
Topology-Hiding Computation Beyond
Logarithmic Diameter

Adi Akavia?1 and Tal Moran??2

1 Tel-Aviv Yaffo Academic College
akavia@mta.ac.il

2 IDC Herzliya
talm@idc.ac.il

Abstract. A distributed computation in which nodes are connected by
a partial communication graph is called topology-hiding if it does not
reveal information about the graph (beyond what is revealed by the out-
put of the function). Previous results [Moran, Orlov, Richelson; TCC’15]
have shown that topology-hiding computation protocols exist for graphs
of logarithmic diameter (in the number of nodes), but the feasibility ques-
tion for graphs of larger diameter was open even for very simple graphs
such as chains, cycles and trees.
In this work, we take a step towards topology-hiding computation proto-
cols for arbitrary graphs by constructing protocols that can be used in a
large class of large-diameter networks, including cycles, trees and graphs
with logarithmic circumference. Our results use very different methods
from [MOR15] and can be based on a standard assumption (such as
DDH).

1 Introduction

When theoretical cryptographers think about privacy and computation, the first
thing that comes to mind is usually secure multiparty computation (MPC), in
which multiple parties can compute an arbitrary function of their inputs without
revealing anything but the function’s output. In the original definitions (and
constructions) of MPC, the participants were connected by a full communication
graph (a broadcast channel and/or point-to-point channels between every pair
of parties). In real-world settings, however, the actual communication graph
between parties is usually not complete, and parties may be able to communicate
directly with only a subset of the other parties. Moreover, in some cases the graph
itself is sensitive information (e.g., if you communicate directly only with your
friends in a social network).

A natural question is whether we can successfully perform a joint computa-
tion over a partial communication graph while revealing no (or very little) infor-
mation about the graph itself. In the information-theoretic setting, in which a
? Work partly supported by the ERC under the EU’s Seventh Framework Programme
(FP/2007-2013) ERC Grant Agreement no. 307952.

?? Supported by ISF grant no. 1790/13.

variant of this question was studied by Hinkelman and Jakoby [10], the answer
is mostly negative.

The situation is better in the computational setting. Moran, Orlov and
Richelson showed that topology-hiding computation is possible against static,
semi-honest adversaries [12]. However, their protocol is restricted to communica-
tion graphs with small diameter. Specifically, their protocol addresses networks
with diameter d = O(log n) logarithmic in the number of nodes n (where the
diameter is the maximal distance between two nodes in the graph). For many
natural network topologies the question remains open, including for wireless and
ad-hoc sensor networks [4,14], where topology is modeled by random geometric
graphs [13] whose diameter is large with high probability [5], as well as for very
simple topologies such as chains, cycles and trees (note that topology-hiding
computation isn’t trivial even if the overall topology of the network is known; in
a cycle, for example, the order of the nodes may still be sensitive).

1.1 Our Results

In this work we take a step towards topology-hiding computation protocols for
arbitrary graphs by constructing protocols that can be used in a large class of
large-diameter networks. As in [12], our protocols actually implement topology-
hiding broadcast—given this primitive, standard MPC protocols can then be
used for generic topology-hiding computation.

– We construct a protocol for topology-hiding broadcast on directed cycles,
given an upper bound on the number of nodes in the cycle. This protocol
uses completely different techniques than those of [12], and in particular does
not require generic MPC (it borrows ideas from mix networks). The security
of this protocol can be based on standard assumptions, e.g., the Decisional
Diffie-Hellman assumption.

– We show that given (black-box) access to a protocol for topology-hiding
broadcast on a cycle, we can construct a protocol for topology-hiding broad-
cast on arbitrary graphs if nodes are given an auxiliary information specifying
their neighbors in a spanning tree of the graph (this information will be used
to compute a cycle traversing all nodes of the graph). Our security guarantee
in this case is that our protocol reveals nothing beyond what can be learned
from the auxiliary information. For arbitrary graphs, we do not know how
to compute the auxiliary information in a topology-hiding manner, so this
protocol would require a trusted setup phase for those graphs. Any class
of graphs for which we can construct a protocol to compute this auxiliary
information locally will give us a topology-hiding broadcast for that class of
graphs. In particular, for trees, the “auxiliary information” for computing a
spanning tree is trivial and does not require trusted setup; thus, together
with our cycle protocol this result gives us a protocol for topology-hiding
broadcast on trees.
This construction makes only black-box use of the cycle protocol, and does
not require additional assumptions.

2

– We define information-local computation; loosely speaking this is a dis-
tributed computation in which the outputs of each party can depend only on
information available in their “local neighborhood”. We prove that information-
local computations can be performed in a topology-hiding way on arbitrary
graphs given a topology-hiding computation protocol for small-diameter
graphs.

– We construct an information-local computation for computing consistent
local views of a spanning tree in arbitrary small-circumference graphs (in
which the length of the longest cycle is bounded by k). This gives a protocol
for topology-hiding broadcast on small-circumference graphs. This protocol
makes black-box use of both the small-diameter topology-hiding computa-
tion protocol and almost-black-box use of the topology-hiding broadcast on
the cycle (we require the existence of an efficient circuit to compute the
next-message function of the cycle protocol).

Assumptions. Our basic protocol for topology-hiding broadcast on a cycle can be
based on the Decisional Diffie-Hellman (DDH) assumption. Our further reduc-
tions are black box, and do not require additional assumptions. Elaborating on
the former, all we require for our basic protocol is the existence of an CPA-secure
encryption scheme with some special properties (aka, hPKCR-enc); we show that
such a scheme exists based on DDH. The properties we require from a hPKCR-
enc are essentially that ciphertexts are rerandomizable (given the public-key),
that it is key-commutative when given the secret-key (we name the latter prop-
erty privately key-commutative), and that it is homomorphic w.r. to a single
operation; see details in Section 3.

Voting vs. broadcast. We also present protocols for topology-hiding voting (rather
than broadcast) for all aforementioned graph topologies; for full security, these
require the exact number of nodes for the cycle topology to be known (rather
than an upper-bound). We note that for our voting protocols we do not require
the homomorphism property of the underlying hPKCR-enc scheme. Recall that
voting means that each player Pi has at the beginning of the protocol an input
vote vi, and receives at the termination of the protocol a list of all votes in
a randomly permuted order (vπi(1), . . . , vπi(n)) for πi : [n] → [n] a uniformly
random permutation.

We summarize our results in the following theorems. For brevity we use the
shorthand notation “TH-F” standing for “an efficient topology-hiding protocol
realizing functionality F against a statically-corrupting semi-honest adversary”.
Denote by |G| the number of nodes in a graph G.

Theorem 1 (Topology-hiding on cycle). Under DDH assumption, for every
network of cycle topology C, there exist the following protocols:

– Broadcast. A TH-FBroadcast, provided parties are given an upper-bound on
|C|.

– Voting. A TH-FVote, provided parties are given the exact size |C|.

3

Theorem 2 (Reductions to other topologies). Suppose there exists TH-F
for networks of cycle-topology C when given upper-bound on (resp. exact size of)
|C|. Then there exists TH-F for the following (connected, undirected) network
graphs G, when given an upper-bound on (resp. exact size of) |G|:

– Every graph G, provided parties are given their neighbors in a (globally con-
sistent) spanning tree of G.

– Every tree G.
– Every graph G with circumference at most k, provided there exists TH-
FBroadcast for graphs of diameter at most k.

Combining the above theorems and employing a TH-FBroadcast protocol for
low-diameter graphs [12] we conclude:

Corollary 1. Under the DDH assumption, there exists TH-FBroadcast (resp.
TH-FVote) for the following (connected, undirected) network graphs G, when
given an upper-bound on (resp. exact size of) |G|:

– Every cycle G.
– Every graph G, provided parties are given their neighbors in a (globally con-

sistent) spanning tree of G.
– Every tree G.
– Every graph G with circumference at most O(log |G|).

1.2 High-Level Overview of Our Techniques

In the following we first give an overview of the our approach and challenges,
then an overview for our protocols for topology-hiding voting, and conclude by
describing their modification yielding our protocols for topology-hiding broad-
cast.

Our Approach and Challenges Recall that in a broadcast protocol a bit
b ∈ {0, 1} is given as input to a single player called the broadcasting player,
and the protocol terminates with all players receiving this bit b as output. Our
starting point is the “OR-and-Forward” protocol, in which at the first round the
broadcasting player forwards its bit b to all its neighbors, and at each following
round the players OR their received bits and forward the resulting bit to their
neighbors. Note that the bit b reaches all players once the number of rounds
exceeds the network diameter.

This “OR-and-Forward” protocol is of course not topology-hiding. For one,
distance to the broadcaster leaks from the round number t when a node i first
receives a message. To prevent this leakage-by-timing attack, we change the
protocol to have all players send messages at all rounds, where the change is
simply by asking the non-broadcasting players to send the neutral bit 0 in the
first round.

The latter protocol is still not topology-hiding, eg, because distance to the
broadcaster leaks from the round number t when a node i first receives a non-
zero message. To prevent this leakage-by-content attack, we’d like to encrypt

4

all transmitted messages, so that the players (nodes) cannot identify when their
received messages are transformed from 0 to 1.

Encrypting the transmitted messages raises new challenges. First, when using
such an encryption, who has the secret-key for decryption?! If every player has
the secret key, then encryption hides nothing; and if not, then how do players
decrypt to get the output? Second, how can we compute the OR of encrypted
messages? To address these challenges we first restrict our attention to the cy-
cle topology, and use key-homomorphic and message-homomorphic encryption
(eg, ElGamal). Our first protocol realizes a voting functionality rather than
broadcast—its output is a shuffled list of all parties’ inputs. On the cycle topol-
ogy, encryption/decryption can be computed jointly by all players via going
around the cycle where every player adds/peels-of their own encryption layer
(using the key-homomorphism property). This protocol requires us to know the
exact length of the cycle in order to prevent leaking topology information. We
then show how to use the homomorphic operation to OR ciphertexts together
in a way that hides topology even if the exact cycle length is not known.

Topology-hiding voting on directed cycles At the beginning of the voting
protocol each player i has a secret input vi (her vote). The protocol then pro-
ceeds in two phases, aggregation and mix-and-decrypt. Loosely speaking, in the
aggregation phase votes are aggregated by passing around the cycle an array of
encrypted votes, to which each party adds their own vote and then adds an ex-
tra layer of encryption before sending it on to the next party. At the end of this
phase, each party has an array of all n votes, encrypted under the a public key
whose secret key is shared between all parties. In the mix-and-decrypt phase,
the parties successively remove the layer of encryption they are responsible for,
mix the votes and rerandomize the remaining layers of encryption before passing
the array back to the previous party. Upon the termination of this phase, each
player i has a list of all votes in a randomly permuted order (vπi(1), . . . , vπi(n))
(for πi : [n]→ [n] a uniformly random permutation). For details, see Section 4.

From voting to broadcast Relaxing the input to consist of an upper bound n′
on the number of nodes n in the cycle (rather than the exact number) is the main
challenge in devising our topology-hiding broadcast protocol. Subsequently, our
reductions from the cycle topology to other topologies go through as is.

Our first attempt was to execute our voting protocol as is, while using n′
instead of n; but this fails to be topology-hiding. In particular, topology in-
formation leaks from the output now consisting of multiple votes from some
parties.3 We remark that correctness is also undermined by receiving multiple

3 For example, for n′ = n + 3, the output of player i consists of double votes from
players i, i+1, i+2, implying that non-neighboring corrupted players i, j can identify
whether j = i + 2 by letting j place a unique vote v∗ and then count whether this
vote v∗ appears once in the output of i (implying j 6= i + 2) or twice (implying
j = i+ 2).

5

votes from some players; this could be fixed (say, by augmenting the vote with
an anonymous identifier and post-processing to remove multiple votes), yet, this
fix is of course not topology-hiding.

Our topology-hiding broadcast is a modification of the above approach where
we combine the list of votes into a single bit—the OR of all input bits, thus
avoiding the aforementioned votes counting attack. Specifically, the aggregation
phase in our topology-hiding broadcast combines each additional vote to a single
ciphertext being passed around, where this ciphertext either holds the neutral
message or a random group element (interpreted as a broadcast of 0 or 1 re-
spectively). To combine the votes we require the underlying hPKCR-enc to be
homomorphic with respect to a single operation. The “mix-and-decrypt” phase is
a degenerate version of the mix-and-decrypt phase in our topology-hiding voting
protocol, where the players peel off decryption layers and re-randomize, but with
no need for mixing ciphertexts (as now only a single ciphertext is being passed
around).

The additional wrinkle here is that, when we know only an upper bound n′ on
the number of nodes, using a simple homomorphic multiplication (or addition)
to OR bits together is not topology hiding. To see this, suppose the broadcaster
chooses the value m as the non-neutral element representing a 1 bit. Every time
the encrypted bit passes around the cycle it is multiplied bym, so the output will
be mc, where c is the number of passes through the broadcasting party. Thus,
the output leaks a tighter estimate for n, as well as information on the distance
from the broadcasting party (for example, parties i, j receiving outputs m2, m,
respectively, can conclude that i appears first on the path from the broadcasting
party).

To prevent this leakage-by-output attack, we require that all parties random-
ize their message m before passing it forward (and then re-randomize also the
ciphertext). Our message randomization is by raising m to a random power r
(using homomorphic multiplication, and exponentiation-by-squaring algorithm
for efficiency), this in turn maps the identity to itself while mapping other ele-
ments m to uniformly random group elements mr (choosing the message space
to be a prime order group).

For space considerations, a detailed description and analysis of our broadcast
protocol is deferred to the full version of the paper.

From cycles to graphs given spanning-tree neighbors and tree The main
idea for this reduction is that given a tree, we can compute a cycle-traversal of
the graph by having each node independently decide on a local ordering of edges.
Each node will appear exactly d times in the cycle (where d is the degree of the
node). The predecessor of the ith instance of the node in the cycle is the neighbor
adjacent to its ith edge; the successor is the neighbor adjacent to the next edge.
In Section 5.2, we prove that for any numbering of edges, this always generates
a cycle-traversal of the graph, and that this traversal can be used to execute any
protocol for topology-hiding computation on directed cycles.

6

Topology-hiding computation for information-local functions The in-
tuition behind this reduction is simple: if a node’s output depends only on in-
formation from a node’s k-neighborhood, then we can use a topology-hiding
computation protocol for small-diameter graphs to compute it by limiting the
protocol to the node’s k-neighborhood. The reason this isn’t quite that straight-
forward is that we want to hide the topology of the k-neighborhoods. This means
the node participating in the protocol shouldn’t be able to tell who else is partic-
ipating with it in the protocol. In particular, this means we can’t assign a global
session id to distinguish between multiple concurrent instances of the protocol
(we need to run multiple instances since each node will need to compute the
function given its own local neighborhood).

Our main innovation here is the use of relative session ids, where the session
id depends on the node’s relative location in its neighborhood, and each node
applies a transformation on the session ids sent and received so that they remain
in the correct relative framework. In Section 7 we describe our protocol in detail
and prove that we can use it to compute an arbitrary information-local function
in parallel in all k-neighborhoods.

From graphs given spanning-tree neighbors to small-circumference
graphs For this reduction, we combine several of our previous results. There
are two main ideas here. First, we prove that for graphs whose circumference
is bounded by k, we can compute local views of a spanning tree using a k-
information-local function (this is not trivial, since local views must be globally
consistent with a single spanning tree). Together with our result on topology-
hiding computation given a spanning tree, and our result on computation of
information-local functions, this already gives a protocol for topology-hiding
computation on small-circumference graphs. This naïve way of running the pro-
tocol reveals the local view of the spanning tree to each node, which can give in-
formation about the graph topology. However, we show it is possible to compose
the protocols into a single computation that does not reveal the spanning-tree
information (at the cost of higher complexity). Due to space considerations, the
details of this reduction are deferred to the full version of the paper.

1.3 Related Work

Topology-Hiding MPC in computational settings. The most relevant related work
is that of Moran, Orlov and Richelson [12], who gave the first feasibility results
for topology-hiding computation in the computational setting, giving a protocol
for topology-hiding broadcast secure against static, semi-honest adversaries, as
well as a protocol secure against fail-stop adversaries that do not disconnect
the graph. However, their protocol is restricted to communication graphs with
diameter logarithmic in the total number of parties.

The main idea behind their protocol is a series of nested multiparty compu-
tations, in which each node is replaced with a secure computation in its local
neighborhood that simulates that node. In contrast, our cycle protocol uses ideas

7

from the cryptographic voting literature—it hides the order of the nodes in the
cycle by “mixing” encrypted inputs before decrypting them.

Other related works include a concurrent work by Hirt et.al. [11] that achieves
better efficiency than [12] for topology-hiding computation, albeit still restricted
to low diameter networks as in [12]. The work by Chandran et.al. [3] addresses
the question of hiding the communication network in the context of secure multi-
party computation, but with a different goal than topology-hiding: their goal is
to reduce communication complexity by allowing each party to communicate
with a small (sublinear in the total number of parties) number of its neighbors.

Topology-Hiding MPC in information theoretic settings. Hinkelmann and Jakoby [10]
considered the question of topology-hiding secure computation while focusing on
the information theoretic setting. Their main result is negative: any MPC proto-
col in the information-theoretic setting must inherently leak information about
G to an adversary. They do, however, prove a nice positive result: if we are al-
lowed to leak a routing table of the network, one can construct an MPC protocol
which leaks no further information.

Secure Multiparty Computation with General Interaction Patterns. Halevi et.al. [8]
presented a unified framework for studying secure MPC with arbitrarily re-
stricted interaction patterns (generalizing models for MPC with specific re-
stricted interaction patterns [7,1,9]). The questions they study, however, are
independent of our topology-hiding focus. Their starting point is the observa-
tion that an adversary controlling the final players Pi, . . . , Pn in the interaction
pattern can learn the output of the computed function on several inputs (as the
adversary can rewind and execute the protocol over any possible values for the
inputs xi, . . . , xn for the corrupted players while fixing the inputs x1, . . . , xi−1 for
the preceding parties). The question they ask is therefore when is it possible to
prevent the adversary from learning the output of the function on multiple inputs.
In contrast to ours, their model allows complete knowledge on the underlying
interaction patterns, and does not hide the topology.

2 Preliminaries

2.1 Computation and Adversarial Models

We model a network by a directed graph G = (V,E) that is not fully connected.
We consider a system with n = poly(κ) parties (where κ is the security param-
eter), denoted P1, . . . , Pn. We often implicitly identify V with the set of parties
{P1, . . . , Pn}. We consider a static and computationally bounded (PPT) adver-
sary that controls some subset of parties (any number of parties). That is, at the
beginning of the protocol, the adversary corrupts a subset of the parties and may
instruct them to deviate from the protocol according to the corruption model.
Throughout this work, we consider only semi-honest adversaries. In addition,
we assume that the adversary is rushing; that is, in each round the adversary
sees the messages sent by the honest parties before sending the messages of the

8

corrupted parties for this round. For general MPC definitions including in-depth
descriptions of the adversarial models we consider see [6].

2.2 Definitions of Graph Terms

Let G = (V,E) be an undirected graph. For v ∈ V we let N(v) = {w ∈
V : (v, w) ∈ E} denote the neighborhood of v; and similarly, the closed neigh-
borhood of v, N [v] = N(v) ∪ {v}. We sometimes refer to N [v] as the closed
1−neighborhood of v, and for k ≥ 1 we define the k−neighborhood of v as the
set of all nodes within distance k of v. Formally, we can define this recursively:

N (k+1)[v] =
⋃

w∈N(k)[v]

N [w] .

The k-neighborhood graph of v in G is the subgraph G(k)[v] of G on the k-
neighborhood of v, defined by

G(k)[v] = (N (k)[v], E′) where E′ =
{
(u,w) |u, v ∈ N (k)[v] and w ∈ N [u]

}
.

2.3 UC Security

As in [12], we prove security in the UC model [2]. Proving security in the UC
model allows our protocols to be composed with other protocols, and makes
it easier to use as a subprotocol in more complex constructions. For details
about the UC framework, we refer the reader to [2]. We note that although
the UC model requires setup for security against general adversaries, this is not
necessary for security against semi-honest adversaries, so we also get a protocol
that is secure in the plain model.

2.4 Topology Hiding—The Simulation-Based Definition

To help make the paper more self-contained, in this section we reproduce the
simulation-based definition for topology hiding computation from [12].

The UC model usually assumes all parties can communicate directly with
all other parties. To model the restricted communication setting, [12] define the
Fgraph-hybrid model, which employs a special “graph party,” Pgraph. Figure 1
shows Fgraph’s functionality: at the start of the functionality, Fgraph receives
the network graph from Pgraph, and then outputs, to each party, that party’s
neighbors. Then, Fgraph acts as an “ideal channel” for parties to communicate
with their neighbors, restricting communications to those allowed by the graph.

Since the graph structure is an input to one of the parties in the computation,
the standard security guarantees of the UCmodel ensure that the graph structure
remains hidden (since the only information revealed about parties’ inputs is what
can be computed from the output). Note that the Pgraph party serves only to
specify the communication graph, and does not otherwise participate in the
protocol.

9

Participants/Notation:
This functionality involves all the parties P1, . . . , Pm and a special graph
party Pgraph.

Initialization Phase:
Inputs: Fgraph waits to receive the graph G = (V,E) from Pgraph.
Outputs: Fgraph outputs NG[v] to each Pv.

Communication Phase:
Inputs: Fgraph receives from a party Pv a destination/data pair (w,m)
where w ∈ N(v) and m is the message Pv wants to send to Pw.
Output: Fgraph gives output (v,m) to Pw indicating that Pv sent the
message m to Pv.

Fig. 1. The functionality Fgraph.

Since Fgraph provides local information about the graph to all corrupted
parties, any ideal-world adversary must have access to this information as well
(regardless of the functionality we are attempting to implement). To capture
this, we define the functionality FgraphInfo, that is identical to Fgraph but contains
only the initialization phase. For any functionality F , we define a “composed”
functionality (FgraphInfo||F) that adds the initialization phase of Fgraph to F .
We can now define topology-hiding MPC in the UC framework:

Definition 1. We say that a protocol Π securely realizes a functionality F hid-
ing topology if it UC-realizes (FgraphInfo||F) in the Fgraph-hybrid model.

Note that this definition can also capture protocols that realize functionalities
depending on the graph (e.g., find a shortest path between two nodes with the
same input, or count the number of triangles in the graph).

3 Privately Key-Commutative and Rerandomizable
Encryption

We require a public key encryption scheme with the properties of being homo-
morphic (w.r. to a single operation), privately key-commutative, and re-randomizable.
In this section we first formally define the properties we require, and then show
how they can be achieved based on the Decisional Diffie-Hellman assumption.

We call an encryption scheme satisfying the latter two properties, i.e., pri-
vately key-commutative and re-randomizable, a hPKCR-enc; and call an en-
cryption scheme satisfying all three properties, i.e., homomorphic, privately key-
commutative and re-randomizable, a hPKCR-enc.

3.1 Required Properties

Let KeyGen : {0, 1}∗ 7→ PK×SK,Enc : PK×M×{0, 1}∗ 7→ C,Dec : SK×C 7→M
be the encryption scheme’s key generation, encryption and decryption functions,
respectively, where PK is the space of public keys, SK the space of secret keys,
M the space of plaintext messages and C the space of ciphertexts.

10

We will use the shorthand [m]k to denote an encryption of the message m
under public-key k. We assume that for every secret key sk ∈ SK there is
associated a single public key pk ∈ PK such that (pk, sk) are in the range of
KeyGen. We slightly abuse notation and denote the public key corresponding to
sk by pk(sk).

Rerandomizable We require that there exists a ciphertexts “re-randomizing”
algorithm Rand : C × PK × {0, 1}∗ 7→ C satisfying the following:
1. Randomization: For every message m ∈ M, every public key pk ∈ PK

and ciphertext c = [m]pk, the distributions (m, pk, c,Rand (c, pk, U∗)) and
(m, pk, c,Encpk(m;U∗)) are computationally indistinguishable.

2. Neutrality: For every ciphertext c ∈ C, every secret key sk ∈ SK and every
r ∈ {0, 1}∗,

Decsk(c) = Decsk(Rand (c, pk(sk), r)) .

Furthermore, we require that public-keys are “re-randomizable” in the sense that
the product k ~ k′ of an arbitrary public key k with a public-key k′ generated
using KeyGen is computationally indistinguishable from a fresh public-key gen-
erated by KeyGen.

Privately Key-Commutative The set of public keys PK form an abelian
(commutative) group. We denote the group operation ~. Given any k1, k2 ∈ PK,
there exists an efficient algorithm to compute k1 ~ k2. We denote the inverse of
k by k−1 (i.e., k−1 ~ k is the identity element of the group). Given a secret key
sk, there must be an efficient algorithm to compute the inverse of its public key
(pk(sk))−1.

There exist a pair of algorithms AddLayer : C × SK 7→ C and DelLayer :
C × SK 7→ C that satisfy:
1. For every public key k ∈ PK, every message m ∈ M and every ciphertext
c = [m]k,

AddLayer (c, sk) = [m]k~pk(sk) .

2. For every public key k ∈ PK, every message m ∈ M and every ciphertext
c = [m]k,

DelLayer (c, sk) = [m]k~(pk(sk))−1 .

We call this privately key-commutative since adding and deleting layers both
require knowledge of the secret key.

Note that since the group PK is commutative, adding and deleting layers
can be done in any order.

Homomorphism We require the message spaceM forms a group with opera-
tion denoted ·, and require that the encryption scheme is homomorphic with
respect this operation · in the sense that there exist an efficient algorithm
hMult : C ×C 7→ C that, given two ciphertexts c = [m]pk and c′ = [m′]pk, returns
a ciphertext c′′ ← hMultc1, c2 s.t. Decsk(c′′) = m · m′ (for sk the secret-key
associated with public-key pk).

11

3.2 Instantiation of PKCR-enc and hPKCR-enc under DDH

We use standard ElGamal, augmented by the additional required functions. The
KeyGen, Dec and Enc functions are the standard ElGamal functions, except that
to obtain a one-to-one mapping between public keys and secret keys, we fix the
group G and the generator g, and different public keys vary only in the element
h = gx. Below, g is always the group generator. The Rand function is also the
standard rerandomization function for ElGamal:
function Rand(c = (c1, c2), pk, r)

return (c1 · gr, pkr · c2)
end function

We use the shorthand notation of writing Rand (c, pk) when the random coins
r are chosen independently at random during the execution of Rand. We note
that the distribution of public-keys outputted by KeyGen is uniform, and thus
the requirement for “public-key rerandomization” indeed holds. ElGamal public
keys are already defined over an abelian group, and the operation is efficient.
For adding and removing layers, we define:
function AddLayer(c = (c1, c2), sk)

return (c1, c2 · csk1)
end function
function DelLayer(c = (c1, c2), sk)

return (c1, c2/c
sk
1)

end function
Every ciphertext [m]pk has the form (gr, pkr ·m) for some element r ∈ Zord(g).
So

AddLayer
(
[m]pk , sk

′
)
= (gr, pkr ·m · gr·sk

′
) = (gr, pkr · (pk′)r ·m)

= (gr, (pk · pk′)r ·m) = [m]pk·pk′ .

It is easy to verify that the corresponding requirement is satisfied for Del-
Layeras well.

ElGamal message space already defined over an abelian group with homo-
morphic multiplication, specifically:
function hMult(c = (c1, c2), c

′ = (c′1, c
′
2))

return c′′ = (c1 · c′1, c2 · c′2)
end function

Recalling that the input ciphertext have the form c = (gr, pkr · m) and c′ =
(gr
′
, pkr

′ ·m′) for messages m,m′ ∈ Zord(g), it is easy to verify that decrypting
the ciphertext c′′ = (gr+r

′
, pkr+r

′ ·m·m′) returned from hMult yields the product
message Decsk(c′′) = m ·m′.

Finally, to obtain a negligible error probability in our broadcast protocols,
we take G a prime order group of size satisfying that 1/ |G| is negligible in the
security parameter κ.

12

4 Topology-Hiding Voting for Cycle Topology

In this section we present our topology-hiding voting protocol for the cycle topol-
ogy. That is, we consider networks where the n players are numbered by indices
1, . . . , n, and communication is only between players with consecutive indices,
i.e., player i can communicate with players i + 1 and i − 1 (where addition is
modulo n). We remind the reader that cycles have a large diameter (diameter
n/2), and are therefore not handled by prior works on topology hiding protocols.

4.1 Topology Hiding Voting for Cycle Topology from PKCR-Enc

The Protocol Recall that each player i has a secret input vi (her vote). To
simplify notation, we omit the modulus when specifying the party (i.e., we let
Pn+1 = P1 and P0 = Pn). The protocol is composed of two main phases:
– In the first phase the votes are aggregated in encrypted form. This phase

consists of n rounds. At the first round each player i encrypts its vote vi and
sends it to player i+1 together with the public-key pk(1)i . At every following
round t, upon receiving from player i−1 a list L of encrypted votes together
their encryption key k, player i does the following. (a) Encrypt its vote vi
under key k, and add the resulting ciphertext to the list L, (b) Add an
encryption layer to every vote in the list using its keys (pk

(t)
i , sk

(t)
i), (c)

Compute the new key k′ = k ~ pk
(t)
i , and (d) Sends the updated list L′ and

key k′ to i + 1. We note that player i uses fresh keys (pk
(t)
i , sk

(t)
i) at each

round t, this is necessary for security.
– In the second phase the players each remove an encryption layer to reveal

the votes in plaintext, while also shuffling the votes and re-randomizing their
ciphertexts so that the votes in the resulting lists are not traceable to the
voters.

See Protocol 1 for details.

A Note Regarding Notation. We use the superscript (i : t) to denote variables set
by party i in iteration t; e.g., the notation k(i:t) denotes the key party i receives
from party i − 1 in iteration t of the Aggregate phase. When the identity of
the party is clear, we will sometimes use the shorter versions k(t). For clarity
we also omit the modular arithmetic for party indices, identifying party 0 with
party n and party n+ 1 with party 1.

4.2 Correctness and Topology-Hiding

We formally prove the following theorems about Protocol 1.
Theorem 3 (Completeness). Protocol 1 is complete.

Theorem 4 (Topology-Hiding). If the underlying encryption PKCR scheme
is CPA-secure then Protocol 1 realizes the functionality FVote in a topology-hiding
way against a statically-corrupting, semi-honest adversary.

The proofs of these theorems appear in Section 6.

13

Protocol 1 Cycle Protocol for Player i
1: procedure CycleVote(n, vi)
2: // Aggregate phase:
3: Generate keys (pk(i:1), sk(i:1)), . . . , (pk(i:n−1), sk(i:n−1))← KeyGen(1k).
4: Send [vi]pk(i:1) and pk(i:1) to Pi+1.
5: for t ∈ {1, . . . , n− 2} do
6: Wait to receive c(t)1 , . . . , c

(t)

(t) and k
(t) from Pi−1

7: Send [vi]k(t)~pk(i:t+1) ,AddLayer
(
c
(t)
1 , sk(i:t+1)

)
, . . . ,AddLayer

(
c
(t)
t , sk(i:t+1)

)
and k(t) ~ pk(i:t+1) to Pi+1

8: end for
9: Wait to receive c(n−1)

1 , . . . , c
(n−1)
n−1 and k(n−1) from Pi−1

10: // MixAndDecrypt phase:
11: Let d(n−1)

1 ← [vi]k(n−1) // Encryption of our own vote
12: For all j ∈ {2, . . . , n}, denote d(n−1)

j

·
= c

(n−1)
j−1 .

13: for t ∈ {n− 1, . . . , 1} do
14: // Mix and Rerandomize
15: Choose a random permutation π = π(i:t) : [n] 7→ [n].
16: For all j ∈ {1, . . . , n}, let h(i:t)

j ← Rand
(
d
(t)

π(j), k
(t)
)
.

17: // Pass back
18: Send h(i:t)

1 , . . . , h
(i:t)
n to Pi−1

19: Wait to receive h(i+1:t)
1 , . . . , h

(i+1:t)
n from Pi+1

20: // Decrypt
21: For all j ∈ {1, . . . , n}, let d(t−1)

j ← DelLayer
(
h
(i+1:t)
j , sk(i:t)

)
22: end for
23: // Output:
24: Output d(0)1 , . . . , d

(0)
n

25: end procedure

5 Dealing with General (connected, undirected) Graphs

In this section we show that topology-hiding computation on a cycle is a useful
stepping stone to other large-diameter graphs. Given a protocol for computing a
(symmetric) functionality Ff on a cycle, we show how to construct a topology-
hiding protocol for computing the functionality on arbitrary graphs, as long as
every node is also given some auxiliary data: a local view of a cycle-traversal of
the graph (the computed function is a “multiple-input” version of the original,
see below for details).

A corollary is that we can construct a topology-hiding voting and broadcast
protocols for every network topology for which the aforementioned auxiliary
information can be efficiently found in a topology-hiding way. Chains, trees and
small-circumference graphs are a special case of the latter.

We remark that in our results using auxiliary information, this information
may be given to the players once-and-for-all during setup (as it depends only of
the network topology and not on the input to the voting protocol). Clearly, the

14

auxiliary information reveals properties of the graphs; in this case, the topology-
hiding property of our protocols ensures that no additional information is re-
vealed.

Multiple-input extension Our reductions to Ff on a cycle realize a slightly differ-
ent functionality—we realize a “multiple-input” version of Ff which we denote
Ff∗ . Loosely speaking, the “multiple-input” extension of a function allows each
party to give several inputs to the function, with the number of inputs depend-
ing on the number of times the party appears in the cycle traversal. Formally,
let {fn} be a class of symmetric functions on n inputs (i.e., in which the order
of inputs does not matter). For every n and g : [n] 7→ N, we define f∗g,n to be
f∑n

i=1 g(n)
where the ith input to f∗g,n is a vector of g(i) inputs to f∑n

i=1 g(n)
. In

our case, g will always map each party to the number of times the party appears
in the cycle traversal; we will omit g and n for brevity and write Ff∗ as the
functionality we are computing.

5.1 Dealing with general graphs, given local views of a
cycle-traversal

In this section we first observe that for every (connected, undirected) graph G
there exists a cycle traversing all its nodes;4 we call such a cycle a cycle-traversal
of G, denoted CG. We then show that if all nodes of G are given their local view
of the cycle as auxiliary information, then they can execute a topology-hiding
protocol to compute Ff∗ on G simply by executing a topology-hiding protocol
for Ff on its cycle-traversal, CG.

A cycle-traversal is sure to exist as it can be explicitly found, e.g., by running
Depth-First-Search (DFS) to find a DFS-tree spanning all nodes of the graph,
and then converting this tree to a cycle-traversal using Protocol 4.

The local view of the cycle traversal CG is specified for each node i by its
successor function Succi : N(i) 7→ N(i) ∪ {⊥}. Note that each node may appear
more than once on the cycle, so the successor function is defined Succi(v) = u
if-and-only-if (v → i → u) is part of the cycle CG (if the edge (v, i) is not on
CG, then Succi(v) = ⊥).

Theorem 5 (Cycle-traversal known, realizing Ff∗). Suppose there exists
a topology-hiding protocol Π that realizes the functionality Ff on directed cycles.
Then there exists a topology-hiding protocol Π ′ realizing the functionality Ff∗ on
any (connected, undirected) graph G, when given as auxiliary input local views
of a cycle-traversal CG of G.

We remark that for protocols Π requiring auxiliary information aux (e.g., the
cycle length m) Theorem 5 still holds, provided that aux is included in Π ′’s
auxiliary information. The only change in the proof is that the protocol Π ′
provides aux to Π when calling it.
4 Note that, unlike Eulerian or Hamiltonian cycles, we do not require a single pass
through each edge or vertex. This relaxation in turn guarantees that the cycle-
traversal always exists and can be found efficiently (when given the graph as input).

15

Proof (sketch for Theorem 5). Our protocol Π ′ for G (c.f. Protocol 2) simply
runs Π on the cycle CG, where each node i ∈ V plays the role of all its wi occur-
rences on the cycle (in parallel). Recall that in the functionality Ff∗ , the input
to player Pi is a vector (vi,1, . . . , vi,wi). Player Pi executes as wi independent
players in Π, with each occurrence ` using input vi,`, and where sending forward
(backward) messages received from j ∈ N(i) is executed by sending them to the
corresponding successor (predecessor) on the cycle CG.

Protocol 2 Topology-hiding protocol for Ff∗ given cycle-traversal CG. Proto-
col Description for player i on its cycle occurrence preceded by node pred and
followed by node succ = Succi(pred) (pred→ i→ succ), and with input v.
1: procedure CycleTraversalVote(v, pred, succ, Π)
2: // Π is a protocol for topology-hiding computation of Ff on a cycle
3: Execute Π on input v, sending messages “forward” by sending them to succ,

and sending messages “back” by sending them to pred.
4: end procedure

We note that the when Ff = FVote is the voting functionality, the above
protocol realizes the weighted-vote functionality Ff∗ = FWVote that accepts as
input a list of wi votes from each party i (where wi the number of times party
i appears on CG), and outputs a list of all m =

∑n
i=1 wi votes in a randomly

permuted order. Nevertheless, in the semi-honest setting, the standard voting
functionality FVote can be easily reduced to FWVote by letting each party submit
only one “real” vote and use a ⊥ value for the additional votes. For the broadcast
functionality, the multiple-input version gives the same output as the original
(without modification).

Due to space considerations, the details and formal analysis are deferred to
the full version of the paper.

ut

5.2 Dealing with general graphs, given local views of a spanning-tree

In this section we show that if there exists a topology-hiding protocol for Ff on
a cycle, and for some spanning-tree T = (V, F ⊆ E) of a graph G = (V,E), all
nodes are given as auxiliary information their neighbors in T , then there exists
a topology-hiding protocol realizing the functionality Ff∗ on G. The main idea
is that given a spanning tree, nodes can locally compute (their local views of) a
cycle-traversal of G. Thus, we can reduce this problem to the previously solved
one of topology-hiding computation given a cycle-traversal of G.

Let G = (V,E) be a connected undirected graph describing the network
topology.

Theorem 6 (Spanning-tree known, realizing Ff∗). If there exists a proto-
col Π that realizes Ff in a topology-hiding way, given as input a local view of a

16

cycle-traversal of G and m = |CG| (the cycle length), then, using Π as a black
box, Protocol 3 realizes Ff∗ when given as inputs a local view of a spanning tree
T of G and n (the number of nodes in G).

Proof. Our proof follows from the existence of a local translation from local views
of a spanning-tree T to local views of a cycle-traversal CG. Protocol 3 simply
executes this translation and then runs Π using the auxiliary information about
the cycle-traversal.

The auxiliary input conversion is local in the sense that each node executes
the computation while using only its own auxiliary information. Specifically, the
conversion executed by node i takes as input its neighbors NT (i) in the spanning
T , and returns as output its successor function Succi on the cycle CG of G. In our
execution of Protocol 2 we use the cycle length m and the successor functions
Succi as the auxiliary information of node i.

Protocol 3 Topology-hiding computation of Ff∗ given spanning-tree neighbors
NT (i). Protocol Description for player i.

1: procedure SpanningTreeCompute(n, i, N(i)
·
= {v ∈ V | (i, v) ∈ F})

2: Succi = ConvertTreeToCycle(N(i)) // compute cycle-traversal
3: Execute Π using m = 2(n− 1) and Succi as auxiliary information.
4: end procedure
5: procedure ConvertTreeToCycle(N(i))
6: if |N(i)| = 0 then
7: return Succi

·
= ∅ // singleton graph, empty cycle

8: else
9: return

{
Succi(vi)

·
= vi+1

}
i=1,...,d

for (v1, . . . , vd) an ascending ordering of

the neighbors N(i) of i, and where we identify vd+1
·
= v1.

10: end if
11: end procedure

Completeness. In Lemma 1 we show that our conversion procedure is correct;
i.e., there exists a length m cycle-traversal of G such that the output for each
node i is indeed its successor function on this cycle. Thus, by completeness of
Protocol 2 the output of each node is indeed the output of the Ff∗ functionality.

Security follows immediately from the security of Protocol 1. ut

Lemma 1 (Tree to cycle). There exists a length m cycle-traversal CG of G
such that for every node i ∈ V , its output Succi in the conversion procedure
(c.f. line 5 in Protocol 3) equals its successor function on this cycle CG.

Proof. We show that the functions Succi returned by the conversion procedure
are the successor functions for a length m cycle-traversal of G. For this purpose,
we exhibit an algorithm that, given a spanning-tree T , outputs a length cycle-
traversal CT of T (c.f. Protocol 4 and Claims 1 and 2). Next we prove that Succi
are successor functions for the graph CT returned by Protocol 4 (c.f. Claim 3).

17

Specifically, Protocol 4 first initializes CT to consist of a single node CT =
〈x〉 (for an arbitrary x ∈ V). Next, while there exists a node u in CT with a
neighbor v ∈ N(u) not included in CT , the algorithm pastes to CT in place of
u a cycle Cv defined as follows. The cycle Cv = 〈w1, v, w2, v, . . . , v, wd, v, w1〉
is a cycle traversing all neighbors NT (v) = {w1, . . . , wd} of v (where neighbors
order on the cycle is ascending, and the starting point is chosen to be w1 = u).
That is, for (v1, v2, . . . , vd) the neighbors of v in ascending order where u = vj
we define (w1, w2, . . . , wd) = (vj , vj+1, . . . , vd, v1, . . . , vj−1). We remark that the
requirement of traversing neighbors of v is ascending order is not essential; we use
it merely to facilitate notations in demonstrating the correspondence between
the cycle CT returned from Protocol 4 and the successor function Succi returned
from line 5 Protocol 3 (c.f. Claim 3).

Protocol 4 Find cycle-traversal, given spanning-tree.
1: procedure ConvertTreeToCycle(T = (V, F))
2: CT = 〈x〉 for arbitrary x ∈ V
3: while exists u ∈ CT and v ∈ N(u) such that v /∈ CT do
4: Let Cv = 〈u, v, w2, v, . . . , v, wd, v, u〉 for (u,w2, . . . , wd) the neighbors of v in
T in ascending order shifted to start with u.

5: Paste Cv into CT in place of the first appearance of u in CT
6: end while
7: return CT
8: end procedure

ut

Claim 1. The output CT of Protocol 4 is a cycle-traversal of G.

Proof. Observe that CT visits all nodes of T , and thus all nodes of G. Else,
if there is an unvisited node y, then there is a path from x to y (since T is
connected), and on this path there must be a node u with neighbor v /∈ CT . A
contradiction to the termination of the while loop.

Next, observe that CT is a cycle. This is proved by induction. The base case
〈x〉 is a cycle of length zero. The induction hypothesis say that the content of CT
throughout the first t iterations of the while loop is a cycle. The induction step
shows that CT remains a cycle after pasting Cv = 〈u, v, w2, v, . . . , v, wd, v, u〉.
For this purpose note that Cv is a cycle starting at node u, and thus when it
is pasted in place of u in CT = 〈. . . a, u, b . . .〉 (which is a cycle, by induction
hypothesis) the resulting C ′T = 〈. . . a, u, v, w2, v, . . . , v, wd, v, u, b . . .〉 remains a
cycle.

We conclude that CT of is a cycle-traversal of G. ut

Claim 2. The output CT of Protocol 4 has length m = 2(n− 1).

Proof. To show that CT has length m = 2(n− 1) we recall that there are n− 1
edges in a spanning-tree for a graph with n = |V | nodes, and argue that the cycle

18

CT goes through each edge of the spanning-tree exactly twice. Thus resulting in
a total of 2(n− 1) edges on the cycle.

To complete the above argument we first prove by induction that throughout
the first t iterations of the while loop, the number of times CT goes through
every edge of T is either 0 or 2. Base case (t = 0): At the initialization, CT = 〈x〉
passes through every edges exactly 0 times. Induction step: Note that the cycle
to be pasted Cv goes over each edge connecting v to its neighbor exactly twice.
Moreover, these edges (v, w) were not included in CT prior to pasting Cv by
the choice of v as a node not appearing in CT . Next, we note that to traverse
all notes of the tree, CT must go through each edge at least once. We conclude
therefore that CT goes through each edge exactly twice. ut

Claim 3. The output Succi in the conversion procedure (c.f. line 5 in Proto-
col 3) is the successor function for the cycle CT output by Protocol 4.

Proof. Recall first that the output Succi returned from the conversion procedure
(c.f. line 5 in Protocol 3) is defined to be{

Succi(vi)
·
= vi+1

}
i=1,...,d

for (v1, . . . , vd) an ascending ordering of the neighbors N(i) of i (and where we
identify vd+1

·
= v1). Namely, this successor function corresponds to the cycle

Ci = (v1, i, v2, i, . . . , i, vd) where the nodes v1, . . . , vd are in ascending order.
Recall also that in the cycle CT returned from Protocol 4 the edges passing

through node i were added by pasting a cycle C ′i = (u, i, w2, i, . . . , i, wd) passing
through the neighbors u,w1, . . . , wd of i in ascending order shifted to start with
neighbor u. Since this is a cycle, we may view each point as the starting point.
Choosing to view the smallest neighbor as the starting point we see that C ′i is
the same as the cycle Ci.

We conclude that the function Succi is identical to the successor function for
the cycle CT outputted by Protocol 4. ut

5.3 Dealing with Trees

A simple corollary of Theorem 6 is that if G is a tree T (i.e., connected and
acyclic), then there exists a topology-hiding protocol realizing the voting func-
tionality Ff∗ on G. The proof is derived from the fact that when G is a tree, the
players can trivially find their neighbors in its spanning tree, without needing to
get it as an auxiliary input:

Corollary 2 (Trees). Suppose there exists a topology-hiding protocol realizing
the functionality Ff on directed cycles, when given (a bound on) the cycle length.
Then there exists a topology-hiding protocol realizing the functionality Ff∗ on
every tree T , when given (a bound on) the number of nodes in T .

19

6 Topology-Hiding Voting for Cycle Topology—Formal
Proofs

In this section we give the formal proofs of correctness and security for Protocol 1.

6.1 Correctness Analysis

Denote k(0) ·= 1, the identity element of the group. Then:

Claim 4. For every party i and all t ∈ {0, . . . , n− 1}:

k(i:t) =

t∏
j=1

pk(i−j:j) .

Proof. Let i be an arbitrary party index. The proof is by induction on t. For
t = 0 it is trivially true. Assume it is true for all i up to some t ∈ {0, . . . , n− 2},
then in iteration t of the Aggregate loop, party i − 1 will have k(i−1:t) =∏t
j=1 pk

(i−1−j:j), and will send k(i−1:t) ~ pk(i−1:t+1) =
∏t+1
j=1 pk

(i−j:j) to party i
in line 7. Thus, for party i, k(i:t+1) will also have the required form. ut

Claim 5. For every party i and all t ∈ {1, . . . , n− 1}:(
c
(i:t)
1 , . . . , c

(i:t)
t

)
= ([vi−1]k(i:t) , . . . , [vi−t]k(i:t)) .

Proof. Let i be an arbitrary party index. The proof is also by induction on t.
For t = 1, c(i:1) = [vi−1]pk(i−1:1) (as sent by party i − 1 in line 4). Assume the
hypothesis is true for all i up to iteration t. The values party i receives at lines 6
and 9 in iteration t + 1 of the Aggregate phase are those sent by party i − 1
in line 7 of iteration t:

(
c
(i:t+1)
1 , . . . , c

(i:t+1)
t+1

)
=
(
[vi−1]k(i−1:t)~pk(i−1:t+1) ,AddLayer

(
c
(i−1:t)
1 , sk(i−1:t+1)

)
, . . .

. . . ,AddLayer
(
c
(i−1:t)
t , sk(i−1:t+1)

))
(by the induction hypothesis, c(i−1:t)j = [vi−j−1]k(i−1:t))

=
(
[vi−1]k(i−1:t)~pk(i−1:t+1) ,AddLayer

(
[vi−2]k(i−1:t) , sk

(i−1:t+1)
)
, . . .

. . . ,AddLayer
(
[vi−t−1]k(i−1:t) , sk

(i−1:t+1)
))

(by the definition of AddLayer)

=
(
[vi−1]k(i−1:t)~pk(i−1:t+1) , [vi−2]k(i−1:t)~pk(i−1:t+1) , . . . , [vi−t−1]k(i−1:t)~pk(i−1:t+1)

)

20

(since k(i:t+1) = k(i−1:t) ~ pk(i−1:t+1))

= ([vi−1]k(i:t+1) , [vi−2]k(i:t+1) , . . . , [vi−t−1]k(i:t+1)) ,

confirming the hypothesis for iteration t+ 1.
ut

Claim 6. For every party i and all t ∈ {1, . . . , n− 1}:(
h
(i:t)
1 , . . . , h(i:t)n

)
=
([
vσ(i:t)(1)

]
k(i:t)

, . . . ,
[
vσ(i:t)(n)

]
k(i:t)

)
and (

d
(i:t−1)
1 , . . . , d(i:t−1)n

)
=
([
vσ(i+1:t)(1)

]
k(i:t−1)

, . . . ,
[
vσ(i+1:t)(n)

]
k(i:t−1)

)
where σ(i:t) = π(i:t) ◦ · · · ◦ π(i+n−t−1:n−1).

Proof. We note that it’s enough to show the claim holds for the h values, since
the corresponding d values are computed from them by peeling off the outer key
layer (by calling DelLayerwith the key sk(i:t)).

The proof is by induction on t (we run the induction backwards, starting at
t = n− 1). Let i be an arbitrary party. First, note that by the initial assignment
to the d values in lines 11 and 12 of the MixAndDecrypt phase, and using
Claim 5, we have(

d
(i:n−1)
1 , . . . , d(i:n−1)n

)
=
(
[vi]k(i:n−1) , . . . ,

[
vi−(n−1)

]
k(i:n−1)

)
Thus, t = n− 1 and all i, j ∈ {1, . . . , n}:

h
(i:n−1)
j = Rand

(
d
(i:n−1)
π(i:n−1)(j)

, k(n−1)
)
=
[
vπ(i:n−1)(j)

]
k(i:n−1)

=
[
vσ(i:n−1)(j)

]
k(i:n−1)

,

which is the required value of h(i:n−1) according to the induction hypothesis.
Since this is true for all i, it also holds for the values of h(i+1:n−1) received in
line 19. Hence, it follows that for the di:n−2 values computed in line 21 we have:

d
(i:n−2)
j = DelLayer

(
h(i+1:n−1), sk(i:t)

)
= DelLayer

([
vσ(i+1:n−1)(j)

]
k(i+1:n−1)

, sk(i:t)
)

which by Claim 4:

= DelLayer
([
vσ(i+1:n−1)(j)

]
k(i:n−1)~pk(i:t)

, sk(i:t)
)

and by the definition of DelLayer:

=
[
vσ(i+1:n−1)(j)

]
k(i:n−1)

21

as required by the induction hypothesis.
Assume the hypothesis holds for all i down to some t. Then for iteration t−1,

the hi:t−1 values computed in line 16 are a rerandomized permutation of d(i:t−1),
hence by the induction hypothesis they are:

h
(i:t−1)
j = Rand

(
d
(i:t−1)
π(i:t−1)(j)

, k(t−1)
)
=
[
vπ(i:t−1)(σ(i:t)(j))

]
k(i:t−1)

=
[
vσ(i:t−1)(j)

]
k(i:t−1)

.

Since this is true for all i, the h(i+1:t−1) values received in line 19 also satisfy the
equation, hence the d(i:t−2) values satisfy

d
(i:t−2)
j =

[
vσ(i+1:t−1)(j)

]
k(i:t−1)

(the details are exactly as in the proof of the base case). ut

Proof (of Theorem 3). The theorem follows directly from Claim 6, setting t = 1

the outputs of party i are the values d(i:0)1 , . . . , d
(i:0)
n . ut

6.2 Security Analysis

Proof (of Theorem 4). To prove Theorem 4, we first describe the ideal-world
simulator S (that “lives” in the ideal world in which all honest parties are dummy
parties and there exists only the composed FVote||FGraph functionality). We will
then prove, via a hybrid argument, that the environment’s interactions with
S are computationally indistinguishable from an interaction with the real-world
adversary A that “lives” in the real world in which the parties execute Protocol 1
and only the FGraph functionality exists.

Simulator description. S works as follows:

1. LetQ be the set of corrupt parties. Note that we are in the semi-honest model
with static corruptions, so Q and the input to each party in Q is available at
the start of the protocol, and the adversarymust play “according to protocol”
with these inputs.

2. S sends the inputs for the parties in Q to FVote and receives the out-
put of FVote (i.e., a random permutation of all the parties’ inputs). Let
out1, . . . , outn be the output FVote sends to S.

3. S receives the local neighborhood information from FGraph for all parties in
Q. For P ∈ Q, let pred (P) denote the party preceding P on the cycle and
succ (P) the party succeeding P on the cycle.

4. The adversary partitions Q into “segments”, where each segment consists of a
sequence of corrupt parties that appear consecutively on the cycle. The seg-
ments are separated on the cycle by one or more honest parties (if it’s more
than one, S can’t tell how many, or in which order the segments appear on
the cycle). LetQ ⊆ Q be the set of corrupt parties that are first in their seg-
ment, i.e.,Q = {P ∈ Q : pred (P) /∈ Q}) andQ = {P ∈ Q : succ (P) /∈ Q}
the set of parties that are last in their segment.

22

5. Within each segment, S simulates the corrupt parties exactly according to
protocol. However, S must still simulate the inputs to the parties in Q and
Q that are generated by honest parties.

6. Simulating messages from honest parties in the Aggregate phase,
for party P ∈ Q :
(a) S generates n− 1 key pairs:

(pk(pred(P):1), sk(pred(P):1)), . . . , (pk(pred(P):n−1), sk(pred(P):n−1))

for the honest party preceding P (by honestly running KeyGen).
(b) To simulate the n−1 messages sent by pred (P) in lines 4 and 7, for each

t ∈ {0, . . . , n− 2}, S simulates pred (P) sending:

[0]pk(pred(P):t+1) , . . . , [0]pk(pred(P):t+1)︸ ︷︷ ︸
t+ 1 independent ciphertexts

and pk(pred(P):t+1) ,

where each encryption of 0 is generated honestly using Enc with inde-
pendent random coins (note that line 4 is covered by t = 0.)

7. Simulating messages from honest parties in the MixAndDecrypt
phase, for party P ∈ Q : To simulate the n− 1 messages sent by succ (P)
in line 18, for each t ∈ {n− 1, . . . , 1}, S
(a) Chooses a random permutation π′(t) = π′(succ(P):t) : [n] 7→ [n]
(b) Simulates succ (P) sending:[

outπ′(t)(1)
]
k(t−1)~pk(P :t)

, . . . ,
[
outπ′(t)(n)

]
k(t−1)~pk(P :t)

.

(Recall that k(0) ·= 1 is defined to be the identity for the key group; and
out1, . . . , outn are the outputs FVote sent to S).

Proof of transcript indistinguishability. A real-world protocol transcript is fully
defined by the following information:

1. The messages received by corrupt parties during the protocol (including the
messages from FGraph)

2. The outputs of the honest parties.

Since S faithfully simulates corrupt parties exactly according to the real-
world protocol, if the input messages to the corrupt parties are indistinguishable
in the ideal and real world, so are their output messages.

We will construct a sequence of hybrid worlds. Assume S has access to the
honest parties inputs and neighborhoods in these hybrids (in the final hybrid it
will not make use of this information, and will be identical to the ideal-world
simulator described above):

1. Hybrid 1: S simulates the real-world protocol exactly. (The transcript is
identically distributed to a real-world transcript).

23

2. Hybrid 2: For each honest party H = pred (P) that precedes a corrupt party
P , S generates n− 1 “simulated” key pairs

(pk′(H:1), sk′(H:1)), . . . , (pk′(H:n−1), sk′(H:n−1))

using KeyGen (exactly as in step 6a of the simulation). In line 4 of the
Aggregate phase, instead of simulatingH exactly according to the protocol
S simulatesH sending [vH]pk′(H:1) and pk′(H:1) to P , while in the tth iteration
of line 7, it sends[

vpred(1)(P)

]
pk′(H:t+1)

, . . . ,
[
vpred(t+1)(P)

]
pk′(H:t+1)

and pk′(H:t+1)

to P .
3. Hybrid 3: In this hybrid (compared to the previous one), every simulated

ciphertext sent by S in step 6b of the simulation is replaced by a fresh,
independent, encryption of 0, under the same key.

4. Hybrid 4: In this hybrid (compared to the previous one), in line 16 of the
Aggregate phase, instead of mixing as required by the protocol, S sets the
h(i:t) values as follows:

h
(i:t)
j ←

[
outπ′(t)(j)

]
k(i:t)

.

That is, it replaces the mix and re-randomize step with a new, fresh set of
ciphertexts (under the same public key), permuted according to a fresh, ran-
dom permutation π′. (This hybrid is identically distributed to the transcript
of the simulated execution in the ideal world.)

Indistinguishability of Hybrids.

1. In Hybrid 1 (the real-world protocol), the adversary’s view contains, for each
P ∈ Q , the following sequence of messages sent by pred (P) (each row is a
message):

k(1) = pk(pred
(1)(P):1) and

[
vpred(1)(P)

]
k(1)

k(2) = pk(pred
(2)(P):1) ~ pk(pred

(1)(P):2) and
[
vpred(1)(P)

]
k(2)

,
[
vpred(2)(P)

]
k(2)

...
...

k(n−1) = pk(pred
(n−1)(P):1)

~ · · ·~ pk(pred
(1)(P):n−1) and

[
vpred(1)(P)

]
k(n−1)

, . . . ,
[
vpred(n−1)(P)

]
k(n−1)

In Hybrid 2, the difference is that instead of the sequence of keys

pk(pred
(1)(P):1), . . . , pk(pred

(n−1)(P):1) ~ · · ·~ pk(pred
(1)(P):n−1) ,

the public keys seen are pk′(pred(P):1), . . . , pk′(pred(P):n−1), and the ciphertexts
are fresh encryptions of the same values.

24

Note that in the Hybrid 1 key sequence, each product contains one entirely
new independent key, that hasn’t been included in any transcript prefix
(the tth product contains pk(pred

(1)(P):t)). Thus, we can think of this key as
being chosen randomly and independently at that point. Since the keys are
randomly chosen, each product is itself a random, independent key, hence
identically distributed to pk′(pred(P):t).
As for the ciphertexts, the indistinguishability property of AddLayer ensures
that fresh encryptions under the composed key are indistinguishable from
the ciphertexts produced by adding layers sequentially.

2. The difference between Hybrids 2 and 3 is that ciphertexts containing actual
votes are replaced with encryptions of 0 under the same key. However, these
ciphertexts are all encrypted under an honest public key (generated by S),
whose corresponding secret key is never revealed to the adversary. Moreover,
every ciphertext received from an honest party is re-randomized, so is in-
distinguishable from a fresh encryption of that value. Thus, by the semantic
security of the encryption scheme, the hybrids are indistinguishable.

3. Finally, the differences between Hybrids 3 and 4 are that S chooses a new
random permutation in place of σ(i:t) (by Claim 7 this is distributed iden-
tically) and instead of calling Rand it generates new ciphertexts (these are
indistinguishable by the security properties of Rand).

To complete the proof we use Claim 7. ut

Claim 7. For every party i ∈ Q and all t ∈ {1, . . . , n− 1}, the permutation
σ(i+1:t) (as defined in Claim 6) is random even conditioned on everything else in
the adversary’s view up to iteration t.

Proof. By Claim 6, σ(i+1:t) = π(i+1:t) ◦ · · · ◦π(i+n−t:n−1). Since π(i+1:t) is chosen
uniformly at random by the honest party i + 1 at iteration t, its composition
with an arbitrary permutation is still uniformly random. ut

7 Topology-Hiding Computation of Information-Local
Functions

In Section 5, we showed how to reduce the topology-hiding computation problem
in general graphs to (1) computing local views of a spanning tree and (2) solving
the problem for cycles. This leads us to ask: “when can we compute local views
of a spanning tree in a topology-hiding way?”. More generally, what can be
computed in a topology hiding way for arbitrary graphs, without relying in a
circular manner on a generic protocol for topology-hiding computation?

With this motivation in mind, we define:

Definition 2 (Information-local Function). We say a function computed
over a communication graph G = (V,E) is k-information-local if the output of
every node v ∈ V can be (efficiently) computed from the inputs and random coins
of N (k)[v] (v’s k-neighborhood).

25

Note that information-locality is a property of the function computed, not the
protocol used to compute it—although if a function is information-local, an
immediate consequence of the definition is that there exists an information-
local protocol to compute it (i.e., a protocol involving only nodes in v’s k-
neighborhood).

In this section, we show that any k-information-local protocol can be com-
puted in a topology-hiding way on a general graph, given a protocol for topology-
hiding computation on depth-k trees (as long dkmax = poly(κ), where dmax is a
bound on the degree of the graph). This will allow us to leverage previous results
for topology-hiding computation for small-diameter graphs.

We then show that we can construct a k-information-local protocol for com-
puting a spanning tree for graphs of circumference k, and can combine this step
with the cycle protocol itself in a secure computation so that nodes don’t ever
learn the results of the spanning tree computation. Due to space considerations,
the details are deferred to the full version of the paper.

7.1 High-level Overview of Our Protocol

Let f be a k-information-local function. By Definition 2, the output of every
node can be computed from the inputs and random coins of its k-neighborhood.
Thus, we can construct a generic protocol for computing f , by having every
node v “collect” the required information from its k-neighborhood and locally
compute its output. Every node can run multiple instances of the protocol in
parallel—once as the center of the k-neighborhood (this will give it its output)
and an additional instance for each member of its k-neighborhood as a “helper
instance” that only serves as an information source.

Executing the generic protocol described above is not topology-hiding, and in
fact requires knowledge of the graph topology (for example, in order to determine
how many instances a node must execute as a helper instance). To hide the
topology information, we will run each instance of the protocol under a topology-
hiding MPC whose participants are the k-neighborhoods.

Even this does not completely solve the problem, however, since the naïve
way of determining the participants in the MPC requires knowledge of the graph
topology. To achieve a full topology-hiding execution, we have to be able to run
a protocol between all parties in a k-neighborhood in such a way that individual
nodes do not learn anything about which other nodes (beyond their immediate
neighbors) are participating in the protocol.

Our solution to the problem is to have every node “pretend” its k-neighborhood
is a complete dmax-ary tree of depth k. If this were actually the case, it would
know exactly how many nodes are in its k-neighborhood and could refer to all
other nodes in its neighborhood using relative notation (by the unique path to
reach that node). Of course, in the actual k-neighborhood of v not all nodes have
maximal degree, and there may be cycles. To reduce to the ideal tree setting,
every node with less than maximal degree will simulate any missing neighbors
as subtrees of depth k − 1 consisting of “dummy” nodes with default inputs
(the simulation is not recursive; the simulated dummy nodes participate only in

26

helper instances whose output instance is not a dummy node, so in particular
they will not need inputs from nodes outside the original simulated subtree).

In order to allow nodes to match messages received from their neighbors with
the specific instance of the protocol, we introduce relative session identifiers
(sids). That is, instead of using a global sid to denote the protocol instance,
each node will have a different sid for the same instance. When receiving (or
sending) a message, the node will translate the received sid into its “local frame
of reference”. In more detail, we identify each execution instance with the central
node of the depth-k tree, and the sid of the node for that execution will be the
(relative) path in the tree from that node to the center. For example, suppose a
node u is running an instance with sid = (dist = 3, e1 = 1, e2 = 2, e3 = 1); that
is, to reach the center of this execution’s tree from u, take edge 1 from u, then
take edge 2 from the next node, and finally edge 1 from the third node (each
node fixes some random numbering of its edges). When node u sends a message
to v, then:

Case 1: v is “upstream”; i.e., (u, v) is edge 1 from u: In this case u will send the
sid (up : dist = 2, e∗1 = 2, e2 = 1) (that is, remove the edge (u, v) from the
path to get an sid relative to v for the same execution). v will still have to
renumber e∗1, since u’s numbering omits the edge (u, v) on which the message
was received by v.

Case 2: v is “downstream”: In this case, u will send the sid (down : dist = 4, e1 =
?, e2 = 1, e2 = 3, e4 = 1). Note that u doesn’t know the numbering of v’s
edge to u, so v will have to fill that in when receiving the message).

By matching sids in this way, each execution will be a complete dmax-ary tree
of depth k. If the neighborhood contains cycles, however, some nodes will have
several different sids participating in the same execution instance. This because
when cycles exist, the relative directions to its neighbors are not unique. We
deal with this issue by requiring the underlying function to be invariant with
respect to the number of actual inputs (otherwise the function itself reveals the
size of the k-neighborhood) and transforming the function to make it invariant
with respect to duplicate inputs. That is, suppose fv is a k-information-local
function that receives the input xu from every u ∈ N (k)[v]. We will modify the
input from each party to be the pair x′u = (u, xu), where u is the id of node u in
the original graph G, and compute the function f ′(X ′) that computes f on the
“deduplicated” inputs

X = {xu|(u, xu) ∈ X ′}

where X ′ is the set of “raw” inputs that may contain duplicates.
Due to space considerations, the formal description of the protocol and its

analysis are deferred to the full version of the paper.

8 Discussion and Open Questions

This work leaves several natural open questions.

27

Topology-Hiding Computation for Arbitrary Graphs. This work extends the fea-
sibility results for topology-hiding computation to graphs with large diameter,
but the class of graphs we can handle is still restricted. The question of whether
a topology-hiding computation protocol exists for any graph (without additional
auxiliary information) is still open.

Topology-Hiding Computation for Large-Diameter Graphs in the Fail-Stop Model.
All of our protocols are proven secure in the semi-honest model. This is an
inherent restriction for cycles and trees, since topology-hiding computation is
known to be impossible in the fail-stop model unless the adversary cannot dis-
connect the graph [12]. Thus, our approach does not give a feasibility result for
topology-hiding computation for large-diameter graphs in the fail-stop model.
This remains an interesting open question.

References

1. A. Beimel, A. Gabizon, Y. Ishai, E. Kushilevitz, S. Meldgaard, and A. Paskin-
Cherniavsky. Non-interactive secure multiparty computation. In J. A. Garay
and R. Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceed-
ings, Part II, volume 8617 of Lecture Notes in Computer Science, pages 387–404.
Springer, 2014.

2. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.

3. N. Chandran, W. Chongchitmate, J. A. Garay, S. Goldwasser, R. Ostrovsky, and
V. Zikas. The hidden graph model: Communication locality and optimal resiliency
with adaptive faults. In Proceedings of the 2015 Conference on Innovations in
Theoretical Computer Science, ITCS ’15, pages 153–162, New York, NY, USA,
2015. ACM.

4. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century chal-
lenges: Scalable coordination in sensor networks. In Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing and networking, pages
263–270. ACM, 1999.

5. T. Friedrich, T. Sauerwald, and A. Stauffer. Diameter and broadcast time of
random geometric graphs in arbitrary dimensions. Algorithmica, 67(1):65–88, 2013.

6. O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, New York, NY, USA, 2004.

7. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F. Liu, A. Sahai, E. Shi,
and H. Zhou. Multi-input functional encryption. In P. Q. Nguyen and E. Oswald,
editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Copen-
hagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in
Computer Science, pages 578–602. Springer, 2014.

8. S. Halevi, Y. Ishai, A. Jain, E. Kushilevitz, and T. Rabin. Secure multiparty
computation with general interaction patterns. In Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, ITCS ’16, pages 157–
168, New York, NY, USA, 2016. ACM.

28

9. S. Halevi, Y. Lindell, and B. Pinkas. Secure computation on the web: Computing
without simultaneous interaction. In P. Rogaway, editor, Advances in Cryptol-
ogy - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer
Science, pages 132–150. Springer, 2011.

10. M. Hinkelmann and A. Jakoby. Communications in unknown networks: Preserving
the secret of topology. Theoretical Computer Science, 384(2–3):184–200, 2007.
Structural Information and Communication Complexity (SIROCCO 2005).

11. M. Hirt, U. Maurer, D. Tschudi, and V. Zikas. Network-hiding communication and
applications to multi-party protocols. In Advances in Cryptology - CRYPTO 2016
- 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part II, pages 335–365, 2016.

12. T. Moran, I. Orlov, and S. Richelson. Topology-hiding computation. In Y. Dodis
and J. B. Nielsen, editors, TCC 2015, volume 9014 of Lecture Notes in Computer
Science, pages 169–198. Springer, 2015.

13. M. Penrose. Random geometric graphs. Number 5. Oxford University Press, 2003.
14. G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communica-

tions of the ACM, 43(5):51–58, 2000.

29

	Topology-Hiding Computation Beyond Logarithmic Diameter
	Introduction
	Our Results
	High-Level Overview of Our Techniques
	Related Work

	Preliminaries
	Computation and Adversarial Models
	Definitions of Graph Terms
	UC Security
	Topology Hiding—The Simulation-Based Definition

	Privately Key-Commutative and Rerandomizable Encryption
	Required Properties
	Instantiation of PKCR-enc and hPKCR-enc under DDH

	Topology-Hiding Voting for Cycle Topology
	Topology Hiding Voting for Cycle Topology from PKCR-Enc
	Correctness and Topology-Hiding

	Dealing with General (connected, undirected) Graphs
	Dealing with general graphs, given local views of a cycle-traversal
	Dealing with general graphs, given local views of a spanning-tree
	Dealing with Trees

	Topology-Hiding Voting for Cycle Topology—Formal Proofs
	Correctness Analysis
	Security Analysis

	Topology-Hiding Computation of Information-Local Functions
	High-level Overview of Our Protocol

	Discussion and Open Questions

