relativizing but not fully blackbox. Finally, we mention
that there exist separation results in the literature that also only rule out fully blackbox reductions, e.g.,
[HR04,HH09,MP12,MM16].

Comparison with [HH09]. Haitner and Holesntein [HH09] rule out fully blackbox constructions of fully
KDM-secure schemes from trapdoor permutations, by giving a family F of poly(n)-wise independent hash
functions for any proposed construction (G,E,D) and showing that breaking the F -KDM security of
(G,E,D) cannot be reduced to inverting trapdoor permutations.4 One may wonder whether this combined
with Applebaum’s result [App14], which shows how to amplify projection security into F -KDM security (for
any F ), already separates projection security from trapdoor permutations. This, however, is not the case.
Roughly speaking, in [HH09] the poly(n) parameter of the derived KDM function family F (for which they
show that F -KDM security of the proposed scheme (G,E,D) does not reduce to trapdoor permutations)
depends on the complexity of E. On the other hand, under Applebaum’s amplification the target function
family F ′ (for which we want to have F ′-KDM security) is first fixed, and based on F ′ an F ′-KDM secure
scheme is obtained whose, in particular, encryption function’s complexity grow by that of F ′. This subtle
gap does not seem that can be filled at this moment.

Other related work. The question of what “general” assumptions may be used to obtain KDM security
is addressed in [HKS16], where it is shown that projection-secure public-key bit encryption (PKE) can be
built from any CPA-secure PKE with some additional properties. The power of circular-secure encryption is
addressed in [HK15], where it is shown that in combination with the so-called reproducibility property, bit
circular security implies the existence of powerful primitives including correlation-secure trapdoor functions
[RS10], CCA2-secure encryption and deterministic encryption.

4 The separation results of [HH09] is for the single key case.
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1.2 Blackbox separations and non-blackbox techniques

Blackbox constructions. To prove (in a mathematical sense) that primitive P1 implies primitive P2 (or P2

reduce to P1) it suffices to give a construction algorithm C and a security-proof algorithm Red in such a way
that C(M1) gives an efficient implementation of P2 whenever M1 is an efficient implementation of P1, and
that Red reduces any efficient attack A2 against C(M1) to one against M1. Most cryptographic reductions
are blackbox in that C only uses M1 as an oracle (denoted CM1) without assuming anything beyond the
input-output correctness of M1; moreover, Red reduces any attack A2 against CM1 to one against M1, while
treating both M1 and A2 as oracles. Such a pair (C,Red) for a cryptographic implication is referred to as a
fully-blackbox reduction [RTV04].

Blackbox separations. Impagliazzo and Rudich [IR89] were the first to formalize a model in which to show
certain cryptographic implications cannot be proved in a fully blackbox way. In particular, they showed
a fully blackbox separation between secret-key agreement and one-way permutations.5 The framework of
[IR89] was subsequently used (and extended) to separate many cryptographic primitives from many others
in a fully blackbox way, e.g., [IR89,Sim98,GKM+00,GMR01,BPR+08,HH09,Vah10,RS10,MP12]. Some subse-
quent works showed separations (between certain primitives) with respect to reductions under which only the
security proof is required to be blackbox (while the construction could be non-blackbox) [Pas11,GW11,Pas13].

Blackbox versus non-blackbox techniques. We note the existence of non-blackbox reductions in cryp-
tography, for which a blackbox counterpart may or may not (both provably and ostensibly) exist. Here by
non-blackbox we are referring to the construction, not to the security proof. We mention [CDSMW08,IKLP06]
as examples of blackbox constructions that replaced earlier non-blackbox counterparts [PSV06,GMW87].
Classical examples of non-blackbox constructions with no known corresponding blackbox construction in-
clude [NY90,DDN91], giving non-blackbox constructions of CCA1- and CCA2-secure encryption from doubly
enhanced trapdoor permutations [Gol11,GR13]. The state of our knowledge regarding the blackbox status of
CCA-secure encryption versus other classical public-key primitives is arguably limited, and the only known
works are the work of Gertner et al. [GMM07], ruling out sheilding blackbox constructions of CCA1-secure
encryption from CPA-secure encryption, and that of Myers and Shelat [MS09] proving equivalence of one-bit
and many-bit CCA2 secure encryption. Finally, we mention that the work of Mahmoody and Pass [MP12]
shows the existence of a non-blackbox construction (that of non-interactive commitment schemes from so
called hitting one-way functions) for which provably no blackbox counterpart exists.

More on non-blackbox techniques. A number of cryptographic primitives, as tools, naturally enable
non-blackbox techniques. These include certain technqiues based on FHE and more recently introduced
primitives such as witness encryption [GGSW13], functional encryption [BSW11] and indistinguishability
obfuscation [BGI+12,GGH+16], as well as techniques based on generic zero-knowledge proofs and witness
indistinguishability [GMW91,FLS90]. For example, almost all reductions proved in [GGSW13,SW14] are
non-blackbox. Some works explore the limitations of some of these non-blackbox techniques, by showing
how to capture these techniques inside fully-blackbox models [BKSY11,AS,AS16]. For example, the results
of Asharov and Segev [AS,AS16] only rule out fully-blackbox reductions to their base primitives, but their
base primitives are designed in such a way that the derived results also rule out common non-blackbox
techniques associated with the use of indistinguishability obfuscation (e.g., the punctured programming
technique [SW14]).

2 Preliminaries

If R(x1, . . . , xi; r) is a randomized algorithm using randomness r, by R(a1, . . . , ai) we mean the random
variable obtained by sampling r uniformly at random and returning R(a1, . . . , ai; r). If D is a distribution
x ∈ D means x ∈ support(D).

5 We remark that the results of [IR89] also rule out more general reductions, including relativizing reductions
and so-called semi-blackbox reductions (following the terminology of [RTV04]). For the latter, they relied on the
assumption P 6= NP, which later became unconditional by Reingold et al. [RTV04].
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The notion of a public-key encryption scheme (PKE) E = (G,E,D) is standard. The only convention we
make is that the order of keys produced by G is as a secret/public key pair (as opposed to a public/secret
key pair). We refer to the randomness space of G as the seed space of the scheme. We assume the decryption
algorithm is deterministic, and always decrypts correctly, and refer to this as the correctness (or validity)
condition. (Our separation results will hold even if the constructed scheme is allowed to make a small
decryption error. However, for the sake of simplicity we assume the stated condition.) All schemes in this
paper are many-bit or single-bit encryption schemes. If E’s plaintext space is {0, 1}η by E(PK,M) for
M ∈ {0, 1}∗ we mean that M is encrypted in blocks of size η, augmenting M with enough zero bits to make
|M | a multiple of η, if necessary. In particular, when η = 1, this will denote the bit-by-bit encryption of M .

We shall use lowercase letters (g, e,d) to denote base (i.e., blackbox) schemes and uppercase letters
(G,E,D) to denote constructions.

Oracle convention. Whenever we talk about an oracle adversary/algorithm A we adopt the following
conventions: we say A is efficient (or PPT) if A can be implemented as a PPT oracle algorithm; we say A
is query-efficient if A always makes at most a poly-number of oracle queries (but unlimited otherwise, and
may run exponential local computations). Whenever we put no restriction on an adversary it means that it
is not restricted in any way.

Notions of security. We define when an adversary breaks the (seed-)circular security of a bit-encryption
scheme. The definition naturally extends to the many-bit case.

Definition 1. Let E = (G,E,D) be a single-bit PKE with seed space {0, 1}n. Let

InpSeed = (PK1, . . . , PKt, EPK1(S2), . . . , EPKt−1(St), EPKt(S1))

InpSec = (PK1, . . . , PKt, EPK1(SK2), . . . , EPKt−1(SKt), EPKt(SK1))

b← {0, 1}, C ← EPK1(b),

where Si ← {0, 1}n and (SKi, PKi) = G(Si), for 1 ≤ i ≤ t. Then we say

– A breaks the t-seed circular security of E if Pr[A(InpSeed, C) = b] is non-negligibly greater than 1/2.

– A breaks the t-circular security of E if Pr[A(InpSec, C) = b] is non-negligibly greater than 1/2.

– E is t-seed circular secure if no PPT adversary A can break t-seed circular security of E. Similarly, we
can define t-circular security.

We now define the assumptions underlying the results of this paper.

Terminology 1. The assumption of bit t-seed circular security refers to the existence of a t-seed circular
secure single-bit PKE. Also, full-length t-seed circular security refers to the existence of a t-seed circular secure
PKE with the same seed and plaintext space. We have the following implications between these notions: (a)
CPA security ⇔ full-length 1-seed circular security and (b) bit t-seed circular security ⇒ full-length t-seed
circular security.

We define a notion of blackbox reductions between encryption primitives. See [RTV04,BBF13] for more
general notions of blackbox reductions.

Definition 2. A fully-blackbox reduction of P -secure (e.g., circular-secure) PKE to Q-secure (e.g., CPA-
secure) PKE consists of two PPT oracle algorithms (E , Red), satisfying the following: for any PKE O =
(g, e,d),

1. EO = (GO, EO, DO) forms a PKE, and

2. for any adversary A breaking the P -security of (GO, EO, DO), the oracle algorithm RedA,O breaks the
Q-security of O.
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3 PKE oracle distribution

Convention. Whenever we say a function f : D → R with property P (e.g., injectivity) is a randomly
chosen function we mean f is chosen uniformly at random from the space of all functions from D to R
having property P .

We describe a distribution under which a PKE oracle with some auxiliary oracles is sampled. These
oracles will be used to model ideal base primitives in our separations. The output of the distribution is an
ideally secure single-bit PKE (g, e,d) with certain input/output size constraints, as well as two auxiliary
oracles u and w.

We largely follow the notational style of [GMM07]. If f is a function whose output is a tuple, say a pair,
we write f(x) = (∗, y) to indicate that f(x) = (y′, y), for some y′.

Definition 3. We define an oracle distribution Ψ which produces an ensemble of oracles On = (On,un,wn)n∈N,
where for every n ∈ N, On = (gn, en,dn) and (un,wn) are chosen as follows.

– gn : {0, 1}n → {0, 1}5n is a random one-to-one function, mapping a secret key to a public key.

– en : {0, 1}5n × {0, 1} × {0, 1}n → {0, 1}7n is a function, where for every pk ∈ {0, 1}5n, en(pk, ·, ·) is a
random one-to-one function.

– dn : {0, 1}n×{0, 1}7n → {0, 1}∪{⊥} is defined by letting dn(sk, c) = b if and only if en(gn(sk), b, r) = c,
for some r ∈ {0, 1}n; otherwise, dn(sk, c) = ⊥.

– un : {0, 1}5n × {0, 1}7n → ({0, 1} × {0, 1}n) ∪ {⊥} is defined as un(pk, c) = (b, r) if en(pk, b, r) = c, and
un(pk, c) = ⊥ if for no (b, r) does it hold that en(pk, b, r) = c. That is, un(pk, c) decrypts c relative to pk,
and if successful, also returns the unique randomness used to produce c. (The oracle u is not typically
allowed to be freely used. See Definition 4.)

– wn : {0, 1}5n → {⊥,>} is defined as wn(pk) = > if for some sk, gn(sk) = pk, and wn(pk) = ⊥,
otherwise. That is, wn(pk) checks whether pk is a valid public key.

Definition 4. In all settings where access to u is granted this access is limited and is determined based
on the underlying challenge inputs. Specifically, we call Ag,e,d,u,w CCA-valid if Ag,e,d,u,w on input (pk, c)
never calls 〈u, (pk, c)〉. This definition naturally generalizes to the case in which A’s input consists of several
challenge public keys with several challenge ciphertexts for each public key, e.g, the t-seed circular security
setting.

Omitting the security parameter. We define g(sk) = gn(sk), for every n and sk ∈ {0, 1}n, and use a
similar convention for other functions in Definition 3. Sometimes when we need to emphasize under what
security parameter a query is made, we put in the sub-index n; in other places we typically omit the sub-index.

Ψ-valid oracles. We call a triple of functions (g, e,d) Ψ -valid if (g, e,d) is part of a possible output of Ψ ,
i.e., the domains and ranges of g, e and d are as specified in Definition 3, and also all the corresponding
injectivity conditions hold. Similarly, we may use the same convention to call, say, g, Ψ -valid.

Notation. For oracles O = (O1, . . . , Om) and an oracle algorithm AO, we let qry = 〈Oi, q〉 denote an A’s
query q to oracle Oi; if u = Oi(q) we use (〈Oi, q〉, u) to indicate that A calls Oi on q and receives u; we also
sometimes write O(qry) = u. If Que is a set of query/response pairs we use shorthands like (〈Oj , ∗〉, u) ∈ Que
to mean that for some q, (〈Oj , q〉, u) ∈ Que. Thus, (〈Oj , ∗〉, u) /∈ Que indicates that for no q, we have
(〈Oj , q〉, u) ∈ Que.

Symbolic representation of oracle queries. Sometimes we need to talk about sets containing query/response
pairs generated under some oracle, and later on check them against another oracle. For this reason, we
may sometimes talk about symbolic query/response pairs. For example, the symbolic form of a concrete
query/response pair (〈g, sk〉, pk) is denoted (〈g, sk〉, pk).
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4 General overview of techniques

We give an overview of our approaches for the two main results: separating bit 1-seed circular security (see
Terminology 1) from CPA security and separating full-length (t + 1)-seed circular security from bit t-seed
circular security.

4.1 CPA security 6⇒ bit 1-seed circular security

Summary of approach. First of all, note that a random O = (g, e,d), chosen as (O,u,w) ← Ψ will
be “ideally” secure with respect to all notions of security discussed in this paper. One idea for proving
separations is to add some weakening components v to O and show that relative to (O,v) the base primitive
exists, but not the target primitive. We could not make this approach work. Instead, we follow the model of
[GMR01], where for every candidate construction (G,E,D), we will define a weakening oracle T in such a
way that T breaks the claimed security of (GO, EO, DO), for a random O, but not the base security of O.
We emphasize that T depends on (G,E,D).

Let E = (G,E,D) be a candidate bit-encryption construction, (g, e,d,u,w)← Ψ and O = (g, e,d). Our
goal is to define an oracle T such that

(I) T is helpful in breaking the (alleged) 1-seed circular security of EO. That is, there exists a PPT adversary
B, where BO,T breaks 1-seed circular security of (GO, EO, DO).

(II) T is not helpful in breaking the CPA security of O. That is, no PPT oracle adversary AO,T can break
CPA security of O.

To define T, the most obvious idea is that on inputs of the form (PK,C1, . . . , Cn), an alleged public key
PK and a bit-by-bit encryption of PK’s seed under EO(PK, ·), T will check whether PK is a valid public
key under GO and if so decrypt C1, . . . , Cn under a secret key corresponding to PK to get some string S
and return S if GO(S) produces PK.

There are at least two problems with the above naive approach. First, even doing a simple check, namely
whether PK is a valid public key, can potentially grant a CPA adversary against O significant power,
violating Condition (II) above. (It is not hard to think of contrived constructions E for which this is the
case.) Second, even if we assume a CPA-adversary AO,T(pk, c) – against O – always calls T on valid PK’s,
we still have to make sure that A cannot come up with a clever query T(PK,C1, . . . , Cn) whose response
leaks information about g−1(pk) or about c’s plaintext bit. Essentially, the formal way to ensure this is to
design T in such a way that responses to T-queries of A can be simulated using access to some “safe” oracles.

Our approach starts by resolving the first problem, using an idea from [GMR01] (also used in some
subsequent works [GMM07,Vah10]): the oracle T performs the decryption of (C1, . . . , Cn) not relative to O,

but relative to some Õ = (g̃, ẽ, d̃), under which PK is indeed a valid public key. That is, T decrypts using

DÕ(SK ′, C1 . . . Cn), where (SK ′, PK) ∈ GÕ. Without further restrictions on Õ the result of decryption

is most likely random noise, as ẽ and d̃ can be defined arbitrarily. Thus, we need to ensure that for any
plaintext bit b, with high probability over a random R:

EO(PK, b;R) = EÕ(PK, b;R). (1)

This will ensure that, if (PK,C1, . . . , Cn) were “honestly” generated, then DÕ(SK ′, C1 . . . Cn) will be the
real output with high probability. This will in turn show that T is useful in breaking the 1-seed circular
security of (GO, EO, DO). It remains to show how to define such an oracle Õ, and how to ensure that queries
to the resulting oracle T by a CPA adversary AO,T(pk, c) can be simulated safely.

Specifically, we construct Õ by superimposing a poly number of query/response pairs Q, which serve as
a certificate of PK’s validity, on O. More precisely, we first sample (offline) a set of query/response pairs Q

in such a way that GQ = (∗, PK). Then, we superimpose Q on O to obtain Õ. The superimposed oracle Õ
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must agree with Q, must be a valid PKE oracle, and must also agree with the original O as much as possible.
In particular, this last requirement will ensure that Equation 1 above is satisfied.6

To ensure that T is simulatable, the oracle T will refuse to decrypt queries deemed “dangerous”: those
that can be issued by a CPA adversary A against O, and whose responses may leak information about
A’s challenge secrets. The main challenge is to formulate these dangerous queries in such a way that T is
provably of no use to any CPA adversary against O, while guaranteeing that T does not refuse to decrypt
too often, making it still useful for breaking the seed circular security of (GO, EO, DO).

To summarize, the oracle T(PK,C1, . . . , Cn) will perform a decryption DÕ(SK ′, C1 . . . Cn) and will

release the result if some condition holds. Moreover, the oracle Õ is obtained by superimposing a set Q of
query/response pairs on O, and we have GQ = (SK ′, PK).

Concrete overview. We now give a concrete overview of the above approach for a simple class of construc-
tions, those with oracle access of the form (Gg, Ee, Dd). We call these type-1 constructions.

Recall that the first step involved in the computation of T(PK,C1, . . . , Cn) is to superimpose a set
Q of query/response pairs (where GQ = (∗, PK)) on O. Since we are dealing with type-1 constructions
this set Q will only have g-type queries. Thus, we start by defining the task of super-imposing a set of
g-type query/response pairs on an oracle (g, e,d). (Recall that the notation g denotes symbolic queries. See
Section 2.)

Definition 5. We define the following procedure we call KeyImpose.

– Input: (g, e,d) and a set Qs = {(〈g, sk1〉, pk1), . . . , (〈g, skw〉, pkw)}, satisfying ski 6= skj for all distinct
i and j.

– Output: (g̃, d̃), where

g̃(sk) =

{
g(sk) if sk /∈ {sk1, . . . , skw}
pki if sk = ski for some 1 ≤ i ≤ w (2)

d̃(sk, c) is defined as follows: if there exist b and r such that e(g̃(sk), b, r) = c then d̃(sk, c) = b; otherwise,

d̃(sk, c) = ⊥.

Note that in the above definition if (g, e,d) is a valid PKE scheme and Qs satisfies the required condition

then (g̃, e, d̃) is also a valid PKE scheme. The resulting g̃, however, will not be injective if there are “collisions”

between Qs and g. Nonetheless, the resulting (g̃, e, d̃) is still both well-defined and valid.

We will use the following fact frequently in the paper. Informally speaking, it shows one particular
situation where queries to d̃ (where d̃ was defined above) can be handled using full access to (g, e,d) and
partial access to u.

Fact 1. Let (g, e,d,u,w) be a Ψ -valid oracle and let Bg,e,d,u,w(pk, . . . ) be a CCA-valid adversary (Def-
inition 4) with a challenge public key pk. (The set of B’s challenge ciphertexts is not important for the
forthcoming statement.) Let Qs be a set of query/response pairs meeting the condition of Definition 5 and

(g̃, d̃) = KeyImpose(g, e,d,Qs). Assuming (〈g, ∗〉, pk) /∈ Qs, then Bg,e,d,u,w(pk, . . . ), by having Qs as a

separate input, can efficiently compute d̃(sk′, c′), for all sk′ and c′ without violating the CCA condition.

Proof. For any query qu = 〈d̃, (sk′, c′)〉, either (i) (〈g, sk′〉, ∗) /∈ Qs or (ii) for some pk′ 6= pk, (〈g, sk′〉, pk′) ∈
Qs. If (i) holds then d̃(sk′, c′) = d(sk′, c′) and so B can reply to qu by calling 〈d, (sk′, c′)〉. If (ii) holds, the
answer to qu can be determined by calling 〈u, (pk′, c′)〉, which is a valid query for B as pk′ 6= pk. ut
6 In general, to ensure that Equation 1 will hold, we will also need to ensure that Q in turn agrees with “heavy”

queries to O made by E . However, this will not be necessary for the simple class of constructions that we will
analyze in the rest of this section.
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We make the following two assumptions for any construction (G,E,D) discussed throughout (type-1 or
otherwise).

Assumption 1. For any Ψ -valid O = (g, e,d) we assume GO, EO and DO, on inputs corresponding to
security parameter n make exactly nϑ oracle calls (for ϑ ≥ 1) and that GO(1n) uses exactly n random bits.7

Assumption 2. We assume G, E and D, on inputs relative to security parameter 1n only call their oracles
under the same security parameter 1n. This assumption is only made to simplify our presentation. However,
we are not aware of any construction that does not satisfy this assumption.

Separation for type-1 constructions. We first describe the oracle T, defined with respect to a fixed
(g, e,d) and a fixed type-1 construction (G,E,D), which helps us to break the seed circular security of
(Gg, Ee, Dd). We fix (G,E,D) throughout this section, and the dependence of T on (G,E,D) below is
implicit. The oracle T is selected from a class of oracles, but it is convenient to define the output distribution
of a randomly chosen T on an arbitrary given input, as we do below.

Description of T:

Oracles: (g, e,d,w)
Input: (1n, PK,C1, . . . , Cn)
Operations:

1. Choose (g′, S′) uniformly at random from the set of all pairs satisfying (a) g′ is Ψ -valid and (b)
Gg′(1n, S′) = (∗, PK). If no such a pair exists return ⊥. Otherwise, let SK ′ be the secret key out-
put by Gg′(1n, S′).

2. Let Qs contain the symbolic versions of all query/response pairs made in the execution of Gg′(1n, S′).

Define (g̃, d̃) = KeyImpose(g, e,d,Qs). Let QPub include any pk such that w(pk) = > and (〈g, ∗〉, pk) ∈
Qs.

3. Compute Sout = Dd̃(SK ′, C1 . . . Cn). Execute Gg(Sout) and if for all pk ∈ QPub the query/response
(〈g, ∗〉, pk) is made during the execution, then return Sout; otherwise, return ⊥.

We now briefly discuss why T provides the “desired” properties. We remind the reader that the presen-
tation in the rest of this section is largely informal.

4.1.1 T does not break the CPA security of a random (g, e, d). We show that any adversary
AO,T(1n, pk, c) against the CPA-security of O can be fully simulated without T, by a CCA-valid adversary
BO,u,w(1n, pk, c) (See Definition 4). We then show any such B has a very small chance of breaking the security
of O, by relying on a special case of the following lemma which shows a random O is t-seed circular secure
in a strong sense. As notation, whenever we write f1(n) ≤ f2(n) we mean that this holds asymptotically.

Lemma 1. Let t = t(n) be a polynomial. Let B be a CCA-valid oracle adversary (Definition 4), which has
access to some Ψ -valid oracle (g, e,d,u,w), and which makes at most 2n/4 queries and outputs a bit. It then
holds that

Pr
[
BO,u,w(1n, pk1, . . . , pkt, e(pk1, sk2), . . . , e(pkt, sk1), e(pk1, b)) = b

]
≤ 1

2
+

1

2n/4
,

where O = (g, e,d,u,w)← Ψ , O = (g, e,d), b← {0, 1}, ski ← {0, 1}n and pki = g(ski) for 1 ≤ i ≤ t.
7 Note that we do not claim that there exists a universal ϑ that works for all constructions E = (G,E,D). Rather,

for any fixed construction (G,E,D) which we want to rule out (i.e., define a breaking oracle T for), we fix a ϑ
that satisfies the stated conditions. Also, the assumption that G relative to any Ψ valid oracle uses n coins is not
necessary; it can indeed be any fixed p(n) number of coins, but assuming it to be n allows us to dispense with an
additional parameter p.
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The proof of the above lemma is based on simple probability arguments and is given in Section A of the
appendix.

Fix a Ψ -valid oracle (O,u,w). As stated earlier, our goal is to show that any adversary AO,T(1n, pk, c),
against the CPA-security of O = (g, e,d), can be simulated by a CCA-valid adversary BO,u,w(1n, pk, c) that
makes a poly-related number of queries. We stress that B will perform offline computations with exponential
cost during the simulation, but will make a poly-related number of queries. As we will show below, the
adversary B will either be able to perfectly simulate A, or will learn its challenge secret key, g−1(pk), along
the way.

Specifically, BO,u,w(1n, pk, c) starts running AO,T(1n, pk, c) and forwards all A’s O = (g, e,d) queries to
its own corresponding oracles.

To respond to a T query of the form Tqu
def
= 〈T, (1n1 , PK,C1, . . . , Cn1

)〉 made by A, B acts as follows
(note it may be that n1 6= n, as A can make queries under different security parameters): B forms SK ′ and
Qs exactly as in Steps 1 and 2 of T’s computation. Recall that SK ′ and Qs are sampled in such a way that
(SK ′, PK) = GQs(S′), for some S′. The adversary B is able to perform these samplings since they do not
involve queries to the real oracles, although a massive offline search is involved. Next, B starts simulating

Dd̃(SK ′, C1, . . . , Cn1
), where (g̃, d̃) = KeyImpose(g, e,d,Qs). Since it is not clear how B can perform

this decryption while making only a polynomial number of queries and without ever calling 〈u, (pk, c)〉, we
consider two possible cases:

(A) (〈g, ∗〉, pk) /∈ Qs: In this case B can fully execute Dd̃(SK ′, C1, . . . , Cn1), since by Fact 1 B can handle

all encountered queries, which are all of type d̃. (Recall that pk is B’s challenge public key.) Now letting

Sout = Dd̃(SK ′, C1, . . . , Cn1
), then B will perform the rest of Step 3 of T, which B can fully do since

the rest only involves making queries to g and w. Thus, B can find the answer to Tqu.
(B) (〈g, ∗〉, pk) ∈ Qs: In this case, recalling the definition of Qpub, we have pk ∈ QPub, since pk is B’s

challenge public key and so by definition w(pk) = >. Thus, by the condition given in Step 3 of T’s

description, if Sout = Dd̃(SK ′, C1, . . . , Cn1
) then at least one of the following holds:

(a) The answer to Tqu is ⊥; or
(b) The query/response pair (〈g, ∗〉, pk) will show up during Gg(Sout), i.e., the challenge secret key of
B, which is g−1(pk), will be revealed during Gg(Sout).

We now claim that B can find two strings S0 and S1 such that Sout ∈ {S0, S1}. If this is the case, B can
execute both Gg(S0) and Gg(S1); if during either execution a query/response (〈g, ∗〉, pk) is observed, B
has learned g−1(pk), winning the game; otherwise, B in response to Tqu will return ⊥, which is indeed
the correct response.

It remains to demonstrate the claim. To find S0 and S1, B attempts to simulate Dd̃(SK ′, C1, . . . , Cn1
).

For any query qu = 〈d̃, (sk′, c′)〉 encountered in the simulation, one of the following holds
(i) (〈g, sk′〉, ∗) /∈ Qs; or
(ii) (〈g, sk′〉, pk′) ∈ Qs for pk′ 6= pk; or

(iii) (〈g, sk′〉, pk) ∈ Qs and c′ 6= c; or
(iv) (〈g, sk′〉, pk) ∈ Qs and c′ = c.
B can find the answer to qu by querying 〈d, (sk′, c′)〉 for Case (i), querying 〈u, (pk′, c′)〉 for Case (ii),
and querying 〈u, (pk, c′)〉 for Case (iii). The latter two are legitimate u queries (see Definition 4).

For Case (iv) B will continue the execution of Dd̃(SK ′, C1, . . . , Cn1
) in two parallel branches BR0

and BR1, where B replies to qu with b on BRb. On both branches B will reply to queries for which
Cases (i), (ii) and (iii) hold exactly as above. If on some branch BRb′ , still during the execution of

Dd̃(SK ′, C1, . . . , Cn1
), for a query qu′ Case (iv) holds again (i.e., qu′ = 〈d̃, (sk′, c)〉 and (〈g, sk′〉, pk) ∈ Qs)

B will reply to qu′ with b′, making it consistent with the previous reply on this branch. Thus, these two
branches will result in two strings S0, S1 satisfying the claim.

We have shown that BO,u,w(1n, pk, c) can either fully simulate AO,T(1n, pk, c) or will learn its challenge
secret key g−1(pk) along the way. Moreover, B makes a poly related number of queries.
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Conclusion 2. By invoking Lemma 1 we deduce that for random O = (g, e,d) and T, any AO,T(pk, c)
that makes at most, say, 2n/5 queries (basically any number m of queries where m × poly(n) << 2n/4) has
advantage at most 1

2 + 1
2n/4 of computing b, where sk ← {0, 1}n, pk = g(sk) and c← e(pk, b).

4.1.2 T breaks 1-seed circular security of (G,E,D). We will now show that the oracle T is indeed
useful in breaking the purported 1-seed circular security of (Gg, Ee, Dd). We first give some intuition about
the proof. Let (PK,C1, . . . , Cn) be an honestly-generated input to T: that is,

S ← {0, 1}n, (SK,PK) = Gg(S) and (C1, . . . , Cn)← Ee(PK,S). (3)

Now consider the execution of T(1n, PK,C1, . . . , Cn). It is easy to see that it will always be the case that
Sout = S, where Sout is the string decoded in Step 3 of T’s computation. Thus, we are left to show that
the bad condition specified in Step 3, which makes T return ⊥, will hold only with small probability. We
will show that whenever this bad condition holds, we are able to produce a valid public key pk ∈ g({0, 1}n)
without calling g on pk’s pre-image. The following lemma will show that this probability is exponentially
small.

Lemma 2. Let B be an oracle adversary, which has access to some Ψ -valid oracle O = (g, e,d,u,w), and
which on input 1n makes a list Que of at most 2n queries and outputs a public key pkout ∈ {0, 1}5n. It then
holds that

Pr
O←Ψ

[w(pkout) = > and (〈g, ∗〉, pkout) /∈ Que] ≤ 1

22n
.

The proof of the above lemma is again based on a simple probability argument, and is given in Section A
of the appendix. We now formally state and prove the main claim regarding the usefulness of T.

Claim 3. The oracle T is useful if used honestly: assuming

O = (g, e,d,u,w)← Ψ, S ← {0, 1}n, (SK,PK) = Gg(S) and (C1, . . . , Cn)← Ee(PK,S) (4)

the probability that T(1n, PK,C1, . . . , Cn) does not return S is at most 1
22n .

Proof. Let the variables g′, S′, Qs, SK
′, g̃, d̃ and Sout be sampled as in T(1n, PK,C1, . . . , Cn). Recall that

(SK ′, PK) = GQs(1n, S′), (g̃, d̃) = KeyImpose(g, e,d,Qs), Sout = Dd̃(SK ′, C1 . . . Cn). (5)

Also, recall the way S, PK,C1, . . . , Cn are chosen in the claim (Equation 4).
We first claim Sout = S. This follows from the following three statements:

(a) (C1, . . . , Cn)← Ee(PK,S);

(b) (g̃, e, d̃) is a correct PKE (see the paragraph after Definition 5);
(c) (SK ′, PK) = Gg̃(1n;S′), which follows since (SK ′, PK) = GQs(1n, S′) and g̃ agrees with Qs.

Thus, by the correctness of (G,E,D), Sout = S. Thus, T(1n, PK,C1, . . . , Cn) either returns S or ⊥.

Let Fail be the event T(PK,C1, . . . , Cn) = ⊥. We show how to successfully forge a public key pk ∈
{0, 1}5n whenever Fail holds. By Lemma 2 we will then have Pr[Fail] ≤ 1

22n , proving the claim. We first
start with some intuition behind the forgery.

Recall that Sout = S. By definition, Fail occurs if there exists pk such that

(I) w(pk) = >;
(II) pk is embedded in Qs, i.e., (〈g, ∗〉, pk) ∈ Qs; and

(III) the query/response (〈g, ∗〉, pk) does not show up during Gg(1n, S).
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Now the forgery is done by simply returning pk, which is indeed a valid forgery because Qs is produced
based on PK in offline mode, and PK is produced as (SK,PK) = Gg(1n, S), guaranteeing that pk was
never previously outputted by g during the formation of Qs. The only thing left is to prove that the forged
pk is indeed in {0, 1}5n. (This is required by Lemma 2.) The reason is the following: since (〈g, ∗〉, pk) ∈ Qs,
the public key pk shows up as the response to a g′ query during Gg′(1n, S′). Recalling that g′ is Ψ -valid
(see Step 1 of T’s computation), by Assumption 2 we have pk ∈ {0, 1}5n. Given this intuition, the forging
adversary A works as follows.

The adversary AO(1n) proceed as follows:

1. Online mode: AO(1n) generates S ← {0, 1}n and (SK,PK) = Gg(S);
2. Offline mode: AO(1n) then samples a Ψ -valid function g′ and a seed S′ in such a way that Gg′(1n, S′) =

(∗, PK) and lets Qs contain the symbolic versions of all query/response pairs made to g′.

Denoting by Que the set of all query/response pairs of A so far (which was populated only during the
execution of Gg(S)), for all pk such that (〈g, ∗〉, pk) ∈ Qs and (〈g, ∗〉, pk) /∈ Que, A calls 〈w, pk〉: as soon as
A receives > in response, it returns pk. ut

We can now, using standard techniques, combine Conclusion 2 and Claim 3 to rule out all fully-blackbox
type-1 constructions of 1-seed circular secure bit encryption from CPA-secure encryption.

We conclude this subsection with the following remark.

Remark 4. The separation proved in this subsection will hold even if the candidate construction E is full
length. This can easily be checked, considering nowhere in our analysis do we use the fact that E is a single-
bit encryption algorithm. This may briefly be thought of as contradicting the positive construction basing
full-length 1-seed circular security on CPA security. However, the catch here is that the positive construction
alluded to earlier does not belong to the class of constructions ruled out here, since the constructed E calls
the base key-generation algorithm in order to check whether the given plaintext is the seed of the given public
key. When discussing the general separation result in Section 5 we will point out exactly where our separation
fails if the constructed scheme is full-length.

4.2 Bit t-seed circular security 6⇒ full-length (t + 1)-seed circular security

The reader may optionally read this subsection right before reading Section 6, and move on to Section 5.

For simplicity, we show how to separate full-length 2-seed circular security from bit 1-seed circular security,
as this case already captures most of our techniques for overcoming the difficulties in proving a general
separation result. Again, we focus on type-1 constructions. Since in this case the seed in the constructed
scheme is encrypted as a whole we denote a seed encryption as C ← E(PK,S) (as opposed to (C1, . . . , Cn)←
E(PK,S)).

Fix the proposed full-length 2-seed circular secure construction (G,E,D), for which we will define a
weakening oracle T2 in such a way that T2 breaks the 2-seed circular security of (Gg, Ee, Dd), but not the
1-seed circular security of the bit encryption scheme (g, e,d).

For this new setting, we cannot use the previous approach, mainly because the analysis there for showing
that access to the oracle T of a CPA adversary AO,T(1n, pk, c) is simulatable by a CCA-valid adversary
BO,u,w(1n, pk, c) against (g, e,d) (Subsection 4.1.1) heavily relies on the fact that only one challenge cipher-
text is present (which is c), whose value can be guessed in two branches. That simulation trick will fail here
because an adversary against the bit 1-seed circular security of (g, e,d), which has access to T2 and which
we want to simulate without T2, is provided with n + 1 ciphertexts. This means that a two-branch style
technique will result in an exponential number of branches, and so we need some new ideas for the oracle
T2. We describe the new ideas below. The construction of T2 will also use some of the previous ideas, which
we will only briefly sketch.

Main ideas behind T2. The oracle T2 will accept inputs of the form (PK0, PK1, C0, C1), where purport-
edly Ci is an encryption of PK1−i’s seed under E(PKi, ·). Then, T2 will decrypt C0 and C1 relative to,
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respectively, oracles Õ0 and Õ1, obtained by superimposing two sampled sets Q0
s and Q1

s , meeting a certain
condition, on O = (g, e,d). Specifically, T2 samples two sets of query/response pairs Q0

s and Q1
s in such a

way that for i = 0, 1 both conditions below hold:

(a) GQi
s = (SK ′i, PKi) for some SK ′i;

(b) the embedded public keys in Q0
s and Q1

s are disjoint. That is, for no pk′: (〈g, ∗〉, pk′) ∈ Q0
s and (〈g, ∗〉, pk′) ∈

Q1
s .

Next, T2 forms Õ0 = (g̃0, e, d̃0) and Õ1 = (g̃1, e, d̃1) as follows:

(g̃i, d̃i) = KeyImpose(g, e,d,Qi
s), for i = 0, 1.

Then, T2 will perform the decryptions

S0
out = Dd̃1(SK ′1, C1)

and
S1
out = Dd̃0(SK ′0, C0).

Finally, T2 returns S0
out if the following condition, that we call Safe, holds:

Safe: for both i = 0, 1 all embedded public keys in Qi
s appear during the execution of Gg(Siout).

The check (b) above is aimed at making T2 simulatable using u and w oracles: namely, to make any
1-seed circular security adversary AO,T2(pk, c1, . . . , cn, c) against O = (g, e,d) simulatable by a CCA-valid
adversary BO,u,w(pk, c1, . . . , cn, c). The main idea behind the simulation is that, for any query

〈T2, (PK0, PK1, C0, C1)〉

ofA, the adversary B will be able to decrypt at least one of the Ci’s, specifically the one for which (〈g, ∗〉, pk) /∈
Qi

s. This follows by Fact 1. (Recall that pk is B’s challenge public key.) Let i ∈ {0, 1} be the index for which
B can decrypt Ci, and hence retrieve S1−i

out . We now consider two cases:

– (〈g, ∗〉, pk) /∈ Q1−i
s : then B can also decrypt C1−i to retrieve Siout. Now having both S0

out and S1
out, B can

easily perform the rest of the execution of T2.
– (〈g, ∗〉, pk) ∈ Q1−i

s : then Condition Safe will guarantee that either the answer to the underlying query
to T2 is ⊥, or B will learn its challenge secret key (i.e., g−1(pk)) during the execution of Gg(S1−i

out ).

Checking (b) may, however, make the oracle T2 too weak to break the 2-seed circular security of (Gg, Ee, Dd).
In particular, if there are pk’s that occur quite frequently as responses to g queries during a random execution
of Gg(1n), then T2, even on “honest” inputs, may return ⊥ too often, due to Check (b). To give some
intuition, consider a contrived construction (Gg, Ee, Dd), where Gg(1n), regardless of its given seed, first
calls g(0n) to get some pk′, and at the end outputs something like PK = (pk′, ∗). Whenever sampling Qs

satisfying GQs = (∗, PK), the key pk′ will be embedded in Qs.
We overcome the above problem as follows. We first sample a large number of executions of GO(1n),

record all the query/response pairs, and make Q0
s and Q1

s consistent with this information. The idea is that
if there are “frequent” pk′ in the sense above, they should be collected with high probability during these
executions. We will then require Q0 and Q1 to be disjoint only on public keys that did not turn up as a result
of these executions.

Lastly, we note that this additional step does not ruin our preceding technique for simulating responses
to oracle queries to T2, since if the challenge public key pk turns up during any of these executions then we
will have learned the challenge secret key; otherwise, the above simulation strategy goes through. We now
describe the oracle T2.

Description of T2:
Oracles: (g, e,d,w)
Input: (1n, PK0, PK1, C0, C1)
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1. Learning heavy key-generation queries: Execute Gg(1n) % times independently at random and
record all query/response pairs to Freq. (We instantiate % later.) For any (〈g, ∗〉, pk) ∈ Freq add pk to
FreqPub.

2. Sampling oracles/secret keys consistent with Freq, PK1 and PK2. For i = 0, 1:
– choose (g′i , S

′
i) uniformly at random from the set of all pairs satisfying (a) g′i is Ψ -valid and is

consistent with Freq and (b) Gg′i(1n, S′i) = (∗, PKi). (If no such a pair exists return ⊥.) Let SK ′i be

the secret key output by Gg′i(1n, S′i).

– Let Qi
s contain the symbolic versions of all query/response pairs made in the execution of Gg′i(1n, S′i).

Define
(g̃i, d̃i) = KeyImpose(g, e,d,Qi

s).

Let QPubi contain any pk such that w(pk) = > and (〈g, ∗〉, pk) ∈ Qi
s.

3. If
(QPub0 ∩ QPub1) \ FreqPub 6= ∅

then halt and return ⊥.
4. Compute

S1
out = Dd̃0(SK ′0, C0) and S0

out = Dd̃1(SK ′1, C1).

Return S0
out if the following condition holds for both i = 0, 1, and return ⊥, otherwise: For all pk ∈

QPubi \ FreqPub the query/response (〈g, ∗〉, pk) is made during the execution of Gg(Siout).

T2 does not break 1-seed circular security of O. For any adversary AO,T2(1n, pk, c1, . . . , cn, c), against
1-seed circular-security of O = (g, e,d), we show that it may be simulated by a CCA-valid adversary
BO,u,w(1n, pk, c1, . . . , cn, c) that makes a poly-related number of queries. By Lemma 1 we then obtain our
desired result.

The main challenge for B is to handle A’s T2 queries. Fix a T2 query

Tqu = 〈T2, (1
n, PK0, PK1, C0, C1)〉

of A. To reply to Tqu, B forms FreqPub, Q0
s , Q

1
s , SK

′
0 and SK ′1 as in T2’s computation, which B can perfectly

do. Without loss of generality assume pk /∈ FreqPub, since otherwise B has found its challenge secret key.
Also, assume for some i ∈ {0, 1} pk /∈ QPubi since otherwise by Line 3 of T2 the answer to Tqu is ⊥. In
what follows assume pk /∈ QPub1. (The same argument goes through if pk /∈ QPub0.)

B forms S0
out = Dd̃1(SK ′1, C1), where (g̃1, d̃1) = KeyImpose(g, e,d,Q1

s ). By Fact 1, B is perfectly able
to run this decryption. Now consider two cases:

1. pk /∈ QPub0: in this case again B can compute S1
out = Dd̃0(SK ′0, C0), where

(g̃0, d̃0) = KeyImpose(g, e,d,Q0
s ).

Having both S0
out and S1

out, B can easily perform the rest of T2’s computation which only involves g
queries.

2. pk ∈ QPub0: in this case by Line 4 of T2’s computation, either the answer to Tqu is ⊥ or pk’s corre-
sponding secret key turns up during the execution of GO(S0

out). (Recall that pk /∈ FreqPub.) Thus, B
will either find its challenge secret key or will correctly discern that the answer to Tqu is ⊥.

T2 breaks 2-seed circular security: For O = (g, e,d,u,w) ← Ψ , Si ← {0, 1}n, (SKi, PKi) = Gg(Si)
for i = 0, 1, and C1 ← Ee(PK1, S0) and C0 ← Ee(PK0, S1) we will show that the probability that
T2(1n, PK0, PK1, C0, C1) does not return S0 is small. (Formally, it can be bounded by any inverse polyno-
mial by choosing the value of % in step 1 of T2’s computation accordingly.)

First, as in the corresponding proof in Subsection 4.1 we can easily show it is always the case that
Si = Siout for i = 0, 1. Thus, the probability that T2(1n, PK0, PK1, C0, C1) does not return S0 is the
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probability that one of the bad events in Lines 3 and 4 of T2’s computation holds. Let Ev be the event that
T2(1n, PK0, PK1, C0, C1) does not return S0.

The bad events in Lines 3 and 4 correspond to the events Ev1 and Ev2, defined as follows:

Ev1 = (QPub0 ∩ QPub1) \ FreqPub 6= ∅

and

Ev2 = ((QPub0 6⊆ RealPub0 ∪ FreqPub) ∨ (QPub1 6⊆ RealPub1 ∪ FreqPub)), (6)

where

RealPubi = {pk | the query/response (〈g, ∗〉, pk) occurs during Gg(Si)}.

Note that for Ev2 we use the fact that Si = Siout. We have

Pr[Ev] ≤ Pr[Ev2] + Pr[Ev1 ∧ Ev2].

First, using the same technique as in Subsection 4.1.2 we can show Pr[Ev2] is exponentially small. To
bound Pr[Ev1 ∧ Ev2], note whenever Ev1 ∧ Ev2 happens, the event Ev3, defined below, happens:

Ev3 = (RealPub0 ∩ RealPub1) \ FreqPub 6= ∅.

Thus, we show how to bound the probability of Ev3. That is, the probability that there exists pk such
that pk ∈ RealPub0 ∩ RealPub1, but pk /∈ FreqPub. Intuitively, this probability should be small because if
pk ∈ RealPub0 ∩RealPub1 — namely, the query/response (〈g, ∗〉, pk) occurs during both Gg(S0) and Gg(S1)
— then (〈g, ∗〉, pk) should have also occurred at least once during the many random executions of Gg(1n)
performed in Step 1 of T2’s computation, and thus it should be that pk ∈ FreqPub. Using this line of reasoning
we can use Chernoff Bounds to upperbound the probability of Ev3 by any arbitrary inverse-polynomial, by
instantiating the value of % (Step 1 of T2’s computation) accordingly.

5 CPA security 6⇒ bit 1-seed circular security: general case

In this section we describe the weakening oracle T for general constructions of 1-seed circular secure bit
encryption, those in which access to the base primitive oracle is unrestricted. We will then prove that this
oracle provides a separation.

Intuition. As in the previous section the main idea is to have T, on input (PK,C1, . . . , Cn), decrypt

C1, . . . , Cn relative to some Õ = (g̃, ẽ, d̃), satisfying (a) GÕ produces (∗, PK) and (b) for any b with high

probability EO(PK, b,R) = EÕ(PK, b,R). To obtain Õ we may be tempted to proceed exactly as before, by
sampling a set of query/response pairs Q and a seed S′ such that GQ(S′) = (∗, PK) and then superimposing

Q (which now has all types of queries) on O. While the resulting Õ satisfies Condition (a) it is not clear
if Condition (b) is satisfied: The problem is there may be queries q asked quite frequently during random
executions of EO(PK, b) (call them heavy), and which may also occur in Q and receive a different response
there. We did not have this problem for type-1 constructions analyzed in Section 4.1 because in those
constructions the algorithms G and E have access to different sub-oracles.

To overcome this problem we first run EO(PK, b) for b = 0, 1 many times and collect all observed
query/response pairs in a set Freq. (This is formalized in Definition 6.) We will then force the sampled set

Q to be consistent with Freq. Finally, we will show how to superimpose Q on O to obtain Õ.
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5.1 Tools for defining the oracle T

Fix the purported 1-seed circular secure bit encryption construction (G,E,D) throughout this section. We
will now give an assumption to make our analysis simpler and then give definitions formalizing the steps
sketched above. We will then use these definitions to define the oracle T.

Assumption 3. We assume any oracle algorithm that has access to both g and d always queries 〈g, sk〉
before querying 〈d, (sk, ∗)〉. Also, we assume w.l.o.g. that G never calls the decryption algorithm of the base
scheme, O = (g, e,d). (For a query 〈d, (sk, c)〉: letting pk = g(sk), either the query/response (〈e, (pk, ∗, ∗)〉, c)
was already made in which case G knows the answer, or the answer w.h.p. is ⊥.) For ease of notation we
keep d as a superscript to G and write GO.

Definition 6. We define the following probabilistic procedure, FreqQue.

– Oracles: O = (g, e,d,u)
– Input: A security parameter 1n (left implicit), public key PK and p ∈ N.
– Output: A set Freq formed as follows. For both b = 0, 1 run EO(1n, PK, b) independently p times and

add the symbolic versions of all query/response pairs to Freq. Moreover, for any (〈d, (sk, c)〉, ∗) ∈ Freq if
u(g(sk), c) = (b′, r′) 6= ⊥ add (〈e, (pk, b′, r′)〉, c) to Freq.
Note that by Assumption 1 |Freq| ≤ 2pnϑ + 2pnϑ = 4pnϑ.

In the above definition apart from the actual observed query/response pairs we also enhanced Freq with
some pairs obtained based on (〈d, (sk, c)〉, ∗) query/response pairs. This enhancement is only made to make
some of the proofs simpler.

We say that oracle O = (g, e,d) is consistent with (or agrees with) a symbolic query/response pair
(〈g, sk〉, pk) if g(sk) = pk. The same definition can be given for other types of query/response pairs. We say
O is consistent with a set of query/response pairs if O agrees with each element in the set.

We define another procedure that will be used by the oracle T. Given a public key PK of the constructed
scheme and a set Freq of query/response pairs obtained based on (g, e,d) we define a procedure that samples
a matching secret key for SK ′ with respect to a new oracle (g′, e′,d′) that agrees with Freq. The procedure
then returns all the underlying queries made to produce (SK ′, PK).

Definition 7. We define the following procedure we call ConsOrc.

– Input: a public key PK and a set Freq of symbolic query/response pairs.
– Output: a secret key SK ′ and query/response sets Qs, Qc sampled as follows.
• Sample (g′, e′,d′, S′) uniformly at random under the constraints that O′ = (g′, e′,d′) is Ψ -valid and

is consistent with Freq and that GO′(S′) = (∗, PK). If no such a tuple exists, return ⊥.
• Let SK ′ be the secret-key outputted by GO′(S′) and let the sets Qs and Qc contain, respectively, the

symbolic versions of all query/response pairs made to g′ and e′. (Recall by Assumption 3 no d′-query
is made.)

In Definition 5 we defined the task of superimposing a set of g type query/response pairs on an oracle
(g, e,d). We now define the task of superimposing a set Qc of e queries on (g, e,d): the result will be
(eimp,dimp), perturbed versions of (e,d). Intuitively, we want (g, eimp,dimp) to form a PKE, eimp to agree
with Qc and (eimp,dimp) to agree as much as possible with (e,d).

Definition 8. We define the following procedure we call EncImpose.

– Input: a Ψ -valid (g, e,d) and a set

Qc = {(〈e, (pk1, b1, r1)〉, c1) , . . . , (〈e, (pkp, bp, rp)〉, cp)} ,

scheme. Note that pki’s above are not necessarily distinct.
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– Output: (eimp,dimp), defined as follows. First, let W = {(pk1, c1), . . . , (pkp, cp)} and

W′ = {(pk1, e(pk1, b1, r1)), . . . , (pkp, e(pkp, bp, rp))}.

Define

eimp(pk, b, r) =

 ci if (pk, b, r) = (pki, bi, ri), for some 1 ≤ i ≤ p
ĉ if (pk, e(pk, b, r)) ∈W
e(pk, b, r) otherwise

(7)

where ĉ is defined as follows: Letting x be the smallest integer such that (pk, e(pk, b, r+x)) /∈W∪W′ we
set ĉ = e(pk, b, r + x). Here, r + x is done using a standard method.

dimp(sk, c) =

{
bi if g(sk) = pki and c = ci for some 1 ≤ i ≤ p
d(sk, c) otherwise

(8)

We justify the second case of eimp’s definition: if (pk, e(pk, b, r)) ∈W, say (pk, e(pk, b, r)) = (pki, ci), we
cannot set eimp(pk, b, r) = e(pk, b, r) as we have already set ci = eimp(pki, bi, ri). In particular, eimp will be
rendered incorrect if bi 6= b. Thus, we keep shifting e(pk, b, r) (by adding x to r) until we hit a ciphertext ĉ
such that (pk, ĉ) /∈W ∪W′. The requirement (pk, ĉ) /∈W′ is stronger than necessary, but will simplify some
proofs. Note that eimp is not necessarily injective.

5.2 Description of the oracle T

We define the oracle T. We first describe the output distribution of a random T on a single input-call,
(1n, PK,C1, . . . , Cn), and then describe the underlying distribution from which T is chosen.

Oracles: O = (g, e,d,u,w). Denote O = (g, e,d).
Input: (1n, PK,C1, . . . , Cn)

Operations:

1. Learning frequent queries: Let Freq← FreqQueO,u(PK, n23ϑ). Define FreqPub to be the set of public
keys pk such that (〈g, ∗〉, pk) ∈ Freq.

2. Sampling oracle/secret-key consistent with PK and Freq: Sample

(SK ′,Qs,Qc)← ConsOrc(PK,Freq). (9)

3. Defining intermediate oracles: Define

(eimp,dimp) = EncImpose(g, e,d,Qc)

(g̃, d̃) = KeyImpose(g, eimp,dimp,Qs).

Let ẽ = eimp, and Õ = (g̃, ẽ, d̃). Let QPub contain any pk such that w(pk) = > and (〈g, ∗〉, pk) ∈ Qs.

4. Decrypting the encrypted input: Compute Sout = DÕ(SK ′, C1 . . . Cn).
5. Returning Sout subject to a check: Run GO(Sout) and let EmbedPub contain any pk such that the

query/response (〈g, ∗〉, pk) is made during GO(Sout). If QPub ⊆ EmbedPub ∪ FreqPub return Sout; else,
return ⊥.

Notation. TvarsO(PK) denotes the random variable (Freq, SK ′,Qs,Qc, Õ) obtained in the execution of T
above with respect to O and PK. Note none of these random variables depend on (C1, . . . , Cn). For the
reader’s convenience, we provide a table summary of how all these variables sampled in the last page of the
paper.

Remark about T. Note that the only part of the oracle T that involves making random choices are Step 1
(sampling from FreqQueO,u(PK, n23ϑ)) and Step 2 (sampling from ConsOrc(PK,Freq)). The number of
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random coins required to do the sampling in Step 1 is obviously finite. For Step 2 recall that the output
of ConsOrc(PK,Freq) is formed based on sampling a Ψ -valid random oracle O′ that is consistent with
Freq and also that GO′(1n) generates PK (based on some seed). By default, O′ should be defined for all
security parameters. However, by Assumption 2 it suffices to sample O′ only for security parameters n.
Thus, for any fixed input (1n, PK,C1, . . . , Cn), the amount of randomness used by a random T to compute
T(1n, PK,C1, . . . , Cn) is finite.

Sampling space of T. We now explain how to choose a random T. In particular, we would like a randomly
chosen T, if queried under a single input many times, to always return the same output. To this end,
every possible T comes with a collection of random-coin strings, where for every possible query qu =
(1n, PK,C1, . . . , Cn) to T, the collection has a corresponding random-coin string Coinqu, used by T to
make the random choices that appear during the computation of T(qu). When we write PrT[] we mean the
probability is computed over a T chosen uniformly at random from the above-mentioned space.

Remark about Step 1 of T. This step comes with a big polynomial, n23ϑ, which essentially dictates how
many times EO(PK, 01) will be executed. We chose such a big polynomial just for the convenience of having
much slackness in the bounds shown in security proofs. This polynomial can be made smaller, but the proofs
will become more tedious. In fact, since the aim is to prove separations, the exact polynomial efficiency of
the separation oracle becomes less important.

5.3 T breaks 1-seed circular security of (G,E,D)

We show if T is called honestly (i.e., on a random public key and a random encryption of the underlying seed)
it will return the seed with high probability. To formalize the statement we define the following environment
that specifies a random choice of (O,u,w) plus those underlying an honest random input to T.

Environment: Env(n): Output (O,u,w, S, PK,C1, . . . , Cn), where:

1. (g, e,d,u,w)← Ψ and O = (g, e,d);
2. S ← {0, 1}n, (SK,PK)← GO(S) and (C1, . . . , Cn)← EO(PK,S).

Convention. Sometimes that we are interested only in a specific part of the output of Env(n) we may use
notation such as (O,u,w, PK)← Env(n).

The following theorem shows T’s usefulness in breaking seed circular security.

Theorem 5. It holds that

Pr
Env,T

[T(PK,C1, . . . , Cn) = S] ≥ 1− 1

n5
, (10)

where
Env = (O,u,w, S, PK,C1, . . . , Cn)← Env(n).

Proof layout. The proof consists of two parts. First, we show (Lemma 3) that with high probability
Sout = S, where Sout is the string decoded in Step 5 of the execution of T(PK,C1, . . . , Cn). Next we show
that the probability that Sout = S and T(PK,C1, . . . , Cn) = ⊥ is small (Lemma 4).

Lemma 3. It holds that

α(n) = Pr[DÕ(SK ′, C1 . . . Cn) 6= S] ≤ 1

2n5
,

where the probability is taken over (O,u,w, S, PK,C1, . . . , Cn) ← Env(n) and (Freq, SK ′,Qs,Qc, Õ) ←
TvarsO,u,w(PK).

Lemma 4. It holds that

α(n)
def
= Pr

Env,T

[(
DÕ(SK ′, C1 . . . Cn) = S

)
∧ (T(PK,C1, . . . , Cn) = ⊥)

]
≤ 1

22n
,

where Env = (O,u,w, S, PK,C1, . . . , Cn) ← Env(n), and SK ′ and Õ are the random variables sampled
inside T(PK,C1, . . . , Cn).

19



We now show how to prove Theorem 5 based on Lemmas 3 and 4. We will then prove Lemma 3 in
Subsection 5.4 and Lemma 4 in Subsection 5.5.

Proof (of Theorem 5). Let Evnt be the event that T(PK,C1, . . . , Cn) 6= S. We show that

Pr
Env,T

[Evnt] ≤ 1

n5
. (11)

We define the following two events:

– Evnt1: the event that DÕ(SK ′, C1 . . . Cn) 6= S.
– Evnt2: the event that

(DÕ(SK ′, C1 . . . Cn) = S) ∧ (T(PK,C1, . . . , Cn) = ⊥)

We claim
Pr

Env,T
[Evnt] ≤ Pr

Env,T
[Evnt1 ∨ Evnt2].

Note that by Lemmas 3 and 4 the above claim immediately implies

Pr
Env,T

[Evnt] ≤ 1

2n5
+

1

22n
≤ 1

n5
,

as desired. Thus, we show why our claim holds. To this end, we show whenever Evnt holds, also Evnt1∨Evnt2
holds; or equivalently, if Evnt1 ∧ Evnt2 holds, then Evnt holds. If Evnt1 ∧ Evnt2 holds then

(a) DÕ(SK ′, C1 . . . Cn) = S; and
(b) T(PK,C1, . . . , Cn) 6= ⊥.

The way in which T is designed guarantees that if (a) and (b) hold, then T(PK,C1, . . . , Cn) = S, namely
Evnt holds. The proof is now complete. ut

5.4 Proof of Lemma 3

We start with a simple fact. Informally, the following states that the string SK ′ built during an execution

of T(PK,C1, . . . , Cn) is a matching secret key of PK relative to GÕ.

Fact 6. For any (O,u,w, PK) ∈ Env(n) and any (Freq, SK ′,Qs,Qc, Õ) ∈ TvarsO(PK), (a) Õ is a correct

PKE, and (b) (SK ′, PK) ∈ GÕ(1n).

Proof. First of all, recall that

(eimp,dimp) = EncImpose(g, e,d,Qc)

(g̃, d̃) = KeyImpose(g, eimp,dimp,Qs)

ẽ = eimp.

We claim

Claim 7. (g, eimp,dimp) is a valid PKE.

Note that the above claim immediately implies, by definition of KeyImpose, that (g̃, eimp, d̃) is also a valid

PKE, or equivalently Õ = (g̃, ẽ, d̃) is a valid PKE, as desired. The proof of Claim 7 in turn follows again by
a simple inspection of the definition of EncImpose.

To prove Part (b) note that Õ fully agrees with Qs ∪Qc and that (SK ′, PK) ∈ GQs∪Qc (see Step 2 of T’s
computation).

The proof of Fact 6 is now complete. ut
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Equipped with Fact 6, toward proving Lemma 3 we bound the probability that, for a random R:

EO(PK,S;R) 6= EÕ(PK,S;R) (12)

If this probability is small then with high probability DÕ(SK ′, C1 . . . Cn) results in S, as desired. We will
actually bound a related probability, where S in Equation 12 is replaced with 0n1n. (Recall that |S| = n.)
To this end, we need the following lemma. Informally, the following lemma bounds, for any index i, the

probability that the two executions EO(PK, 0n1n;R) and EÕ(PK, 0n1n;R) are different, and that their
difference occurs for the first time in the reply to the ith query.

Lemma 5. Fix (O,u,w, PK) ∈ Env(n) and let M = 0n1n. Let (qu1, . . . , qu2nϑ+1) denote the oracle queries
asked during the execution of EO(PK,M ;R), for a random R. Then, for any query index 1 ≤ i ≤ 2nϑ+1

(A) Pr
[
(qui is g- or e-type) ∧

(
∀j < i,O(quj) = Õ(quj)

)
∧
(
O(qui) 6= Õ(qui)

)]
≤ 1

n8ϑ
,

(B) Pr
[
(qui is d-type) ∧

(
∀j < i,O(quj) = Õ(quj)

)
∧
(
d(qui) 6= d̃(qui)

)]
≤ 1

n8ϑ
,

where (Freq, SK ′,Qs,Qc, Õ)← TvarsO(PK) and R is chosen at random.

We slightly abused notation above by writing Õ(quj), since quj is a query to O (e.g., quj = 〈g, sk′〉).
The meaning, however, should be clear.

We first show how to derive Lemma 3 from Lemma 5.

Proof (of Lemma 3). All probabilities that appear below are taken over the choices

(O,u,w, S, PK,C1, . . . , Cn)← Env(n), (Freq, SK ′,Qs,Qc, Õ)← TvarsO,u,w(PK).

Let QS be the set of all queries asked during the execution under which (C1, . . . , Cn) ← EO(PK,S) was
produced. We claim

Pr[DÕ(SK ′, C1 . . . Cn) 6= S] ≤ β(n)
def
= Pr

[
∃qu ∈ QS : O(qu) 6= Õ(qu)

]
.

The justification for this claim is that if the event inside the right-hand side probability does not hold,

then (C1, . . . , Cn) is also a valid output of EÕ(PK,S). Also, by Fact 6 we know that (SK ′, PK) ∈ GÕ(1n)

and that Õ is a correct PKE. Thus, by the correctness of the blackbox construction (G,E,D), we obtain

DÕ(SK ′, C1 . . . Cn) = S.

We thus show how to bound β(n). Let QS′ denote the set of all queries asked during a random execution
of EO(PK,M), where M = 0n1n. We claim

β(n) ≤ β′(n)
def
= Pr[∃qu ∈ QS′ : O(qu) 6= Õ(qu)]. (13)

Equation 13 holds because, if S has k 0’s, then QS is identically distributed to the set of queries asked
during a random execution of EO(PK, 0k1n−k). Moreover, since k ≤ n, the probability that during a random

execution of EO(PK, 0k1n−k) a query qu, with O(qu) 6= Õ(qu), is asked is less than the probability that

during a random execution of EO(PK,M) a query qu, with O(qu) 6= Õ(qu), is asked.

To conclude the proof of Lemma 3 we show β′(n) ≤ 1
2n5 . We have

β′(n) = Pr
[
∃qu ∈ QS′ : O(qu) 6= Õ(qu)

]
≤ 2nϑ+1 × 1

n8ϑ
≤ 1

2n5
;

The first inequality is obtained by applying Lemma 5 and a union bound. ut
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We now prove Lemma 5, starting with Part (A). To this end, we need the following lemma which describes
when a query’s responses differ between g and g̃ or between e and ẽ.

Lemma 6. For any

(O,u,w, PK) ∈ Env(n) and (Freq, SK ′,Qs,Qc, Õ) ∈ TvarsO(PK) (14)

all the following conditions hold:

1. O and Õ both agree with Freq. That is, if (〈g, q〉, ans) ∈ Freq, then g(q) = g̃(q) = ans. Similarly, if
(〈e, q〉, ans) ∈ Freq, then e(q) = ẽ(q) = ans.

2. If g(sk) 6= g̃(sk) for some sk then (〈g, sk〉, ∗) ∈ Qs.
3. If e(pk, b, r) 6= ẽ(pk, b, r) for some pk, b and r then either

(a) (〈e, (pk, b, r)〉, ∗) ∈ Qc; or
(b) for some c: (〈e, (pk, ∗, ∗)〉, c) ∈ Qc and u(pk, c) = (b, r).

Proof. First, recall that

(eimp,dimp) = EncImpose(g, e,d,Qc)

(g̃, d̃) = KeyImpose(g, eimp,dimp,Qs)

ẽ = eimp.

We now prove all parts of the lemma.

– (Part 1) We prove the statement for each query type separately.
• Suppose (〈g, sk〉, pk) ∈ Freq for some sk and pk. Thus, g(sk) = pk. Moreover, since Qs should agree

with Freq we have either (〈g, sk〉, pk) ∈ Qs or (〈g, sk〉, ∗) /∈ Qs. Both cases imply g(sk) = g̃(sk).
• Suppose (〈e, (pk, b, r)〉, c) ∈ Freq, for some pk, b, r and c. Thus, e(pk, b, r) = c. Since Qc is generated

based on an oracle (g′, e′,d′) that is consistent with Freq and that is also Ψ -valid (in particular, e′

is injective), we have either (〈e, (pk, b, r)〉, c) ∈ Qc or (〈e, (pk, ∗, ∗)〉, c) /∈ Qc. Both these conditions
imply eimp(pk, b, r) = e(pk, b, r). The result now follows by noting that ẽ = eimp.

– (Part 2) Straightforward.
– (Part 3) Straightforward by noting that ẽ = eimp and applying the definition of eimp.

ut

We also need a version of Chernoff-Hoeffding bounds [MR95].

Theorem 8. (A Chernoff-Hoeffding bound) Let x1, . . . , xnt be independent boolean random variables all
identically distributed to x, and suppose Pr[x = 1] = p. Then for xav = (x1 + · · ·+ xnt)/nt

Pr[|xav − p| ≥
1

nk
] ≤ 1

22nt−2k . (15)

We are now ready to prove Part (A) of Lemma 5.

Proof (Lemma 5, Part (A)). Fix (O,u,w, PK) as in the lemma and let

QS = {qu1, . . . , qu2nϑ+1} (16)

be the set of all queries made during the execution of EO(PK,M ;R). All probabilities, if not otherwise
stated, are taken over the variables sampled in the lemma. We prove a stronger result, showing

α(n) = Pr
[
(∃qu ∈ QS such that qu is g- or e-type) ∧

(
O(qu) 6= Õ(qu)

)]
≤ 1

n8ϑ
, (17)

We first define a set DifQuec, that is going to contain all e-type queries that will receive different responses
from e and ẽ. That is, we want DifQuec to be formed in such a way that if e(pk, b, r) 6= ẽ(pk, b, r) then
〈e, (pk, b, r)〉 ∈ DifQuec. To this end, we use Lemma 6 to define DifQuec as follows:
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– for any (〈e, (pk, b, r)〉, c) ∈ Qc: add 〈e, (pk, b, r)〉 to DifQuec;
– for any (〈e, (pk, b, r)〉, c) ∈ Qc, if u(pk, c) = (b′, r′) 6= ⊥, add 〈e, (pk, b′, r′)〉 to DifQuec.

By Lemma 6, we will have that if e(pk, b, r) 6= ẽ(pk, b, r) then 〈e, (pk, b, r)〉 ∈ DifQuec.

We similarly define a set DifQues that is going to contain all g-type queries that will receive different
responses from g and g̃. To this end, for any (〈g, sk〉, ∗) ∈ Qs add 〈g, sk〉 to the set DifQues. Again by
Lemma 6, DifQues is a super-set of all g-type queries responded to differently under g and g̃.

Fix an arbitrary ordering

(query1, . . . , querym)

on the elements of DifQuec∪DifQues, and note that m ≤ 2nϑ. This because |Qc∪Qs| = nϑ (see Definition 7)
and because the second rule for adding elements to DifQuec may result in at most nϑ new elements.

Recall QS and α(n) from Equations 16 and 17. We claim

α(n) ≤ β(n)
def
= Pr [for some 1 ≤ i ≤ m : 〈queryi〉 ∈ QS ∧ (〈queryi〉, ∗) /∈ Freq] . (18)

The reason behind the above equation is that if the oracles O and Õ disagree on a g type or e type query
〈qu〉, then by Lemma 6 (〈qu〉, ∗) /∈ Freq and (〈qu〉, ∗) ∈ DifQuec ∪ DifQues.

To bound β(n) we consider two cases for each of the m queries query1, . . . , querym ∈ DifQuec ∪DifQues:

(A) 〈queryi〉 is a high-probable query during the execution of EO(PK,M): for this case we will then argue
that queryi should have already been collected by Freq.

(B) 〈queryi〉 is not a high probable query: for this case we will argue that it is unlikely that 〈queryi〉 ∈ QS.

We now proceed formally. Call a query 〈qu〉 heavy if for some b ∈ {0, 1}:

Pr
R

[
the query 〈qu〉 is asked during EO(PK, b;R)

]
≥ 1

n11ϑ
. (19)

We call 〈qu〉 unheavy if the above probability is strictly less than 1
n11ϑ for both b = 0 and b = 1.

Recall that DifQuec ∪ DifQues = {query1, . . . , querym}. Now defining

ε(n) = Pr
[
∃ query 〈qu〉 s.t. 〈qu〉 is heavy

∧
(〈qu〉, ∗) /∈ Freq

]
,

β1,i(n) = Pr
[
〈queryi〉 ∈ QS

∧
(〈queryi〉, ∗) /∈ Freq

∧
〈queryi〉 is unheavy

]
,

we have

β(n) = Pr
[
∃i ∈ [m] : 〈queryi〉 ∈ QS ∧ (〈queryi〉, ∗) /∈ Freq ∧ 〈queryi〉 is heavy

]
+ Pr

[
∃i ∈ [m] : 〈queryi〉 ∈ QS ∧ (〈queryi〉, ∗) /∈ Freq ∧ 〈queryi〉 is unheavy

]
≤ Pr

[
∃ query 〈qu〉 s.t. 〈qu〉 is heavy ∧ (〈qu〉, ∗) /∈ Freq

]
+

∑
1≤i≤m

β1,i(n)

≤ ε(n) +
∑

1≤i≤m

β1,i(n).

We claim

Claim I. β1,i(n) ≤ 1
2n10ϑ , for all 1 ≤ i ≤ m.

Claim II. ε(n) is negligible.
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Claims I and II imply

β(n) ≤ negl(n) + 2nϑ × 1

2n10ϑ
≤ 2× 1

n9ϑ
≤ 1

n8ϑ
,

as desired. We now prove the two claims.

Proof of Claim I. Recall that QS contains queries made during E(PK, 0n1n;R) for a random R. We have

β1,i(n) ≤ Pr [(〈queryi〉 ∈ QS) ∧ (〈queryi〉 is unheavy)] ≤ Pr [〈queryi〉 ∈ QS | 〈queryi〉 is unheavy] (20)

and thus β1,i(n) ≤ 2n
n11ϑ ≤ 1

n9ϑ , as claimed. Note that we crucially used the fact R, which is the randomness
used to produce QS, is chosen independently of the randomness used to generate the values of

{query1, . . . , querym} = DifQuec ∪ DifQues.

The set DifQuec∪DifQues is obtained deterministically from (O,u,w) and Qs∪Qc. Recall that (O,u,w, PK) ∈
Env(n) was fixed by the theorem. Moreover, we know that the randomness R is chosen independently of the

randomness used to generate (Freq, SK ′,Qs,Qc, Õ)← TvarsO,u,w(PK).

Proof of Claim II. The proof consists of two parts. First, we show there are at most a polynomial number
of heavy queries (Claim A). Next, for any specific heavy query 〈qu〉 we show that the probability that
(〈qu〉, ∗) /∈ Freq is negligible (Claim B). These two imply Claim II.

Proof of Claim A. Fix b ∈ {0, 1}. We show the number of queries 〈qu〉 for which Equation 19 holds
for the fixed b is at most polynomial. Call a query 〈qu〉 i-heavy if with probability at least 1

n12ϑ the query

〈qu〉 is the ith query made during the execution of EO(PK, b). Since EO(PK, b) makes nϑ queries (see
Assumption 1), if a query 〈qu〉 is asked with probability at least 1

n11ϑ during EO(PK, b), then for some

1 ≤ i ≤ nϑ, 〈qu〉 is i-heavy. For every i we have at most n12ϑ i-heavy queries. Thus, for a fixed b we have at
most n12ϑ × nϑ queries for which Equation 19 holds. Thus, we have at most 2× n13ϑ heavy queries.

Proof of Claim B. Recall that Freq is formed by collecting all query/response pairs made during n23ϑ

random executions of EO(PK, 01). Let 〈qu〉 be a fixed heavy query. For 1 ≤ k ≤ n23ϑ let xk = 1 if 〈qu〉
is asked during the kth execution, and xk = 0, otherwise. We know that x1, . . . , xn23ϑ are all identically

distributed and independent, and that p
def
= Pr[x1 = 1] ≥ 1

n11ϑ . Let xav = (x1 + · · ·+ xn23ϑ)/n23ϑ. We have

Pr[(〈qu〉, ∗) /∈ Freq | 〈qu〉 is heavy] ≤ Pr[|xav − p| ≥ p] ≤ Pr[|xav − p| ≥
1

n11ϑ
].

By Theorem 8 the last probability above is at most 1

22n23ϑ−22ϑ ≤ 1
22n . ut

The proof of Part (B) of Lemma 5 follows similarly to that of Part (A) by first formulating when for an

arbitrary (sk, c), d(sk, c) 6= d̃(sk, c), and then bounding the probability accordingly. See Section B of the
appendix.

5.5 Proof of Lemma 4

The main idea that goes into proving the bound of Lemma 4 was already sketched in Subsection 4.1: we
show how to forge a public key in the sense of Lemma 2 if the events inside the probability hold.

Proof. Let α(n) be as in the lemma. To bound α(n), suppose T(PK,C1, . . . , Cn) = ⊥ and also suppose that

DÕ(SK ′, C1 . . . Cn) = S. In other words, Sout = S, where Sout is the variable defined inside the computation
of T. Then by Step 5 of T’s computation it must hold

QPub 6⊆ EmbedPub ∪ FreqPub. (21)

24



Thus,
α(n) ≤ Pr

Env,T
[QPub 6⊆ EmbedPub ∪ FreqPub)], (22)

where Env = (O,u,w, S, PK,C1, . . . , Cn) ← Env(n). We show whenever Equation 21 holds we can forge
a public key in the sense of Lemma 2. Specifically, our forger B, provided with random oracles (O,u,w),
samples all the variables pertaining to T by itself and checks whether Equations 21 holds. Details follow.

The adversary BO,u,w(1n) works as follows:

1. B samples S ← {0, 1}n and runs GO(S) to get (SK,PK), and for any query/response (〈g, ∗〉, pk) made,
it adds pk to EmbedPub.

2. B samples Freq← FreqQueO,u(PK, n23ϑ), then samples (SK ′,Qs,Qc) by running ConsOrc(PK,Freq).
3. B forms FreqPub = {pk | (〈g, ∗〉, pk) ∈ Freq} and QPub = {pk | (〈g, ∗〉, pk) ∈ Qs and w(pk) = >}. If

there is pk ∈ QPub \ (EmbedPub ∪ FreqPub), B returns pk; else it returns pk ← {0, 1}5n.

Let Que be the set of all query/response pairs that B makes and note that |Que| is poly-bounded. To
analyze B’s success probability, note that for all pk: pk ∈ EmbedPub∪FreqPub iff (〈g, ∗〉, pk) ∈ Que. Also, by
definition if pk ∈ QPub then w(pk) = >. Thus, from Equation 22, B’s success probability is at least α(n).
Applying Lemma 2 the desired bound for α(n) follows. ut

5.6 T does not break the CPA security of the base scheme

Theorem 9. Suppose A is a CPA adversary with access to oracles O = (g, e,d) and T that makes at most
2n/8 queries. We have

Pr
O,T,b,sk,c

[Ag,e,d,T(1n, pk, c) = b] ≤ 1

2
+

1

2n/4
, (23)

where O = (g, e,d,u,w)← Ψ , O = (g, e,d), b← {0, 1}, sk ← {0, 1}n, pk = g(sk) and c← e(pk, b).

In order to be able to simulate access to T we should be able to efficiently simulate certain queries to
Õ via oracle access to (O,u,w). To this end, we need the following lemma. The proof of the lemma follows
mostly by inspection and is given in Section C of the appendix.

Lemma 7. Fix

(g, e,d,u,w, PK) ∈ Env(n) and (Freq, SK ′,Qs,Qc, g̃, ẽ, d̃) ∈ TvarsO(PK).

Assuming
Qc = {(〈e, (pk1, b1, r1)〉, c1) , . . . , (〈e, (pkp, bp, rp)〉, cp)}

let
W′ = {(pk1, e(pk1, b1, r1)), . . . , (pkp, e(pkp, bp, rp))}

and
W = {(pk1, c1), . . . , (pkp, cp)}.

Note that in the definition of W′, by e(pki, bi, ri) we mean the actual value e(pki, bi, ri), not the notation
itself.

All the following conditions hold.

(a) Both g̃ and ẽ can be computed efficiently (on all points) given oracle access to O = (g, e,d) and having
Qs and Qc as input.

(b) For any (sk, c), if (〈g, sk〉, ∗) /∈ Qs, the value d̃(sk, c) can be efficiently computed given oracle access to
O and having Qc as input.

(c) If for (sk, c) it holds that (〈g, sk〉, pk) ∈ Qs for some pk and that (pk, c) /∈ W ∪W′, then d̃(sk, c) can be

determined as follows: if u(pk, c) = (b, ∗) 6= ⊥ then d̃(sk, c) = b; otherwise, d̃(sk, c) = ⊥.

(d) If for (sk, c) it holds that (〈g, sk〉, pk) ∈ Qs, for some pk, and that (pk, c) ∈W′ \W, then d̃(sk, c) = ⊥.
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(e) If for (sk, c) it holds that (〈g, sk〉, pk) ∈ Qs, for some pk, and that (pk, c) = (pki, ci) for some i ≤ p, then

d̃(sk, c) = bi.

We now show how to prove Theorem 9 using Lemma 7. We first start with a sketch of the proof.

Proof sketch of Theorem 9. As in Section 4 the idea is to give an adversary B, such that BO(1n, pk, c) can
simulate responses to T queries of AO,T(1n, pk, c), without calling 〈u, (pk, c)〉. Let Tqu a query of A, where
Tqu = 〈T, (1n, PK,C1, . . . , Cn)〉. As per T’s computation, B first samples Freq ← FreqQueO,u(PK, n23ϑ).
This may seem problematic since this step involves making queries to u. By inspecting Definition 6, however,
we can see for any query 〈u, (pk′, ∗)〉 that needs to be made, B already knows g−1(pk′). Finally, let FreqPub
contain any pk′ such that (〈g, ∗〉, pk′) ∈ Freq, and assume without loss of generality that pk /∈ FreqPub,
because otherwise B has already found g−1(pk)).

Next, B samples (SK ′,Qs,Qc, Õ) as in T’s execution, which is done offline, and then starts simulating

DÕ(SK ′, C1 . . . , Cn). Again the idea is to see if (〈g, ∗〉, pk) ∈ Qs or not. If (〈g, ∗〉, pk) /∈ Qs: by Lemma 7 we

can see B can handle all Õ queries. In particular, B will never need to call 〈u, (pk, ∗)〉. After the decryption
B will perform Step 5 of T’s computation, which B can efficiently do, since no u queries are involved.

If, however, (〈g, ∗〉, pk) ∈ Qs, assuming Sout = DÕ(SK ′, C1 . . . , Cn), since pk /∈ FreqPub, the answer to
Tqu is ⊥ unless (〈g, ∗〉, pk) occurs during GO(Sout). Now as before the idea is to show B can find S0 and S1

such that Sout ∈ {S0, S1}. To this end, B starts simulating DÕ(SK ′, C1 . . . , Cn). By Lemma 7 all g̃ and ẽ

queries can be handled. Let the sets W and W′ be formed based on Qc as in Lemma 7. For d̃ queries: B will
be unable to simulate the answer to a query qu = d̃(sk′, c′) only if Case (c) of Lemma 7 holds, namely

(〈g, sk′〉, pk) ∈ Qs, c′ = c and (pk, c) /∈W ∪W′

In this case, knowing that the answer to qu is the challenge bit b, B will start two branches of simulation,
where it replies to qu with 0 on one branch and with 1 on the other. As before, we need to make sure that
B provides a consistent reply on either branch if the same query shows up in the future. The two strings S0

and S1 decoded at the end on the two branches will satisfy the above claim. ut

We now proceed to give the full proof of Theorem 9. We will also need the following proposition which
is an easy implication of Lemma 7.

Proposition 1. Fix (g, e,d,u,w, PK) ∈ Env(n) and (Freq, SK ′,Qs,Qc, g̃, ẽ, d̃) ∈ TvarsO(PK). Let W
and W′ be formed as in Lemma 7. For any (sk, c) the following holds:

1. If (〈g, sk〉, ∗) /∈ Qs, then d̃(sk, c) can be efficiently computed given oracle access to O and having Qc as
input.

2. If (〈g, sk〉, pk) ∈ Qs, for some pk, then d̃(sk, c) can be efficiently computed given oracle access to O and
by knowing Qc and the value of u(pk, c).

Proof (of Theorem 9). We prove a stronger result, in which A has access to (g, e,d,u,w) and T, and is
restricted to be CCA valid. Fix A to be an adversary for which

Pr
O,T,b,pk,c

[
AO,T(1n, pk, c) = b

]
=

1

2
+ α(n), (24)

where all the variables are sampled as in the theorem (Equation 23). We build a CCA-valid adversary B with
oracle access to O = (O,u,w) that on input (1n, pk, c) makes a list Que of at most 2n/4 queries and outputs
b with probability at least 1/2 + α(n). Note that B should never call 〈u, (pk, c)〉. The proof of Theorem 9
then follows from Lemma 1.

We now show how to build B based on A. The adversary BO(1n, pk, c) invokes AO,T(1n, pk, c), and reply
to all A’s O queries using its own O oracle. Note that since A is CCA valid it never makes the query
〈u, (pk, c)〉.
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To handle an A’s query, Tqu
def
= 〈T, (1n1 , PK,C1, . . . , Cn1)〉, B acts as follows:8

1. Sampling Freq ← FreqQueO,u(PK,n23ϑ): we show how B can do this. BO,u,w runs EO(PK, 01)
independently n23ϑ times and add the symbolic versions all the query/response pairs to Freq. Moreover,
for any (〈d, (sk′, c′)〉, ∗) ∈ Freq, B calls 〈g, sk′〉 to get pk′: if pk = pk′ then B has found its challenge secret
key so it halts and returns 〈d, (sk′, c)〉. Otherwise, B calls 〈u, (pk′, c′)〉: if the response is some (b′, r′) 6= ⊥
then B adds (〈e, (pk, b′, r′)〉, c) to Freq. Finally, let EmbedPub contain any pk′ such that 〈g, ∗〉, pk′) ∈ Freq
and assume without loss of generality that

pk /∈ EmbedPub. (25)

This is because otherwise B has found its challenge secret key and so it can halt and win the game.
2. B samples

(SK ′,Qs,Qc)← ConsOrc(PK,Freq), (26)

This step is done offline.

3. B starts executing DÕ(SK ′, C1 . . . Cn), where

(eimp,dimp) = EncImpose(g, e,d,Qc),

(g̃, d̃) = KeyImpose(g, eimp,dimp,Qs)

ẽ = eimp and Õ = (g̃, ẽ, d̃).

We explain how B can handle this decryption by considering two possible sub-cases.

– (〈g, ∗〉, pk) /∈ Qs: we claim that B can fully execute DÕ(SK ′, C1, . . . , Cn1
). First, by Part (a) of

Lemma 7, B can efficiently handle all (g̃, ẽ) queries asked during the execution. For a query qu =

〈d̃, (sk′, c′)〉 asked, either (i) (〈g, sk′〉, ∗) /∈ Qs or (ii) for some pk′ 6= pk, (〈g, sk′〉, pk′) ∈ Qs. B can
handle Case (i) by Part 1 of Proposition 1, and Case (ii) by Part 2 of Proposition 1. Note that for
Case (ii) B needs to make a query 〈u, (pk′, c′)〉, which is a valid query for B since pk 6= pk′. Now if

Sout = DÕ(SK ′, C1, . . . , Cn1
), then B will perform Step 5 of T, which B can successfully do since

the rest only involves making g and w queries. Thus, B can find the answer to Tqu.
– (〈g, ∗〉, pk) ∈ Qs: In this case, recalling the definition of Qpub as given in T’s description, we have
pk ∈ QPub, since w(pk) = >, which in turn is because pk is B’s challenge public key and by definition

is valid. Thus, by the condition given in Step 5 of T’s description, if Sout = DÕ(SK ′, C1, . . . , Cn1
)

then at least one of the following conditions holds:
(a) The answer to Tqu is ⊥; or
(b) pk ∈ EmbedPub; or
(c) The query/response pair (〈g, ∗〉, pk) will show up during GO(Sout).
We already know by Equation 25 that pk /∈ EmbedPub. Thus, if

Sout = DÕ(SK ′, C1, . . . , Cn1)

then one of the Conditions (a) and (c) above must hold.
We now claim the following.

Claim A. Letting Sout = DÕ(SK ′, C1, . . . , Cn), B can find two strings Sout,0 and Sout,1 such that
Sout ∈ {Sout,0, Sout,1}.

If Claim A holds, B can execute both GO(Sout,0) and GO(Sout,1); if during either execution a
query/response (〈g, ∗〉, pk) is observed, B has learned g−1(pk), winning the CCA game; otherwise,

8 Note that we are assuming that the query Tqu is made with respect to the security parameter 1n. We made this
assumption for clarity of presentation. Our proof below will not change if the query is made with respect to another
security parameter.

27



B in response to Tqu will return ⊥, which is indeed the correct response. Thus, we are left to show
why Claim A holds.

Proof of Claim A. Assume

Qc = {(〈e, (pk1, b1, r1)〉, c1) , . . . , (〈e, (pkp, bp, rp)〉, cp)} .

B forms the two sets

W = {(pk1, c1), . . . , (pkp, cp)}
W′ = {(pk1, e(pk1, b1, r1)), . . . , (pk′p, e(pkp, bp, rp))},

which B can efficiently do. Now B will attempt to decrypt DÕ(SK ′, C1, . . . , Cn1). By Part (a) of
Lemma 7 B can efficiently reply to both g̃ and ẽ queries made along the way. For a query qu =
d̃(sk′, c′), one of the following possibilities must hold:

• (〈g, sk′〉, ∗) /∈ Qs: in this case B can find the answer to qu by Part 1 of Proposition 1.
• (〈g, sk′〉, pk′) ∈ Qs and pk′ 6= pk: in this case B can find the answer to qu by Part 2 of Proposi-

tion 1.
• (〈g, sk′〉, pk) ∈ Qs and c′ ∈ W ∪ W′: in this case, by Parts (d) and (e) of Lemma 7, B can

determine the answer to qu.
• (〈g, sk′〉, pk) ∈ Qs, c

′ 6= c and c′ /∈W ∪W′: in this case by Part (c) of Lemma 7 the answer to qu
can be determined by calling 〈u, (pk, c′)〉, which is a valid query for B, as c′ 6= c.

• (〈g, sk′〉, pk) ∈ Qs, c
′ = c and c /∈ W ∪W′: in this case by Part (c) of Lemma 7 the answer to

qu is the unknown challenge bit b. Thus, for the first time this case occurs, B will start two
parallel branches BR0 and BR1 of computation, where B will reply to qu with b1 on branch
BRb1 . On both branches B will reply to all g̃, ẽ and d̃ exactly as explained above. Moreover, if

on some branch BRb′ , still during the execution of DÕ(SK ′, C1, . . . , C
′
n1

), the current query is

asked again (i.e., the query qu′ = 〈d̃, (sk′, c)〉, where (〈g, sk′〉, pk) ∈ Qs and c /∈ W ∪W′) B will
reply to qu′ with b′, making it consistent with the previous reply.

Claim A now follows by the above way of simulation. ut

At the end of A’s simulation B outputs whatever A does. Note that B makes at most 2n/8 × poly(n) ≤ 2n/4

queries, since B replies to each A’s query by making poly(n) queries. Moreover, note that whenever B halts
without completing the stimulation, it has found the challenge bit b. The proof of Theorem 9 is now complete.

ut

5.7 Putting all together

We may now use our two main preceding results to obtain our separation result.

Theorem 10. There exists no fully-blackbox construction of 1-seed circular-secure bit-encryption schemes
from CPA-secure encryption schemes.

To prove the above theorem we first give and prove the following lemma.

Lemma 8. For any bit encryption construction (G,E,D), there exists a PPT oracle adversary A, where

Pr
O,T

[
AO,T breaks the 1-seed circular security of (GO, EO, DO)

]
= 1 (27)

The proof of the above lemma, given below, is based on a simple averaging argument and an easy
application of the Borel-Cantelli Lemma. See [MMN+16] for more specialized variants of the Borel-Cantelli
Lemma useful for separation theorems.
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Proof. First, note that by Theorem 5 there exists a PPT oracle adversary A such that

α(n)
def
= Pr

O,T,S,(C1,...,Cn)

[
AO,T(1n, PK,C1, . . . , Cn) = S

]
≥ 1− 1

n5
,

where O = (g, e,d)← Ψ , S ← {0, 1}n, (SK,PK) = GO(S) and (C1, . . . , Cn)← EO(PK,S).

Using a simple averaging argument we obtain

β(n)
def
= Pr

O,T

[
Pr

S,(C1,...,Cn)

[
AO,T(1n, PK,C1, . . . , Cn) = S

]
≥ 1− 1

n3

]
≥ 1− 1

n2
. (28)

To see why the above equation holds let fr denote the fraction of (O,T) for which it holds

Pr
S,(C1,...,Cn)

[
AO,T(1n, PK,C1, . . . , Cn) = S

]
< 1− 1

n3
.

We want to show that fr ≤ 1
n2 . Assume to the contrary that fr > 1

n2 . Then

α(n) < fr(1− 1

n3
) + (1− fr)× 1 = 1− fr × 1

n3
< 1− 1

n5
,

which is a contradiction.

Now Equation 28 implies that for at most a 1
n2 fraction of (O,T) the adversary AO,T, on security

parameter 1n, outputs S with probability less than 1− 1
n3 . Since

∑∞
n=0

1
n2 converges, by the Borel-Cantelli

Lemma we obtain that for measure-one of oracles (O,T) the adversary AO,T breaks the 1-seed circular
security of (GO, EO, DO): for all sufficiently large n the adversary AO,T recovers S from (PK,C1, . . . , Cn)
with probability at least 1− 1

n3 . ut

Proof (of Theorem 10). Suppose to the contrary that such a reduction exists and let (G,E,D) and Red
be, respectively, the associated construction and the security-proof algorithms. By Lemma 8 there exists a
PPT-oracle adversary A such that

Pr
O=(g,e,d),T

[
AO,T breaks the 1-seed circular security of (GO, EO, DO)

]
= 1.

That is, there exists a PPT-oracle adversary A such that for a measure one of oracles OR we have that
for any (g, e,d,T) ∈ OR, it holds that AO,T breaks the 1-seed circular security of (GO, EO, DO). Now,
letting α(n) = n− logn (it can be any value so long as α(n) >> 1

2n/4 ) we obtain that for any (g, e,d,T) ∈ OR
and for infinitely many n:

Pr
[
Red(Ag,e,d,T)(1n, pk, c) = b

]
≥ 1

2
+ α(n), (29)

where b← {0, 1}, sk ← {0, 1}n, pk = g(sk) and c← e(pk, b).
Now since both Red and A are PPT, there exists a PPT adversary B such that for any (g, e,d,T) ∈ OR

and for infinitely many n:

Pr
b,sk,c

[
Bg,e,d,T(1n, pk, c) = b

]
≥ 1

2
+ α(n). (30)

Now since OR is a measure-one subset of the set of all oracles, the following holds for infinitely many n:

Pr
g,e,d,T,b,sk,c

[
BO,T(1n, pk, c) = b

]
≥ 1

2
+ α(n),

where (g, e,d, ∗, ∗) ← Ψ and other variables are sampled as above. However, this contradicts Theorem 9,
and the proof is complete. ut
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5.8 Extensions of the separation result

Separating 1-weak-seed circular security from CCA2 security. We note that our septation proved
in Theorem 10 extends even if the base bit-encryption scheme is CCA2 secure and the constructed scheme is
only required to satisfy a weak form of 1-seed circular security, in which the adversary is required to recover
the underlying seed. We define this notion below.

Definition 9. Following the notation of Definition 1 we call E = (G,E,D) t-weak-seed circular secure if for
all PPT adversaries A:

Pr[A(InpSeed) = S1] = negl(n).

To see why our separation extends to the above setting, first note that the oracle T, which is used in
Lemma 8, returns the seed as output, helping us to indeed break 1-weak-seed circular security. Moreover,
the proof of Theorem 9 indeed shows the stronger result in which A is allowed to make CCA queries.

We conclude the discussion about this extension with two remarks. Firstly, note that for CCA2 security
in the setting of bit encryption, we may assume without loss of generality that the adversary will make all
its CCA queries after receiving the challenge ciphertext. This is exactly how we model CCA adversaries in
our proofs (e.g., proof of Theorem 9). Secondly, by the result of Myers and Shelat [MS09] we know that
CCA2-secure many bit encryption can be based on CCA2-secure bit encryption, and so restricting our base
CCA-secure primitive to be bit encryption is without loss of generality.

Beyond single-bit 1-seed circular secure encryption. We briefly discuss why our separation holds even
if E is a (c log n)-bit encryption scheme and where our separation fails if E is allowed to be full length.

We first sketch how to adjust T to make our separation work for the case in which (G,E,D) is an
η-bit PKE, for η = c log n. To this end, we need to change Definition 6 (i.e., the procedure FreqQue), so
that instead of encrypting 0 and 1 many times (as in the bit encryption case), it encrypts all messages
m ∈ {0, 1}η, each many times. The total number of queries still remains polynomial. The description of the
oracle T remains unchanged except that in the first step of its execution, T will call this new variant of
FreqQue. We can now prove the exact same version as Lemma 5, by changing M to have n copies of each
string z ∈ {0, 1}η (instead of having n copies of 0 and n of 1 as in the bit-encryption case). The proofs of
the other lemmas that lead up to Theorem 5, as well as the proof of Theorem 9, remain unchanged.

Finally, note that the above extension heavily relies on the fact that the message size is O(log n), and so
the idea fails if the constructed scheme is full-length, as expected.

6 Bit t-seed circular security 6⇒ full-length (t + 1)-seed circular security

In this section we present our results for separating full-length (t+ 1)-seed circular security from bit t-seed-
circular security. To this end we define a weakening oracle Tt+1, for a fixed candidate construction (G,E,D),
generalizing a similar oracle given in Subsection 4.2. Throughout this section note that (G,E,D) has the
same plaintext and seed space. Most of the tools underlying Tt+1 have been presented before, but we will
need the following extension of Definition 6.

Definition 10. We define the following probabilistic procedure, ExtFreqQue.

– Oracles: O = (g, e,d,u)
– Input: A security parameter 1n (left implicit), public key PK and p ∈ N.
– Output: A set Freq formed as follows.

• Do the following independently p times and add the symbolic versions of all query/response pairs to
Freq: Sample S ← {0, 1}n, and run GO(S) and EO(1n, PK, S).

• Finally, for any (〈d, (sk, c)〉, ∗) ∈ Freq if u(g(sk), c) = (b, r) 6= ⊥ add (〈e, (pk, b, r)〉, c) to Freq.
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Remark 1. Throughout the remaining sections we will continue to use Assumption 1. In particular, since
our focus right now is on schemes (G,E,D) with plaintext space {0, 1}n (i.e., the same as the seed space)
we assume that E on any plaintext m ∈ {0, 1}n makes exactly nϑ queries.

Description of Tt+1: We present the oracle Tt+1. This new oracle shares many aspects with the oracle T,
and so we leave out details whenever appropriate.

Notation. Let t0 be such that t ≤ nt0 .

Oracles: O = (g, e,d,u,w). Denote O = (g, e,d).

Input: (1n, PK1, . . . , PKt+1, C1, . . . , Ct+1)

Operations:

1. Learning heavy queries: For i ≤ t+ 1 let

Freqi ← ExtFreqQueO,u(PKi, n
23ϑ+4t0),

and let FreqPubi be the set of public keys pk such that (〈g, ∗〉, pk) ∈ Freqi.

2. Sampling consistent oracles/secret-keys: For i ≤ t+ 1 sample

(S̃Ki,Q
i
s,Q

i
c)← ConsOrc(PKi,Freqi), (31)

and let QPubi contain any pk such that w(pk) = > and (〈g, ∗〉, pk) ∈ Qi
s.

3. If for some distinct i, j ∈ [t+ 1]:

(QPubi ∩ QPubj) \ (FreqPubi ∪ FreqPubj) 6= ∅,

then halt and return ⊥.

4. Defining intermediate oracles: For i ≤ t+ 1 define

(eimp,i,dimp,i) = EncImpose(g, e,d,Qi
c)

(g̃i, d̃i) = KeyImpose(g, eimp,i,dimp,i,Q
i
s).

Let ẽi = eimp,i, and Õi = (g̃i, ẽi, d̃i).

5. Decrypting the ciphertexts: Set S1
out = DÕt+1(S̃Kt+1, Ct+1) and for 2 ≤ i ≤ t + 1 set Siout =

DÕi−1(S̃Ki−1, Ci−1).

6. Forming the output. For i ≤ t + 1 run GO(Siout) and let EmbedPubi contain any pk such that the
query/response (〈g, ∗〉, pk) is made during the execution. If for all i ≤ t+ 1:

QPubi ⊆ EmbedPubi ∪ FreqPubi,

then return S1
out. Otherwise, return ⊥.

To state the main results we define the following environment, specifying a random choice of (O,u,w)
plus those underlying an honest input to Tt+1.

Environment: Envt+1(n): Output

(O,u,w, S1, . . . , St+1, PK1, . . . , PKt+1, E
O(PK1, S2), . . . , EO(PKt+1, S1)),

where (g, e,d,u,w)← Ψ , O = (g, e,d), Si ← {0, 1}n and (SKi, PKi) = GO(Si), for 1 ≤ i ≤ t+ 1.
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6.1 Tt+1 breaks the (t + 1)-seed circular security of (G,E,D)

We show that with high probability Tt+1 will return the desired output if used honestly.

Theorem 11. It holds that

Pr
Env,Tt+1

[Tt+1(1n, PK1, . . . , PKt+1, C1, . . . , Ct+1) = S1] ≥ 1− 1

n5
, (32)

where
Env = (O,u,w, S1, . . . , St+1, PK1, . . . , PKt+1, C1, . . . , Ct+1)← Envt+1(n).

To help us describe the lemmas that lead up to the proof of Theorem 11, we define the following bad
events that can occur during the execution of Tt+1.

Definition 11. For

(O,u,w, S1, . . . , St+1, PK1, . . . , PKt+1, C1, . . . , Ct+1) ∈ Envt+1(n)

we define

– Bad: the event that the execution of Tt+1(1n, PK1, . . . , PKt+1, C1, . . . , Ct+1) fails due to Line 3: That
is, for some distinct i, j ∈ [t+ 1]

(QPubi ∩ QPubj) \ (FreqPubi ∪ FreqPubj) 6= ∅.

– DecFail: the event that S1 6= DÕt+1(SK ′t+1, Ct+1) or for some 2 ≤ i ≤ t+ 1, Si 6= DÕi−1(SK ′i−1, Ci−1).

We bound the probability of the above two undesirable events in the following lemma.

Lemma 9. It holds that

1. PrEnv,Tt+1 [Bad] ≤ 1
n9 ,

2. PrEnv,Tt+1 [DecFail] ≤ 1
n6 ,

where Env← Envt+1(n)

The proof of Part 1 of Lemma 9 follows exactly along the same lines as the proof sketch given in
Subsection 4.2. Also, the proof of Part 2 follows similarly to that of Lemma 3. We give the proof of the
Lemma in Section D of the appendix.

We now bound the probability that Tt+1, on an honest input, returns ⊥ while Bad ∧DecFail holds.

Lemma 10.

Pr
Env,Tt+1

[
Bad ∧DecFail ∧ (Tt+1(1n, PK1, . . . , PKt+1, C1, . . . , Ct+1) = ⊥)

]
≤ 1

2n
,

where
Env = (O,u,w, S1, . . . , St+1, PK1, . . . , PKt+1, C1, . . . , Ct+1)← Envt+1(n).

We first show how to use Lemmas 9 and 10 to prove Theorem 11. Then, we will prove Lemma 10.

Proof (of Theorem 11). All probabilities below are taken over the variables sampled in the theorem. Let

inp = (1n, PK1, . . . , PKt+1, C1, . . . , Ct+1).

Let Evnt be the event that Tt+1(inp) 6= S1, which we want to bound. We claim if Evnt holds then at least
one of the events Evnt2 and Evnt3, defined below, must hold:
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– Evnt2 = Bad ∨DecFail.
– Evnt3 = Bad ∧DecFail ∧ (Tt+1(inp) = ⊥).

The proof of the above claim is via contraposition: if Evnt2 ∧ Evnt3 holds, then :

(I) S1
out = S1. This is because Bad ∧DecFail holds.

(II) Tt+1(inp) 6= ⊥.

By the way T is designed if (I) and (II) hold then we definitely have Tt+1(inp) = S1.

Thus, Pr[Evnt] ≤ Pr[Evnt2 ∨ Evnt3]. By Lemmas 9 and 10 Pr[Evn2] ≤ 2
n6 and Pr[Evnt3] ≤ 1

2n . The
claimed bound follows. ut

Proof (of Lemma 10).
We need to show

α(n)
def
= Pr

Env,Tt+1

[
Bad ∧DecFail ∧ (Tt+1(1n, PK1, . . . , PKt+1, C1, . . . , Ct+1) = ⊥)

]
≤ 1

2n
,

where
Env = (O,u,w, S1, . . . , St+1, PK1, . . . , PKt+1, C1, . . . , Ct+1)← Envt+1(n).

Let Nil be the event that

Tt+1(1n, PK1, . . . , PKt+1, C1, . . . , Ct+1) = ⊥.

We claim the following:

Claim I. If all of Bad, DecFail and Nil hold, then the event NSubSet, defined below, holds:

NSubSet
def
= for some 1 ≤ i ≤ t+ 1 : QPubi 6⊆ EmbedPubi ∪ FreqPubi.

We first show how to use Claim I to prove Lemma 10 and then show why the claim holds. By Claim I
we have

α(n) ≤ β(n)
def
= Pr[for some 1 ≤ i ≤ t : QPubi 6⊆ EmbedPubi ∪ FreqPubi]. (33)

We can use exactly the same proof as that of Lemma 4 to show that for any fixed i:

Pr[QPubi 6⊆ EmbedPubi ∪ FreqPubi] ≤
1

22n
. (34)

Thus, we have

β(n) ≤ nt0

22n
≤ 1

2n
,

as desired.

We now prove Claim I. Suppose all of Bad, DecFail and Nil hold. We show that this implies that
NSubSet must necessarily hold. Since the event Nil holds, then at least one of the following must hold:

(A) The bad event in Line 3 of of Tt+1’s computation holds;
(B) S1

out = ⊥.
(C) The bad event in Line 6 of of Tt+1’s computation holds;

Since we know Bad and DecFail hold, the events (A) and (B) above cannot hold. Thus, the event (C)
must necessarily hold, which is exactly the event NSubSet. The claim now follows and the proof is complete.

ut
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6.2 Tt+1 does not break the t-seed circular security of (g, e, d)

The following theorem shows that Tt+1 is not helpful in breaking the t-seed circular security of the base bit
encryption scheme (g, e,d). The proof generalizes a proof sketch given for the case t = 1 in Subsection 4.2.

Theorem 12. Suppose A is a t-seed circular security adversary with access to oracles O = (g, e,d) and
Tt+1 that makes at most 2n/8 queries. We have

Pr
O,Tt+1,b,sk1,...,skt

[AO,Tt+1(1n, pk1, . . . , pkt, e(pk1, sk2), . . . , e(pkt, sk1), e(pk1, b)) = b] ≤ 1

2
+

1

2n/4
,

where O = (O,u,w)← Ψ , b← {0, 1}, sk1, . . . , skt ← {0, 1}n and pki = g(ski) for i ≤ t.

Proof. The proof uses some of the ideas discussed extensively previously (especially in the proof of Theorem 9)
and so we omit the details whenever appropriate.

Let
inp = (1n, pk1, . . . , pkt, {(ci1, . . . , cin)}i∈[t], c)

be A’s input, sampled as specified in the theorem. That is , for 1 ≤ i ≤ t− 1:

(ci1, . . . , c
i
n)← epki(ski+1)

and
(ct1, . . . , c

t
n)← epkt(sk1).

From A we show how to build an adversary B which has access to oracles (O,u,w) and which on input
inp manages to recover b with at least the same advantage as A and which furthermore satisfies the following:

1. B is CCA-valid (Definition 4). Namely, B never calls 〈u, (pk′, c′)〉 for

(pk′, c′) ∈ {(pk1, c11), . . . , (pk1, c
1
n), . . . , (pkt, c

t
1), . . . , (pkt, c

t
n)},

2. B makes at most poly(n)× 2n/8 queries. (Recall that 2n/8 is the maximum number of queries that A is
allowed to make.)

By invoking Lemma 1 we will then obtain that the advantage of such an adversary B is at most 1
2 + 1

2n/4 ,
obtaining the bound of the theorem.

To build B we show, as before, how to handle Tt+1 queries of A using u and w queries. Let

Tqu = 〈Tt+1, (1
n, PK1, . . . , PKt+1, C1, . . . , Ct+1)〉

be a query of A.9 To reply to Tqu, BO,u,w(inp) acts as follows:

1. BO,u,w performs Steps 1 and 2 of Tt+1’s computation, which BO,u,w can perfectly do by making O and
w queries. Without loss of generality we may assume that for all 1 ≤ i ≤ t

pki /∈ FreqPub1 ∪ · · · ∪ FreqPubt+1, (35)

because otherwise BO,u,w has found the matching secret key of pki (which is one of its challenge public
keys), winning the game.

2. BO,u,w performs Step 3 of Tt+1’s computation: if the check in this step fails B stops and returns ⊥.
Thus, assume for all distinct i, j ∈ {1, . . . , t+ 1}

(QPubi ∩ QPubj) \ (FreqPubi ∪ FreqPubj) = ∅. (36)

9 Here for simplicity we assume the underlying query to Tt+1 is relative to the security parameter n. The proof
remains unchanged if the query is with respect to another security parameter.
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3. For Steps 4 and 5 we consider two cases:

– For all 1 ≤ i ≤ t+ 1

Qi
s ∩ {pk1, . . . , pkt} = ∅ :

in this case B can perfectly execute all decryptions: Namely, S1
out = DÕt+1(S̃Kt+1, Ct+1) and Siout =

DÕi−1(S̃Ki−1, Ci−1) for 2 ≤ i ≤ t+1. (All d̃i queries can be handled by Proposition 1 and all g̃i and
ẽi queries can be handled by Item (a) of Lemma 7.) Having retrieved all of S1

out, . . . , S
t+1
out , BO,u,w

can perform the last step (i.e., Step 6) of Tt+1’s computation, which BO,u,w can perfectly do as this
step only involves making O queries and doing simple offline computations.

– For some 1 ≤ i ≤ t+ 1:

Qi
s ∩ {pk1, . . . , pkt} 6= ∅.

In this case we will show that the answer to Tqu is either ⊥ or BO,u,w is able to find the corresponding
secret key of one of its challenge public keys.

To show this, we first claim there exists 1 ≤ h ≤ t+ 1 such that

Qh
s ∩ {pk1, . . . , pkt} = ∅ and (37)

Qh′

s ∩ {pk1, . . . , pkt} 6= ∅,

where h′ = 1 if h = t+ 1 and h′ = h+ 1, otherwise.

The reason behind the above claim is that if for all i ≤ t + 1, Qi
s ∩ {pk1, . . . , pkt} 6= ∅, then by the

Pigeonhole Principle there is some pk ∈ {pk1, . . . , pkt} and distinct indices i, j ∈ [t + 1] such that
pk ∈ Qi

s ∩ Qj
s. On the other hand, by Equation 35 pk /∈ FreqPubi ∪ FreqPubj. Thus, Equation 36 is

violated.

Now equipped with Equation 37, BO,u,w acts as follows:

• BO,u,w executes DÕh(S̃Kh, Ch) to obtain S′. Note that BO,u,w can successfully perform this

execution. Again, this follows because all d̃h queries can be handled by Proposition 1 and all g̃h
and ẽh queries can be handled by Item (a) of Lemma 7.)

• BO,u,w executes GO(S′): if during the execution a query/response pair (〈g, ∗〉, pk) for pk ∈
{pk1, . . . , pkt} turns up, then BO,u,w has found the secret key of one of its challenge public
keys, winning the game. If no such a query/response pair turns up BO,u,w halts and returns
⊥. By condition specified in Line 6 of Tt+1’s execution, if the answer to Tqu is not ⊥, then a
query/response pair (〈g, ∗〉, pk), for some pk ∈ {pk1, . . . , pkt}, must occur during the execution
of GO(S′), since Qh′

s ∩ {pk1, . . . , pkt} 6= ∅. Again recall that for all 1 ≤ i ≤ t:

pki /∈ FreqPub1 ∪ · · · ∪ FreqPubt+1, (38)

Thus, BO,u,w, by being able to fully simulate A or else finding a corresponding secret key of one of it challenge
public keys along the way, achieves at least the same advantage as A, and the proof is complete. ut

6.3 Putting all together

The following theorem is now established.

Theorem 13. There exists no fully-blackbox construction of full-length (t + 1)-seed circular security from
bit t-seed circular security.

The proof of the above theorem is obtained by combining Theorems 11 and 12 in exactly the same way the
proof of Theorem 10 was established.
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7 Partial separation of circular and CPA security

We show how our result, separating 1-seed circular secure bit encryption from CPA-secure encryption,
extends to rule out a class of constructions for circular secure bit encryption, which we call key-isolating
constructions. To define this class we first define it in a related model that we call the canonical model, and
then we define this class in the standard model. We start with some definitions.

Canonical-Form (CF) PKE. We call O = (gs,gp, e,d) a CF PKE scheme if the domain of gp (ex-
cluding 1n) is the range of gs and (g, e,d), where g(s) = (gs(s),gp(gs(s))), is a PKE scheme. That is,
the key-generation algorithm of a CF scheme first deterministically maps a seed to a secret key, and then
deterministically maps the secret key to a public key.

CF-based blackbox model. A blackbox construction in the CF model is a tuple of oracle algorithms
(GS,GP,E,D) such that for any CF PKE O = (gs,gp, e,d), (GSO, GPO, EO, DO) is a CF PKE. Proving
a syntactically-unrestricted separation between 1-circular secure bit encryption and CPA-secure encryption
in the CF model implies one in the standard model, since any CPA-secure CF PKE can be turned into a
CPA-secure standard PKE and any circular-secure standard PKE can be made into a circular-secure CF
PKE. Put differently, the last statement says that if there indeed exists a positive construction in the standard
model, one can also be given in the CF model.

CF Key-isolating constructions. We call a CF construction (GS,GP,E,D) key-isolating if GS never
calls gp of the base scheme, i.e., GS only has access to (gs, e,d).

Ruling-out key-isolating constructions. Our earlier result extends to rule out all key-isolating construc-
tions of circular-secure bit encryption from CPA-secure encryption in the CF model. The main idea behind
this is that in a CF construction (GSgs,e,d, GPO, EO, DO), all the underlying gp queries made during the
production of a pair of secret/public keys (SK,PK) are made during the execution of GPO(SK). In other
words, knowledge of SK enables us to reproduce all pk that are “embedded” in PK.

To adapt our results to rule out key-isolating circular-secure constructions, we first need to change the
distribution of Ψ , by replacing g with (gs,gp), for gsn : {0, 1}n → {0, 1}3n and gpn : {0, 1}3n → {0, 1}5n. As
for T, which now takes as input a public key and an encryption of a PK’s secret key, all we need to change is
that in Step 5 of T’s description the set EmbedPub should be formed by executing GPO on the intermediate,
decrypted string (which is now a secret key). All proofs related to T not breaking the CPA security of the
base scheme go through with only obvious modifications. Proofs showing T is helpful in breaking the circular
security of the constructed scheme follow by noting that any access to gp during key generation is made
only by GP . This fact only becomes essential in the proof of Lemma 4, and is the motivation behind the
definition of EmbedPub given above. Other lemmas follow by making straightforward changes.

Interpretation w.r.t. standard constructions. Our above result also rules out standard key-isolating
constructions. To define this notion for a standard construction (G,E,D) we first need to slightly change
the standard model so that (G,E,D) takes as oracles a CF PKE (gs,gp, e,d), as opposed to a standard
PKE (g, e,d). Again, as explained above this is without loss of generality.

Now we call E = (G,E,D) a standard key-isolating construction if E admits a key-isolating CF counter-
part in the following sense: there exists algorithms GS and GP such that:

– (GS,GP,E,D) is key-isolating; and

– (GS,GP ) induces the same distribution as G. That is, for any O = (gs,gp, e,d) the pair (SK,PK) is
identically distributed to (SK ′, PK ′), where

(SK,PK)← GO(1n), SK ′ ← GSgs,e,d(1n), PK ′ = GPO(SK ′).

The impossibility of CF key-isolating constructions now extends to standard ones, by the definition of the
counterpart notion.
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Examples. Any standard construction E = (G,E,D) under which seeds and secret keys are the same is
key-isolating. To see this, define

GS(S) = S GP gs,gp,e,d(S) = Ggs,gp,e,d
2 (S)

where G2 is the algorithm that corresponds to the public-key output of G. We can now easily see that
the construction Ecf = (GS,GP,E,D) is a CF-counterpart of (G,E,D), and that Ecf is key-isolating since
GS makes no oracle calls at all. This shows that E is a key-isolating construction.

Using the same argument we can show that identical constructions are also key isolating, where these
constructions are of the form (Ggs,gp, Ee, Dd), where

– Ggs,gp(s) = (gs(s),gp(gs(s)));

– Ee(pk, b) = e(pk, b) and Dd(sk, c) = d(sk, c).

Thus, we can explain the blackbox septation result of [Rot13] as a special case of our results.

8 Discussion related to the impossibility for circular security

In this section we briefly explain why we were not able to fully extend our results to the circular-security
case. For simplicity, we highlight the difficulties encountered with respect to the simple type of constructions
discussed in Section 4.1. In what follows any mention of the oracle T for the 1-seed circular-security case
refers to the oracle T defined in Section 4.

As discussed previously, the main challenge in designing an appropriate oracle T is to make sure that
responses to queries to T do not leak information about the challenge secrets of a CPA adversary A against
O = (g, e,d). We proved this for the 1-seed circular-security case by providing a CCA-valid adversary B in
such a way that BO,u,w(pk, c) is able to simulate AO,T(pk, c).

Roughly speaking, the only part of the execution of T(1n, PK,C1, . . . , Cn) that is not simulatable by a

CCA-valid adversary BO,u,w(pk, c) is when, during the computation of Dd̃(SK ′, C1 . . . Cn), a query d̃(sk′, c)
is made and (〈g, sk′〉, pk) ∈ Qs. We fixed this non-simulatability problem by adding an extra check at the
end of T’s computation that ensures the following: either the value of g−1(pk) is embedded in Sout (i.e., the
query/response pair (〈g, ∗〉, pk) shows up during Gg(Sout)) or the answer to the underlying T query is ⊥.

To define a circular-security weakening oracle T we may be tempted to proceed as before: T accepts inputs
of the form (PK,C1, . . . , Cn), where now C1, . . . , Cn are (supposedly) bit-wise encryption of a PK’s secret
key under PK itself. (For simplicity, assume that the length of the secret key is n.) Then, everything remains

unchanged from T in Section 4, until T obtains SKout = Dd̃(SK ′, C1 . . . Cn), which now is supposedly a
PK’s matching secret key. Now in order to make sure that the oracle T is simulatable (i.e., it does not leak
non-simulatable information to a CPA adversary against O) it seems that, as before, we need to make sure
that g−1(QPub) is “embedded” in SKout, before releasing SKout. (Recall the definition of QPub from T’s
definition in Section 4.) But this “embedding condition” seems hard to check. This check was easy for the
1-seed circular-security case since we could simply run Gg(Sout) and monitor all sk′ for which we observe a
query/response (〈g, sk′〉, ∗). For the circular-security case one idea is to run Dd(SKout, ·) on many random
encryptions produced as C ← Ee(PK, b;R) for randomly chosen b and R, and record in a set EmbedSec all
sk′ for which we encounter a query 〈d, (sk′, ∗)〉. We then return SKout if QPub ⊆ g(EmbedSec); otherwise,
we return ⊥. While this check makes the oracle T simulatable, it makes T unfortunately too weak in
that we cannot anymore guarantee in general that T(1n, PK,C1 . . . Cn) will return SK with non-negligible
probability, for (SK,PK) ← Gg(1n) and (C1, . . . , Cn) ← Ee(PK,SK), i.e., T is not useful in general for
breaking circular security. Contrived constructions (G,E,D) for which this is the case can be given.
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9 Open problems

The main open problem is to extend our impossibility results to the circular-security setting. We explain
in Section 8 why we were not able to do this. Another interesting problem is to see to what extent our
techniques extend to obtain impossibility results based on other classical public-key primitives, e.g., trapdoor
permutations.

While our impossibility results pertain to the public-key setting we believe that private-key seed circular
secure encryption can also be separated from the same public-key assumptions.
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A Omitted Proofs from Section 4

Proof (of Lemma 1). The proof of the lemma is based on the idea that the functions g and e are length
increasing, and are chosen uniformly at random. The proof for the general case involves defining many
random variables and events. Thus, we sketch why a simple special case of the lemma holds and the proof
for the general case follows the same line of arguments.

We show

Pr
[
BO(1n, pk, c) = b

]
≤ 1

2
+

1

2n/4
,

where O ← Ψ , b← {0, 1}, sk ← {0, 1}n, pk = g(sk) and c← e(pk, b). Let bout be B(1n, pk, c)’s output and
let Que be the set of B’s query/response pairs at the end of the computation. For bit b′ let Knownb′ contain
any c′ such that (〈e, (pk, b′, ∗)〉, c′) ∈ Que or (〈u, (pk, c′)〉,>) ∈ Que. In words, the set Knownb′ contains all
ciphertexts c′ that B knows are encryptions of b′ under its challenge public key pk. Without loss of generality
assume that B makes exactly 2 × 2n/4 queries but at the end |Known0| = |Known1|. (If B needs to, say,
increase the size of Known0 it can make queries of the form 〈e, (pk, 0, ∗)〉 as many as needed.) Also, recall by
Assumption 3 that any 〈d, (sk′, ∗)〉 query of B is preceded by 〈g, sk′〉.

Let pubhit be the event that (〈g, ∗〉, pk) ∈ Que and let ciphhit be the event that c ∈ Known0 ∪ Known1.
By the facts that gn : {0, 1}n → {0, 1}5n and en : {0, 1}5n × {0, 1} × {0, 1}n → {0, 1}7n, we can upperbound
the probability of pubhit ∨ ciphhit as

2n/4+1

25n
+

2n/4+1

2n
≤ 1

2n/4+1
+

1

2n/4+1
=

1

2n/4
. (39)

Moreover, recalling that for Que it holds that |Known0| = |Known1|, we have
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Pr[bout = b | pubhit ∧ ciphhit] = 1/2. (40)

By combining Equations 39 and 40 the proof follows. ut

Proof (of Lemma 2). The proof of the lemma uses simple probabilistic arguments so we omit most of the
details. Assume B at the end of its computation calls w on the public key it outputs. This only increases the
number of queries by one. At any point during B’s computation with current query list Que we say B’s next
query produces a hit if the next query is of the form 〈w, pk〉 and it holds that pk ∈ {0, 1}5n, w(pk) = > and
(〈g, ∗〉, pk) /∈ Que. The adversary B wins if during B’s computation at least one hit occurs. We now bound
the event that the ith query for some fixed i produces hit, provided there were no previous hits. Assume the
ith query is 〈w, pk〉, for pk ∈ {0, 1}5n. The probability that the ith query produces a hit given there were
no previous hits is at most

2n

25n − 2n
≤ 1

23n+
n
2
.

In above we used the fact that the number of valid public keys of length 5n is 2n and the number of all
public keys of length n is 25n. Using a union bound, we may bound the probability of the theorem as

2n + 1

23n+
n
2
≤ 2n+1

23n+
n
2
≤ 1

22n
.

ut

B Proof of Lemma 5, Part (B)

Before giving the proof of Part (B) of Lemma 5 we need to give a lemma which characterizes when the

response to a query (sk, c) differs between d and d̃.

Lemma 11. Let

(O,u,w, PK) ∈ Env(n) and (Freq, SK ′,Qs,Qc, Õ) ∈ TvarsO(PK).

For (sk, c) suppose g̃(sk) = g(sk) = pk, but d(sk, c) 6= d̃(sk, c). Then all the following conditions must hold:

1. (〈e, (pk, ∗, ∗)〉, c) ∈ Qc;
2. (〈e, (pk, ∗, ∗)〉, c) /∈ Freq; and
3. (〈d, (sk, c)〉, ∗) /∈ Freq.

Proof. Suppose g̃(sk) = g(sk) = pk and d(sk, c) 6= d̃(sk, c). Recall that

(eimp,dimp) = EncImpose(g, e,d,Qc)

(g̃, d̃) = KeyImpose(g, eimp,dimp,Qs)

ẽ = eimp.

To prove the lemma we first prove the following claim.

Claim 14. Assuming g̃(sk) = g(sk) = pk it holds that d̃(sk, c) = dimp(sk, c)

Proof of Claim 14. Recall by Claim 7 that (g, eimp,dimp) is a valid PKE. To show d̃(sk, c) = dimp(sk, c)

we consider two cases: d̃(sk, c) 6= ⊥ and d̃(sk, c) = ⊥.
We first consider the first case. For b ∈ {0, 1} we have

d̃(sk, c) = b⇔ eimp(pk, b, ∗) = c⇔ dimp(sk, c) = b.
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For the second case, we have

d̃(sk, c) = ⊥ ⇔ for no b : eimp(pk, b, ∗) = c⇔ dimp(sk, c) = ⊥.

Thus, we have d̃(sk, c) = dimp(sk, c). ut
We now show that the negation of any of the conditions claimed in Lemma 11 implies d(sk, c) =

dimp(sk, c), which in turn by Claim 14 implies d(sk, c) = d̃(sk, c), which is a contradiction to the assumption

of the lemma that d(sk, c) 6= d̃(sk, c).
¬(1) holds: Then immediately from the definition of dimp we obtain that d(sk, c) = dimp(sk, c).
¬(2) holds: Then we have (〈e, (pk, b, ∗)〉, c) ∈ Freq, for some b. Thus, d(sk, c) = b. Now in order for d(sk, c) 6=
dimp(sk, c) to be true, it must hold that (〈e, (pk, 1− b, ∗)〉, c) ∈ Qc, which is impossible since Qc agrees with
Freq.
¬(3) holds: Thus, (〈d, (sk, c)〉, ∗) ∈ Freq. This in turn implies that either

– (〈d, (sk, c)〉,⊥) ∈ Freq, or
– (〈d, (sk, c)〉, b) ∈ Freq for some bit b.

We consider both cases:

– If (〈d, (sk, c)〉,⊥) ∈ Freq, then by Assumption 3 we have (〈g, sk〉, pk) ∈ Freq. Now since Qc is ob-
tained from some e′, where (g′, e′,d′) is a valid PKE that agrees with Freq (see Definition 7) we have
(〈e, (pk, ∗, ∗)〉, c) /∈ Qc. (To see this note that d′(sk, c) = ⊥ and that g′(sk) = pk, since (〈d, (sk, c)〉,⊥) ∈
Freq and (〈g, sk〉, pk) ∈ Freq. If (〈e, (pk, ∗, ∗)〉, c) ∈ Qc then e′(pk, ∗, ∗) = c, and since g′(sk) = pk, it
holds that d′(sk, c) 6= ⊥, which is a contradiction to the earlier established fact that d′(sk, c) = ⊥.) Now
the fact that (〈e, (pk, ∗, ∗)〉, c) /∈ Qc implies d(sk, c) = dimp(sk, c).

– If (〈d, (sk, c)〉, b) ∈ Freq for some bit b, then by the way in which Freq is sampled we have (〈e, (pk, b, ∗)〉, c) ∈
Freq. Now since Qc should agree with Freq it holds either that (a) (〈e, (pk, ∗, ∗)〉, c) /∈ Qc or (b) if
(〈e, (pk, b′, ∗)〉, c) ∈ Qc then b′ = b. Both (a) and (b) imply dimp(sk, c) = b, and thus d(sk, c) =
dimp(sk, c).

The proof of Lemma 11 is now complete. ut

Lemma 5, Part (B) (Restated). Fix (O,u,w, PK) ∈ Env(n) and let M = 0n1n. Let (qu1, . . . , qu2nϑ+1)
denote the oracle queries asked during the execution of EO(PK,M ;R), for a random R. Then, for any query
index 1 ≤ i ≤ 2nϑ+1

Pr
[
(qui is d-type) ∧

(
∀j < i,O(quj) = Õ(quj)

)
∧
(
d(qui) 6= d̃(qui)

)]
≤ 1

n8ϑ
,

where (Freq, SK ′,Qs,Qc, Õ)← TvarsO(PK) and R is chosen at random.

Proof. The proof of this part of the lemma follows very similarly to that of Part (A), so we will omit details
whenever appropriate.

Fix i ∈ {1, . . . , 2nϑ+1} as in the lemma. All probabilities below are taken over the random coins described
in the lemma, unless otherwise stated. Define the random variable (sk , c) as follows: (sk , c) = (ski, ci) if
qui = 〈d, (ski, ci)〉, and (sk , c) = (⊥,⊥), otherwise. We re-write the probability of the theorem as

β(n) = Pr[((sk , c) 6= (⊥,⊥)︸ ︷︷ ︸
Evnt1

) ∧ (d(sk , c) 6= d̃(sk , c)︸ ︷︷ ︸
Evnt2

) ∧ (∀j < i,O(quj) = Õ(quj)︸ ︷︷ ︸
Evnt3

)].

We will show a stronger statement, namely

β(n) ≤ 1

n10ϑ
.
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Define pk to be g(sk ) if sk 6= ⊥, and pk = ⊥, otherwise.

First note that if Evnt1 ∧ Evnt2 ∧ Evnt3 holds, since qui is the first query where O(qui) 6= Õ(qui),
by Assumption 3 we have g̃(sk ) = pk 6= ⊥. Thus, by Lemma 11 we will have (〈e, (pk , ∗, ∗)〉, c) ∈ Qc,
(〈e, (pk , ∗, ∗)〉, c) /∈ Freq and (〈d, (sk , c)〉, ∗) /∈ Freq.

Fix an arbitrary ordering

((〈e, (pk1, b1, r1)〉, c1), . . . , (〈e, (pkm, bm, rm)〉, cm))

on the elements of Qc. Note that m ≤ nϑ. Now by the discussion above if Evnt1 ∧ Evnt2 ∧ Evnt3 holds,
then the following must hold:

– for some 1 ≤ h ≤ m, (pk , c) = (pkh, ch), (〈e, (pk , ∗, ∗)〉, c) /∈ Freq and (〈d, (sk , c)〉, ∗) /∈ Freq.

Thus, we have β(n) ≤
∑m
h=1 βh(n), where

βh(n) = Pr
[(

(pk , c) = (pkh, ch)
)
∧
(
〈e, (pk , ∗, ∗)〉, c) /∈ Freq

)
∧ (〈d, (sk , c)〉, ∗) /∈ Freq)

]
.

We now claim

Claim I. For all 1 ≤ h ≤ m

βh(n) ≤ 1

n10ϑ
.

Claim I implies the desired bound:

β(n) ≤ m× 1

n10ϑ
≤ 1

n8ϑ
.

Thus, we focus on proving Claim I. Fix h ∈ {1, . . . ,m} in the sequel.

Call a pair (pk, c), with sk = g−1(pk), heavy if for some b ∈ {0, 1}

Pr
R

[
(〈e, (pk, ∗, ∗)〉, c) or (〈d, (sk, c)〉, ∗) is made during EO(PK, b;R)

]
≥ 1

n11ϑ
. (41)

Note that in the equation above it may be that sk = ⊥, in which case the query 〈d, (sk, c)〉 is invalid, and so
it is never asked, and thus the above probability amounts to the probability of the former condition alone.
We call (pk, c) unheavy if the above probability is strictly less than 1

n11ϑ for both b = 0 and b = 1.

Recalling h that was fixed above, letting skh = g−1(pkh), to bound βh(n) we define the events Ev1 and
Ev2:

1. Ev1: there exists (pk, c) such that (pk, c) is heavy and (〈e, (pk, ∗, ∗)〉, c) /∈ Freq and (〈d, (g−1(pk), c)〉, ∗) /∈
Freq

2. Ev2: (pk , c) = (pkh, ch), (〈e, (pk , ∗, ∗)〉, c) /∈ Freq, (〈d, (sk , c)〉, ∗) /∈ Freq and (pkh, ch) is unheavy.

We have

βh(n) ≤ Pr[Ev1] + Pr[Ev2].

We will show

ε(n)
def
= Pr[Ev1] ≤ 1

n11ϑ
;

and

βh,1(n)
def
= Pr[Ev2] ≤ 1

n11ϑ
.
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The above bounds for ε(n) and βh,1(n) imply the bound for βh(n), as desired.

Bounding ε(n). The proof consists of two parts. First, we show there are at most a polynomial number of
heavy pairs (pk, c) (Claim A). Next, we show for a specific heavy pair (pk, c) the probability that

(〈e, (pk, ∗, ∗)〉, c) /∈ Freq ∧ (〈d, (g−1(pk), c)〉, ∗) /∈ Freq

is negligible (Claim B).

Proof of Claim A. Fix b ∈ {0, 1}. We show the number of pairs (pk, c) for which Equation 41
holds for the fixed b is at most polynomial. Call (pk, c), with sk = g−1(pk), i-heavy if during a random
execution of EO(PK, b;R) with probability at least 1

n12ϑ (taken over R) the ith query/response pair is
either (〈e, (pk, ∗, ∗)〉, c) or (〈d, (sk, c)〉, ∗). If at least one of (〈e, (pk, ∗, ∗)〉, c) or (〈d, (sk, c)〉, ∗) is asked with
probability at least 1

n11ϑ during EO(PK, b;R) then for some 1 ≤ i ≤ nϑ (pk, c) is i-heavy. For every i we

have at most n12ϑ i-heavy pairs. Thus, for a fixed b we have at most n12ϑ × nϑ pairs for which Equation 41
holds. Thus, we have at most 2n13ϑ heavy pairs (pk, c), and the proof of Claim A is complete. ut

Proof of Claim B. Recall that Freq is formed by collecting all query/response pairs made during n23ϑ

random executions of EO(PK, 01). For 1 ≤ k ≤ n23ϑ let xk = 1 if at least one of (〈e, (pk, ∗, ∗)〉, c) and
(〈d, (sk, c)〉, ∗) is asked during the kth execution, and xk = 0, otherwise. We know that x1, . . . , xn23ϑ are all

identically distributed and independent, and that p
def
= Pr[x1 = 1] ≥ 1

n11ϑ . Let xav =
x1+···+xn23ϑ

n23ϑ . We have

Pr[(〈e, (pk, ∗, ∗)〉, c) /∈ Freq) ∧ (〈d, (sk, c)〉, ∗) /∈ Freq) | (pk, c) is heavy]

≤ Pr[|xav − p| ≥ p] ≤ Pr[|xav − p| ≥
1

n11ϑ
] ≤ 1

22n23ϑ−22ϑ ≤
1

22n
,

where the third inequality above follows by Theorem 8. The proof of Claim B is complete. ut

Bounding βh,1(n).

βh,1(n) ≤ Pr
[(

(pk , c) = (pkh, ch)
)
∧ ((pkh, ch) is unheavy)

]
≤ Pr

[
(pk , c) = (pkh, ch) | (pkh, ch) is unheavy

]
≤ 1

n11ϑ
.

The reason for the last inequality above is that since the index i, to which (pk , c) corresponds, is fixed,
the probability that (pk , c) = (pkh, ch) is at most the probability that at least one of (〈e, (pkh, ∗, ∗)〉, ch) or
(〈d, (skh, ch)〉, ∗) is made during a random encryption EO(PK, b): Here b is the bit of 0n1n to which the
index i corresponds, and b is uniquely determined by Assumption 1.

The proof of Part (B) of Lemma 5 is now complete. ut

C Proof of Lemma 7

Lemma 7, (Restated). Fix

(g, e,d,u,w, PK) ∈ Env(n) and (Freq, SK ′,Qs,Qc, g̃, ẽ, d̃) ∈ TvarsO(PK).

Assuming
Qc = {(〈e, (pk1, b1, r1)〉, c1) , . . . , (〈e, (pkp, bp, rp)〉, cp)}

let
W′ = {(pk1, e(pk1, b1, r1)), . . . , (pkp, e(pkp, bp, rp))}

and
W = {(pk1, c1), . . . , (pkp, cp)}.

Note that in the definition of W′ by e(pki, bi, ri) we mean the actual value e(pki, bi, ri), not the notation
itself.

All the following conditions hold.
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(a) Both g̃ and ẽ can be computed efficiently (on all points) given oracle access to O = (g, e,d) and having
Qs and Qc as input.

(b) For any (sk, c), if (〈g, sk〉, ∗) /∈ Qs, the value d̃(sk, c) can be efficiently computed given oracle access to
O and having Qc as input.

(c) If for (sk, c) it holds that (〈g, sk〉, pk) ∈ Qs for some pk and that (pk, c) /∈ W ∪W′, then d̃(sk, c) can be

determined as follows: if u(pk, c) = (b, ∗) 6= ⊥ then d̃(sk, c) = b; otherwise, d̃(sk, c) = ⊥.
(d) If for (sk, c) it holds that (〈g, sk〉, pk) ∈ Qs, for some pk, and that (pk, c) ∈W′ \W, then d̃(sk, c) = ⊥.
(e) If for (sk, c) it holds that (〈g, sk〉, pk) ∈ Qs, for some pk, and that (pk, c) = (pki, ci) for some i ≤ p, then

d̃(sk, c) = bi.

Proof. First of all, recall that

(eimp,dimp) = EncImpose(g, e,d,Qc)

(g̃, d̃) = KeyImpose(g, eimp,dimp,Qs)

ẽ = eimp.

Part (a). The proof of this case follows easily by inspection. We give the proof for ẽ, since this is the
more difficult case. To compute ẽ(pk, b, r): if (〈e, (pk, b, r)〉, c) ∈ Qc for some c, then ẽ(pk, b, r) = c; else if
(pk, e(pk, b, r)) /∈ W then ẽ(pk, b, r) = e(pk, b, r); else ẽ(pk, b, r) = e(pk, b, r + x) where x is the smallest
integer such that (pk, e(pk, b, r + x)) /∈W ∪W′.

Part (b). If (〈g, sk〉, ∗) /∈ Qs then by Claim 14 we have d̃(sk, c) = dimp(sk, c). To compute dimp(sk, c), first
compute pk = g(sk); if (〈e, (pk, b, ∗)〉, c) ∈ Qc for some bit b, then dimp(sk, c) = b; otherwise, by definition
dimp(sk, c) = d(sk, c).

Part (c). If for some pk, (〈g, sk〉, pk) ∈ Qs, then by definition d̃(sk, c) is computed as follows: if for some

b and r it holds that c = eimp(pk, b, r) then d̃(sk, c) = b; otherwise, d̃(sk, c) = ⊥. By the assumption of
this part of the lemma we have (pk, c) /∈ W ∪W′. If u(pk, c) = ⊥ we claim that for no b and r does it hold
that c = eimp(pk, b, r); the reason is that since (pk, c) /∈ W if c = eimp(pk, b, r) then for some r′ it holds
e(pk, b, r′) = c (this can be easily verified from the definition of eimp), which contradicts u(pk, c) = ⊥. Thus,

d̃(sk, c) = ⊥. On the other hand, if u(pk, c) = (b, ∗) 6= ⊥, then we know for some r we have e(pk, b, r) = c.
We claim eimp(pk, b, r) = c. Assume not: then by definition for some i ≤ p it holds that either (pk, b, r) =
(pki, bi, ri) or (pk, e(pk, b, r)) = (pki, ci). The former implies (pk, c) ∈W′ and the latter implies (pk, c) ∈W,
both contradicting the assumption (pk, c) /∈W ∪W′.

Part (d). If for some pk, (〈g, sk〉, pk) ∈ Qs, then, again by definition, d̃(sk, c) = b iff there exists b and
r such that c = eimp(pk, b, r). Since (pk, c) ∈ W′ we know pk = pki and c = e(pki, bi, ri) for some i ≤ p.
Assume toward a contradiction that for some b and r it holds that c = eimp(pk, b, r). Thus, eimp(pk, b, r) =
c = e(pki, bi, ri). We consider all possible cases, and prove each yields a contradiction:

– (pk, b, r) = (pkj , bj , rj) for some j ≤ p: impossible since otherwise eimp(pk, b, r) = cj and so (pk, c) =
(pkj , cj) ∈W.

– (pk, e(pk, b, r)) /∈ W′: then since by Part (a) we know for no j ≤ p (pk, b, c) = (pkj , bj , cj), by applying
the definition of eimp we obtain eimp(pk, b, r) = e(pk, b, r). Since from earlier we have eimp(pk, b, r) =
e(pki, bi, ri) and pk = pki, we obtain (pk, e(pk, b, r)) = (pki, e(pki, bi, ri)) ∈W′, which is a contradiction
to the assumption that (pk, e(pk, b, r)) /∈W′.

– (pk, e(pk, b, r)) ∈ W′: Since by Part (a) we know for no h ≤ p it holds that (pk, b, c) = (pkh, bh, ch), by
applying the definition of eimp we obtain eimp(pk, b, r) = e(pk, b, r+x) for some x for which in particular
(pk, b, r + x) 6= (pki, bi, ri). Since from earlier we have pk = pki, we obtain (b, r + x) 6= (bi, ri). Thus, we
have e(pk, b, r + x) = c = e(pk, bi, ri), which is a contradiction since e(pk, ·, ·) is one-to-one.

Part (e). If for some pk, (〈g, sk〉, pk) ∈ Qs, then by definition d̃(sk, c) is computed as follows: if there exists

b and r such that eimp(pk, b, r) = c then d̃(sk, c) = b; otherwise, d̃(sk, c) = ⊥. Now since (pk, c) = (pki, ci),

we have eimp(pk, bi, ri) = c and so d̃(sk, c) = bi.
The proof of Lemma 7 is now complete. ut

45



D Proof of Lemma 9

We first start with the following notation.

Notation 1. TextvarsO(PK1, . . . , PKt+1) denotes the random variables

(Freqi,FreqPubi, S̃Ki,Q
i
s,Q

i
c,QPubi, Õi)1≤i≤t+1

obtained in the execution of Tt+1(1n, PK1, . . . , PKt+1, . . . ) with respect to the oracle O. Note that none of
these random variables depend on (C1, . . . , Ct+1).

D.1 Proof of Lemma 9, Part 1

Proof. All probabilities that appear below are taken over the variables sampled as in the lemma. For any
two fixed and distinct ς, ω ∈ [t+ 1] we show

α(n)
def
= Pr[(QPubς ∩ QPubω) \ (FreqPubς ∪ FreqPubω) 6= ∅] ≤ 1

n2t0+9
; (42)

A union bound then yields the bound of the theorem.

Define

QPubRealς = {pk | the query/response (〈g, ∗〉, pk) appears during GO(Sς)}.

Define QPubRealω similarly by replacing ς with ω in the equation above.
In what follows, we show that with all but negligible probability

QPubς ⊆ QPubRealς ∪ FreqPubς and QPubω ⊆ QPubRealω ∪ FreqPubω.

This will allow us to focus our attention on bounding the probability of the event

(QPubRealς ∩ QPubRealω) \ (FreqPubς ∪ FreqPubω) 6= ∅.

In the following define the event subset as

subset
def
= (QPubς ⊆ QPubRealς ∪ FreqPubς) ∧ (QPubω ⊆ QPubRealω ∪ FreqPubω).

Lemma 12.

Pr[subset] ≥ 1− 1

2n
.

Lemma 13.

β(n)
def
= Pr[(QPubRealς ∩ QPubRealω) \ (FreqPubς ∪ FreqPubω) 6= ∅] ≤ 1

2n2t0+9
. (43)

In what follows we will first show that Lemma 9, Part 1 follows easily from Lemmas 12 and 13. Then, we
will prove each of the lemmas.

Let α(n) be as above. We have

α(n) ≤ Pr[((QPubς ∩ QPubω) \ (FreqPubς ∪ FreqPubω) 6= ∅) ∧ subset] + Pr[subset]

≤ Pr[(QPubRealς ∩ QPubRealω) \ (FreqPubς ∪ FreqPubω) 6= ∅] +
1

2n

≤ 1

2n2t0+9
+

1

22n
≤ 1

n2t0+9
.
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Proof of Lemma 12. Let subsetς be the event (QPubς ⊆ QPubRealς ∪ FreqPubς) and subsetω be the
event (QPubω ⊆ QPubRealω ∪FreqPubω). We show Pr[subsetς ] ≤ 1

22n . Using the same argument we can show

Pr[subsetω] ≤ 1
22n , establishing the desired bound.

The idea of the proof is as follows: We show how to successfully forge a public key pk ∈ {0, 1}5n by
making a polynomial number of queries whenever subsetς holds. Then by relying on Lemma 2 we obtain
Pr[subsetς ] ≤ 1

22n . The forgery attack is enabled by the fact that during the formations of QPubς from
(PKς ,FreqPubς) no real queries except except w queries are made. (See Step 2 of Tt+1’s computation.)
Details follow.

The forgery attack is done as follows: Sample Sς ← {0, 1}n, form

(∗, PKς) = GO(Sς)

and form Freqς and FreqPubς and QPubς as in Tt+1’s computation. That is,

Freqς ← ExtFreqQueO,u(PKς , n
23ϑ+4t0)

FreqPubς = {pk | (〈g, ∗〉, pk) ∈ Freqς}

(S̃Kς ,Q
ς
s ,Q

ς
c)← ConsOrc(PKς ,Freqς)

QPubς = {pk | w(pk) = > and (〈g, ∗〉, pk) ∈ Qςs}.

Also, let

QPubRealς = {pk | the query/response (〈g, ∗〉, pk) appears during GO(Sς)}.

If there exists pk such that
pk ∈ QPubς \ (QPubRealς ∪ FreqPubς)

then halt and return pk. Otherwise, return ⊥.

Letting Que be the set of all query/response pairs made during this attack we show whenever the attacker
returns pk 6= ⊥ it holds that (I) w(pk) = > and (II) (〈g, ∗〉, pk) /∈ Que (which shows in these cases the attack
is successful). Condition (I) obviously holds. To prove Condition (II) note that all g-type query/response
pairs in Que are made either during the execution of GO(Sς) or during the formation of Freqς . By definition,
if a query/response pair (〈g, ∗〉, pk) is made during the execution GO(Sς) then pk ∈ QPubRealς . Also,
if a query/response pair (〈g, ∗〉, pk) is made during the formation of Freqς then pk ∈ FreqPubς . Thus, if
pk /∈ QPubRealς ∪ FreqPubς then (〈g, ∗〉, pk) /∈ Que, as desired. The proof is complete. ut

Proof of Lemma 13. Let p̂k1, . . . , p̂kz, for some z ≤ nϑ be the elements of QPubRealς . Note that p̂k1, . . . , p̂kz
are all random variables. Toward bounding β(n) (Equation 43) we define βi(n) for 1 ≤ i ≤ z as follows:

βi(n) = Pr[(p̂ki ∈ QPubRealω) ∧ (p̂ki /∈ FreqPubς ∪ FreqPubω)]. (44)

We have β(n) =
∑
i≤zβi(n). In what follows for an arbitrary fixed i we show

βi(n) ≤ 1

2nϑ+2t0+9
, (45)

and then the claimed bound for β(n) follows by the union bound.

Call pk heavy if

Pr[the query/response (〈g, ∗〉, pk) appears during GO(1n)] ≥ 1

nϑ+2t0+10
. (46)

We call pk unheavy if pk is not heavy.

Using the notion of heaviness, we further break down βi(n) as follows.
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β1,i(n) = Pr[(p̂ki ∈ QPubRealω) ∧ (p̂ki /∈ FreqPubς ∪ FreqPubω) ∧ (p̂ki is unheavy )]

β2,i(n) = Pr[(p̂ki ∈ QPubRealω) ∧ (p̂ki /∈ FreqPubς ∪ FreqPubω) ∧ (p̂ki is heavy )].

In the rest of the proof we show β1,i(n) ≤ 1
4nϑ+2t0+9 and β2,i(n) ≤ 1

4nϑ+2t0+9 , which imply βi(n) ≤ 1
2nϑ+2t0+9 ,

as desired.

UpperBounding β1,i(n). We have

β1,i(n) ≤ Pr[(p̂ki ∈ QPubRealω) ∧ (p̂ki is unheavy )]

≤ Pr[(p̂ki ∈ QPubRealω) | (p̂ki is unheavy )] ≤∗ 1

nϑ+2t0+10
≤ 1

4nϑ+2t0+9
,

as claimed. The inequality marked with ∗ follows from the definition of unheaviness and the way QPubRealω
is defined: the set of all pk where (〈g, ∗〉, pk) appears during the execution of GO(Sω), for Sω ← {0, 1}n.

UpperBounding β2,i(n). Just as above we have

β2,i(n) ≤ ε(n)
def
= Pr[p̂ki /∈ FreqPubς ∪ FreqPubω | p̂ki is heavy ]. (47)

Recall that during the formations of each of FreqPubς and FreqPubω, among other executions, we execute
GO(1n) independently n23ϑ+4t0 times and record all pk for which we have a query/response (〈g, ∗〉, pk) in
the underlying set.

Thus, to bound ε(n) it suffices to bound the probability that, conditioned on p̂ki being heavy, that

(〈g, ∗〉, p̂ki) /∈ Q, where Q is formed by collecting all query/response pairs made during n23ϑ+4t0 random

executions of GO(1n). To this end, for k ≤ n23ϑ+4t0 define xk = 1 if (〈g, ∗〉, p̂ki) is made during the
kth execution, and xk = 0, otherwise. We know that x1, . . . , xn23ϑ+4t0 are all identically distributed and

independent, and that p
def
= Pr[x1 = 1] ≥ 1

nϑ+2t0+10 . Let xav = (x1 + · · ·+ xn23ϑ+4t0 )/n23ϑ+4t0 . We have

ε(n) ≤ Pr[(〈g, ∗〉, p̂ki) /∈ Q | p̂ki is heavy] ≤ Pr[|xav − p| ≥ p] ≤ Pr[|xav − p| ≥
1

nϑ+2t0+10
]

≤ 1

22n
23ϑ+4t0−2ϑ−4t0−20 ≤

1

22n
≤ 1

4nϑ+2t0+9
.

ut

D.2 Proof of Lemma 9, Part 2

We will prove that

Pr[S1 6= DÕt+1(SK ′t+1, Ct+1)] ≤ 1

n6+t0
. (48)

With exactly the same argument we can show that for any 2 ≤ i ≤ t+ 1

Pr[Si 6= DÕi−1(SK ′i−1, Ci−1)] ≤ 1

n6+t0
.

The claimed result then follows using a union bound.

Toward proving Equation 48 we need the following lemma.

Lemma 14. Fix (O,u,w, PK1, . . . , PKt+1) ∈ Envt+1(n). Let (qu1, . . . , qunϑ) denote the oracle queries
asked during the execution of EO(PKt+1, S;R), for a random S ← {0, 1}n and random R. Then, for any
query index 1 ≤ i ≤ nϑ
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(A) Pr
[
(qui is g- or e-type) ∧

(
∀j < i,O(quj) = Õt+1(quj)

)
∧
(
O(qui) 6= Õt+1(qui)

)]
≤ 1

n8ϑ+t0
,

(B) Pr
[
(qui is d-type) ∧

(
∀j < i,O(quj) = Õt+1(quj)

)
∧
(
O(qui) 6= Õt+1(qui)

)]
≤ 1

n8ϑ+t0
,

where the probabilities are taken over S ← {0, 1}n, random choice of R and

(Freqi,FreqPubi, S̃Ki,Q
i
s,Q

i
c,QPubi, Õi)1≤i≤t+1 ← TextvarsO(PK1, . . . , PKt+1).

We first show how to use Lemma 14 to prove Equation 48. The proof is very similar to the the proof of
Lemma 3 and so we omit most of the details.

Proof of Lemma 9, Part 2 (Equation 48). All the following probabilities are taken over the variables
sampled in the lemma.

Let QS be the set of all queries asked during the execution under which Ct+1 ← EO(PKt+1, S1) was
produced. As in the proof of Lemma 3 we have

Pr[S1 6= DÕt+1(SK ′t+1, Ct+1)] ≤ β(n)
def
= Pr

[
∃qu ∈ QS : O(qu) 6= Õt+1(qu)

]
.

To bound β(n) we have

β(n) = Pr
[
∃qu ∈ QS : O(qu) 6= Õt+1(qu)

]
≤ nϑ × 1

n8ϑ+t0
≤ 1

n6+t0
.

The first inequality above is obtained by applying Lemma 14 and a union bound. (Note that |QS| = nϑ.)
The proof is now complete. ut

The proof of Lemma 14 follows very similarly to that of Lemma 5, except for a few simple changes. In
what follows, we show the proof of Part (A) of Lemma 14 and omit the proof of Part (B), as the latter
follows similarly.

Proof of Lemma 14, Part (A). Fix (O,u,w, PK1, . . . , PKt+1) as in the lemma and let

QS = {qu1, . . . , qunϑ},

All probabilities, if not otherwise stated, are taken over the variables sampled in the lemma. We prove a
stronger result, showing

α(n) = Pr
[
(∃qu ∈ QS such that qu is g- or e-type) ∧

(
O(qu) 6= Õt+1(qu)

)]
≤ 1

n8ϑ+t0
,

Let DifQuec be formed as follows: for any (〈e, (pk, b, r)〉, c) ∈ Qt+1
c :

(a) add 〈e, (pk, b, r)〉 to DifQuec, and
(b) if u(pk, c) = (b′, r′) 6= ⊥, also add 〈e, (pk, b′, r′)〉 to DifQuec.

By Lemma 6, DifQuec is a superset of all e-type queries that receive different responses from e and ẽt+1.
Also, for any (〈g, sk〉, ∗) ∈ Qt+1

s add 〈g, sk〉 to the set DifQues. Similarly, DifQues is a super-set of all g-type
queries responded to differently under g and g̃t+1. Fix an arbitrary ordering (〈h1, q1〉, . . . , 〈hm, qm〉) on the
elements of DifQuec ∪ DifQues, and note that m ≤ 2nϑ. As in the proof of Lemma 5, Part (A) we have

α(n) ≤ β(n)
def
= Pr [for some 1 ≤ i ≤ m : (〈hi, qi〉 ∈ QS) ∧ ((〈hi, qi〉, ∗) /∈ Freqt+1)] .

For h ∈ {g, e} call 〈h, q〉 heavy if
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Pr
S←{0,1}n,R

[
the query 〈h, q〉 is asked during EO(PKt+1, S;R)

]
≥ 1

n11ϑ+t0
. (49)

We call 〈h, q〉 unheavy if the above probability is strictly less than 1
n11ϑ+t0

. Now defining

ε(n) = Pr [∃ query 〈h, q〉 s.t. (〈h, q〉 is heavy ) ∧ (〈h, q〉, ∗) /∈ Freqt+1)] ,

β1,i(n) = Pr [(〈hi, qi〉 ∈ QS) ∧ (〈hi, qi〉 /∈ Freqt+1) ∧ (〈hi, qi〉 is unheavy)] ,

we have β(n) ≤ ε(n) +
∑

1≤i≤m(β1,i(n)). We claim

Claim I. β1,i(n) ≤ 1
n11ϑ+t0

, for any fixed 1 ≤ i ≤ m.

Claim II. ε(n) is negligible.

Claims I and II imply β(n) ≤ nel(n) + 2nϑ × 1
n11ϑ+t0

≤ 1
n8ϑ+t0

, as desired. We now prove the two claims.

Proof of Claim I. Recall that QS contains queries made during E(PK,S;R) for a random S ← {0, 1}n
and random R. We have

β1,i(n) ≤ Pr [(〈hi, qi〉 ∈ QS) ∧ (〈hi, qi〉 is unheavy)] ≤ Pr [〈hi, qi〉 ∈ QS | 〈hi, qi〉 is unheavy]

and thus β1,i(n) ≤ 1
n11ϑ+t0

, as claimed. ut

Proof of Claim II. Exactly as in the proof of Lemma 5, Part (A) (Claim A, Page 24), we can show that
there are at most a poly number of heavy queries. Thus, in what follows we show for a specific heavy query
〈h, q〉 the probability that (〈h, q〉, ∗) /∈ Freqt+1 is negligible.

Recall that Freqt+1 is formed by collecting, among others, all query/response pairs made during n23ϑ+4t0

random executions of EO(PKt+1, S), where in each execution S is chosen freshly at random from {0, 1}n.
For 1 ≤ k ≤ n23ϑ+4t0 let xk = 1 if 〈h, q〉 is asked during the kth execution, and xk = 0, otherwise. We know

that x1, . . . , xn23ϑ+4t0 are all identically distributed and independent, and that p
def
= Pr[x1 = 1] ≥ 1

n11ϑ+t0
.

Let xav = (x1 + · · ·+ xn23ϑ+4t0 )/n23ϑ+4t0 . We have

Pr[(〈h, q〉, ∗) /∈ Freq | 〈h, q〉 is heavy] ≤ Pr[|xav − p| ≥ p] ≤ Pr[|xav − p| ≥
1

n11ϑ+t0
].

By Theorem 8 the last probability above is at most 1

22n
23ϑ+4t0−22ϑ−2t0

≤ 1
22n . ut

ut
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E Summary of variables inside Tvars

Freq← FreqQueO,u(PK,n23ϑ) is sampled as follows.

1. For b = 0, 1: run EO(PK, b) n23ϑ times and add the symbolic versions of all
query/response pairs to Freq.

2. For any (〈d, (sk, c)〉, ∗) ∈ Freq if u(g(sk), c) = (b′, r′) 6= ⊥ add (〈e, (pk, b′, r′)〉, c)
to Freq.

(SK′,Qs,Qc)← ConsOrc(PK,Freq) is sampled as follows.

1. Sample (g′, e′,d′, S′) under the constraints that O′ = (g′, e′,d′) is Ψ -valid and is

consistent with Freq and that GO′(S′) = (∗, PK).

2. Let SK′ be the secret-key output of GO′(S′) and let Qs and Qc contain, respec-
tively, the symbolic versions of all the query/response pairs made to g′ and e′.

(eimp,dimp) = EncImpose(g, e,d,Qc) is constructed as follows.

1. Assuming that Qc = {(〈e, (pk1, b1, r1)〉, c1), . . . , (〈e, (pkp, bp, rp)〉, cp)} let W =
{(pk1, c1), . . . , (pkp, cp)}.

2. Let W′ = {(pk1, e(pk1, b1, r1)), . . . , (pkp, e(pkp, bp, rp))}
3.

eimp(pk, b, r) =


ci if (pk, b, r) = (pki, bi, ri), for some 1 ≤ i ≤ p
ĉ if (pk, e(pk, b, r)) ∈W
e(pk, b, r) otherwise

(50)

where ĉ is defined as follows: Letting x be the smallest integer where
(pk, e(pk, b, r + x)) /∈W ∪W′, we define ĉ = e(pk, b, r + x).

4.

dimp(sk, c) =

{
bi if g(sk) = pki and c = ci for some 1 ≤ i ≤ p
d(sk, c) otherwise

(51)

Let ẽ = eimp.The oracles (g̃, d̃) = KeyImpose(g, eimp,dimp,Qs) are built as follows.

1.

g̃(sk) =

{
g(sk) if sk /∈ {sk1, . . . , skw}
pki if sk = ski for some 1 ≤ i ≤ w (52)

2. d̃(sk, c) is defined as follows: if there exist b and r such that e(g̃(sk), b, r) = c

then d̃(sk, c) = b; otherwise, d̃(sk, c) = ⊥.

Table 1. Summary of Tvars variables w.r.t. PK and (g, e,d,u,w)
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