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Abstract

A public key encryption scheme is said to be n-circular secure if no PPT adversary can distinguish
between encryptions of an n length key cycle and n encryptions of zero.

One interesting question is whether circular security comes for free from IND-CPA security. Recent
works have addressed this question, showing that for all integers n, there exists an IND-CPA scheme that
is not n-circular secure. However, this leaves open the possibility that for every IND-CPA cryptosystem,
there exists a cycle length l, dependent on the cryptosystem (and the security parameter) such that
the scheme is l-circular secure. If this is true, then this would directly lead to many applications, in
particular, it would give us a fully homomorphic encryption scheme via Gentry’s bootstrapping.

In this work, we show that is not true. Assuming indistinguishability obfuscation and leveled homo-
morphic encryption, we construct an IND-CPA scheme such that for all cycle lengths l, the scheme is
not l-circular secure.

1 Introduction

Key dependent message security [9] extends the basic notion of semantic security [22] by allowing the adver-
sary to query for encryptions of function evaluations on the hidden secret key. One of the most prominent
examples of key dependent message security is that of circular security, which addresses the following ques-
tion: “What can the adversary learn when given an encryption of the secret key, or more generally, an
encryption of a key cycle?”. An n length key cycle consists of n ciphertexts, where the ith ciphertext is an
encryption of the (i + 1)th secret key using the ith public key.1 The notion of circular security is captured
formally via a security game in which the adversary must distinguish between an n length key cycle and n
encryptions of zero (under the n different public keys). An encryption scheme is said to be n-circular secure
if no polynomial time adversary can perform this task with non-negligible advantage.

The problem of circular security has received a considerable amount of attention recently because it is a
natural question giving rise to different applications [14, 26, 2]. Most notably, it gives us a path to achieve
fully homomorphic encryption from leveled homomorphic encryption via Gentry’s bootstrapping approach
[20].

In the past several years, there have been many interesting works [5, 4, 6, 10, 13, 11, 7, 12, 23, 27] that
have addressed the question of circular security (or more generally, key dependent message security), leading
to circular secure encryption schemes under fairly standard assumptions such as bilinear decisional Diffie
Hellman assumption (BDDH) and the Learning with Errors assumption (LWE)[29].

However, an important related question is whether any IND-CPA scheme is also circular secure. If so,
circular security would come for free and no additional construction mechanisms would need to be designed
(beyond what we already needed for IND-CPA security). Unfortunately, this is not true. For n = 1, there
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exists a trivial counterexample — an IND-CPA scheme where the encryption of the secret key is the secret
key itself. The question for n > 1 was open for some time, and was resolved by Acar et al. [1]. They
showed, under the SXDH assumption, an IND-CPA secure encryption scheme that was not 2-circular secure.
A similar counterexample with additional features was proposed by Cash, Green and Hohenberger [16], also
under the SXDH assumption. In a recent work, Bishop, Hohenberger and Waters [8] expanded the state-of-
the-art for n = 2 by showing counterexamples under the k-linear assumption and the LWE assumption. For
arbitrary n, the first counterexamples were proposed by Koppula, Ramchen and Waters [24], and Marcedone
and Orlandi [28]. Given any fixed integer n, Koppula, Ramchen and Waters showed how to construct an
IND-CPA scheme that is not n-circular secure using indistinguishability obfuscation (iO). Marcedone and
Orlandi concurrently achieved a similar result under the stronger notion of virtual black-box obfuscation
(VBB). Recently, Alamati and Peikert [3], and Koppula and Waters [25] proved similar results using LWE
assumption.

At first sight, these results might seem to shut the door on the prospect of getting circular security auto-
matically from IND-CPA security. However, they miss an important distinction in the order of quantifiers.
All prior works [3, 24, 25, 28] show that for every integer n, there exists an IND-CPA scheme which is not n-
circular secure. In particular, the parameters of their schemes (i.e. the size of public parameters, secret keys
and ciphertexts) depend on n. However, this leaves open the possibility that for every cryptosystem, there
exists some polynomial function α(·), particular to that cryptosystem, such that the scheme is α(·)-circular
secure. More formally, we are interested in the following question:

Is it possible that for every IND-CPA secure public key encryption scheme, there exists an integer α such
that the scheme is also α-circular secure? 2

If this were true, then this would provide an automatic path to Gentry’s bootstrapping, and potentially
other applications. For instance, suppose we have a bootstrappable homomorphic encryption scheme (that
is, a homomorphic encryption scheme for circuit class C where the decryption circuit is also in C), and let
us assume the scheme is α-circular secure. Then, in order to get a homomorphic encryption scheme for all
circuits, one simply needs to include an α length key cycle as part of the public key. This key cycle can
be used to reduce the amount of noise in homomorphically evaluated ciphertexts, thereby allowing us to
perform arbitrary homomorphic evaluations.

With this motivation, we study the aforementioned question. Unfortunately, the answer is in the negative,
and we show this by constructing a class of public key encryption schemes for which there does not exist
any α such that they are α-circular secure. Our construction uses indistinguishability obfuscator (iO) for
polynomial sized circuits, coupled with a leveled homomorphic encryption (LHE) scheme that is capable
of homomorphically evaluating its own decryption circuit3. Such LHE schemes [13, 21] are realizable from
the LWE assumption. Current iO candidates [19, 32], on the other hand, rely on strong assumptions
like multilinear maps [18, 17] and therefore, the reader might question the underlying security of current
construction. However, we would like to emphasize that our result is a counterexample and it would hold as
long as some iO scheme exists, thus the concern over reliability of current candidates is somewhat mitigated.

Our Approach. Below, we sketch an outline of our construction, which has the feature of being very
intuitive. In our system, each public key consists of an LHE public key PKHE and an auxiliary program
Prog (to be described momentarily), whose purpose is to aid the circular security adversary. The secret key
consists of the corresponding LHE secret key SKHE. The encryption and decryption procedures are simply
the LHE encryption and decryption algorithms. The program Prog is the obfuscation of a program that on
input an LHE ciphertext, under public key PKHE, decrypts it using (hardwired) secret key SKHE and outputs
1 iff the plaintext is SKHE itself. In other words, Prog acts as a publicly available self-cycle (1-cycle) tester.

2In comparison, the previous works addressed the following question: “Is it possible that there exists an integer n such that
every IND-CPA secure public key encryption scheme is also n-circular secure?”.

3Recently, [15] provided constructions for LHE from sub-exponentially hard indistinguishability obfuscation, one-way func-
tions, and re-randomizable encryption schemes.
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Our idea for testing secret key cycles of any (unbounded) length is to iteratively reduce size of the cycle
by homomorphically decrypting last ciphertext in the chain using the second-last ciphertext to generate a
fresh ciphertext that will act as a new end of the chain. More formally, consider a key cycle of length n in
which the last two ciphertexts ctn−1 and ctn are encryptions of skn and sk1 under public keys pkn−1 and
pkn (respectively), and let CDec,n be a circuit that takes an input x and uses it to decrypt ctn. Our cycle
tester will homomorphically evaluate circuit CDec,n on input ctn−1. Since ctn−1 is an encryption of skn,
the homomorphic evaluation will output a new ciphertext ct′n−1 which would be an encryption of sk1 under
public key pkn−1. Thus, this successfully reduces the length of key cycle from n to n − 1, and iteratively
applying this procedure would eventually reduce the cycle size to 1. At this point, we could use the program
Prog1 which is part of first public key pk1 to test for a self-cycle. The crucial idea in our cycle tester is that
we start slicing the cycle from the end, thus existence of a leveled homomorphic encryption scheme suffices,
and we do not require a fully homomorphic scheme for testing unbounded length key cycles.

Now let us move on to the IND-CPA security proof. Ideally we would like to directly leverage the
IND-CPA security of LHE scheme to prove IND-CPA security of our construction because intuitively, the
obfuscated program Prog should not reveal the hardwired LHE secret key. However, indistinguishability
obfuscation is a relatively weak notion of program obfuscation, therefore using it directly is a bit tricky so we
need to tweak our scheme slightly as in [24]. In our modified scheme, our secret key also contains a random
string s, and the program Prog has both SKHE and t hardwired, where t = PRG(s). On any input ciphertext
ct, it first decrypts using SKHE to recover (a, b) and then checks if a = SKHE and t = PRG(b).

In order to use the IND-CPA security of the LHE scheme, we first need to modify program Prog such that
it does not contain SKHE anymore. To remove SKHE from Prog, we make a hybrid jump in which we choose
t randomly instead of setting it as t = PRG(s). This hybrid jump is indistinguishable due to the security
of the pseudorandom generator. Note that if t is chosen uniformly at random, then with high probability,
this program outputs ⊥ on all inputs. As a result, by the security of iO, this program is indistinguishable
from one that always outputs ⊥. In this manner, we can remove the secret key SKHE from Prog. Once this
is done, we can directly reduce a successful attack on our construction to a successful attack on IND-CPA
security of LHE scheme. Our construction is described in detail in Section 4.

Organization In Section 2, we describe the required notations and preliminaries. The definition of circular
security can be found in Section 3. In Section 4, we describe our counterexample scheme. The circular security
attack is included in Section 4.1 and the corresponding IND-CPA security proof in Section 4.2. Finally, in
Section 5, we discuss (informally) how our construction can be modified to achieve a stronger negative result.

2 Preliminaries

Notation. Let R be a ring, and let CR,λ,k denote the set of circuits of size at most poly(λ) and depth at
most k, with domain and co-domain being R. For simplicity of notation, we will skip the dependence of
CR,λ,` on R, λ when it is clear from the context.

2.1 Public Key Encryption

A public key encryption scheme PKE with message space M consists of three algorithms Setup, Enc and
Dec with the following syntax:

– Setup(1λ)→ (pk, sk) The setup algorithm takes as input the security parameter 1λ and outputs a public
key pk and secret key sk.

– Enc(pk,m ∈ M) → ct The encryption algorithm takes as input a public key pk and a message m ∈ M
and outputs a ciphertext ct.

– Dec(sk, ct) → x ∈ M ∪ {⊥} The decryption algorithm takes as input a secret key sk, ciphertext ct and
outputs x ∈M∪ {⊥}.
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Correctness: For correctness, we require that for all security parameters λ, (pk, sk)
$← Setup(1λ) and

messages m ∈M, Dec(sk,Enc(pk,m)) = m.

Definition 2.1 (IND-CPA Security). A public key encryption scheme PKE = (Setup,Enc,Dec) is said to

be IND-CPA secure if for all security parameters λ, stateful PPT adversaries A, Advind-cpaA,PKE(λ) is negligible

in λ, where advantage of A is defined as Advind-cpaA,PKE(λ) = |Pr[Exp-IND-CPA(PKE ,A, λ) = 1] − 1/2|, and
Exp-IND-CPA is defined in Figure 1.

Exp-IND-CPA(PKE ,A, λ)
b

$← {0, 1}
(pk, sk)

$← Setup(1λ)

(m0,m1)
$← A(pk)

y
$← Enc(pk,mb)

b̂
$← A(y)

Output (b̂
?
= b)

Figure 1: IND-CPA Security Game

2.2 Homomorphic Encryption

Homomorphic encryption [30, 20] is a powerful extension of public key encryption that allows one to evaluate
functions on ciphertexts. In this work, we will be using leveled homomorphic encryption schemes. Let R
be a ring. A leveled homomorphic encryption scheme HE with message space R consists of four algorithms
Setup,Enc,Dec,Eval with the following syntax:

1. Setup(1λ, 1`)→ (pk, sk) The setup algorithm takes as input the security parameter λ, bound on circuit
depth ` and outputs a public key pk and secret key sk.

2. Enc(pk,m ∈ R) → ct The encryption algorithm takes as input a public key pk, message m ∈ R and
outputs a ciphertext ct.

3. Eval(C ∈ C`, ct) → ct′ The evaluation algorithm takes as input a circuit C ∈ C`, a ciphertext ct and
outputs a ciphertext ct′.

4. Dec(sk, ct)→ x The decryption algorithm takes as input a secret key sk and ciphertext ct and outputs
x ∈ R ∪ {⊥}.

We will now define some properties of leveled homomorphic encryption schemes. Let HE be any homo-
morphic encryption scheme with message space R. First, we have the correctness property, which states
that the decryption of a homomorphic evaluation on a ciphertext must be equal to the evaluation on the
underlying message.

Definition 2.2 (Correctness). The scheme HE is said to be perfectly correct if for all security parameter λ,

circuit-depth bound `, (pk, sk)
$← Setup(1λ, 1`), circuit C ∈ C` and messagem ∈ R, Dec(sk,Eval(C,Enc(pk,m))) =

C(m).

Next, we have the compactness property which requires that the size of the output of an evaluation on
a ciphertext must not depend upon the evaluation circuit. In particular, we require that there exists one
decryption circuit such that this circuit can decrypt any bounded-depth evaluations on ciphertexts.

Definition 2.3 (Compactness). The scheme HE is said to be compact if for all λ, ` there is a decryption

circuit CDec
λ,` such that for all (pk, sk)

$← Setup(1λ, 1`), m ∈ R, C ∈ C`, CDec
λ,` (sk,Eval(C,Enc(pk,m))) = C(m).
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Finally, we define the notion of bootstrappability. Gentry [20] showed that if the decryption circuit is of low
depth, then a homomorphic encryption scheme for low depth circuits can be bootstrapped to a homomorphic
encryption scheme for polynomial depth circuits where the polynomial is apriori defined. We will use this
property for constructing our unbounded circular security counterexample. We would like to emphasize that
the following notion of bootstrappability does not directly imply fully homomorphic encryption since an
FHE scheme must successfully evaluate a ciphertext on all polynomial depth circuits, and not just on apriori
defined polynomials.

Definition 2.4. A compact homomorphic encryption scheme HE is said to be bootstrappable if for all
security parameters λ, there exists a depth bound D = D(λ) such that for all ` ≥ D, depth(CDec

λ,` ) ≤ `.

Security: For security, we require that the underlying scheme is IND-CPA secure.

Definition 2.5. The scheme HE is secure if Γ = (Setup,Enc,Dec) is IND-CPA secure (as per Definition 2.1).

2.3 Indistinguishability Obfuscation

Next, we recall the definition of indistinguishability obfuscation from [31].

Definition 2.6. (Indistinguishability Obfuscation) A uniform PPT machine iO is called an indistinguisha-
bility obfuscator for a circuit class {Cλ}λ if it satisfies the following conditions:

• (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that C ′(x) = C(x) where C ′ ← iO(C).

• (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT distinguisher (Samp,D),
there exists a negligible function negl(·) such that the following holds: if for all security parameters
λ ∈ N,Pr[∀x,C0(x) = C1(x) : (C0;C1;σ)← Samp(1λ)] > 1− negl(λ), then

|Pr[D(σ, iO(C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(C1)) = 1 : (C0;C1;σ)← Samp(1λ)]| ≤ negl(λ)

[19] showed a candidate indistinguishability obfuscator for the circuit class P/poly.

3 Circular Security

In this section, we define the notion of n-circular security. At a high level, n-circular security deals with the
following question: “What additional information can a PPT adversary learn given an n-length encryption
cycle (that is, a sequence of n ciphertexts where the ith ciphertext is an encryption of the (i + 1)th secret
key using the ith public key)?”. In this work, we consider the following notion of circular security, where the
adversary must distinguish between an n-encryption cycle and n encryptions of 0 (where the ith encryption
is computed using the ith public key).

Definition 3.1. A public key cryptosystem PKE is said to n-circular secure if for all security parameters
λ, PPT adversaries A, AdvcircA,PKE(λ, n) is negligible in λ, where advantage of A is defined as AdvcircA,PKE(λ, n)
= |Pr[Exp-circ(n,PKE ,A, λ) = 1]− 1/2|, and Exp-circ is defined in Figure 2.

3.1 Separating IND-CPA and Circular Security

First, let us recall the theorem statement from [24].

Theorem 3.1 ([24]). If there exists a secure indistinguishability obfuscator for polynomial size circuits
(Definition 2.6) and a secure pseudorandom generator, then for every positive integer n, there exists a public
key encryption scheme PKE such that
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Exp-circ(n,PKE ,A, λ)
b

$← {0, 1}
(pki, ski)

$← Setup(1λ) for i ≤ n
ct

(0)
i

$← Enc(pki, sk(i mod n)+1)

ct
(1)
i

$← Enc(pki,0)

b̂
$← A

(
{(pki, ct

(b)
i )}i

)
Output (b̂

?
= b)

Figure 2: Security game for n-circular security

• For all PPT adversaries A, there exists a negligible function negl1(·) and λ0 such that for all security

parameters λ > λ0, Advind-cpaA,PKE(λ) ≤ negl1(λ), and

• There exists a PPT algorithm Test and a negligible function negl2(·) such that for all security parameters
λ, AdvcircTest,PKE(λ, n) ≥ 1/2− negl2(λ).

We observe that the counterexample provided by Koppula, Ramchen, and Waters could be trivially
extended to prove the following (slightly stronger) statement.

Theorem 3.2. If there exists a secure indistinguishability obfuscator for polynomial size circuits (Defini-
tion 2.6) and a secure pseudorandom generator, then there exists a public key encryption scheme PKE such
that

• For all PPT adversaries A, there exists a negligible function negl1(·) and λ0 such that for all security

parameters λ > λ0, Advind-cpaA,PKE(λ) ≤ negl1(λ), and

• There exists a PPT algorithm Test, polynomial p(·) and a negligible function negl2(·) such that for all
security parameters λ and n ≤ p(λ), AdvcircTest,PKE(λ, n) ≥ 1/2− negl2(λ).

The KRW counterexample could be extended as follows — For security parameter λ and polynomial p(·),
instantiate p(λ) copies of KRW scheme where each scheme is designed to be insecure for a certain length key
cycle.

Our result proves a stronger statement which is not implied by the KRW counterexample. It is formally
stated below.

Theorem 3.3. If there exists a secure indistinguishability obfuscator for polynomial size circuits (Defini-
tion 2.6), secure bootstrappable homomorphic encryption scheme (Definitions 2.4 and 2.5), and a secure
pseudorandom generator, then there exists a public key encryption scheme PKE such that

• For all PPT adversaries A, there exists a negligible function negl1(·) and λ0 such that for all security

parameters λ > λ0, Advind-cpaA,PKE(λ) ≤ negl1(λ), and

• There exists a PPT algorithm Test, a negligible function negl2(·) such that for all security parameters
λ and positive integers α, AdvcircTest,PKE(λ, α) ≥ 1/2− negl2(λ).

4 Unbounded Circular Insecure Public Key Encryption Scheme

In this section, we prove Theorem 3.3 by constructing a public key encryption scheme PKE = (SetupPKE,
EncryptPKE, DecryptPKE) that breaks circular security with unbounded length key cycles. Let HE =
(SetupHE,EncryptHE,EvalHE,DecryptHE) be a secure bootstrappable homomorphic encryption scheme, iO
be a secure indistinguishability obfuscator and PRG be a secure pseudorandom generator that maps ` bit
inputs to 2` bit outputs. The construction is described as follows:
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SelfCycleTest

Constants: Secret key SKHE, Value t.
Inputs: Ciphertext ct.

1. Decrypt ct as (sk, s) = DecryptPKE(SKHE, ct).

2. If sk = SKHE and PRG(s) = t output 1, otherwise output 0.

Figure 3: SelfCycleTest

- SetupPKE(1λ) : It runs HE setup algorithm to obtain a public and secret key pair as (PKHE, SKHE)
$←

SetupHE(1λ, 1D), where D is a depth such that depth(C
DecryptHE

λ,D ) ≤ D.4 It uniformly samples s
$←

{0, 1}`, sets t = PRG(s), and computes the obfuscation of program SelfCycleTest (described in Fig-

ure 3) as Prog
$← iO(SelfCycleTest). It sets the public key and secret key as PKPKE = (PKHE,Prog), SKPKE =

(SKHE, s).

- EncryptPKE(PKPKE,m; r) : It computes ciphertext as ct = EncryptHE(PKHE,m; r), where PKPKE =
(PKHE,Prog).

- DecryptPKE(SKPKE, ct) : It outputs DecryptHE(SKHE, ct), where SKPKE = (SKHE, s).

The proof of Theorem 3.3 is described in two parts. First, we show a poly-time attack on circular security
of PKE in Section 4.1. Next, we prove it to be IND-CPA secure in Section 4.2.

4.1 Attack on Unbounded Circular Security

We construct a PPT adversary A which breaks unbounded circular security of above construction as follows:

1. Challenger generates n public and secret key pairs as {(pki, ski)}
n
i=1 by independently running the

setup algorithm n times
(
(pki, ski)

$← SetupPKE(1λ) for i ≤ n
)
. It uniformly chooses a bit b

$← {0, 1},
and computes ciphertexts cti

$← EncryptPKE(pki,mi,b) for i ≤ n, where mi,0 = sk(i mod n)+1 and mi,1 =

0|mi,0|. Finally, it sends {(pki, cti)}
n
i=1 to A.

2. A receives n public key and ciphertext pairs {(pki, cti)}
n
i=1, and proceeds as follows:

- It sets ct′n = ctn.

- For i = n− 1 to i = 1 :

- Compute ct′i = EvalHE(Ci, cti), where Ci is the HE decryption circuit CDecryptHE with ct′i+1

hardwired as the its second input, i.e. Ci(x) = CDecryptHE(x, ct′i+1).5

- A runs program Prog1 on input ct′1, and outputs b′ = Prog1(ct′1) as its guess, where pk1 =
(pk′1,Prog1).

3. A wins if its guess is correct (b′ = b).

Lemma 4.1. If PRG is a secure pseudorandom generator, then there exists a negligible function negl(·)
such that for all security parameters λ and positive integers n, AdvcircA,PKE(λ, n) ≥ 1/2− negl(λ).

Proof. We prove this lemma in two parts. First, we consider a length n key cycle and show that adversary
A always correctly guesses challenger’s bit b as 1. Next, we show that, with all but negligible probability, A
correctly guesses b as 0.

4Note that such a depth D exists since our HE scheme is bootstrappable (Definition 2.4).
5Actually, the circuits Ci are not standard HE decryption circuits because ciphertexts cti are encryptions of (i+ 1)th secret

key and an extra element, therefore the circuit must ignore the second element during homomorphic decryption.
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As we described earlier, the basic idea is to slice the ring structure of n ciphertexts by iteratively reducing
an n-circular attack to an (n − 1)-circular attack and finally, reducing it to a 1-circular attack. For slicing
the ring of ciphertexts, we use bootstrappability of the underlying scheme. The correctness of the above
reduction is proven by induction over cycle length n. The base case n = 1 follows directly from the correctness
of program Prog1. For the induction step, assume that A correctly identifies a length k key cycle. To prove
that A also identifies length k+ 1 key cycle, we only need to show that A correctly reduces a (k+ 1)-circular

instance to a k-circular instance. Note that given k + 1 public key, ciphertext pairs ({(pki, cti)}
k+1
i=1 ). A

computes ct′k as ct′k = EvalHE(Ck, ctk). If ctk+1 is an encryption of sk1 under pkk+1, and ctk is an encryption
of skk+1 under pkk, then ct′k will be an encryption of sk1 under pkk as the scheme HE is bootstrappable
satisfying Definition 2.4. Therefore, using inductive hypothesis, we can conclude that A correctly identifies
length k+1 key cycle. Thus, the above reduction correctly reduces circular instances with unbounded length
key cycles to 1-circular instances, and therefore A guesses the bit b as 1 with probability 1.

To conclude our proof we just need to show that if the cycle is encryption of all zeros, then A outputs 0
with all but negligible probability. This follows from the fact that PRG is a secure pseudorandom generator.
Consider a hybrid experiment in which the value t1 is sampled uniformly at random instead of being computed
as t1 = PRG(s1). Since PRG is a length doubling pseudorandom generator, we can claim that in the hybrid
experiment (with all but negligible probability) Prog1 outputs 0 because there does not exist any pre-image s
for t1. Therefore, if PRG is a secure pseudorandom generator, A will always output 0 with all but negligible
probability. Thus, A wins the n-circular security game with all but negligible probability.

4.2 IND-CPA Security

Lemma 4.2. If iO is a secure indistinguishability obfuscator for polynomial size circuits (Definition 2.6), HE
is a secure bootstrappable homomorphic encryption scheme (Definitions 2.4 and 2.5), and PRG is a secure
pseudorandom generator, then public key encryption scheme PKE is IND-CPA secure (Definition 2.1).

Proof. We prove above lemma by contradiction. Let A be any PPT adversary that wins the IND-CPA
security game against PKE with non-negligible advantage. We argue that such an adversary must break
security of at least one underlying primitive. To formally prove security, we construct a series of hybrid
games as follows.

Game 1: This game is the original IND-CPA security game described in Definition 2.1.

1. Challenger runs HE setup algorithm to obtain a public and secret key pair as (PKHE, SKHE)
$←

SetupHE(1λ). It uniformly samples s
$← {0, 1}`, sets t = PRG(s), and computes the obfuscation of

program SelfCycleTest (described in Figure 3) as Prog
$← iO(SelfCycleTest). It sets the public key and

secret key as PKPKE = (PKHE,Prog), SKPKE = (SKHE, s). Finally, it sends PKPKE to A.

2. A receives PKPKE from challenger, and computes messages m0,m1. It sends (m0,m1) to the challenger.

3. Challenger chooses bit b
$← {0, 1}, computes ct∗

$← EncryptPKE(PKPKE,mb), and sends ct∗ to A.

4. A receives challenge ciphertext ct∗ from challenger, and outputs its guess b′.

5. A wins if it guesses correctly, that is if b = b′.

Game 2: Game 2 is same as Game 1, except challenger uniformly samples t from {0, 1}2` instead of
computing it as t = PRG(s).

1. Challenger runs HE setup algorithm to obtain a public and secret key pair as (PKHE, SKHE)
$←

SetupHE(1λ). It uniformly samples s
$← {0, 1}`, t $← {0, 1}2`, and computes the obfuscation of pro-

gram SelfCycleTest (described in Figure 3) as Prog
$← iO(SelfCycleTest). It sets the public key and

secret key as PKPKE = (PKHE,Prog), SKPKE = (SKHE, s). Finally, it sends PKPKE to A.

2-5. Same as before.
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Zero

Inputs: Ciphertext ct.

1. Output 0.

Figure 4: Zero

Game 3: Game 3 is same as Game 2, except challenger computes Prog as obfuscation of program Zero.

1. Challenger runs HE setup algorithm to obtain a public and secret key pair as (PKHE, SKHE)
$←

SetupHE(1λ). It uniformly samples s
$← {0, 1}`, t $← {0, 1}2`, and computes the obfuscation of pro-

gram Zero (described in Figure 4) as Prog
$← iO(Zero)6. It sets the public key and secret key as

PKPKE = (PKHE,Prog), SKPKE = (SKHE, s). Finally, it sends PKPKE to A.

2-5. Same as before.

We now establish via a sequence of claims that the adversary’s advantage between each adjacent game is
negligible. Let Advi = |Pr[b′ = b]− 1/2| denote the advantage of adversary A in Game i of guessing the bit
b.

Claim 4.1. If PRG is a secure pseudorandom generator, then for all PPT A, |Adv1 − Adv2| ≤ negl(λ) for
some negligible function negl(·).

Proof. We describe and analyze a PPT reduction algorithm B that plays the pseudorandom generator security
game. B first receives a PRG challenge T ∈ {0, 1}2`. It then plays the security game with A as described in
Game 1 with the exception that in step 1 it lets t = T . If A wins (i.e. b′ = b), then B guesses ‘1’ to indicate
that T was chosen in the image space of PRG(·); otherwise, it outputs ‘0’ to that T was chosen randomly.

We observe that when T is generated as T = PRG(r), then B gives exactly the view of Game 1 to A.
Otherwise if T is chosen randomly the view is of Game 2. Therefore if |Adv1 − Adv2| is non-negligble, B
must also have non-negligible advantage against the pseudorandom generator.

Claim 4.2. If iO is a secure indistinguishability obfuscator, then for all PPT A, |Adv2 − Adv3| ≤ negl(λ)
for some negligible function negl(·).

Proof. We describe and analyze a PPT reduction algorithm B that plays the indistinguishability obfuscation
security game with A. B runs steps 1 as in Game 2, except it creates two programs as C0 = SelfCycleTest
and C1 = Zero. It submits both of these to the IO challenger and receives back a program P . It sets
Prog = P and finishes step 1. It executes steps 2-5 as in Game 2. If the attacker wins (i.e. b′ = b), then
B guesses ‘0’ to indicate that P was and obfuscation of C0; otherwise, it guesses ‘1’ to indicate it was an
obfuscation of C1.

We observe that when P is generated as an obfuscation of C0, then B gives exactly the view of Game 2
to A. Otherwise if P is chosen as an obfuscation of C1 the view is of Game 2. In addition, the programs
are functionally equivalent with all but negligible probability. The reason is that t is outside the image of
the pseudorandom generator with probability at least 1− 2`. Therefore if |Adv2 − Adv3| is non-negligble, B
must also have non-negligible advantage against the indisguishability obfuscation game.

Claim 4.3. If HE is a secure bootstrappable homomorphic encryption scheme, then for all PPT A, Adv3 ≤
negl(λ) for some negligible function negl(·).

6Note that program Zero must be padded such that it is of same size as program SelfCycleTest.
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Proof. We describe and analyze a PPT reduction algorithm B that plays the IND-CPA security game with
HE challenger. B receives public key PKHE from HE challenger. It runs step 1 as described in Game 3
with the exception that it uses PKHE generated by HE challenger instead of running the setup algorithm. B
forwards the challenge messages (m0,m1) it receives from A to HE challenger as its challenge, and receives
ct∗ as the challenge ciphertext, which it then forwards to A. Finally, B outputs the same bit as A.

We observe that if A wins (i.e. b′ = b), then B also wins because it exactly simulates the view of Game 3
for A. Therefore if Adv3 is non-negligble, B must also have non-negligible advantage against HE challenger.

5 Unbounded Counterexamples with Mixed Cryptosystems

We conclude by making the following observation pertaining to our counterexample. In our construction,
we started slicing the key cycle from the end, and after every cycle length reduction iteration, the new
(homomorphically) evaluated ciphertext is encrypted under a different public key. Concretely, if we consider
an n-length key cycle, then after ith cycle reduction iteration, the ciphertext ct′n−i generated is encrypted
under public key pkn−i. Therefore, the cycle testing algorithm works in the presence of a LHE scheme. We
observe that if we instantiate our idea with an unbounded fully homomorphic encryption (FHE) scheme as
opposed to a leveled one, then the cycle testing algorithm could be alternatively evaluated by slicing the
key cycle from the start. More formally, in the first iteration, our new cycle tester would homomorphically
evaluate circuit CDec,2 on ct1, where CDec,2 is a circuit that takes an input x and uses it to decrypt ct2. Since
ct1 and ct2 are encryptions of sk2 and sk3 under public keys pk1 and pk2 (respectively), the homomorphic
evaluation would generate a new ciphertext ct′2 that would be an encryption of sk3 under public key pk1.
Note that this also reduces the key cycle length by one, but in the forward direction and it requires the
encryption scheme to be fully homomorphic. Therefore, iteratively applying this procedure would finally
generate a ciphertext ct′1 which encrypts secret key sk1 under public key pk1, and as before, the self-cycle
could be tested using Prog1.

The crucial observation in the alternative cycle testing procedure is that we require only one encryption
scheme to be homomorphic encryption scheme. This opens up the possibility of creating a counterexample
for circular security under mixed public key encryption (PKE) framework, where the cycle could comprise
of distinct and variegated PKE schemes with a universal message and key space. In particular, this shows
that just one “bad” key could poison the circular security for any arbitrary length cycle.
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