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Abstract

We derive necessary conditions related to the notions, in additive
combinatorics, of Sidon sets and sum-free sets, on those exponents d ∈
Z/(2n − 1)Z which are such that F (x) = xd is an APN function over
F2n (which is an important cryptographic property). We study to which
extent these new conditions may speed up the search for new APN ex-
ponents d. We also show a new connection between APN exponents and
Dickson polynomials: F (x) = xd is APN if and only if the reciprocal poly-
nomial of the Dickson polynomial of index d is an injective function from
{y ∈ F∗

2n ; trn(y) = 0} to F2n \ {1}. This also leads to a new and sim-
ple connection between Reversed Dickson polynomials and reciprocals of
Dickson polynomials in characteristic 2 (which generalizes to every char-
acteristic thanks to a small modification): the squared Reversed Dickson
polynomial of some index and the reciprocal of the Dickson polynomial of
the same index are equal.

1 Introduction

In this paper, we study the so-called APN exponents in fields F2n , that is, those
values d ∈ Z/(2n − 1)Z such that the corresponding power function F (x) = xd

over F2n is Almost Perfect Nonlinear (APN). A function from F2n to itself is
called APN [11, 2, 10] if, for every nonzero a ∈ F2n and every b ∈ F2n , the equa-
tion F (x) +F (x+a) = b has at most two solutions. Equivalently, the system of

equations

{
x+ y + z + t = 0
F (x) + F (y) + F (z) + F (t) = 0

has for only solutions quadruples

(x, y, z, t) whose elements are not all distinct (i.e., are pairwise equal). Recall
that changing d into one of its conjugates 2jd corresponds to changing F (x)
into a linearly equivalent APN function, which preserves APNness. The APN
exponents constitute then a union of cyclotomic classes of 2 mod 2n − 1. The
known APN exponents (Gold, Kasami, Welch, Niho, Inverse, and Dobbertin)
are all those exponents which are the conjugates of those given in Table 1 below,
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Table 1: Known APN exponents on F2n up to equivalence and to inversion.

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1

Kasami 22i − 2i + 1 gcd(i, n) = 1

Welch 2t + 3 n = 2t+ 1

Niho 2t + 2
t
2 − 1, t even n = 2t+ 1

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 n = 2t+ 1

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t

or of their inverses when they are invertible in Z/(2n− 1)Z. Note that i (in the
definitions of Gold and Kasami exponents) can always be taken lower than n/2
(thanks to conjugacy).

It has been proved by Dobbertin (as described in the survey chapter [3], to
which we refer for more information on APN functions) that an exponent can be
APN only if gcd(d, 2n−1) equals 1 if n is odd and 3 if n is even. We shall show in
Section 2 that for all exponents given in Table 1, we have gcd(d−1, 2n−1) = 1.
This corresponds to the fact that the related functions F have 0 and 1 as only
fixed points, since x ∈ F2n is a nonzero fixed point of function F (x) = xd if and
only if xd−1 = 1.

It happens for some cyclotomic classes that the property gcd(d−1, 2n−1) = 1
be true for any element in the cyclotomic class, or equivalently that gcd(d −
2j , 2n−1) = 1 for every j = 0, . . . , n−1. We list in Table 2, for the (known) APN
exponents of Table 1 up to n = 32, when gcd(d−2j , 2n−1) = 1 is true for every
j = 0, . . . , n−1. The proportion of such exponents is large. Since such property
is unlikely for random exponents satisfying Dobbertin’s observation recalled
above, we can hope that some other property can be found, which would explain
such large proportion, and could maybe ease the search for APN exponents
outside the main classes. This other property cannot be that gcd(d−1, 2n−1) =
1 for all APN exponents d, which would imply gcd(d− 2j , 2n − 1) = 1 for all j,
since we see in Table 2 that some cyclotomic classes do not satisfy this.

In this paper, we find a new property relating APN exponents to Sidon sets
and sum-free sets (two well-known notions in additive combinatorics [1, 6, 12];
see the definitions in Section 3): for every APN exponent d and every integer
j, the multiplicative subgroup of F2n of order gcd(d− 2j , 2n − 1) is a Sidon set
and a sum-free set.

The relationship between APN functions and Sidon sets is not new: by
definition, an (n, n)-function is APN if and only if its graph is a Sidon set (see
Section 3). But the relationship we establish in this paper is different and gives
more insight on APN exponents.

We study the consequences on the search for new APN exponents, which
is a sensitive open question on which the research is being stuck since almost
20 years. We do not find new APN exponents, but we show that d is an APN
exponent if and only if the function equal to the reciprocal of the Dickson poly-
nomial Dd(X, 1) is injective from {y ∈ F∗2n ; trn(y) = 0} to F2n \ {1}, where

trn(x) = x + x2 + · · · + x2
n−1

is the trace function from F2n to F2. Finally,
we show a very simple new relationship (which generalizes to every characteris-
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Table 2: gcd(d− 2j , 2n − 1) = 1 for every j = 0, . . . , n− 1.

Class name Value

(n|i); i ≤ n/2

Gold (3|1), (5|1, 2), (6|1), (7|1, 2, 3), (9|1, 2, 4), (11|2, 4, 5)
(13|1, 2, 3, 4, 5, 6), (14|1, 3, 5), (15|1, 2, 4, 7), (17|1, 2, 3, 4, 5, 6, 7, 8),

(19|1, 2, 3, 4, 5, 6, 7, 8, 9), (21|1, 2, 4, 5, 8, 10), (22|5, 7, 9),
(23|2, 5, 7, 8, 9, 10), (25|1, 2, 3, 4, 6, 7, 8, 9, 11, 12), (26|1, 3, 5, 7, 9, 11)
(27|1, 2, 4, 5, 7, 8, 10, 11, 13), (29|1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14)

(31|1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Kasami (3|1), (5|1, 2), (6|1), (7|1, 2, 3), (9|1, 2, 4), (11|3, 4), (13|1, 2, 3, 4, 5, 6)
(14|1, 3), (15|1, 2, 4, 7), (17|1, 2, 3, 4, 5, 6, 7, 8), (19|1, 2, 3, 4, 5, 6, 7, 8, 9),

(21|1, 4, 5, 8, 10), (22|3, 7), (23|2, 3, 6, 8, 9, 11), (25|1, 2, 3, 4, 6, 7, 8, 9, 11, 12),
(26|1, 3, 5, 7, 9, 11), (27|1, 2, 4, 5, 7, 8, 10, 11, 13),

(29|1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),
(31|1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

n

Welch 3, 5, 7, 9, 13, 15, 17, 19, 23, 25, 27, 31

Niho 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31

Dobbertin 5, 15, 25

Inverse 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31

tic after a small modification) between Reversed Dickson polynomials and the
reciprocals of Dickson polynomials: for every positive integer d, the Reversed
Dickson polynomial D2d(1, X) of index 2d and the reciprocal of the Dickson
polynomial Dd(X, 1) of index d are equal.

2 On the exponents of Table 1

The value gcd(d − 1, 2n − 1) for a power function F (x) = xd is an important
parameter. The number of fixed points of F equals 2gcd(d−1,2

n−1).

Lemma 2.1 All the exponents d in Table 1 satisfy gcd(d− 1, 2n − 1) = 1.

Proof. In the case of Gold functions F (x) = x2
i+1, where (i, n) = 1, we have

gcd(d− 1, 2n − 1) = gcd(2i, 2n − 1) = 1.

In the case of Kasami functions F (x) = x2
2i−2i+1, where (i, n) = 1, we have

gcd(d− 1, 2n − 1) = gcd(2i − 1, 2n − 1) = 2gcd(i,n) − 1 = 1.

In the case of Welch function F (x) = x2
t+3, we have according to the Gauss

theorem (which states that if a divides bc and is co-prime with b then it di-

vides c): gcd(d − 1, 2n − 1) = gcd(2t−1 + 1, 22t+1 − 1) = gcd(22t−2−1,22t+1−1)
gcd(2t−1−1,22t+1−1) =

2gcd(2t−2,2t+1)−1
2gcd(t−1,2t+1)−1 = 2gcd(t−1,2t+1)−1

2gcd(t−1,2t+1)−1 = 1.
In the case of Niho functions:

- F (x) = x2
t+2

t
2−1, t even, we have, applying the Euclidean algorithm: gcd(d−

1, 2n − 1) = gcd(2t + 2
t
2 − 2, 22t+1 − 1) = gcd(2t + 2

t
2 − 2,−5 · 2t/2+1 + 11) =

gcd(22 · 52 · (2t + 2
t
2 − 2), 5 · 2t/2+1 − 11) = gcd(5 · 2t/2+1 − 11, 31) = 1, since 31

divides 22t+1 − 1 if and only if 2t + 1 ≡ 0 [mod 5] and the only possibility for
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that is t ≡ 2 [mod 5], t
2 ≡ 1 [mod 5] and 2t + 2t/2 − 2 ≡ 4 6≡ 0 [mod 31];

- F (x) = x2
t+2

3t+1
2 −1, t odd, we have gcd(d − 1, 2n − 1) = gcd(2

3t+1
2 + 2t −

2, 22t+1−1) = gcd(2
3t+1

2 +2t−2, 2t+2
t+3
2 −3) = gcd(2t+2

t+3
2 −3, 9·2 t+1

2 −11) =

gcd(2 · 92 · (2t + 2
t+3
2 − 3), 9 · 2 t+1

2 − 11) = gcd(9 · 2 t+1
2 − 11, 31) = 1, since, again,

31 divides 22t+1− 1 if and only if 2t+ 1 ≡ 0 [mod 5] and the only possibility for

that is t ≡ 2 [mod 5], 3t+1
2 ≡ 1 [mod 5] and 2t + 2

3t+1
2 − 2 ≡ 4 6≡ 0 [mod 31].

In the case of the APN Inverse function F (x) = x2
2t−1, we have, by the Eu-

clidean algorithm: gcd(d−1, 2n−1) = gcd(22t−1−1, 22t+1−1) = 2gcd(2t−1,2t+1)−
1 = 1.
In the case of Dobbertin APN function F (x) = xd, where d = 24t + 23t +
22t + 2t − 1 and n = 5t, we could calculate gcd(d − 1, 2n − 1) by applying
again the Euclidean algorithm but more simply we have gcd(d − 1, 2n − 1) =
gcd(d−1, (2t−1)(d+2)), and since d ≡ 3 [mod (2t−1)], and d−1 is then co-prime
with 2t−1, we obtain then gcd(d−1, 2n−1) = gcd(d−1, d+ 2) = gcd(d−1, 3),
which equals 1 if n is odd (because we know that 3 does not divide 2n − 1 in
this case) and which equals gcd(2, 3) = 1 if n is even (since, t being then even,
we have 24t, 23t, 22t, 2t all congruent with 1 mod 3 and then d− 1 ≡ 2 [mod 3]).
Then gcd(d− 1, 2n − 1) = 1 in all cases. �

Hence, all the corresponding APN functions have 0, 1 as only fixed points.

Remark 2.2 If d is invertible mod 2n − 1 and d′ is its inverse, then gcd(d −
1, 2n− 1) equals 1 if and only if gcd(d′− 1, 2n− 1) equals 1, since a permutaton
has the same number of fixed points as its compositional inverse.

3 Sidon sets and sum-free sets

We saw in Section 2 that the known APN exponents may have a property not
covered by the Dobbertin observation (recalled in introduction). We also saw in
introduction that such property (to be found) cannot be that gcd(d−1, 2n−1) =
1, since this would imply gcd(d − 2j , 2n − 1) = 1 for every j ∈ Z/nZ, which
is already not true (for some n) for the simplest known APN exponent 3. In
the present section, we show that every APN exponent (known or unknown),
satisfies a property which deals with the numbers gcd(d−2j , 2n−1), j ∈ Z/nZ,
in a more subtle way. We first need to recall two definitions from additive
combinatorics.

Definition 3.1 [1] A subset of an additive group (G,+) is called a Sidon set
if it does not contain elements x, y, z, t, at least three of which are distinct, and
such that x+ y = z + t.

This notion is due to the mathematician Sidon. It is preserved by (additive)
equivalence, that is, if S is a Sidon set in (G,+) and A is a permutation of G
such that A(x+ y) = A(x) +A(y), then A(S) is a Sidon set. The notion is also
preserved by translation. Of course, any set included in a Sidon set is a Sidon
set.
This definition is also relevant in characteristic 2. In such characteristic, we have
more simply: A subset of an additive group of characteristic 2 is a Sidon set if
it does not contain four distinct elements x, y, z, t such that x + y + z + t = 0.
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Indeed, if two elements are equal, then there cannot be three distinct elements
among x, y, z, t such that x+ y + z + t = 0.

Remark 3.2 By definition, an (n, n)-function F is APN if and only if its graph
GF = {(x, F (x));x ∈ F2n} is a Sidon set in (F2

2n ,+). Hence, APN functions
correspond to a subclass of Sidon sets in (F2

2n ,+): those S such that, for every
x ∈ F2n , there exists a unique y ∈ F2n such that (x, y) ∈ S.

Remark 3.3 A subset S of an additive group (G,+) is a Sidon set if and only
if, denoting by PS the set of pairs in S, the mapping {x, y} ∈ PS 7→ x+y is one-

to-one. The size |S| is then (see e.g. [1]) such that
(|S|

2

)
= |S| (|S|−1)

2 ≤ |G| − 1,
since otherwise the number of pairs {x, y} included in S would be strictly larger
than the number of nonzero elements of G; at least two different pairs {x, y}
and {x′, y′} would then have the same sum and these two pairs would in fact be
disjoint (if, for instance x = x′, then y 6= y′ and x+y 6= x′+y′, a contradiction).

Definition 3.4 [6, 12] A subset S of an additive group (G,+) is called a sum-
free set if it does not contain elements x, y, z such that x + y = z (i.e., if
S ∩ (S + S) = ∅).

This notion is due to Erdös. It is also preserved by (additive) equivalence and by
translation; any set included in a sum-free set is a sum-free set and no sum-free
set contains 0.

Remark 3.5 A subset S of an additive group (G,+) is sum-free if and only if,
denoting again by PS the set of pairs in S, the mapping {x, y} ∈ PS 7→ x + y
is valued outside S. The size |S| is then (see e.g. [6, 12]) smaller than or

equal to |G|
2 , because the size of S + S is at least the size of S (since G is a

group), and if |S| > |G|
2 then the two sets S + S and S have sizes whose sum

is strictly larger than the order of the group, and they necessarily have a non-
empty intersection. A basic example of a sum-free set in F2n , which achieves

this bound |S| ≤ |G|2 with equality, is any affine hyperplane (i.e., the complement
of any linear hyperplane).

Remark 3.6 The size |S| of a sum-free Sidon set satisfies |S| (|S|+1)
2 ≤ |G| − 1,

since otherwise, the number of pairs {x, y} ∈ PS would be strictly larger than
the number of nonzero elements of G \ S. Note that, in characteristic 2, if S is
a Sidon-sum-free set, then S ∪ {0} is a Sidon set, which gives again the same
bound by using Remark 3.3.

4 APN exponents, Sidon sets, and sum-free sets

We give now the new property valid for all APN exponents which is related to
Sidon sets and sum-free sets.

Theorem 4.1 For every positive integers n and d and for every j ∈ Z/nZ,
let ej = gcd(d − 2j , 2n − 1) ∈ Z/(2n − 1)Z, and let Gej be the multiplicative

subgroup {x ∈ F∗2n ;xd−2
j

= 1} = {x ∈ F∗2n ;xej = 1} of order ej. If function
F (x) = xd is APN over F2n , then, for every j ∈ Z/nZ, Gej is a Sidon set
in the additive group (F2n ,+) and is also a sum-free set in this same group.
Moreover, for every k 6= j, if x ∈ Gek , y ∈ Gej , x 6= y and x 6= y−1, then we

have (x+ 1)d−2
k 6= (y + 1)d−2

j

.
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Proof. Using the same idea as the one used by Dobbertin for showing the
observation recalled in introduction, for every x ∈ Gej \ {1}, we introduce the

unique s ∈ F∗2n\{1} such that x = s
s+1 , that is, s = x

x+1 . Then xd−2
j

= 1 implies

sd−2
j

+ (s+ 1)d−2
j

= 0, which implies after multiplication by s2
j

+ 1 = (s+ 1)2
j

that sd + (s+ 1)d = sd−2
j

= (s+ 1)d−2
j

= 1

(x+1)d−2j
. Note that if s = x

x+1 and

s′ = x′

x′+1 , with x 6= 1 and x′ 6= 1, then we have s = s′ if and only if x = x′

(since function x
x+1 is bijective, being involutive) and we have s = s′ + 1 if and

only if x′ = x−1, since x
x+1 + 1 = x−1

x−1+1 .
Suppose that Gej is not a Sidon set, then let x, y, z, t be distinct elements of Gej
such that x+ y = z+ t. Making the changes of variables x→ xt, y → yt, z → zt
and dividing the equality by t, we obtain distinct elements x, y, z of Gej \ {1}
such that x+ y + z = 1. Making now the change of variable y → zy, we obtain
elements x, y, z in Gej \ {1} such that x + 1 = z(y + 1), x 6= y and x 6= y−1

(indeed, the condition y = 1 in the new setting corresponds to the condition
y = z in the former setting, the condition x = y in the new setting is equivalent
(thanks to x+1 = z(y+1)) to z = 1 in both settings, and the condition x = y−1

in the new setting, that is (thanks to x+1 = z(y+1) again), zy = 1, is equivalent
to y = 1 in the former setting). We have then 1

(x+1)d−2j
= 1

(y+1)d−2j
and since

x 6= y and x 6= y−1, we have x
x+1 6=

y
y+1 and x

x+1 6=
y
y+1 + 1 and this gives 4

distinct solutions to the equation sd+(s+1)d = 1

(x+1)d−2j
, a contradiction with

the APNness of F .
Suppose that Gej is not sum-free, that is, Gej ∩ (Gej +Gej ) 6= ∅, that is without
loss of generality since Gej is a multiplicative group, Gej ∩ (Gej + 1) 6= ∅, then
let x ∈ Gej ∩ (Gej + 1) (which implies x 6= 0, 1) and s = x

x+1 (with s 6= 0, 1

as well), we have then 1

(x+1)d−2j
= 1 and sd + (s + 1)d = 1 and the equation

zd + (z + 1)d = 1 has four solutions 0, 1, s, and s+ 1 in F2n , a contradiction.
The last assertion is a direct consequence of the observations made in the first
paragraph of the present proof. �

Remark 4.2 Since for s = x
x+1 , x 6= 1, we have sd+(s+1)d = xd+1

(x+1)d
and since

xd+1
(x+1)d

= (x−1)d+1
(x−1+1)d

, the condition “Gej is sum-free” is in fact a weaker version

of the condition “the equation xd + 1 = (x + 1)d has at most one solution in
F2n , up to the replacement of x by x−1” which is implied by the condition “the
equation xd+(x+1)d = 1 has at most two solutions in F2n”. We shall say more
in Subsection 4.1. Note that every element of Gej satisfies xd + 1 = (x + 1)d

since this equation in Gej is equivalent to x2
j

+ 1 = (x + 1)2
j

which is always
true, and this is why Gej plays an interesting role.

Remark 4.3 Denoting e = gcd(d, 2n − 1), we have that Ge itself is a Sidon
set since, as recalled above, we have e = 1 if n is odd and e = 3 if n is even,
and G1 = {1}, G3 = F∗4 are Sidon sets (since they do not contain 4 distinct
elements). But Ge is a sum-free set only for n odd, since F∗4 is not sum-free.

Remark 4.4 An APN function is APN in any subfield where the function
makes sense (i.e., such that F (x) belongs to this subfield when x does). In
particular, an APN power function is APN in any subfield. Applying Theorem
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4.1 with a divisor r of n in the place of n replaces ej by gcd(d − 2j , 2r − 1)
and Gej by Gej ∩ F∗2r , so it gives no additional information since if Gej is a
Sidon-sum-free set in F2n , then Gej ∩ F∗2r is also a Sidon-sum-free set in F2r .

Remark 4.5 The condition that Gej is sum-free for every j ∈ Z/nZ implies
that, for every divisor k of n larger than 1, the integer ej is not divisible by
2k − 1, because otherwise Gej would contain F∗2k , and this is contradictory with
the condition. For k > 2, the fact that ej is not divisible by 2k − 1 is also a
consequence of the fact that Gej is a Sidon set, since it is straightforward that
for k > 2, F∗2k is not a Sidon set and any superset is then not one either. In
fact, the property of being a Sidon-sum-free set is rather restrictive, and this
explains the observations made in the introduction.

Remark 4.6 We observed that, in characteristic 2, the size |S| of a Sidon-sum-

free set S not containing 0 cannot be such that
(|S|+1

2

)
= |S| (|S|+1)

2 > 2n − 1.
We deduce then from the theorem that, if d is an APN exponent, then for every
divisor λ of 2n − 1 such that

(
λ+1
2

)
> 2n − 1 and every j ∈ Z/nZ, this number

λ does not divide d− 2j. Take for instance n = 8 and λ = 28−1
3 = 85, we have(

λ+1
2

)
> 255 and for every APN exponent d, we have that 85 does not divide

d−1, d−2, d−4, d−8, d−16, d−32, d−64 nor d−128 (all these numbers being

taken modulo 255). We can also take λ = 28−1
5 = 51, we have

(
λ+1
2

)
> 255 and

51 does not divide d− 1, d− 2, d− 4, d− 8, d− 16, d− 32, d− 64 nor d− 128
as well. For this value of n, there are only two possible values for λ, but for
some larger values of n, the number of possible λ may be much larger and the
condition discriminates then better the candidates d.

4.1 A general framework for deriving results similar to
Theorem 4.1

In the proof of Theorem 4.1, we have used that, if x ∈ Gej \ {1} and s = x
x+1 ,

then sd+(s+1)d = 1

(x+1)d−2j
. In fact, when relaxing the condition x ∈ Gej \{1},

we still have an interesting identity, which leads to a new characterization of
APN exponents:

Proposition 4.7 Let n be any positive integer and F (x) = xd be any power

function over F2n . If x 6= 1 and s = x
x+1 then sd + (s+ 1)d = xd+1

(x+1)d
, and F is

APN if and only if the function x 7→ xd+1
(x+1)d

is 2-to-1 from F2n \F2 to F2n \ {1}.

Proof. The first identity is straightforward. Hence, function x 7→ xd+1
(x+1)d

is 2-to-

1 from F2n \ F2 to F2n \ {1} if and only if any equation sd + (s + 1)d = b 6= 1
has at most 2 solutions s in F2n (indeed, it has no solution in F2) and equation
sd + (s + 1)d = 1 has only 2 solutions s in F2n (which are 0 and 1), that is, F
is APN. �
Note that function x ∈ F2n \ F2 7→ xd+1

(x+1)d
is invariant under the transformation

x 7→ x−1. Note also that instead of s = x
x+1 , we could take s = x

x+1 + 1 = 1
x+1 .

Theorem 4.1 can then be revisited as follows: we use the facts that if a
function is 2-to-1 over some set, then it is at most 2-to-1 over any subset, and

that the expression of xd+1
(x+1)d

is simplified when x ∈ Gej , because xd−2
j

= 1
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implies xd+1
(x+1)d

= x2j+1
(x+1)d

= (x+1)2
j

(x+1)d
= 1

(x+1)d−2j
. The nice thing here is that we

obtain an expression with the same exponent d− 2j as in the definition of Gej
and this is what leads to the Sidon-sum-free property.

4.2 On the relationship between APN exponents and Dick-
son polynomials

Recall that, for every positive integer d, functions xd + (x + 1)d and x2 + x
being invariant by the translation x 7→ x + 1 and the latter one being 2-to-1,
xd + (x+ 1)d equals φd(x

2 + x) for some polynomial φd and F (x) = xd is APN
if and only if function φd is injective over the hyperplane H = {x2 + x;x ∈
F2n} = {y ∈ F2n ; trn(y) = 0}, where trn(x) = x+ x2 + · · ·+ x2

n−1

is the trace
function from F2n to F2. This polynomial φd is called the Reversed Dickson
polynomial [8] and equals Dd(1, X) (see e.g. [8]), where Dd is classically defined
by Dd(X + Y,XY ) = Xd + Y d.

Similarly, functions xd+1
(x+1)d

and x + x−1 over F2n \ F2 being invariant under

the transformation x 7→ x−1 and the latter one being 2-to-1, xd+1
(x+1)d

equals

ψd(x + x−1) for some function ψd, which is here characterized by (ψd(y))2 =
Dd(y,1)
yd

, since
(
xd+1
(x+1)d

)2
= xd+x−d

(x+x−1)d
. According to Proposition 4.7, function

F is then APN if and only if ψd is injective over {x + x−1;x ∈ F2n \ F2},
that is, over {y ∈ F∗2n ; trn(y−1) = 0} and does not take value 1. Note that
Dd(y

−1,1)
(y−1)d

= ydDd(y
−1, 1) equals the value at y of the reciprocal polynomial of

Dd(X, 1). Hence:

Proposition 4.8 For every positive integers n and d, function F (x) = xd is

APN if and only if the reciprocal polynomial ˜Dd(X, 1) = XdDd(X
−1, 1) of the

Dickson polynomial Dd(X, 1) is injective and does not take value 1 over H∗ =
{y ∈ F∗2n ; trn(y) = 0}.

We have seen that, for x ∈ F2n \F2, if s = x
x+1 , that is, x = s

s+1 or s = 1
x+1 ,

that is, x = s+1
s , we have xd+1

(x+1)d
= sd + (s + 1)d. We have then x + x−1 =

s+1
s + s

s+1 = 1
s2+s and therefore xd+1

(x+1)d
= ψd(x+ x−1) = ψd

(
1

s2+s

)
= sd + (s+

1)d = φd(s
2 + s). Hence, for every z ∈ H∗, φd(z) = ψd(z

−1) and squaring gives

(φd(z))
2 = D̃d(z, 1). In other words, the squared Reversed Dickson polynomial

and the reciprocal of Dickson polynomial of a same index take the same value
over H and then, given their common degree, are equal to each other (this can
also be easily seen as a consequence of the classical recurrence relations satisfied
by these two polynomials [8]). We have then:

Proposition 4.9 For every positive integer d, the squared Reversed Dickson
polynomial of index d (equal to the Reversed Dickson polynomial of index 2d) and
the reciprocal of Dickson polynomial of index d are equal1. For every z 6= 0 such
that trn1 (z) = 0, we have then (φd(z))

2 = D̃d(z, 1), where D̃d is the reciprocal

1Xiang-dong Hou [7], informed of this property by the authors, has observed that it can
be generalized to any characteristic: XdDd(

1
X

− 2, 1) = D2d(1, X).
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polynomial of the Dickson polynomial Dd of degree d. In particular, we have:

xd + (x+ 1)d =
(
D̃d(x

2 + x, 1)
)2n−1

.

This property allows to deduce the expression of Dickson polynomials with
so-called Gold indices: for every integer i, we have D2i+1(X, 1) = X2i+1 +∑i
j=1X

2i+1−2j . Indeed, x2
i+1 +(x+1)2

i+1 = x2
i

+x+1 = 1+
∑i−1
j=0(x2 +x)2

j

and therefore D̃2i+1(X2 + X, 1) = 1 +
∑i
j=1(x2 + x)2

j

, D̃2i+1(X, 1) = 1 +∑i
j=1X

2j . The values of D2i+1(X, 1) and D2i−1(X, 1) (which are related by

D2i−1(X, 1)+D2i+1(X, 1) = X2i+1) are already known from [5], but Proposition
4.9 also allows to obtain the explicit expressions of other Dickson polynomials;
for instance with so-called Kasami indices:

Corollary 4.10 For every integer i we have:

D4i−2i+1(X, 1) = X4i−2i+1 +X4i+2i+1

 i∑
j=1

X−2
j

2i+1

.

Proof. For every x ∈ F2n \ F2, we have (as already observed and used by
Dobbertin):

x4
i−2i+1 + (x+ 1)4

i−2i+1 =
x4

i+1(x+ 1)2
i

+ (x+ 1)4
i+1x2

i

(x2 + x)2i

=
x4

i+1 + x4
i+2i + x2

i+1 + x2
i

(x2 + x)2i

= 1 +
(x2

i

+ x)2
i+1

(x2 + x)2i

= 1 +

(∑i−1
j=0(x2 + x)2

j
)2i+1

(x2 + x)2i
,

and therefore, after squaring and denoting X = x2 + x, we obtain:

˜D4i−2i+1(X, 1) = 1 +

(∑i
j=1X

2j
)2i+1

X2i+1 ,

and then:

D4i−2i+1(X, 1) = X4i−2i+1 +X4i+2i+1

 i∑
j=1

X−2
j

2i+1

.

This completes the proof. �

Of course we can deduce D4i+2i+1(X, 1) thanks to the relation D4i−2i+1(X, 1)+

D4i+2i+1(X, 1) = D2i(X, 1)D4i+1(X, 1) = X2iD4i+1(X, 1).
The same method applies more generally to D2j−2i+1 but without anymore

the nice factorization above.
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Remark 4.11 The Müller-Cohen-Matthews (MCM) polynomial (see [5]) equals∑k−1
i=0 X

(2k+1)2i−2k and is a permutation polynomial when gcd(k, n) = 1 and k is

odd. Note that it equals φ(X2k+1)

X2k
, where φ(X) =

∑k−1
i=0 X

2i = 1+
(
D̃2k+1(X, 1)

)2n−1

.

5 Experimental Results

5.1 Sidon and sum-free conditions

Hans Dobbertin and Anne Canteaut have checked by computer investigation
that no unclassified APN exponent exists for n ≤ 26. By unclassified APN
exponent, we mean an APN exponent not equal to a Gold, Kasami, Dobbertin,
Welch, Niho or Inverse APN exponent, with n odd in the three latter cases,
nor to its inverse mod 2n − 1 when it is co-prime with 2n − 1 (that is, when n
is odd), nor to these exponents multiplied by powers of 2 and reduced modulo
2n − 1.

Yves Edel checked the same for n ≤ 34 and n = 36, 38, 40, 42. The main idea
for his computer investigation was to consider all the elements in Z/(2n − 1)Z,
discard (because of Dobbertin’s observation recalled in introduction) all those
which are not co-prime with 2n−1 for n odd and do not have gcd equal to 3 with
2n − 1 for n even, and discard (because the restriction to a subfield of an APN
power function is an APN power function) all the remaining exponents whose
reduction mod 2r − 1 is not an APN exponent in F2r for some divisor r of n.
Since the checking that no unclassified APN exponent exists had been already
done previously for r, the condition “is not an APN exponent in F2r” could be
replaced by “is not a known APN exponent in F2r”. Then, after discarding all
known APN exponents in F2n , the remaining exponents were investigated as
possibly new APN exponents; they were gathered in cyclotomic classes and the
APNness of one member of each class was investigated. No unclassified APN
exponent could be found. Note that in the rest of the paper, when discussing
the subfield condition, we mean the condition as implemented by Yves Edel in
his investigation.

In this section, we concentrate on utilizing the same method as well as our
newly developed Sidon and sum-free conditions in order to derive the number
of possibly new APN exponents to test, and to see if the Sidon and sum-free
conditions contribute to reducing this number. Note that we use acronym S
for Sidon condition, SF for sum-free condition, and SSF for Sidon-sum-free
condition. We shall call “S values” (resp. SF, SSF values) those divisors e of
2n − 1 such that Ge = {x ∈ F∗2n ;xe = 1} satisfies S (resp. SF, SSF).

We propose here two techniques; the first one has high computational com-
plexity but low memory complexity and the second one has low computational
complexity but high memory complexity. A trade-off can be considered with
respect to the available resources. In both techniques, we use a result from [4]:
for every divisor e of 2n − 1, Ge is a Sidon (resp. a sum-free) set if and only if,
for every u ∈ F∗2n (resp. for u = 1), the polynomial (X + 1)e + u has at most
two zeros in Ge (resp. has no zero in Ge).

In the first technique, to determine whether a value e is Sidon (resp. sum-
free), we visit all the elements u of F∗2n and for each of them we visit all x of Ge
(that is, all those powers of a primitive element whose exponents are multiples
of 2n−1

e ) and we:
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1. Calculate (x+ 1)e + u.

2. Increment a counter for value u when (x+ 1)e + u = 0.

3. Keep e as Sidon (S) if for no value of u, the counter reached more than 2
and as sum-free (SF) if, for u = 1, the counter never reached more than
0.

This gives computational complexity equal to 2ne. From the memory per-
spective, at any time we are required only to keep two counters (one for S and
one for SF).

For the second technique, we visit all the elements x of Ge (that is, again,
all those powers of a primitive element whose exponents are multiples of 2n−1

e )
and for each, we:

1. Calculate (x+ 1)e.

2. Increment a counter in a table for value (x+ 1)e.

3. Keep e as Sidon (S) if we never reached more than 2 in the table and as
sum-free (SF) if, for value 1, we never reached more than 0.

This technique gives computational complexity of e and memory complexity
of 2n. Since we require 2 bits to store the value 2 in memory, in total we need
up to 2n+1 bits.

We show the results for n ∈ [3, 31] in Tables 3 and 4. Note that sum-free
condition is somewhat more discriminating and enables us to reduce more values
e than the Sidon condition.

Calculating the SSF conditions as we propose here is efficient only for rela-
tively small values of n or of e or if a value e is not SSF (since then we stop the
search relatively fast). In the cases when a large value e is SSF and n is large,
calculating SSF can become too expensive in time and space complexities. Con-
sequently, we arrive to the situation that checking SSF is more expensive than
checking if a value d is a new APN exponent. To circumvent that problem, for
larger values of n, we do not calculate SSF values exactly: we call Approximate
SSF (ASSF) those values e which are not shown “not SSF” by the results of
Carlet and Mesnager given in [4]:

Definition 5.1 The Approximate Sidon-sum-free (ASSF) set is the set consist-
ing of the divisors e of 2n − 1 after discarding the following values:

1. 2r − 1 where r ≥ 2 divides n.
2. gcd(2r + 1, 2n − 1) where r is odd and n is even.
3. gcd(2r + 3, 2n − 1) where r ≡ 2 mod 3 and n is a multiple of 3.
4. gcd(2r−2k+1, 2n−1) where n, r and k−1 have a common divisor larger

than 1.
5. Every divisor of 2n − 1 which is a multiple of one of the values described

in one of the items above.

Analogous to the definition of ASSF set, we define the Approximate Sidon
(AS) set and Approximate sum-free (ASF) set. More precisely, Approximate
Sidon (AS) set is the set consisting of the divisors e of 2n − 1 after discarding
the values from Definition 5.1, conditions 1 and 5. Approximate sum-free (ASF)
set is the set consisting of the divisors e of 2n − 1 after discarding the values

11



Table 3: Divisors of 2n − 1 which are Sidon-sum-free, part I.

n Specification Values

3 S/SF/SSF 1

4
S 1, 3, 5

SF 1, 5
SSF 1, 5

5 S/SF/SSF 1

6
S 1, 3, 9

SF 1
SSF 1

7 S/SF/SSF 1

8
S 1, 3, 5, 17

SF 1, 5, 17
SSF 1, 5, 17

9 S/SF/SSF 1

10
S 1, 3, 11, 33

SF 1, 11
SSF 1, 11

11
S 1, 23

SF 1, 23, 89
SSF 1, 23

12
S 1, 3, 5, 9, 13, 39, 65

SF 1, 5, 13, 65
SSF 1, 5, 13, 65

13 S/SF/SSF 1

14
S 1, 3, 43, 129

SF 1, 43
SSF 1, 43

15
S 1, 151

SF 1, 151
SSF 1, 151

16
S 1, 3, 5, 17, 257

SF 1, 5, 17, 257, 1 285
SSF 1, 5, 17, 257

17 S/SF/SSF 1

18
S 1, 3, 9, 19, 27, 57, 171, 513

SF 1, 19
SSF 1, 19
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Table 4: Divisors of 2n − 1 which are Sidon-sum-free, part II.

n Specification Values

19 S/SF/SSF 1

20
S 1, 3, 5, 11, 25, 33, 41, 55, 123, 205, 275, 1 025

SF 1, 5, 11, 25, 41, 55, 205, 275, 451, 1 025, 2 255,
SSF 1, 5, 11, 25, 41, 55, 205, 275, 1 025

21
S 1, 337

SF 1, 337
SSF 1, 337

22
S 1, 3, 23, 69, 683, 2 049

SF 1, 23, 89, 683, 15 709
SSF 1, 23, 683

23
S 1, 47

SF 1, 47
SSF 1, 47

24
S 1, 3, 5, 9, 13, 17, 39, 65, 221, 241, 723, 1 205, 4 097

SF 1, 5, 13, 17, 65, 221, 241, 1 205, 4 097
SSF 1, 5, 13, 17, 65, 221, 241, 1 205, 4 097

25
S 1, 601, 1 801

SF 1, 601, 1 801
SSF 1, 601, 1801

26
S 1, 3, 2 731, 8 193

SF 1, 2 731
SSF 1, 2 731

27 S/SF/SSF 1

28
S 1, 3, 5, 29, 43, 87, 113, 129, 145, 215, 339, 565, 1 247, 3 277, 16 385

SF 1, 5, 29, 43, 113, 145, 215, 565, 1 247, 3 277, 4 859, 6 235, 16 385, 24 295
SSF 1, 5, 29, 43, 113, 145, 215, 565, 1 247, 3 277, 16 385

29
S 1, 233, 1 103, 2 089

SF 1, 233, 1 103, 2 089, 256 999
SSF 1, 233, 1 103, 2 089

30
S 1, 3, 9, 11, 33, 99, 151, 331, 453, 993, 1 359, 1 661, 2 979,

3 641, 4 983, 10 923, 32 769
SF 1, 11, 151, 331, 1 661, 3 641

SSF 1, 11, 151, 331, 1 661, 3 641

31 S/SF/SSF 1
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obtained from Definition 5.1, conditions 2, 3, 4, and 5. Due to the large number
of possible AS, ASF, ASSF values for n large, we give tables with results up to
n = 40 in Appendix A, Tables 6 until 10.

Remark 5.2 Note that all the SSF values belong to the set of Approximate SSF
values, but this set possibly contains more values.
By comparing the results from Tables 3 and 4 with those from Tables 6 until 10
we see there are only a few values of n where SSF and ASSF sets are not the
same. This does not mean necessarily that using ASSF for larger n does not
weaken the techniques.

Remark 5.3 It is possible to improve the computation speed for calculating SSF
set by considering the ASSF set: first, we calculate the ASSF set and then we
check if all those values are indeed SSF values. Trivially, we can exclude values
1 from the check (since we know that it is always SSF) and 2n−1 since we know
it is never SSF.

Remark 5.4 When 2n − 1 is a Mersenne prime then there is no need to check
SSF since we know value 1 is always SSF and there is no other strict divisor of
2n − 1.

5.2 Calculating the number of possibly new APN expo-
nents

In this section, we employ all constraints on the possibly new APN exponents
d in order to investigate the computational effort needed to find new APN
exponents or discard all possible values d for a certain value of n. We start by
recalling all the conditions a value d needs to fulfill to be a possibly new APN
exponent. We list the conditions in the order we apply them.

1. Remove any value d such that gcd(d, 2n−1) 6= 1 if n is odd and gcd(d, 2n−
1) 6= 3 if n is even.

2. Remove any value d if it is already a known APN exponent.

3. If n is even, keep only one representative of a cyclotomic class with d
being an element. Keep the minimal representative of a cyclotomic class.
If n is odd, keep only one representative of cyclotomic classes with d and
its inverse being the elements. Keep the minimal representative of both
cyclotomic classes.

4. Remove any value d such that gcd(d, 2r − 1) is not an APN exponent in
F2r .

5. Remove any value d such that gcd(d− 2j , 2n − 1) is not an SSF value, for
some j. If n is too large, replace SSF by ASSF.

6. Remove any value d such that there exists a divisor λ of 2n − 1 such that(
λ+1
2

)
> 2n− 1 and there exists j = 1, . . . , n− 1 such that λ divides d− 2j

(see Remark 4.6).

Remark 5.5 Note that if n is a prime, then the subfield condition is useless
since there are no subfields to explore.
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Table 5: Number of possibly new APN exponents, the total number of values
to consider for a certain n equals 2n − 2.

n gcd(d, 2n − 1) Not known APN Cyclotomic rep. Subfield SSF

3 6 3 1 1 0
4 4 0 0 0 0
5 30 5 1 1 0
6 12 6 1 0 0
7 126 49 4 4 3
8 64 40 5 5 4
9 432 315 19 6 4
10 300 260 26 21 21
11 1 936 1 683 78 78 66
12 576 540 45 21 21
13 8 190 7 839 302 302 301
14 5 292 5 222 373 226 226
15 27 000 26 685 893 365 365
16 16 384 16 272 1 017 377 370
17 131 070 130 475 3 838 3 838 3 837
18 46 656 46 566 2 587 697 697
19 524 286 523 545 13 778 13 778 13 777
20 240 000 239 840 11 992 1 592 1 512
21 1 778 112 1 777 545 42 326 12 923 12 923
22 1 320 352 1 320 154 60 007 7 834 7 824
23 8 210 080 8 208 999 178 458 178 458 178 434
24 2 211 840 2 211 672 92 153 2 153 2 135
25 32 400 000 32 398 875 647 981 539 979 539 966
26 22 358 700 22 358 414 859 939 36 844 36 844
27 113 467 392 113 466 339 2 101 232 569 069 569 010
28 66 382 848 66 382 540 2 370 805 31 349 31 127
29 533 826 432 533 824 721 9 203 878 9 203 878 9 202 166
30 178 200 000 178 199 760 5 939 992 11 212 11 212
31 2 147 483 646 2 147 481 693 34 636 802 34 636 802 34 636 801

Remark 5.6 Since the SSF condition works for all values of n where 2n − 1
is not a Mersenne prime and subfield condition works for all values where n is
not prime, we consider SSF condition to be a more general one since Mersenne
primes are rarer than primes.

In Table 5, we give results for the number of values d one needs to examine
in order to look for new APN exponents. We note that this list serves only the
illustrative purpose how SSF constraint reduces the number of values to check.
Previous results by Y. Edel [9] show that there are no new APN exponents for
those values of n. We can observe as the values of n become larger and when
2n − 1 has many divisors, SSF condition is able to discriminate more values.
This gives hope that for even higher values of n, SSF would be more useful and
significantly reduce the number of values d to test. This could be especially true
for cases when n is prime but 2n − 1 has many divisors (e.g. n = 29).
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6 More properties of APN exponents

In this section, we give more results on APN exponents, which are not so nice
to state as in Section 4, but may however be useful for future works.

6.1 Other necessary conditions for an exponent to be APN

Proposition 6.1 For every positive integers n and d and for every integer j
such that 0 ≤ j ≤ n−1, let fj = gcd(d+ 2j , 2n−1). Consider the multiplicative

group Gfj = {x ∈ F∗2n ;xd+2j = 1} = {x ∈ F∗2n ;xfj = 1}. If function F (x) = xd

is APN over F2n , then, for every j, k ∈ Z/nZ and for every elements x ∈
Gfj \ {1}, x′ ∈ Gfk \ {1} satisfying x2

j

(x+ 1)d−2
j

= x′
2k

(x′ + 1)d−2
k

, we have
x′ = x or x′ = x−1.

Proof. Writing again x = s
s+1 , s = x

x+1 , the identity xd+2j = 1 implies

sd+2j + (s + 1)d+2j = 0, that is, sd+2j + (s + 1)d(s2
j

+ 1) = 0, that is, sd +

(s + 1)d = (s+1)d

s2
j = 1

x2j (x+1)d−2j
. Hence, if F is APN, every elements x ∈

Gfj \{1}, x′ ∈ Gfk \{1} such that 1

x2j (x+1)d−2j
= 1

x′2
k
(x′+1)d−2k

, or equivalently

x2
j

(x+ 1)d−2
j

= x′
2k

(x′ + 1)d−2
k

, are such that x′ = x or x′ = x−1. �

Remark 6.2 The interpretation of Subsection 4.1 is in the present case as

follows: if xd+2j = 1 then xd+1
(x+1)d

= x−2j+1
(x+1)d

= x2j+1

x2j (x+1)d
= 1

x2j (x+1)d−2j
.

Other similar properties can be derived but they are more complex (and give
then less simple ways of discriminating APN exponents).
For instance, for every integers k, j, d such that 0 ≤ k < j ≤ n − 1, let
ek,j = gcd(d−2k−2j , 2n−1), and let Gek,j

be the multiplicative subgroup {x ∈
F∗2n ;xd−2

k−2j = 1} = {x ∈ F∗2n ;xek,j = 1} of order ek,j . If function F (x) = xd

is APN over F2n , then, if x, y ∈ Gek,j
\ {1}, x 6= y and x 6= y−1, then we

have xd+xd−2k−2j+xd−2k+2j+xd−2j+2k

(x+1)d
6= 1 and xd+xd−2k−2j+xd−2k+2j+xd−2j+2k

(x+1)d
6=

yd+yd−2k−2j+yd−2k+2j+yd−2j+2k

(y+1)d
. Indeed, still introducing the unique s ∈ F∗2n\{1}

such that x = s
s+1 , we have sd−2

k−2j + (s + 1)d−2
k−2j = 0, and multiply-

ing by (s + 1)2
k+2j we obtain sd + (s + 1)d = sd−2

k−2j + sd−2
k

+ sd−2
j

=
xd−2k−2j (x+1)2

k+2j+xd−2k (x+1)2
j
+xd−2j (x+1)2

k

(x+1)d
= xd+xd−2k−2j+xd−2k+2j+xd−2j+2k

(x+1)d
.

The rest of the proof is similar to above.
More generally, let k be any integer and let xk = 1, x 6= 1, x = s

s+1 , we have

sk + (s+ 1)k = 0 and therefore, by multiplication by (s+ 1)d−k: sd + (s+ 1)d =∑d−k−1
j=0

(
d−k
j

)
sj+k, which implies that x 6= 1, y 6= 1, x 6= y, x 6= 1

y and

xk = yk = 1 imply
∑d−k−1
j=0

(
d−k
j

)
xj

(x+1)j+k 6= 1 and
∑d−k−1
j=0

(
d−k
j

)
xj

(x+1)j+k 6=∑d−k−1
j=0

(
d−k
j

)
yj

(y+1)j+k .

7 Conclusions

In this paper, we presented necessary conditions related to Sidon sets and sum-
free sets for an element d ∈ Z/(2n − 1)Z to be an APN exponent in F2n (we
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call these conditions the Sidon-sum-free, in brief SSF, conditions). This makes
a junction between vectorial Boolean functions for cryptography and additive
combinatorics. We also gave a new characterization of such exponents, which
can be nicely expressed by means of Dickson polynomials, and we proved that
Dickson polynomials in characteristic 2 and Reversed Dickson polynomials of
the same index are reciprocal of each others, up to squaring the latter. Since
Reversed Dickson polynomials are easier to calculate than Dickson polynomials,
this allows simplifying the determination of the expressions of the latter (we
gave two examples of such determinations). The new conditions related to
Sidon sets and sum-free sets in turn enable us to speed up the search for new
APN exponents, i.e., to discriminate even more what could be possible new
APN exponents. Although our experimental results show the improvements
are relatively small, they are nevertheless important from both theoretical and
practical perspective. We observe only small improvements with our new SSF
condition since we apply it after all the other known conditions and we notice
that the Edel’s subfield condition removes many of the same exponents as the
SSF condition. Finally, our results suggest that SSF condition should become
more discriminative as we increase the value n and especially for those values
where n is prime and 2n − 1 has many divisors.

In future work, we plan to extend our research for new APN exponents
for higher values of n, as well as investigate how to calculate SSF values more
efficiently. Finally, the discrepancy between the obtained SSF values and the
super-class (more easy to determine) of ASSF values points us that additional
conditions to recognize ASSF values more precisely should be found.
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A Additional computational results

Tables 6 until 10 give results for AS, ASF, and ASSF sets for values n up to 40.
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Table 6: ASSF calculations, part I.

n Specification Values

3

AS 1
ASF 1

ASSF 1

4

AS 1, 3, 5
ASF 1, 5

ASSF 1, 5

5

AS 1
ASF 1

ASSF 1

6

AS 1, 3, 9
ASF 1

ASSF 1

7

AS 1
ASF 1

ASSF 1

8

AS 1, 3, 5, 17, 51, 85
ASF 1, 5, 17, 85

ASSF 1, 5, 17, 85

9

AS 1, 73
ASF 1, 73

ASSF 1, 73

10

AS 1, 3, 11, 33
ASF 1, 11

ASSF 1, 11

11

AS 1, 23, 89
ASF 1, 23, 89

ASSF 1, 23, 89

12

AS 1, 3, 5, 9, 13, 39, 65, 117
ASF 1, 5, 13, 65

ASSF 1, 5, 13, 65

13

AS 1
ASF 1

ASSF 1

14

AS 1, 3, 43, 129
ASF 1, 43

ASSF 1, 43

15

AS 1, 151
ASF 1, 151

ASSF 1, 151
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Table 7: ASSF calculations, part II.

n Specification Values

16

AS 1, 3, 5, 17, 51, 85, 257, 771, 1 285, 4 369, 13 107, 21 845
ASF 1, 5, 17, 85, 257, 1 285, 4 369, 21 845

ASSF 1, 5, 17, 85, 257, 1 285, 4 369, 21 845

17

AS 1
ASF 1

ASSF 1

18

AS 1, 3, 9, 19, 27, 57, 73, 171, 219, 513, 657, 1 387, 1 971, 4 161, 12 483, 37 449
ASF 1, 19, 73, 1 387

ASSF 1, 19, 73, 1 387

19

AS 1
ASF 1

ASSF 1

20

AS 1, 3, 5, 11, 25, 33, 41, 55, 123, 205, 275, 451, 1 025, 1 353, 2 255, 11 275
ASF 1, 5, 11, 25, 41, 55, 205, 275, 451, 1 025, 2 255, 11 275

ASSF 1, 5, 11, 25, 41, 55, 205, 275, 451, 1 025, 2 255, 11 275

21

AS 1, 337
ASF 1, 337

ASSF 1, 337

22

AS 1, 3, 23, 69, 89, 267, 683, 2 049, 15 709, 47 127, 60 787, 182 361
ASF 1, 23, 89, 683, 15 709, 60 787

ASSF 1, 23, 89, 683, 15 709, 60 787

23

AS 1, 47, 178 481
ASF 1, 47, 178 481

ASSF 1, 47, 178 481

24

AS 1, 3, 5, 9, 13, 17, 39, 51, 65, 85, 117, 153, 221, 241, 663, 723, 1 105, 1 205, 1 989,
2 169, 3 133, 4 097, 9 399, 12 291, 15 665, 20 485, 28 197, 36 873, 53 261, 159 783,

266 305, 479 349
ASF 1, 5, 13, 17, 65, 85, 221, 241, 1 105, 1 205, 3 133, 4 097, 15 665, 20 485, 53 261,

266 305
ASSF 1, 5, 13, 17, 65, 85, 221, 241, 1 105, 1 205, 3 133, 40 97, 15 665, 20 485, 53 261,

266 305

25

AS 1, 601, 1 801, 1 082 401
ASF 1, 601, 1 801, 1 082 401

ASSF 1, 601, 1 801, 1 082 401

26

AS 1, 3, 2 731, 8 193
ASF 1, 2 731

ASSF 1, 2 731

27

AS 1, 73, 262 657, 19 173 961
ASF 1, 73, 262 657, 19 173 961

ASSF 1, 73, 262 657, 19 173 961
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Table 8: ASSF calculations, part III.

n Specification Values

28

AS 1, 3, 5, 29, 43, 87, 113, 129, 145, 215, 339, 565, 1 247, 3 277, 3 741, 4 859,
6 235, 9 831, 14 577, 16 385, 24 295, 140 911, 422 733, 704 555

ASF 1, 5, 29, 43, 113, 145, 215, 565, 1 247, 3 277, 4 859, 6 235, 16 385, 24 295,
140 911, 704 555

ASSF 1, 5, 29, 43, 113, 145, 215, 565, 1 247, 3 277, 4 859, 6 235, 16 385, 24 295,
140 911, 704 555

29

AS 1, 233, 1 103, 2 089, 256 999, 486 737, 2 304 167
ASF 1, 233, 1 103, 2 089, 256 999, 486 737, 2 304 167

ASSF 1, 233, 1 103, 2 089, 256 999, 486 737, 2 304 167

30

AS 1, 3, 9, 11, 33, 99, 151, 331, 453, 993, 1 359, 1 661, 2 979, 3 641, 4 983, 10 923,
14 949, 32 769, 49 981, 149 943, 449 829, 549 791, 1 649 373, 4 948 119

ASF 1, 11, 151, 331, 1 661, 3 641, 49 981, 549 791
ASSF 1, 11, 151, 331, 1 661, 3 641, 49 981, 549 791

31

AS 1
ASF 1

ASSF 1

32

AS 1, 3, 5, 17, 51, 85, 257, 771, 1 285, 4 369, 13 107, 21 845, 65 537, 196 611, 327 685,
1 114 129, 3 342 387, 5 570 645, 16 843 009, 50 529 027, 84 215 045, 286 331 153,

858 993 459, 1 431 655 765
ASF 1, 5, 17, 85, 257, 1 285, 4 369, 21 845, 65 537, 327 685, 1 114 129, 5 570 645,

16 843 009, 84 215 045, 286 331 153, 1 431 655 765
ASSF 1, 5, 17, 85, 257, 1 285, 4 369, 21 845, 65 537, 327 685, 1 114 129, 5 570 645,

16 843 009, 84 215 045, 286 331 153, 1 431 655 765

33

AS 1, 23, 89, 599 479, 13 788 017, 53 353 631
ASF 1, 23, 89, 599 479, 13 788 017, 53 353 631

ASSF 1, 23, 89, 599 479, 13 788 017, 53 353 631

34

AS 1, 3, 43 691, 131 073
ASF 1, 43 691

ASSF 1, 43 691

35

AS 1, 71, 122 921, 8 727 391
ASF 1, 71, 122 921, 8 727 391

ASSF 1, 71, 122 921, 8 727 391
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Table 9: ASSF calculations, part IV.

n Specification Values

36

AS 1, 3, 5, 9, 13, 19, 27, 37, 39, 57, 65, 73, 95, 109, 111, 117, 171, 185, 219, 247,
327, 333, 351, 365, 481, 513, 545, 657, 703, 741, 949, 981, 999, 1 235, 1 387,

1 417, 1 443, 1 971, 2 071, 2 109, 2 223, 2 405, 2 701, 2 847, 2 943, 3 515, 4 033,
4 161, 4 251, 4 329, 4 745, 6 213, 6 327, 6 669, 6 935, 7 085, 7 957, 8 103, 8 541,

9 139, 10 355, 12 099, 12 483, 12 753, 12 987, 13 505, 18 031, 18 639, 18 981,
20 165, 23 871, 24 309, 25 623, 26 923, 27 417, 35 113, 36 297, 37 449, 38 259,
39 785, 45 695, 51 319, 52 429, 54 093, 55 917, 71 613, 72 927, 76 627, 80 769,
82 251, 90 155, 103 441, 105 339, 108 891, 134 615, 151 183, 153 957, 157 287,

162 279, 175 565, 214 839, 229 881, 242 307, 246 753, 256 595, 262 145, 294 409,
310 323, 316 017, 383 135, 453 549, 461 871, 471 861, 486 837, 517 205, 667 147,

689 643, 726 921, 755 915, 883 227, 930 969, 948 051, 996 151, 1 360 647,
1 385 613, 1 415 583, 1 472 045, 1 965 379, 2 001 441, 2 068 929, 2 649 681,

2 792 907, 2 988 453, 3 335 735, 3 827 317, 4 081 941, 4 980 755, 5 593 771, 5 896 137,
6 004 323, 7 949 043, 8 965 359, 9 826 895, 11 481 951, 16 781 313, 17 688 411,

18 012 969, 19 136 585, 26 896 077, 27 968 855, 34 445 853, 50 343 939, 53 065 233,
72 719 023, 103 337 559, 151 031 817, 218 157 069, 363 595 115, 654 471 207,

1 963 413 621
ASF 1, 5, 13, 19, 37, 65, 73, 95, 109, 185, 247, 365, 481, 545, 703, 949, 1 235, 1 387,

1 417, 2 071, 2 405, 2 701, 3 515, 4 033, 4 745, 6 935, 7 085, 7 957, 9 139, 10 355,
13 505, 18 031, 20 165, 26 923, 35 113, 39 785, 45 695, 51 319, 52 429, 76 627,

90 155, 103 441, 134 615, 151 183, 175 565, 256 595, 262 145, 294 409, 383 135,
517 205, 667 147, 755 915, 996 151, 1 472 045, 1 965 379, 3 335 735, 3 827 317,
4980755, 5 593 771, 9 826 895, 19 136 585, 27 968 855, 72 719 023, 363 595 115

ASSF 1, 5, 13, 19, 37, 65, 73, 95, 109, 185, 247, 365, 481, 545, 703, 949, 1 235, 1 387,
1 417, 2 071, 2 405, 2 701, 3 515, 4 033, 4 745, 6 935, 7 085, 7 957, 9 139, 10 355,

13 505, 18 031, 20 165, 26 923, 35 113, 39 785, 45 695, 51 319, 52 429, 76 627,
90 155, 103 441, 134 615, 151 183, 175 565, 256 595, 262 145, 294 409, 383 135,

517 205, 667 147, 755 915, 996 151, 1 472 045, 1 965 379, 3 335 735, 3 827 317,
4 980 755, 5 593 771, 9 826 895, 19 136 585, 27 968 855, 72 719 023, 363 595 115

37

AS 1, 223, 616 318 177
ASF 1, 223, 616 318 177

ASSF 1, 223, 616 318 177
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Table 10: ASSF calculations, part V.

n Specification Values

38

AS 1, 3, 174 763, 524 289
ASF 1, 174 763

ASSF 1, 174 763

39

AS 1, 79, 121 369, 9 588 151
ASF 1, 79, 121 369, 9 588 151

ASSF 1, 79, 121 369, 9 588 151

40

AS 1, 3, 5, 11, 17, 25, 33, 41, 51, 55, 85, 123, 187,
205, 275, 425, 451, 561, 697, 935, 1 025, 1 353, 2 091, 2 255, 3 485,

4 675, 7 667, 11 275, 17 425, 23 001, 38 335, 61 681, 185 043, 191 675,
308 405, 678 491, 1 048 577, 1 542 025, 2 035 473, 2 528 921, 3 145 731,

3 392 455, 5 242 885, 7 586 763, 11 534 347, 12 644 605, 16 962 275, 26 214 425,
27 818 131, 34 603 041, 42 991 657, 57 671 735, 63 223 025, 83 454 393,

128 974 971, 139 090 655, 214 958 285, 288 358 675, 472 908 227, 695 453 275,
1 074 791 425, 1 418 724 681, 2 364 541 135, 11 822 705 675

ASF 1, 5, 11, 17, 25, 41, 55, 85, 187, 205, 275, 425,
451, 697, 935, 1 025, 2 255, 3 485, 4 675, 7 667, 11 275, 17 425,
38 335, 61 681, 191 675, 308 405, 678 491, 1 048 577, 1 542 025,

2 528 921, 3 392 455, 5 242 885, 11 534 347, 12 644 605, 16 962 275,
26 214 425, 27 818 131, 42 991 657, 57 671 735, 63 223 025, 139 090 655,

214 958 285, 288 358 675, 472 908 227, 695 453 275, 1 074 791 425,
2 364 541 135, 11 822 705 675

ASSF 1, 5, 11, 17, 25, 41, 55, 85, 187, 205, 275, 425,
451, 697, 935, 1 025, 2 255, 3 485, 4 675, 7 667, 11 275, 17 425,
38 335, 61 681, 191 675, 308 405, 678 491, 1 048 577, 1 542 025,

2 528 921, 3 392 455, 5 242 885, 11 534 347, 12 644 605, 16 962 275,
26 214 425, 27 818 131, 42 991 657, 57 671 735, 63 223 025, 139 090 655,

214 958 285, 288 358 675, 472 908 227, 695 453 275, 1 074 791 425,
2 364 541 135, 11 822 705 675
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