
The SM9 Cryptographic Schemes

Zhaohui Cheng

Independent Consultant
zhaohui cheng@hotmail.com

Abstract. SM9 is a Chinese official cryptography standard which de-
fines a set of identity-based cryptographic schemes from pairings. This re-
port describes the technical specification of SM9. The security of schemes
is also analyzed.

1 Introduction

In this document, the identity-based signature (IBS), the identity-based key
agreement(IB-KA) and the identity-based encryption (IBE) scheme from SM9 [15]
are described. These schemes are instantiated with an efficient bilinear pairing on
elliptic curves [18] such as the optimal Ate pairing [26] or the R-Ate pairing [21].

Without loss of generality, a pairing is defined as a bilinear map

ê : G1 ×G2 → GT ,

where G1,G2 are additive groups and GT is a multiplicative group. All three
groups have prime order r.

The map ê has the following properties:

1. Bilinearity. For all (P,Q) ∈ G1 × G2 and all a, b ∈ Z, ê([a]P, [b]Q) =
ê(P,Q)ab.

2. Non-degeneracy. For generator P1 ∈ G1 and P2 ∈ G2, ê(P1, P2) 6= 1

The report is organized as follows. First, used notation is defined in Section
2 and two supporting functions are described in Section 3. Then, three identity-
based cryptographic schemes including signature, key agreement and encryption
from the SM9 standard are presented in Section 4, 5 and 6 respectively. In Sec-
tion 7, the security of the schemes is analyzed. Finally, performance comparison
between SM9 and standardized schemes is given in Section 8.

2 Notation

The following list briefly describes the notation used in the document. One may
refer to ISO/IEC 18033-2 [19] for detailed definitions.

1. BITS(m): the primitive to count bit length of a bit string m.
2. BS2IP (m): the primitive to convert a bit string m to an integer.

3. EC2OSP (C): the primitive to convert an elliptic curve point C to an octet
string.

4. FE2OSP (w): the primitive to convert a field element w to an octet string.
5. I2OSP (m, `): the primitive to convert an integer m to an octet string of

length `.

3 Supporting Functions

Before presenting the main schemes, two supporting functions used in the schemes
are described here.

The first function is a key derivation function (KDF) which works as KDF2
in ISO/IEC 18033-2 [19].

KDF2 (Hv, Z, `). Given a hash function Hv with v-bit output, a bit string Z
and a non-negative integer `

1. Set a 32-bit counter ct = 0x00000001.
2. For i = 1 to d`/ve.

(a) Set Hai = Hv(Z‖I2OSP (ct, 4)).
(b) Set ct = ct+ 1.

3. Output the first ` bits of Ha1‖Ha2‖ · · · ‖Had`/ve.

The second function is a hash to range function (H2RF) which runs as follows:
H2RFi(Hv, Z, n). Given a hash function Hv with v-bit output, a bit string Z
and a non-negative integer n and a non-negative integer index i

1. Set ` = 8× d(5×BITS(n))/32e.
2. Set Ha =KDF2(Hv, I2OSP (i, 1)‖Z, `).
3. Set h = BS2IP (Ha).
4. Output hi = (h mod (n− 1)) + 1.

4 Identity-Based Signature

The SM9 signature (SM9-IBS) scheme consists of following four operations:
Setup, Private-Key-Extract, Sign and Verify.

Setup GID(1k). On input the security parameter k, the operation runs as fol-
lows:

1. Generate three groups G1, G2 and GT of prime order r and a bilinear pairing
map ê : G1 ×G2 → GT . Pick random generator P1 ∈ G1, P2 ∈ G2.

2. Pick a random s ∈ Z∗r and compute Ppub = [s]P2.
3. Set g = ê(P1, Ppub).
4. Pick a cryptographic hash function Hv and a one byte appendix hid.
5. Output the master public key Mpk = (G1,G2,GT , ê, P1, P2, Ppub, g, Hv, hid)

and the master secret key Msk = s. SM9 standard requires hid = 1.

Private-Key-Extract XID(Mpk,Msk, IDA). Given an identity string IDA ∈
{0, 1}∗ of entity A, Mpk and Msk, the operation outputs error if

s+ H2RF1(Hv, IDA‖hid, r) mod r = 0,

otherwise outputs

DA = [
s

s+ H2RF1(Hv, IDA‖hid, r)
]P1.

Sign(Mpk, DA,M). Given the message M , the private key DA and the master
public key Mpk, the operation runs as follows:

1. Pick a random x ∈ Z∗r .
2. Set w = gx.
3. Set h = H2RF2(Hv,M‖FE2OSP (w), r).
4. Set l = (x− h) mod r.
5. Set S = [l]DA.
6. Output 〈h, S〉.

Verify(Mpk, IDA,M, 〈h, S〉). Given the message M , the signer’s identity string
IDA, the signature 〈h, S〉 and the master public key Mpk, the operation runs as
follows:

1. If h /∈ Z∗r or S /∈ G∗1, then output failure and terminate.
2. Set h1 = H2RF1(Hv, IDA‖hid, r).
3. Set Q = [h1]P2 + Ppub.
4. Set u = ê(S,Q).
5. Set t = gh.
6. Set w′ = u · t.
7. Set h2 = H2RF2(Hv,M‖FE2OSP (w′), r).
8. If h 6= h2, then output failure, otherwise output success.

5 Identity-Based Key Agreement

The SM9 key agreement (SM9-KA) is an authenticated two-pass (or three-pass)
key agreement (with key confirmation). The scheme consists of following op-
erations: Setup, Private-Key-Extract, Message Exchange, Session Key
Generation and Session Key Confirmation.

Setup GID(1k). On input security parameter k, the operation runs as follows:

1. Generate three groups G1, G2 and GT of prime order r and a bilinear pairing
map ê : G1 ×G2 → GT . Pick random generator P1 ∈ G1, P2 ∈ G2.

2. Pick a random s ∈ Z∗r and compute Ppub = [s]P1.
3. Set g = ê(Ppub, P2).
4. Pick a cryptographic hash function Hv and a one byte appendix hid.
5. Output the master public key Mpk = (G1,G2,GT , ê, P1, P2, Ppub, g, Hv, hid)

and the master secret key Msk = s. SM9 standard requires hid = 3.

Private-Key-Extract XID(Mpk,Msk, IDA). Given an identity string IDA ∈
{0, 1}∗ of entity A, Mpk and Msk, the operation outputs error if

s+ H2RF1(Hv, IDA‖hid, r) mod r = 0,

otherwise outputs

DA = [
s

s+ H2RF1(Hv, IDA‖hid, r)
]P2.

Message Exchange.

A→ B : RA = [xA]([H2RF1(Hv, IDB‖hid, r)]P1 + Ppub)
B → A : RB = [xB]([H2RF1(Hv, IDA‖hid, r)]P1 + Ppub), SB
A→ B : SA

where random xA, xB ∈ Z∗r are picked by A and B respectively and SB and SA
are the optional session key confirmation parts. The method to generate such
optional values is explained later.

Session Key Generation.

1. Entity A computes key values

g1 = ê(RB , DA), g2 = ê(Ppub, P2)xA = gxA , g3 = gxA1 .

2. Entity A computes `-bit session key

SKA = KDF2(Hv, IDA‖IDB‖EC2OSP (RA)‖EC2OSP (RB)‖

FE2OSP (g1)‖FE2OSP (g2)‖FE2OSP (g3), `).

3. Entity B computes key values

g′1 = ê(Ppub, P2)xB = gxB , g′2 = ê(RA, DB), g′3 = g′2
xB .

4. Entity B computes `-bit session key

SKB = KDF2(Hv, IDA‖IDB‖EC2OSP (RA)‖EC2OSP (RB)‖

FE2OSP (g′1)‖FE2OSP (g′2)‖FE2OSP (g′3), `).

Session Key Confirmation.

1. Entity B computes its key confirmation

SB = Hv(0x82‖FE2OSP (g′2)‖

Hv(FE2OSP (g′1)‖FE2OSP (g′3)‖IDA‖IDB‖EC2OSP (RA)‖EC2OSP (RB)).

Entity A should verify SB ’s correctness with g1, g2, g3.
2. Entity A computes its key confirmation

SA = Hv(0x83‖FE2OSP (g1)‖

Hv(FE2OSP (g2)‖FE2OSP (g3)‖IDA‖IDB‖EC2OSP (RA)‖EC2OSP (RB)).

Entity B should verify SA’s correctness with g′1, g
′
2, g
′
3.

Note that entity A(B) should check RB(RA) lies in G∗1 respectively.

6 Identity-Based Encryption

The SM9 encryption (SM9-IBE) is a hybrid encryption scheme built from an
identity-based key encapsulation scheme (KEM) and a data encapsulation scheme
(DEM). DEM can be one of those schemes such as DEM2 or DEM3 standard-
ized in ISO/IEC 18033-2 [19]. First, the SM9 KEM is presented, then the hybrid
encryption scheme is described. SM9-KEM scheme consists of four operations:
Setup, Private-Key-Extract, KEM-Encap and KEM-Decap as follows:

Setup GID−KEM(1k). On input security parameter k, the operation runs as
follows:

1. Generate three groups G1, G2 and GT of prime order r and a bilinear pairing
map ê : G1 ×G2 → GT . Pick random generator P1 ∈ G1, P2 ∈ G2.

2. Pick a random s ∈ Z∗r and compute Ppub = [s]P1.
3. Set g = ê(Ppub, P2).
4. Pick a cryptographic hash function Hv and a one byte appendix hid.
5. Output the master public key Mpk = (G1,G2,GT , ê, P1, P2, Ppub, g, Hv, hid)

and the master secret key Msk = s. SM9 standard requires hid = 3.

Private-Key-Extract XID−KEM(Mpk,Msk, IDA). Given an identity string IDA ∈
{0, 1}∗ of entity A, Mpk and Msk, the operation outputs error if

s+ H2RF1(Hv, IDA‖hid, r) mod r = 0,

otherwise outputs

DA = [
s

s+ H2RF1(Hv, IDA‖hid, r)
]P2.

KEM-Encap EID−KEM(Mpk, IDA). Given an identify string IDA and the master
public key Mpk, the operation runs as follows:

1. Set h1 = H2RF1(Hv, IDA‖hid, r).
2. Set Q = [h1]P1 + Ppub.
3. Pick a random x ∈ Z∗r .
4. Set C1 = [x]Q.
5. Set t = gx.
6. Set K = KDF2(Hv, EC2OSP (C1)‖FE2OSP (t)‖IDA, `), where ` is the key

length of the DEM.
7. Output 〈K,C1〉.

KEM-Decap DID−KEM(Mpk, IDA, DA, C1). Given an identify string IDA, the
corresponding private key DA, the encapsulation part C1 and the master public
key Mpk, the operation runs as follows:

1. If C1 /∈ G∗1, then output ⊥ and terminate.
2. Set t = ê(C1, DA).
3. Set K = KDF2(Hv, EC2OSP (C1)‖FE2OSP (t)‖IDA, `), where ` is the key

length of the DEM.

4. Output K.

The full SM9 encryption scheme using DEM3 as specified in [19] works as
follows:
KEM-DEM-Encrypt EID(Mpk, IDA,m). Given an identify string IDA, the
plain text m and the master public key Mpk, the operation runs as follows:

1. Set h1 = H2RF1(Hv, IDA‖hid, r).
2. Set Q = [h1]P1 + Ppub.
3. Pick a random x ∈ Z∗r .
4. Set C1 = [x]Q.
5. Set t = gx.
6. Set K1‖K2 = KDF2(Hv, EC2OSP (C1)‖FE2OSP (t)‖IDA, BITS(m) + v).
7. Set C2 = K1 ⊕m.
8. Set C3 = Hv(C2‖K2).
9. Output 〈C1, C2, C3〉.

KEM-DEM-Decrypt DID(Mpk, IDA, DA, 〈C1, C2, C3〉). Given an identify string
IDA, the corresponding private key DA, the cipher text 〈C1, C2, C3〉 and the mas-
ter public key Mpk, the operation runs as follows:

1. If C1 /∈ G∗1, then output ⊥ and terminate.
2. Set t = ê(C1, DA).
3. Set K1‖K2 = KDF2(Hv, EC2OSP (C1)‖FE2OSP (t)‖IDA, BITS(C2)+v).
4. Set C ′3 = Hv(C2‖K2).
5. If C ′3 6= C3, then output ⊥ and terminate.
6. Output m = K1 ⊕ C2.

7 Security Analysis of The Schemes

In this section, we analyze the security of the schemes specified in the SM9
standard. The security analysis of SM9-IBS is very similar to the one given
in [1]. In particular, as Theorem 1 in [1], a security reduction of SM9-IBS can be
constructed based on the τ -SDH complexity assumption defined below. Hence,
we skip the details of this reduction. Instead, we focus on the security analysis
of SM9-KA and SM9-IBE.

7.1 Related Complexity Assumptions

Before giving the detailed security analysis, we present some related complexity
assumptions. We follow the approach in [10] to use i ∈ {1, 2} to denote different
choices of Pi ∈ Gi and an assumption with subscripts such as BDHi,j,k identifies
how the three elements are chosen from the groups for the assumption. Symbol
∈R denotes randomly sampling from a set.

Assumption 1 (τ-Strong Diffie-Hellman (τ-SDH) [6, 24]) For a positive
integer τ and α ∈R Z∗r, given (Pi, [α]Pi, [α

2]Pi, . . . , [α
τ]Pi) for some value i ∈

{1, 2}, computing (h, [1
α+h]Pi) for some h ∈ Z∗r is hard.

Boneh and Boyen [6] proved a lower bound on the computational complexity
of the τ -SDH problem in the generic group model [25]: By assuming that the
best discrete logarithm (DL) algorithm on the chosen groups is the general DL
algorithm, at least

√
r/τ group operations are required to solve the τ -SDH

problem when τ < o(3
√
r).

Assumption 2 (Bilinear Diffie-Hellman (BDH) [7]) For a, b, c ∈R Z∗r,
given (P1, P2, [a]Pi, [b]Pj, [c]Pk), for some values of i, j, k ∈ {1, 2}, computing
ê(P1, P2)abc is hard.

Assumption 3 (ψ-Bilinear Diffie-Hellman (ψ-BDH)) For a, b ∈R Z∗r, given
(Pi, Pj, [a]Pj, [b]Pj) for some values of i, j ∈ {1, 2} and i 6= j, computing
ê(P1, P2)ab is hard if no group homomorphism ψ: Gj → Gi such that ψ(Pj) = Pi
is efficiently computable.

ψ-BDHi,j is called BDH-j in [13] without explicit restriction on ψ. Appar-
ently, Assumption 3 is not weaker than Assumption 2 because by calling a BDH
algorithm with (Pi, Pj , [a]Pj , [b]Pj , Pj), ê(P1, P2)ab is computed. However, it is
subtle to decide the exact relationship between these two assumptions. Depend-
ing on the difficulty to compute ψ : Gj → Gi, there are two cases.

– Case 1. For Type-1 and Type-2 pairings [14], an efficient group homomor-
phism ψ : G2 → G1 exists. However, such ψ may not satisfy ψ(P2) = P1

if P1 and P2 are chosen randomly and independently. For example, with a
Type-1 pairing and ψ as the identity map, two random generators may be
chosen as follows: P2 = [c]P1 for some random c ∈ Z∗r . Similar situation
could happen to the Type-2 pairing with ψ as the trace map, and groups are
constructed as follows [10]. Let E be an elliptic curve defined over a prime
field Fp with an embedding degree ν. Set P1 = P1 and P2 = [1ν]P ′1 + P2,
where P1,P ′1 ∈ E(Fp) are two random generator of a cyclic group G1 with
order r and P2 ∈ E(Fpν) is a generator of a cyclic group G2 with or-
der r. ψ(P2) = P ′1 = [c]P1 for some c ∈ Z∗r . In this setting, ψ-BDH1,2

equals to BDH2,2,k. Given a BDH2,2,2 problem (P1, P
′
2, [a]P ′2, [b]P

′
2, [c]P

′
2)

with ψ(P ′2) = P1 (note that in the Type-2 pairing P ′2 = [1ν]P1 +P2), we can
use a ψ-BDH1,2 algorithm to solve the problem (ψ([c]P ′2), P ′2, [a]P ′2, [b]P

′
2) to

get ê(ψ([c]P ′2), P ′2)ab = ê([c]P1, P
′
2)ab = ê(P1, P

′
2)abc. Similarly, BDH2,2,1 is

solvable by ψ-BDH1,2.

– Case 2. For Type-2 pairings, there appears no efficiently computable homo-
morphism ψ : G1 → G2. For Type-3 pairings, there are no known efficiently
computable homomorphisms between G1 and G2 [14]. In both cases, there
appears no simple way to solve a ψ-BDH problem (ψ-BDH2,1 for Type-2
pairings) other than relying on an algorithm like the one for the BDH prob-
lem.

More on the role of group homomorphism ψ on cryptographic protocols em-
ploying asymmetric pairings can be found in [8].

Assumption 4 (τ-BDHI [5]) For a positive integer τ and α ∈R Z∗r, given (P1,
P2, [α]Pi, [α2]Pi, . . . , [α

τ]Pi) for some value i ∈ {1, 2}, computing ê(P1, P2)1/α

is hard.

Assumption 5 (Bilinear Collision Attack Assumption (τ-BCAA1) [9])
For a positive integer τ and α ∈R Z∗r, given (P1, P2, [α]Pi, h0, (h1, [

α
h1+α

]Pj),. . .,
(hτ , [

α
hτ+α

]Pj)) for some values of i, j ∈ {1, 2} where hi ∈R Z∗r and different from

each other for 0 ≤ i ≤ τ , computing ê(P1, P2)α/(h0+α) is hard.

Note that Assumption 5 is slight different from the one given in [9]. However,
the following Lemma 1 together with Theorem 7 in [9] shows that Assumption 5
is equivalent to the one defined in [9].

Lemma 1 If there exists a polynomial time algorithm to solve (τ -1)-BCAA1i,2,
then there exists a polynomial time algorithm for τ -BDHI2, if there exists an
efficient isomorphism ψ: G2 → G1.

Proof: If there is a polynomial time algorithm A to solve the (τ -1)-BCAA1i,2
problem, we can construct a polynomial time algorithm B to solve the τ -BDHI2
problem as follows. Given an instance of the τ -BDHI2 problem

(P1, P2, [x]P2, [x
2]P2, . . . , [x

τ]P2),

B works as follows to compute ê(P1, P2)1/x.

1. Randomly choose different h0, . . . , hτ−1 ∈ Z∗r . Let f(z) be the polynomial

f(z) =

τ−1∏
a=1

(z + ha) =

τ−1∑
a=0

caz
a.

The constant term c0 is non-zero because ha’s are different and ci is com-
putable from ha’s.

2. Set

Q2 =

τ−1∑
a=0

[cax
a]P2 = [f(x)]P2,

and

[x]Q2 =

τ−1∑
a=0

[cax
a+1]P2 = [xf(x)]P2.

3. Set

fb(z) =
z − h0
z + hb

f(z) =

τ−1∑
a=0

daz
a,

and compute

[
x− h0
x+ hb

]Q2 = [
x− h0
x+ hb

f(x)]P2 = [fb(x)]P2 =

τ−1∑
a=0

[dax
a]P2

for 1 ≤ b ≤ τ − 1.

4. Set Q1 = ψ(Q2) and pass the following instance of the (τ -1)-BCAA1i,2
problem to A

(Q1, Q2, ψ([x−h0]Q2), h0, (h1+h0, [
x− h0
x+ h1

]Q2), . . . , (hτ−1+h0, [
x− h0
x+ hτ−1

]Q2))

if i = 1, or

(Q1, Q2, [x−h0]Q2, h0, (h1+h0, [
x− h0
x+ h1

]Q2), . . . , (hτ−1+h0, [
x− h0
x+ hτ−1

]Q2))

to get

T = ê(Q1, Q2)
x−h0
x = ê(Q1, Q2) · ê(Q1, Q2)−h0/x.

5. Note that

[
1

x
](Q2 − [c0]P2) = [

1

x
]([f(x)]P2 − [c0]P2) =

τ−1∑
a=1

[cax
a−1]P2.

Set

T ′ =

τ−1∑
a=1

[cax
a−1]P2 = [

f(x)− c0
x

]P2.

Then,

T0 = ê(ψ(T ′), Q2 + [c0]P2) = ê([f(x)− c0]P1, Q2 + [c0]P2)1/x =

ê(Q1, Q2)1/x · ê(P1, P2)−c
2
0/x.

Finally, compute

ê(P1, P2)1/x = ((T/ê(Q1, Q2))−1/h0/T0)1/c
2
0 .

�

Assumption 6 (Decision BIDH (DBIDH) [9]) For a, b, r ∈R Z∗r, differen-
tiating

(P1, P2, [a]Pi, [b]Pj , ê(P1, P2)b/a) and (P1, P2, [a]Pi, [b]Pj , ê(P1, P2)r),

for some values of i, j ∈ {1, 2}, is hard.

Assumption 7 (Gap-τ-BCAA1 [9]) For a positive integer τ and α ∈R Z∗r,
given (P1, P2, [α]Pi, h0, (h1, [

α
h1+α

]Pj), . . . , (hτ , [
α

hτ+α
]Pj)) for some values of i, j ∈

{1, 2} where hi ∈R Z∗r and different from each other for 0 ≤ i ≤ τ , and an effi-
cient algorithm of DBIDH, computing ê(P1, P2)α/(h0+α) is hard.

Note that by Lemma 1, Assumption 7 is equivalent to a Gap-τ -BDHI2 as-
sumption that is given the access to a DBIDH oracle and an efficient ψ, τ -BDHI2
problem is still hard. The relationship among these assumptions can be found
in [9].

7.2 Security Analysis of SM9-KA

We use a modified Bellare-Rogaway key exchange model [2, 4, 10] to analyse the
two-pass SM9-KA. In the model, each party participating in a session is treated
as an oracle. An oracle Πs

i,j denotes the s-th instance of party i involved with a
partner party j in a session. The oracle Πs

i,j executes the prescribed protocol Π

and produces the output as Π(1k, i, j, SKi, PKi, PKj , tran
s
i,j , r

s
i,j , x)=(m, δsi,j ,

σsi,j , j) where rsi,j is the random flips of the oracle; x is the input message; m is
the outgoing message; SKi and PKi are the private/public key pair of party i;
δsi,j is the decision of the oracle (accept/reject the session or no decision yet); σsi,j
is the generated session key and PKj is the public key of the intended partner j
(see [2, 4, 10] for more details). After the response is generated, the conversation
transcript transi,j is updated as transi,j .x.m, where “a.b” denotes the result of
the concatenation of two strings, a and b. An adversary can access an oracle by
issuing some specified queries defined in the game below.

The security of a protocol is defined through a two-phase game between an
adversary A and a simulator which simulates the executions of a protocol by
providing the adversary with access to oracles. In the first phase, A is allowed
to issue the following queries to oracles in any order.

1. Send(Πs
i,j , x). Upon receiving the message x, oracle Πs

i,j executes the pro-
tocol and responds with an outgoing message m or a decision to indicate
accepting or rejecting the session. If the oracle Πs

i,j does not exist, it will
be created as an initiator, the party who sends out the first message in the
protocol, if x = λ, or as a responder otherwise. In this report, we require
i 6= j, namely, a party will not run a session with itself. Such restriction is
not unusual in practice.

2. Reveal(Πs
i,j). If the oracle has not accepted, it returns⊥; otherwise, it reveals

the session key.
3. Corrupt(i). The party i responds with its private key.

Once the adversary decides that the first phase is over, it starts the second
phase by choosing a fresh oracle Πs

i,j and issuing a Test(Πs
i,j) query, where the

fresh oracle Πs
i,j and Test(Πs

i,j) query are defined as follows.

Definition 1 (fresh oracle) An oracle Πs
i,j is fresh if (1) Πs

i,j has accepted;
(2) Πs

i,j is unopened (not been issued the Reveal query); (3) party j 6= i is not
corrupted (not been issued the Corrupt query); (4) there is no opened oracle
Πt
j,i , which has had a matching conversation to Πs

i,j .

The above fresh oracle is particularly defined to cover the key-compromise
impersonation resilience property since it implies that party i could have been
issued a Corrupt query.

4. Test(Πs
i,j). Oracle Πs

i,j which is fresh, as a challenger, randomly chooses
b ∈ {0, 1} and responds with the session key if b = 0, or a random sample
from the distribution of the session key otherwise.

After this point the adversary can continue querying the oracles except that
it cannot reveal the test oracle Πs

i,j or an oracle Πt
j,i which has a matching con-

versation to Πs
i,j if such an oracle exists, and it cannot corrupt party j. Finally

the adversary outputs a guess b′ for b. If b′ = b, we say that the adversary wins.
The adversary’s advantage is defined as

AdvA(k) = |2Pr[b′ = b]− 1|.

We use session ID to define matching conversations. Two oracles Πs
i,j and

Πt
j,i have a matching conversation to each other if both of them have the same

session ID. In this report, we will use the concatenation of the messages in a
session (the transcript of an oracle) to define the session ID.

A secure authenticated key (AK) agreement protocol is defined as follows.

Definition 2 Protocol Π is a secure AK if:

1. In the presence of a benign adversary, which faithfully conveys messages, on
Πs
i,j and Πt

j,i , both oracles always accept holding the same session key, and
this key is distributed uniformly in the session key space;

2. For any polynomial time adversary A , AdvA(k) is a negligible function of
security parameter k.

If a protocol is secure regarding the above formulation, it achieves implicit
mutual key authentication and the following general security properties: the
known session key security, the key-compromise impersonation resilience and
the unknown key-share resilience [4, 10].

Now we consider the forward secrecy property. Informally, the forward secrecy
of a protocol requires that the security of a session key established by a party
is not affected even if the long-term key of either the party is compromised
afterwards.

Definition 3 An AK protocol is said to be forward secure if any polynomial
time adversary wins the game with negligible advantage when it chooses as the
challenger (i.e. in place of the fresh oracle) an unopened oracle Πs

i,j which has a
matching conversation to another unopened oracle Πt

j,i and both oracles accepted
and only one of i and j can be corrupted. If both i and j can be corrupted, then
the protocol achieves perfect forward secrecy. If in the game, the master secret
key can be disclosed, then the protocol achieves master secret forward secrecy.
The corruption of long-term keys or the disclosure of the master secret key may
happen at any time of the game.

Theorem 1 SM9-KA is a secure AK, provided that H2RF1,KDF2 are ran-
dom oracles and the Gap-τ -BCAA11,2 assumption is sound. Specifically, suppose
that there is an adversary A against the protocol with non-negligible probability
ε(k) and running time t(k), and in the attack H2RF1 has been queried q1 + 1
times, and KDF2 has been queried q2 times, and qo oracles have been created.

Then there exists an algorithm B solving the Gap-q1-BCAA11,2 problem with
advantage

AdvB(k) ≥ ε(k)

(q1 + 1) · qo
within a running time

tB ≤ t(k) +O(q2 · qo · O),

where O is the time of one access to the DBIDH1,1 oracle.

Proof: Condition 1 of Definition 2 directly follows from the protocol specifica-
tion. In the sequel we prove that the protocol satisfies Condition 2. We show that
if A exists, we can construct a probabilistic polynomial time (PPT) algorithm
B to solve a Gap-q1-BCAA11,2 problem with non-negligible probability.

Given an instance of the Gap-q1-BCAA11,2 problem (P1, P2, [x]P1, h0, (h1,
[x
h1+x

]P2), . . . , (hq1 , [x
hq1+x

]P2)) with a set of pairing parameter where hi ∈R
Z∗r for 0 ≤ i ≤ q1 and the DBIDH1,1 oracle ODBIDH , B simulates GID to gener-
ate the system parameters (G1,G2,GT , ê, P1, P2, [x]P1, ê([x]P1, P2), Hv, hid),
i.e., using x as the master secret key, which it does not know. Function H2RF1

and KDF2 are constructed from the hash function Hv and are simulated as two
random oracles controlled by B .

We slightly abuse the notation Πt
i,j to refer to the t-th party instance among

all the party instances created in the attack, instead of the t-th instance of party
i. This would not affect the soundness of the security model.
B randomly chooses 1 ≤ I ≤ q1 + 1 and 1 ≤ J ≤ qo, and interacts with A in

the following way:

– H2RF1(IDi): B maintains a list H2RFlist1 of tuples (IDi, hi, Di) as explained
below. When A queries the oracle H2RF1 on IDi, B responds as follows:

• If IDi is on H2RFlist1 in a tuple (IDi, hi, Di), then B responds with
H2RF1(IDi) = hi.
• Otherwise, if the query is on the I-th distinct ID, then B stores (IDI , h0,⊥)

into the tuple list and responds with H2RF1(IDI) = h0.
• Otherwise, B selects a random integer hi with i > 0 from the Gap-q1-

BCAA11,2 instance which has not been chosen by B and stores (IDi, hi,
[x
hi+x

]P2) into the tuple list. B responds with H2RF1(IDi) = hi.

– KDF2(IDi, IDj , Ri, Rj , g1t, g2t, g3t): B maintains a list KDF2list of pairs in
the form (〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, ζt). To respond to a query, B does
the following operations:

• If KDF2list has a tuple indexed by 〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, then
B responds with ζt.

• Otherwise, B goes through the list Λ built in the Reveal query to find tu-
ples of the form (〈IDi, IDj , Ri, Rj〉, rt, ζt, Ot) indexed by 〈IDi, IDj , Ri, Rj〉
and proceeds as follows:

∗ Set R = Rj and T = g1t if Ot = 1, otherwise R = Ri and T = g2t,
query ODBIDH with ([x]P1, P2, [h0 + x]P1, R, T).

∗ If ODBIDH returns 1 and g3t = T r
t

, B removes the tuple from Λ
and inserts (〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, ζt) into KDF2list, and
finally responds with ζt.

• Otherwise, B randomly chooses a string ζt ∈ {0, 1}` and inserts a new tu-
ple (〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, ζt) into the list KDF2list. It responds
to A with ζt.

– Corrupt(IDi): B looks through list H2RFlist1 . If IDi is not on the list, B queries
H2RF1(IDi). B checks the value of Di: if Di 6= ⊥, then B responds with Di;
otherwise, B aborts the game (Event 1).

– Send(Πt
i,j , R): B maintains a list with tuples of (Πt

i,j , r
t
i,j , tran

t
i,j) and re-

sponds to the query as follows:

• If t 6= J , B randomly chooses rt ∈ Z∗r as the random flips of the oracle
and generates [rt]([H2RF1(IDj)]P1 + [x]P1) as the message.

• If t = J , B further checks the value of Dj corresponding IDj on the

list H2RFlist1 after querying H2RF1(IDj), and then responds the query
differently as below depending on this value.

∗ If Dj 6= ⊥, B aborts the game (Event 2). We note that there is only
one party’s private key is represented as ⊥ in the whole simulation.

∗ Otherwise, B randomly chooses y ∈ Z∗r and responds with [y]P1.
Note that Πt

i,j can be the initiator (if R = λ) or the responder (if
R 6= λ), and B doesn’t know the random flips of the oracle.

– Reveal(Πt
i,j): B maintains a list Λ with tuples (〈IDi, IDj , Ri, Rj〉, rt, ζt, Ot).

B responds to the query as follows:

• If t = J or if the J-th oracle has been generated as ΠJ
a,b and IDa =

IDj , IDb = IDi and two oracles have the same session ID, then abort the
game (Event 3).

• Go through H list
1 (IDi) to find the private key Di of party i with identity

IDi.

• If Di 6= ⊥, compute g1 = ê(Rj , Di), g2 = ê([x]P1, P2)r
t

, g3 = gr
t

1 where
Rj is the incoming message and rt is the random flips of the oracle Πt

i,j .
B responds with KDF2(IDi, IDj , Ri, Rj , g1, g2, g3) if the oracle is the
initiator, or KDF2(IDj , IDi, Rj , Ri, g2, g1, g3) otherwise.

• Otherwise, go through KDF2list to find tuples indexed by 〈IDi, IDj , Ri,
Rj , ∗, ê([x]P1, P2)r

t

, ∗〉 (if Πt
i,j is the initiator) or by 〈IDj , IDi, Rj , Ri,

ê([x]P1, P2)r
t

, ∗, ∗〉 (if Πt
i,j is the responder). ∗ matches any values. For

each (g1t, g2t, g3t, ζt) in the found tuples,

∗ Set R = Rj and T = g1t if Πt
i,j is the initiator, otherwise R = Ri

and T = g2t; query ODBIDH with ([x]P1, P2, [h0 + x]P1, R, T).

∗ If ODBIDH returns 1 and g3t = T r
t

, then B responds to the query
with ζt.

• Otherwise (no match is found in the last step), randomly choose ζt ∈
{0, 1}` and insert (〈IDi, IDj , Ri, Rj〉, rt, ζt, 1) if the oracle is the initiator
or (〈IDj , IDi, Rj , Ri〉, rt, ζt, 0) into Λ. B responds with ζt.

– Test(Πt
i,j): If t 6= J or (t = J but) there is an oracle Πw

j,i which, with the
same session ID with Πt

i,j , has been revealed, B aborts the game (Event 4).

Otherwise, B randomly chooses a bit string ζ ∈ {0, 1}` and gives it to A as
the response.

Once A finishes the queries and returns its guess, B goes through KDF2list

and for each T = g1t, R = Rj from the tuple indexed by IDi of the revealed
oracle, if the revealed oracle is an initiator, otherwise T = g2t, R = Ri for the
tuple indexed by IDj

– B queries ODBIDH with ([x]P1, P2, [h0 + x]P1, R, T).
– IfODBIDH returns 1, B returns T 1/y as the response to the Gap-q1-BCAA11,2

challenge.
– If no match is found, B fails (Event 5, i.e., ê([y]P1, [

x
h0+x

]P2) has not been
queried on KDF2).

Claim 1 If algorithm B does not abort during the simulation, then algorithm
A’s view is identical to its view in the real attack.

Proof: B’s responses to H2RF1 queries are uniformly and independently dis-
tributed in Z∗r as in the real attack. KDF2 is modeled as a random oracle which
requires that for each unique input, there should be only one response. We note
that the simulation B substantially makes use of the programmability of random
oracle and the access to the DBIDH oracle to guarantee that the response to the
KDF2 query is consistent with the Reveal query. The responses in other types
of query are valid as well. Hence the claim follows.

Note the agreed key value in the chosen fresh oracle Πt
i,j should include T =

ê(R,Di) where R = [y]P1 and Di is the private key of party j whose public key
is [h0]P1 + [x]P1, if the game does not abort.

Claim 2 Pr[Event 5] ≥ ε(k).

The proof is similar to Claim 2 in [11]. We skip the details.

Let Event 6 be that, in the attack, adversary B indeed chooses oracle ΠJ
i,j as

the challenger oracle where IDj has been queried on H2RF1 as the I-th distinct
identifier query. Then following the rules of the game, it’s clear that Event 1, 2,
3, 4 would not happen. So,

Pr[(Event 1 ∨ Event 2 ∨ Event 3 ∨ Event 4)] = Pr[Event 6] ≥ 1

q1 · qo
.

Overall, we have

Pr[A wins] = Pr[Event 6 ∧ Event 5]
≥ 1

q1·qo ε(k).

This completes the security proof. �

Theorem 2 SM9-KA can be instantiated to achieve the master secret forward
secrecy, provided that KDF2 is a random oracle and the ψ-BDH2,1 assumption
is sound. Specifically, suppose that there is an adversary A with non-negligible
probability ε(k) and running time t(k) against the protocol that chooses gener-
ators P1 and P2 as the ψ-BDH2,1 problem, and in the attack KDF2 has been
queried q2 times, and qo sessions including incomplete ones have been created.
Then there exists an algorithm B solving the ψ-BDH2,1 problem with advantage

AdvB(k) ≥ ε(k)

q2 · qo
within a running time essentially same as t(k).

Proof: Given an instance of the ψ-BDH2,1 problem (P1, P2, [a]P1, [b]P1) with
a set of pairing parameter where there is no efficient group homomorphism ψ
such that ψ(P1) = P2. B simulates GID to generate the system parameters
(G1,G2,GT , ê, P1, P2, [x]P1, ê([x]P1, P2), Hv, hid), i.e., using a randomly chosen
x ∈ Z∗r as the master secret key. Function KDF2 is constructed from the hash
function Hv and is simulated as a random oracle controlled by B .

Without loss of generality, we use Πt
i,j to refer to the t-th session among all

the sessions including incomplete ones created in the attack. B randomly chooses
1 ≤ J ≤ qo, and interacts with A in the following way:

– KDF2(IDi, IDj , Ri, Rj , g1t, g2t, g3t): B maintains a list KDF2list of pairs in
the form (〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, ζt). To respond to a query, B does
the following operations:
• If KDF2list has a tuple indexed by 〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, then
B responds with ζt.

• Otherwise, B randomly chooses a string ζt ∈ {0, 1}` and inserts a new tu-
ple (〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, ζt) into the list KDF2list. It responds
to A with ζt.

– Corrupt(IDi): B returns [x
H2RF1(IDi)+x

]P2.

– Send(Πt
i,j , R): B maintains a list with tuples of (Πt

i,j , r
t
i,j , tran

t
i,j) and re-

sponds to the query as follows:
• If t 6= J , B randomly chooses rt ∈ Z∗r as the random flips of the oracle

and generates [rt]([H2RF1(IDj)]P1 + [x]P1) as the message.
• Otherwise (t = J . Without loss of generality, let IDI and IDR be the

identity of the initiator and responder of the session respectively),
∗ If R = λ, B uses [a]P1 as the message.
∗ Otherwise, if R 6= [a]P1, B aborts (Event 1), otherwise B uses [b]P1

as the message.
– Reveal(Πt

i,j): B responds to the query as follows:
• If t = J , then abort the game (Event 2).
• Otherwise, compute Di = [x

H2RF1(IDi)+x
]P2, g1 = ê(Rj , Di), g2 =

ê([x]P1, P2)r
t

, g3 = gr
t

1 where Rj is the incoming message and rt is
the random flips of the oracle Πt

i,j . B responds with KDF2(IDi, IDj , Ri,
Rj , g1, g2, g3) if the oracle is the initiator, or KDF2(IDj , IDi, Rj , Ri,
g2, g1, g3) otherwise.

– Test(Πt
i,j): If t 6= J , B aborts the game (Event 3). Otherwise, B randomly

chooses a string ζ ∈ {0, 1}` and gives it to A as the response.

Once A finishes the queries and returns its guess, B goes through KDF2list

to find a set L of tuples indexed by 〈IDI , IDR, [a]P1, [b]P1, ê([b]P1, [
x

H2RF1(IDI)+x
]P2),

ê([a]P1, [
x

H2RF1(IDR)+x
]P2), ∗〉. ∗ matches any values. B randomly chooses g3t

from L and returns X = g
(H2RF1(IDI)+x)(H2RF1(IDR)+x)/x
3t as the answer to the

ψ-BDH2,1 problem.
Note the agreed key value in the chosen fresh oracle Πt

i,j should include Y =
g3t = ê([b]P1, [

x
H2RF1(IDI)+x

]P2)rI where [rI]([H2RF1(IDR)]P1+[x]P1) = [a]P1,

if the game does not abort. Hence, if the value has been queried with KDF2
and g3t happens with probability at least 1/q2 to be the right choice from L, X
is the correct answer to the ψ-BDH2,1 problem.

Claim 3 Let Event 4 be that Y along with identities and exchanged messages
has not been queried with KDF2. Pr[Event 4] ≥ ε(k).

The proof is similar to Claim 2 in [11]. We skip the details.

Let Event 5 be that, in the attack, adversary B indeed chose oracle ΠJ
i,j as

the challenger oracle. Then, following the rules of the game by Definition 3, it’s
clear that Event 1, 2, 3 would not happen. So,

Pr[(Event 1 ∨ Event 2 ∨ Event 3)] = Pr[Event 5] ≥ 1

qo
.

Overall, we have

Pr[A wins] = Pr[Event 5 ∧ Event 4]
≥ 1

q2·qo ε(k).

This completes the security proof. �

7.3 Security Analysis of SM9-IBE

An identity-based encryption is specified by four algorithms [7]:

– Setup GID(1k): Given a security parameter k, the probabilistic algorithm
outputs the master public key Mpk and the master secret key Msk.

(Mpk,Msk)← GID(1k)

– Private-Key-Extract XID(Mpk,Msk, IDA): The probabilistic algorithm takes
as the input Mpk,Msk and the identifier string IDA ∈ {0, 1}∗ for entity A,
and outputs the private key DA associated with IDA.

DA ← XID(Mpk,Msk, IDA)

– Encrypt EID(Mpk, IDA,m): The probabilistic algorithm takes Mpk, IDA, the
message m from the message space MID(Mpk) as the inputs, and outputs a
ciphertext C in the ciphertext space CID(Mpk).

C ← EID(Mpk, IDA,m)

– Decrypt DID(Mpk, IDA, DA, C): The deterministic algorithm takes Mpk,
IDA, DA and C as input, and outputs the plaintext m or a failure sym-
bol ⊥ if C is invalid.

(m or ⊥)← DID(Mpk, IDA, DA, C)

Boneh and Franklin [7] formalized a security notion of IBE: ID-IND-CCA2
security, by the following two-stage game defined in Table 1 between an adversary
A = (A1,A2) of the encryption algorithm and a challenger.

Table 1. IBE Security Formulation

ID-IND Adversarial Game

1. (Mpk,Msk)←GID(1k).

2. (st, ID∗,m0,m1)←A
OID
1 (Mpk).

3. b←{0, 1}.
4. C∗←EID(Mpk, ID

∗,mb).

5. b′←A
OID
2 (Mpk, C

∗, st, ID∗,m0,m1).

In the games st is some state information and OID denotes oracles to which
the adversary has access. In the CCA2 attack model, the adversary has access
to two oracles:

1. Extraction. A private key extraction oracle which, on input of ID 6= ID∗,
will output the corresponding value of DID.

2. Decryption. A decryption oracle which, on input an identity ID and a
ciphertext of the adversary’s choice, will return the corresponding plaintext
or ⊥. This is subject to the restriction that in the second phase A2 is not
allowed to call this oracle with the pair (C∗, ID∗).

The adversary’s advantage in the game is defined to be

AdvID−IND−CCA2ID−A (k) =| 2 Pr[b′ = b]− 1 | .

Definition 4 An IBE algorithm is considered to be ID-IND-CCA2 secure, if for
all PPT adversaries, the advantage in the game is a negligible function of the
security parameter k.

Following up Cramer and Shoup’s formalization of hybrid encryption [12],
Bentahar el al. [3] extended the hybrid encryption to identity-based schemes.
Their main result is that an ID-IND-CCA2 secure IBE can be constructed from
an ID-IND-CCA2 secure ID-KEM and a secure DEM.

Similar to IBE, an ID-KEM scheme is specified by four algorithms as well.

– Setup GID−KEM(1k): The algorithm is the same as GID(1k).
– Private-Key-Extract XID−KEM(Mpk,Msk, IDA): The algorithm is the same

as XID(Mpk, Msk, IDA).
– KEM-Encap EID−KEM(Mpk, IDA): This probabilistic algorithm takes as in-

put Mpk and IDA, and outputs a key K in the key space KID−KEM(Mpk) and
the encapsulation of the key C in the encapsulation space CID−KEM(Mpk).

(K,C)← EID−KEM(Mpk, IDA)

– KEM-Decap DID−KEM(Mpk, IDA, DA, C): This deterministic algorithm takes
as input Mpk, IDA, DA and C, and outputs the encapsulated key K in C or
a failure symbol ⊥ if C is an invalid encapsulation.

(K or ⊥)← DID−KEM(Mpk, IDA, DA, C),

Consider the two-stage game in Table 2 between an adversary A = (A1,A2)
of the ID-KEM and a challenger.

Table 2. ID-KEM Security Formulation

ID-IND Adversarial Game

1. (Mpk,Msk)←GID−KEM(1k).

2. (st, ID∗)←A
OID−KEM
1 (Mpk).

3. (K0, C
∗)←EID−KEM(Mpk, ID

∗).
4. K1←KID−KEM(Mpk).
5. b←{0, 1}.
6. b′←A

OID−KEM
2 (Mpk, C

∗, st, ID∗,Kb).

In the games st is some state information and OID−KEM denotes oracles to
which the adversary has access. In the CCA2 attack model, the adversary has
access to two oracles::

1. Extraction. A private key extraction oracle which, on input of ID 6= ID∗,
will output the corresponding value of DID.

2. Decapsulation. A decapsulation oracle which, on input an identity ID and
encapsulation of the adversary’s choice, will return the encapsulated key.
This is subject to the restriction that in the second phase A2 is not allowed
to call this oracle with the pair (C∗, ID∗).

The adversary’s advantage is defined to be

AdvID−IND−CCA2ID−KEM−A (k) =| 2 Pr[b′ = b]− 1 | .

Definition 5 An ID-KEM is considered to be ID-IND-CCA2 secure, if for all
PPT adversaries A, the advantage in the game above is a negligible function of
the security parameter k.

Apart from the above security requirement, it is required in this report
that the ID-KEM has an extra property as follow. In an ID-KEM, for the
pair (Mpk,Msk) generated by the Setup algorithm and every (IDA, DA) where
IDA ∈ {0, 1}∗ and DA is generated by the Private-Key-Extract algorithm using
(Mpk,Msk, IDA), all encapsulations created with (Mpk, IDA) decapsulate prop-
erly with (Mpk, DA) (in other words, BadKeyPairs (Section 7.1 [12]) are neg-
ligibly few). It is easy to see that SM9-KEM presented in this report has this
property.

In the hybrid encryption, a DEM uses the key generated by a KEM to en-
crypt the message. As the DEM uses a different key derived by the KEM to
encrypt each message, a one-time symmetric-key encryption with proper secu-
rity properties is sufficient for such purpose.

A one-time symmetric-key encryption consists of two deterministic polynomial-
time algorithms with the key, message and ciphertext spaces defined by KSK(1k),
MSK(1k) and CSK(1k) given the security parameter k:

– Encrypt ESK(K,m): The encryption algorithm takes a secret key K ∈
KSK(1k) and a message m ∈MSK(1k) as input, and outputs the ciphertext
C ∈ CSK(1k).

C ← ESK(K,m)

– Decrypt DSK(K,C): Given a secret key K and a cipertext C, the algorithm
outputs the plaintext m or a failure symbol ⊥.

(m or ⊥)← DSK(K,C)

The two algorithms satisfy DSK(K,ESK(K,m)) = m for m ∈ MSK(1k) and
K ∈ KSK(1k).

The security of one-time symmetric-key encryption is defined by the Find-
Guess (FG) game in Table 3 between an adversary A = (A1,A2) of the DEM
and a challenger:

In the game m0 and m1 are of equal length from the message space and
st is some state information. OSK is the oracle that the adversary can access
depending on the attack model. In the CCA attack model, the adversary has
access to a decryption oracle.

– A decryption oracle which, on input a ciphertext C, returns DSK(K,C) with
K chosen in Step 3 in the game.

The adversary’s advantage in the game above is defined to be

AdvFG−CCADEM−A (k) =| 2 Pr[b′ = b]− 1 | .

Table 3. DEM Security Formulation

FG Adversarial Game

1. (st, (m0,m1))← A1(1k).
2. b← {0, 1}.
3. K ← KSK(1k).
4. C∗←ESK(K,mb).

5. b′←A
OSK
2 (C∗, st,m0,m1).

Definition 6 A one-time encryption is consider to be FG-CCA secure, if for
any PPT adversary A, the advantage in the game above is a negligible function
of the security parameter k.

The FG-CCA secure one-time encryptions are easy to get, such as the one-
time pad encryption with a secure message authentication code algorithm [19,
12].

A hybrid IBE construction consisting of the sequential combination of an
ID-KEM with a DEM proceeds as defined in Table 4. Here, it is assumed that
the key space output by the KEM is identical with the secret key space used by
the DEM.

Table 4. Hybrid IBE

EID(Mpk, IDA,m)

– (K,C1)←EID−KEM(Mpk, IDA)
– C2←ESK(K,m)
– Return C = 〈C1, C2〉

DID(Mpk, IDA, DA, C)

– Parse C as 〈C1, C2〉
– K←DID−KEM(Mpk, IDA, DA, C1)
– If K =⊥, return ⊥
– m←DSK(K,C2)
– Return m

Similar to the result of hybrid encryption in [12], Bentahar et al. obtained
the following theorem concerning the security of hybrid IBE.

Theorem 3 [Bentahar et al. [3]] Let A be a PPT ID-IND-CCA2 adversary
of the IBE scheme E above. There exists PPT adversaries B1 and B2, whose
running time is essentially that of A, such that

AdvID−IND−CCA2ID−A (k) ≤ 2AdvID−IND−CCA2ID−KEM−B1
(k) + AdvFG−CCADEM−B2

(k).

Here, we only present the security analysis of SM9-KEM. The security of the
full SM9-IBE follows from Theorem 3, 4 and the security result of DEM [19].

Theorem 4 SM9-KEM is ID-IND-CCA2 secure provided that H2RF1,KDF2
are random oracles and the Gap-τ -BCAA11,2 assumption is sound. Specifically,
suppose there exists an ID-IND-CCA2 adversary A against SM9-KEM that has
advantage ε(k) and running time t(k), and suppose also that during the at-
tack A makes at most qD queries on the Decapsulation query, q1 + 1 queries
on H2RF1 and q2 queries on KDF2 with ID∗. Then there exists an algorithm
B solving the Gap-q1-BCAA11,2 problem with advantage

AdvB(k) ≥ ε(k)

q1 + 1

within running time
tB(k) ≤ t(k) +O(q2 · qD · O),

where O is the time of one access to the DBIDH1,1 oracle.

Proof: Given an instance of the Gap-q1-BCAA11,2 problem (P1, P2, [x]P1, h0,
(h1, [x

h1+x
]P2), . . . , (hq1 , [x

hq1+x
]P2)) with a set of pairing parameter where hi ∈R

Z∗r for 0 ≤ i ≤ q1 and the DBIDH1,1 oracle ODBIDH , B simulates GID−KEM to
generate the system parameters (G1,G2,GT , ê, P1, P2, [x]P1, ê([x]P1, P2), Hv,
hid), i.e., using x as the master secret key, which it does not know. Function
H2RF1 and KDF2 are constructed from the hash function Hv and are simu-
lated as two random oracles controlled by B .
B randomly chooses 1 ≤ I ≤ q1 + 1 and interacts with A as follows:

– H2RF1(IDi): B maintains a list H2RFlist1 of tuples (IDi, hi, Di) as explained
below. When A queries the oracle H2RF1 on IDi, B responds as follows:
• If IDi is on H2RFlist1 in a tuple (IDi, hi, Di), then B responds with

H2RF1(IDi) = hi.
• Otherwise, if the query is on the I-th distinct ID, then B stores (IDI , h0,⊥)

into the tuple list and responds with H2RF1(IDI) = h0.
• Otherwise, B selects a random integer hi with i > 0 from the Gap-q1-

BCAA11,2 instance which has not been chosen before and stores (IDi,
hi, [x

hi+x
]P2) into the tuple list. B responds with H2RF1(IDi) = hi.

– KDF2(Ci, Xi, IDi): B maintains a list KDF2list of pairs in the form (〈Ci,
Xi, IDi〉, Ki). To respond to a query on (Ci, Xi, IDi), B does the following
operations:
• If a pair (〈Ci, Xi, IDi〉,Ki) is on the list, then B responds with Ki.
• Otherwise, B looks through list H2RFlist1 . If IDi is not on the list,

then B queries H2RF1(IDi). Depending on the value of Di for IDi on
H2RFlist1 , B responds differently.
∗ If Di = ⊥,
· B queries ODBIDH with ([x]P1, P2, [h0 + x]P1, Ci, Xi).
· If ODBIDH returns 1 and a tuple index by (Ci, IDi) appears on

list LD (a list maintained in the Decapsulation specified later),
B returns Ki from the tuple after putting (〈Ci, Xi, IDi〉,Ki) into
KDF2list.

· Otherwise, B randomly chooses a string Ki ∈ {0, 1}` and inserts
a new pair (〈Ci, Xi, IDi〉,Ki) into KDF2list, and if ODBIDH
returns 1, B also inserts (Ci, IDi,Ki) into LD. It responds to
A with Ki.

∗ Otherwise (Di 6=⊥), B randomly chooses a string Ki ∈ {0, 1}` and
inserts a new pair (〈Ci, Xi, IDi〉,Ki) into the list. It responds to
A with Ki.

– Extraction(IDi): B looks through list H2RFlist1 . If IDi is not on the list,
B queries H2RF1(IDi). B checks the value of Di: if Di 6= ⊥, then B responds
with Di; otherwise, B aborts the game (Event 1).

– Decapsulation(IDi, Ci): B maintains list LD of pairs in the form (Ci, IDi,Ki).
To respond to the query, B first looks through list H2RFlist1 . If IDi is not
on the list, then B queries H2RF1(IDi). Depending on the value of Di for
IDi on H2RFlist1 , B responds differently.

1. If Di 6= ⊥, then B first computes gr = ê(Ci, Di), and then queries Ki =
KDF2(Ci, g

r, IDi). B responds with Ki.
2. Otherwise (Di = ⊥), B takes following actions:

(a) If a tuple indexed by (Ci, IDi) is on LD, return Ki from the tuple.
(b) Otherwise, B randomly chooses Ki ∈ {0, 1}` and inserts (Ci, IDi,Ki)

into the list LD. Finally B returns Ki.

– Challenge: At some point A’s first stage will terminate and it will return
a challenge identity ID∗. If A has not called H2RF1 with input ID∗ then
B does so for it. If the corresponding value of DID∗ is not equal to ⊥, then
B aborts (Event 2). B chooses a random value of y ∈ Z∗r and a random
value K∗ ∈ {0, 1}`, and returns (K∗, [y]P1) as the challenge. For simplicity,
if (ID∗, [y]P1) has been queried on the Decapsulation query, B tries another
random r.

– Guess: Once A outputs its guess, B answers the Gap-q1-BCAA11,2 chal-
lenge in the following way.

1. For each tuple (〈[y]P1, Xj , ID∗〉, Kj) in KDF2list, B queries ODBIDH
with ([x]P1, P2, [h0 + x]P1, [y]P1, Xj). If ODBIDH returns 1, B outputs

X
1/y
j as the answer to the Gap-q1-BCAA11,2 problem.

2. If no tuple is found on the list, B fails (Event 3).

Claim 4 If algorithm B does not abort during the simulation, then algorithm
A’s view is identical to its view in the real attack.

Proof: B’s responses to H2RF1 queries are uniformly and independently dis-
tributed in Z∗r as in the real attack because of the behavior of the Setup phase
in the simulation. KDF2 is modeled as a random oracle which requires that for
each unique input, there should be only one response. We note that the sim-
ulation substantially makes use of the programmability of random oracle and
the access to the DBIDH1,1 oracle to guarantee that the response to the KDF2
query is consistent with the Decapsulation query. There are two subcases in the
simulation.

– The adversary queries on KDF2(Ci, Xi, IDi). If (Ci, Xi, IDi) has not been
queried before on KDF2, B should make sure that the response must be
consistent with the possible existing response generated in the Decapsulation
queries when IDi = ID∗. B exploits the access to the DBIDH1,1 oracle by

testing ê(Ci, [
x

h0+x
]P2)

?
= Xi. If the equation holds, B returns the response

to the Decapsulation query on (IDi, Ci) if such query has been issued.
– The adversary queries the Decapsulation oracle on (ID∗, Ci). B cannot com-

pute Xi = ê(Ci, [
x

h0+x
]P2) (note that if the game does not abort, DID∗ =

[x
h0+x

]P2). If KDF2(Ci, Xi, IDi) has not been queried, i.e., (IDi, Ci,Ki) is
not on LD, B can respond with any random string Ki. Otherwise, B uses
Ki from the tuple on LD indexed by (IDi, Ci) that is inserted by a KDF2
query.

The responses in other types of query are valid as well. Hence the claim is
founded.

We now evaluate the probability that B does not abort the game. Event 3

implies that the value ê(C∗, [x
h0+x

]P2), which is the key value in the challenge
encapsulation, is not queried on KDF2 in the simulation. Since KDF2 is a
random oracle, Pr[A wins|Event 3] = 1

2 . We have

Pr[A wins] = Pr[A wins|Event 3] Pr[Event 3] + Pr[A wins|Event 3] Pr[Event 3]

≤ 1

2
(1− Pr[Event 3]) + Pr[Event 3] =

1

2
+

1

2
Pr[Event 3].

Pr[A wins] ≥ Pr[A wins|Event 3] Pr[Event 3]

=
1

2
(1− Pr[Event 3]) =

1

2
− 1

2
Pr[Event 3].

So, we have Pr[Event 3] ≥ ε(k). Note that Event 2 implies Event 1 because
of the rules of the game. Overall, we have

Pr[B wins] = Pr[Event 3 ∧ Event 2] ≥ ε(k)

q1 + 1
.

This completes the security analysis of SM9-KEM. �

8 Performance Evaluation

Here we briefly compare the performance of SM9 with the identity-based signa-
ture schemes included in ISO/IEC 14888-3 [17], identity-based key agreements
included in ISO/IEC 11770-3 [16] and encryption schemes in ISO/IEC 18033-
5 [20]. Table 5 shows that SM9-IBS is more efficient than those two IBS schemes
in ISO/IEC 14888-3. Table 6 shows that SM9-KA is more efficient than those
two IB-KA protocols in ISO/IEC 11770-3 [16]. Table 7 shows that SM9-KEM
maintains better performance in terms of both the computation efficiency and
the cipher text size than those three schemes in ISO/IEC 18033-5.

Table 5. Performance of IBS Schemes from Pairings

IBS1 [17] IBS2 [17] SM9-IBS

Private Key Extract
Hash to G1 1 1
Mul in G1 1 1 1

Sign

Mul in G1 1 2(2) 1

Exp in GT 1(1) 1

Verify
Hash to G1 1 1

Mul in G1 1(3) 1
Mul in G2 1
Exp in GT 1
Pairings 2 2 1

Signature Size λ+ γ1 2γ1 λ+ γ1

1. Assume exponentiation in GT is faster than pairing and pre-computation of pairing
with the signer’s private key and the master public key is available.

2. Assume Y is pre-computed in producing the pre-signature [17] which is reasonable
for a signer.

3. Assume multiplication in G1 is faster than exponentiation in GT .
4. Symbols m and n denote m fix-based multiplications or exponentiations and n

general operations respectively.
5. Symbols λ, γ1 denote the length of an element in Z∗r and G1 respectively.

Table 6. Performance of IB-KA Protocols from Pairings

SCC [16] FSU [16] SM9-KA

Private Key Extract

Hash to G2 1 1(1)

Mul in G2 1 1 1

Message Exchange
Mul in G1 1 1 2

Session Key Generation
Hash to G2 1 1
Mul in G1 1+1 1+1
Exp in GT 1+ 1
Pairings 2 2 1

Message Size γ1 γ1 γ1

1. The FSU scheme requires G1 = G2.

Table 7. Performance of IBE Schemes from Pairings

BF-IBE [20] BB1-KEM [20] SK-KEM [20] SM9-KEM

Private Key Extract

Hash to G1 1(1)

Mul in G1 1
Mul in G2 2 1 1

Encapsulate
Hash to G1 1
Mul in G1 1 3 2 2
Mul in G2 1
Exp in GT 1 1 1
Pairings 1

Decapsulate

Mul in G1 1(2)

Mul in G2 1
Pairings 1 2 1 1

Full Cipher Text Size γ2 + 2ζ 2γ1 + η γ1 + δ + η γ1 + η

1. It appears that when asymmetric pairings are used, mapping an identity string to
an element in G2 instead of G1 could make BF-IBE more efficient. Here we strictly
follow the specification in [20] for comparison.

2. Assume Q is pre-computed in KEM-Decrypt [20] which is reasonable for a decryp-
tor.

3. Symbols γi, δ, ζ, η denote the length of an element in Gi, a random string, a plain
text and a DEM respectively.

References

1. P.S.L.M. Barreto, B. Libert, N. McCullagh, and J. Quisquater. Efficient and
provably-secure identity-based signatures and signcryption from bilinear maps. In
Proc. of Advances in cryptology ASIACRYPT05, LNCS 3778, pp.515-532, 2005.

2. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Proc.
of Advances in Cryptology – Crypto ’93, LNCS 773, pp. 232–249, 1993.

3. K. Bentahar, P. Farshim, J. Malone-Lee, and N.P. Smart. Generic constructions
of identity-based and certificateless KEMs. J. of Cryptology, Vol 21, pp. 178–199,
2008.

4. S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their
security analysis. In Proc. of Cryptography and Coding, LNCS 1355, pp. 30–45,
1997.

5. D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption
without random oracles. In Proc. of Advances in Cryptology - Eurocrypt 2004,
LNCS 3027, pp. 223–238, 2004.

6. D. Boneh and X. Boyen. Short signatures without random oracles. In Proc. of
Advances in Cryptology - Eurocrypt 2004, LNCS 3027, pp. 56–73, 2004.

7. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In
Proc. of Advances in Cryptology - Crypto 2001, LNCS 2139, pp. 213–229, 2001.

8. S. Chatterjee and A. Menezes. On cryptographic protocols employing asymmetric
pairings - The role of ψ revisited. Discrete Applied Mathematics, Vol 159, pp.
1311–1322, 2011.

9. L. Chen and Z. Cheng. Security proof of Sakai-Kasahar’s identity-based encryption
scheme. In Proc. of Cryptography and Coding 2005, LNCS 3796, pp. 442–459, 2005.

10. L. Chen, Z. Cheng, and N. Smart. Identity-based key agreement protocols from
pairings. International Journal of Information Security, Vol 6, pp. 213–241, 2007.

11. Z. Cheng and L. Chen. On security proof of McCullagh-Barreto’s key agreement
protocol and its variants. International Journal of Security and Networks - Special
Issue on Cryptography in Networks, Vol 2, pp. 251–259, 2007.

12. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, Vol 33, pp. 167–226, 2003.

13. S. Galbraith, F. Hess, and F. Vercauteren. Aspects of pairing inversion. IEEE
Transactions on Information Theory, Vol 54, Issue 12, pp. 5719–5728, 2008.

14. S. Galbraith, K. Paterson, and N.P. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, Vol 156, pp. 3113–3121, 2008.

15. GM/T 0044-2016. Identity-based cryptographic algorithms SM9. 2016.

16. ISO/IEC. Information technology – Secruity techniques – Key management – Part
3: Mechanisms using asymmetric techniques. ISO/IEC 11770-3:2015.

17. ISO/IEC. Information technology – Secruity techniques – Digital signatures with
appendix – Part 3: Discrete logarithm based mechanisms. ISO/IEC 14888-3:2015.

18. ISO/IEC. Information technology – Security techniques – Cryptographic tech-
niques based on elliptic curves – Part 5: Elliptic curve generation. ISO/IEC 15946-
5:2009.

19. ISO/IEC. Information technology – Security techniques – Encryption algorithms
– Part 2: Asymmetric ciphers. ISO/IEC 18033-2:2006.

20. ISO/IEC. Information technology – Security techniques – Encryption algorithms
– Part 5: Identity-based ciphers. ISO/IEC 18033-5:2015.

21. E. Lee, H. Lee, and C. Park. Efficient and generalized pairing computation on
abelian varieties. In IEEE Transactions on Information Theory, Vol 55, pp. 1793–
1803, 2009.

22. N. McCullagh and P.S.L.M. Barreto. A new two-party identity-based authenticated
key agreement. In Proc. of Topics in Cryptology CT-RSA 2005, LNCS 3376, pp.
262-274, 2005.

23. N. McCullagh and P.S.L.M. Barreto. A new two-party identity-based authenticated
key agreement. IACR ePrint Report 2004/122. Feb. 2005.

24. S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Trans.
Fundamentals, E85-A(2), pp. 481–484, 2002.

25. V. Shoup. Lower bounds for discrete logarithms and related problems. In Proc. of
Advances in Cryptology - Eurocrypt ’97, LNCS 1233, pp. 256–266, 1997.

26. F. Vercauteren. Optimal pairings. In IEEE Transactions on Information Theory,
Vol 56, Issue 11, pp. 455–461, 2010.

