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Abstract

We introduce a secure elliptic curve oblivious pseudorandom function (EC-OPRF) which operates
by hashing strings onto an elliptic curve to provide a simple and efficient mechanism for computing
an oblivious pseudorandom function (OPRF). The EC-OPRF protocol enables a semi-trusted server to
receive a set of cryptographically masked elliptic curve points from a client, secure those points with a
private key, and return the resulting set to the client for unmasking. We also introduce extensions and
generalizations to this scheme, including a novel mechanism that provides forward secrecy, and discuss
the security and computation complexity for each variant. Benchmark tests for the implementations
of the EC-OPRF protocol and one of its variants are provided, along with test vectors for the original
protocol.

1 Introduction

In this paper, we propose a construction for a cryptographically secure oblivious pseudorandom function
(OPRF) based on elliptic curve cryptography. As with other OPRF constructions, selected information is
concealed from each of the two parties involved in the PRF. Colloquially speaking, a user Alice transfers
an encoded input to a semi-trusted party Ted – who performs a calculation and sends the result to Alice
– which Alice then uses to finalize the PRF evaluation. Throughout this process, two things hold: (a)
Ted can neither determine Alice’s original input nor compute her final output, and (b) Alice does not gain
sufficient information to compute the PRF independently. More formally, we rely on the definition of an
OPRF from [11], that it is a secure two-party protocol which for some pseudorandom function family fr
has the functionality g(r, w) = (λ, fr(w)). The client holds the input w, the server holds a key r, the client
outputs fr(w), and the server outputs nothing (designated by λ).

Such OPRF constructions can be utilized for a variety of applications including dynamic hashing, con-
structing deterministic yet memory-less authentication schemes, message-locked encryption key generation
to enable de-duplication of encrypted files, and others as identified in [13], [11], and [2]. Other constructions
proposed have been based on the Decisional Diffie-Hellman assumption (DDH) [11] and via Oblivious Poly-
nomial Evaluation [18]. Similar techniques could be based on Chaum’s blind signature scheme [8] similar to
what we discuss in Section 5.2. We propose a method based on the security of elliptical curve discrete log
problem.

In Section 2, we present the conventions used throughout the paper. The algorithm for the EC-OPRF
protocol and its potential extensions are introduced in Section 3. Section 4 provides a detailed example
of the EC-OPRF protocol, and includes test vectors for each step. Section 5 demonstrates how the EC-
OPRF protocol can be generalized to arbitrary commutative groups – e.g., cylic groups – and offers a
construction based on the RSA protocol, and Section 5.3 compares the performance metrics from the C++
implementations of the EC-ORPF protocol with one of its variants.

∗These authors contributed equally.
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2 Preliminaries

In this section, we introduce definitions which will be used throughout this paper along with suggestions for
choosing secure functions and parameters.

2.1 Definitions and Notations

Parties

• Let Alice be a client that initiates the OPRF protocol.

• Let Ted be a semi-trusted third party that salts queries from Alice.

• Let Claude be a cloud-based service, which may be either a passive or active participant in the protocol.

Elliptic curves

• For a prime p, let E(a, b, p) be an elliptic curve over GF(p) with order r defined by

y2 = x3 + ax+ b

for integers a, b such that 4a3 + 27b 6= 0.1

• Let c ∗ X = X +X + · · ·+X︸ ︷︷ ︸
c times

denote the multiplication of a scalar integer c with a point X on an

elliptic curve.

Hash and Pseudorandom functions

• Let H : {0, 1}∗ → E be a secure hash function, i.e., the digest H(w) of the binary string w is a point
on the elliptic curve E.2

• Let P : E → {0, 1}∗ be a pseudorandom function, i.e., P (X) is the random binary string derived from
the elliptic curve point X ∈ E. This is used in the Random step in Section 3 to convert an elliptic
curve point to a fixed size block.

Client parameters

• Let W = {w0, ..., wl−1} be the set of binary strings in a collection.

• Let M = {m0, . . . ,ml−1} be a set of random integer scalars, called masks, corresponding to the
input strings {w0, . . . , wl−1}, which have multiplicative inverses M−1 = {m−1

0 , . . . ,m−1
l−1} modulo r,

respectively.

Server parameters

• Let the scalar integer s be Ted’s private key (“salt”).3

• Let the scalar integer t be Claude’s private key (“pepper”).

1For the purpose of our implementation, we choose the curve NIST P-384 unless otherwise specified.
2Our implementation composes the SHA-256 hash with the ‘Try-And-Increment’ hash [6] (see Algorithm 1).
3This is not a public salt such as is used to confound table-based attacks, but instead this is a private key.

2



2.2 Hash function H

The EC-OPRF protocol requires a secure hash function H which consumes an input string and produces
a point on the elliptic curve E(a, b, p), where the mapping onto the curve provides confusion of the input
string, and the function is non-invertible.

In practice, H can be constructed as the composition of a secure hash function F1 : W → GF(p) and an
injection F2 : GF(p)→ E(a, b, p), i.e., H(wi) = F2(F1(wi)) for each wi in W . In this case, the security of the
hash function H is equivalent to the security (including confusion and non-invertibility) of F1, so a secure
cryptographic hash function such as SHA-256, RIPEMD-160, or BLAKE 2 should be used. For F2, there are
several known methods for mapping an integer onto an elliptic curve [7, 14], e.g., the ‘Try-and-Increment’
method [6], the ‘Twisted’ curves method [9], the Boneh-Franklin admissible encoding for supersingular curves
[5], the Shallue-Woestijne-Ulas algorithm [19], and the Brier method [7].

Of the methods mentioned above, the Boneh-Franklin admissible encoding, the ‘Twisted’ curves method,
and the Brier method are indifferentiable from a random oracle [1, 14]. However, the Boneh-Franklin
admissible encoding is a bijection over supersingular elliptic curves, which are susceptible to the MOV
attack [17], and require substantially larger parameters to ensure the same level of security provided by
ordinary elliptic curves. Similarly, the ‘Twisted’ curves method maps each input to either a point on the
elliptic curve or one of its twisted curves, but this effectively doubles the computation time of the protocol
since each computation must be carried on both curves [9]. In the example given in Section 4, H is defined as
the composition of SHA-256 for F1 and the ‘Try-and-Increment‘ method for F2 (see Algorithm 1 for details).

Algorithm 1 Secure hash function H(wi)

Input: A string wi and an elliptic curve E(a, b, p)
Output: A point Gi on E(a, b, p)

1: xi ← SHA-256(wi) (mod p)
2: while x3i + axi + b is not a quadratic residue modulo p do
3: xi ← xi + 1
4: end while
5: yi ← (x3i + axi + b)1/2

6: return Gi = (xi, yi)

Note that in Algorithm 1, if you exceed a security parameter (e.g., some number of iterations in the while
loop) and the point is not a quadratic residue, then you re-start the algorithm with a different wi (e.g., by
incrementing the input value by one).

2.3 Elliptic curve E

The choice of the elliptic curve E(a, b, p) used throughout this paper affects the security, speed, and utility of
the overall protocol. For instance, the order r of E(a, b, p) bounds the number of possible outputs. Choosing
a curve where r is small increases the probability of collisions among the outputs, and weakens the security
of the protocols that are dependent on the difficulty of the elliptic curve discrete logarithm problem.

For general purposes, we recommend that a secure and peer-reviewed elliptic curve should be chosen
for use in this protocol. Examples include NIST curves as defined in [15] (e.g., NIST P-384) and [4] (e.g.,
Curve41417). When speed and memory are critical, several specialized elliptic curve families may also be
appropriate (see [3, 12]), e.g., Edwards curves, Inverted Edwards curves, or Montgomery curves.

The parameters a, b, p, and r for the NIST P-384 curve are given in Table 1, and the P-384 curve is used
throughout the example presented in Section 4.

3 Algorithm Description

This section defines the EC-OPRF protocol and offers optional extensions to it.
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3.1 EC-OPRF

An oblivious pseudorandom function, such as the one described here, can be thought of as a keyed hash –
with the properties that the first party holding the input to hash does not disclose the input to the second
party, and the second party retains the key for the hash and does not disclose it to the first party.

1. (Hash) The client (i.e., Alice) first takes the collection of inputs W = {w0, . . . , wl−1} and computes
the hash H of each (see Algorithm 1), namely

Gi = H(wi), (1)

to form the set G = (G0, . . . , Gl−1).

2. (Mask) For each Gi in G, the client then generates a random integer mi as a mask for Gi, and
computes the scalar multiplication

Mi = mi ∗Gi, (2)

and sends the list M = (M0, . . . ,Ml−1) to the server (i.e., Ted).4

3. (Salt) The server then salts each Mi in M with its private key s as

Si = s ∗Mi, (3)

and returns the list S = (S0, . . . , Sl−1) back to the client.

4. (Unmask) Upon receipt of S, the client applies each inverse mask m−1
i (mod r) to Si and obtains

Ui = m−1
i ∗ Si = m−1

i ∗ (s ∗Mi) = m−1
i ∗ (s ∗ (mi ∗Gi)) = s ∗Gi, (4)

the server’s salted version of the hashed point Gi (corresponding to the input wi).

Note that for any input w the output Ui = s ∗ Gi is well defined in terms of s and Gi, and cannot be
solely computed by either the client or server. While Alice has access to Gi and s ∗ Gi, recovering Ted’s s
is the elliptic curve discrete log problem and is known to be difficult to compute [16]. The server only has
access to s and m ∗H(wi) and thus can not compute either wi or H(wi). Hence, the EC-OPRF protocol is
indeed oblivious.

3.2 Extensions

The OPRF from the previous section results in a secure two-party computation that can be used in calcula-
tions by the original user or used as a component for an external application. Section 3.2.1 describes how the
protocol can be extended to provide forward secrecy for a third party application, and Section 3.2.2 provides
additional security alternatives such as using the signed hash as a seed for a pseudorandom function.

3.2.1 Key Rotation

There are often security or regulatory requirements for updating keys used in cryptographic services which
can either be based on time or frequency of use. In this section, a scheme is presented which provides, via
key rotation, forward secrecy while maintaining a minimal state. To illustrate this, we describe a scenario
involving three parties: the client (Alice), the salting server (Ted), and a recipient “cloud” server (Claude).
See Figure 1 for a schematic outline of the three party system. As in Section 3.1 above, Alice chooses an
input wi and coordinates with Ted to compute Ui = s ∗Gi. Alice will use the result of the protocol as input
to an external application hosted by Claude, so she sends him the unmasked point Ui. Claude can either
use this value directly or apply an additional signature using a private integer t:

4Although it is possible for the server to recompute yi from xi and sgn(yi), sending both coordinates of Mi is more
computationally efficient (at the expense of bandwidth).
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Alice

w: word

mA: mask

R = (s · t) ∗H(w)

Ted

s: salt

Bob

w: word

mB : mask

Claude

t: pepper

GA = mA ∗H(w) GB = mB ∗H(w)

SA = s ∗GA SB = s ∗GB

UA = s ∗H(w) UB = s ∗H(w)

Figure 1: Example flow between the EC-OPRF parties

5. (Pepper) The cloud based server receives the unmasked points U = (U0, . . . , Ul−1) and calculates
each

Ri = t ∗ Ui = (t · s) ∗Gi, (5)

which are used as tokens for a hosted application.

If Claude actively participates in the scheme by performing the Pepper step, a key rotation can be initiated
by either the salting server, Ted, or another trusted party. The key rotation authority can initiate an update
by generating a random integer k, calculating, k−1 (mod r), and securely distributing the values k and k−1

to Ted and Claude, respectively, who update their private constants accordingly:

Ted: ŝ← k · s and Claude: t̂← k−1 · t .

It is straightforward to verify that the final keyed hash remains unchanged after performing the key rotation:

R̂i = (t̂ · ŝ) ∗Gi = ((k−1 · t) · (k · s)) ∗Gi = (t · s) ∗Gi = Ri .

The keys s and t can be rolled repeatedly without storing the random constants k and k−1. Ted learns
nothing about Claude’s computed key t̂ when he receives k, and likewise Claude learns nothing about Ted’s
computed key ŝ even though k−1 can be computed from k.

Messages sent across the channel between Alice and Ted are obsured by a random scalar mask, so
the input wi maps to a different elliptic curve point each time the protocol is run. However, the message
becomes fixed after performing the Unmask step, making the channel between Alice and Claude susceptible
to statistical active attacks. However, periodically changing Ted’s key s to ŝ causes the point Ui = s ∗ Gi

to become Ûi = ŝ ∗ Gi, potentially prohibiting the sample space to grow large enough to build a reliable
statistical model.

3.2.2 Client Side PRF

This extension relies on another definition, a pseudorandom function (PRF) P .
The client-side application of the PRF to the server’s salted, unmasked elliptic curve points can be added

as the final step in EC-OPRF protocol. An implementation of the EC-OPRF protocol with this extension
could apply HMAC-SHA-256 to the x-coordinate of the elliptic curve point. Figure 2 shows an example
system which incorporates this extension.
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Alice

w: word

mA: mask

Ted

s: salt

Bob

w: word

mB : mask

Claude

RA = RB

GA = mA ∗H(w) GB = mB ∗H(w)

SA = s ∗GA SB = s ∗GB

RA = P(s ∗H(w)) RB = P(s ∗H(w))

Figure 2: Example flow between components with a client-side PRF

To implement this, an additional step may be added after the Unmask step given in the algorithm. In
this additional step, Random, the client applies the PRF P to each element of U , ensuring that a trusted
one-way function has been utilized. The final output of the EC-OPRF is R = (R0, . . . , Rl−1) where:

Ri = P (Ui)

This extension is incompatible with the key rotation extension described above, as in this extension the
client converts the point to a block, meaning that Claude can not preform the operations required for the
key rotation extension.

4 Example

Alice the client wishes to randomize the contents of his collection of words using Ted the server’s private key
s to salt the randomization. The contents of Alice’s collection should be kept secret from Ted, while keeping
Ted’s key s hidden from Alice. This can be accomplished using the EC-OPRF protocol.

Client hashing and masking

Hash. Before the protocol begins, Ted and Alice agree to base their computations on the NIST approved
P-384 elliptic curve E(a, b, p) with the parameters found in Table 1.

Name Description Hex Value

a Coefficient
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff fffffffe ffffffff 00000000 00000000 fffffffc

b Coefficient
b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112

0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

p Prime
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff fffffffe ffffffff 00000000 00000000 ffffffff

r Order
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

c7634d81 f4372ddf 581a0db2 48b0a77a ecec196a ccc52973

Table 1: Parameters of the NIST P-384 elliptic curve y2 = x3 + ax+ b over GF(p).[15]
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If Alice wants to randomize the collection

W = ( "see", "spot", "run" ).

she will first hash the inputs with H and mask them with M . To compute H, Alice starts by hashing the
inputs W with F1, which in this case is SHA-256 reduced modulo p. The output of F1(wi) is shown in
Table 2.

Input F1(wi) = SHA-256(wi) (mod p)

see → w0
00000000 00000000 00000000 00000000 aa9e9b5c 907d50fe

b410f2a8 4e81ab72 c5ae6724 d57ccc53 650f9361 d33dc734

spot → w1
00000000 00000000 00000000 00000000 be2bdbb3 100e4119

1874b192 057ae741 8f549e9d 4ec8b3eb 1a3ada7b 9453d365

run → w2
00000000 00000000 00000000 00000000 acba2551 2100f80b

56fc3ccd 14c65be5 5d94800c da77585c 5f41a887 e398f9be

Table 2: Computation of F1 for the inputs W .

Now that each input of W has been assigned to an element of GF(p), Alice can finish the computation
of H(wi) using the ‘Try-and-Increment’ method for F2, which associates each element with a point on the
elliptic curve E(a, b, p). The output of composing F2 with F1 is Gi = H(wi), and is shown in Table 3. Note
that for each wi, the x coordinate of Gi is almost identical to the values of F1(wi), which indicates that
Algorithm 1 terminates after only a few ‘tries’, indicating that a high number of the elements in GF(p) are
quadratic residues of the chosen curve.

EC Point Gi = H(wi) = F2(F1(wi))

G0

x
00000000 00000000 00000000 00000000 aa9e9b5c 907d50fe

b410f2a8 4e81ab72 c5ae6724 d57ccc53 650f9361 d33dc736

y
cf810efb 16aa6de4 7e8a4532 c23f3b2b 4961fca2 943f3f41

15ab492c c3ae278e 4d8626fb 11c8078c c859291f e45b708d

G1

x
00000000 00000000 00000000 00000000 be2bdbb3 100e4119

1874b192 057ae741 8f549e9d 4ec8b3eb 1a3ada7b 9453d36a

y
04a82d48 a75fa977 9a69b6bb 09558892 e448ef12 a4763d73

1173de19 3392b3f9 a2d4a9a3 eb76b6f5 47fc25e1 1369dc58

G2

x
00000000 00000000 00000000 00000000 acba2551 2100f80b

56fc3ccd 14c65be5 5d94800c da77585c 5f41a887 e398f9c3

y
747d6333 cfd7724a 6dd810dc 7c845200 d18a8200 2aca7ae3

db9f4140 401778d1 c4a964d7 aa49d30a c527158c 67bb44a1

Table 3: Composition of F2 with F1 to compute H for the input W .

Mask. Since Alice wants to conceal the contents of her collection, she will mask each of her points before
sending them to Ted. In particular, Alice multiplies each point Gi with a randomly generated scalar integer
mi (Table 4), and sends the resulting list M (Table 5) to Ted.

Scalar Random Mask (mi)

m0
ee1c8974 956313c3 14379d6e 714ce2af 3aa3fabe 105f7da6

70d8ad2c 97148b08 b7da6e93 02d6d251 169bc8b8 472e9ad0

m1
9b7491c6 ceb651cd a592fd50 5c10aaa0 cbe4dfc4 662fb223

67b46627 3ad1af51 886e4006 0c08c09f 7fe8ce6f 4c181fe7

m2
e259c5b6 9e130b72 251e926e 815ba6c7 8343b3f2 cc044ec5

b7c928c6 a8d2445c d40c254c d351ebc7 ba4bcccf be79d63d

Table 4: The list m of scalar integer masks, chosen randomly by Alice for each input of W .
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EC Point Mi = mi ∗Gi

M0

x
5e231c9b 0b685fbc 9cdb11b1 48009ba d08d7da88 b2a4419a

472ad7ff 2bbdbd63 ad955361 814b5b1 3681d9f2f 5c4cb73c

y
d91c2360 27ce556c 6dfec798 65870078 127a97f4 0ceffe4f

d6ea1b39 4abbf944 d86cb381 4f173fbc 4978c36d c2b1432f

M1

x
3dd6a1c7 7624897a 4376c0ae b939432a 9f64f479 b51f2c89

8f0f30cc 2d2c0df8 88ca48a6 807cb66d d6a2b209 54056a54

y
4a3ec4c0 35c3fb83 988b48d7 e341b8c1 02d762e7 623a2928

04661903 81e19e4d c774bd04 447224db 3c9b9864 b1a06965

M2

x
27bdf67b f939c04a 294be47f 00be8a5d 2ac735d5 3ceeed38

0d93cd59 681371d7 177e0297 6f7b08e3 cfc502c1 5077df99

y
5ddc13d9 3ed4705a 8c185c04 690e70d7 73649ce1 fb7ed356

9c68d925 4023abbb dd2a0b28 2f16d479 e2d89acf c918606f

Table 5: Alice’s hashed and masked elliptic curve points M .

Server salting

Salt. Ted receives the list M , salts the points with his private key s (Table 6) by computing Si = s ∗Mi

(Table 7), and replies to Alice with the list S.

Scalar Random Salt (s)

s
379c5eaf bd99f838 23fa59e6 cfe61a73 785fdcc5 7cceb654

b35ed9f8 3d996f18 6a03d019 304dc3ce 9caf73c1 587b3e94

Table 6: Ted’s private key s used to salt M .

EC Point Si = s ∗Mi

S0

x
1b11424c a9777bde 4f16010d 94665c1f 154d2514 42a8d64b

3c0eca92 bfe21c24 12c4ac56 330edb49 3f3bfcee ca79b9f8

y
cc178f90 807f2507 165ccd2f a508c6ba dde1abbd 374c6956

261c34b5 1a9de437 4d5d021c 731f15f6 dd4d3712 2c6def90

S1

x
39f476df 09ca72f9 d45befa7 8eb68279 b2a06325 6e3f1569

d4bd2e1b bd2add9f 399d8c16 e4d96a08 fbf07780 55b5a8de

y
5f7405ff 1ff521cc 19275b95 48b8e9a9 86c0643e 93b8c6b9

577edbfc 64dcb67d e755c1ab b1c87c61 47d971b1 2f59bacf

S2

x
484b1519 cc83bf60 42f843d7 dc9853f8 9904eebc da3ac2a1

9ec5e4f5 11e27f33 ffe8bcb6 88fe746a 5e5310e9 b8a6ef9e

y
eb302d0a bbd68e07 8e0e9bc3 389d1d8b 909030e5 292def15

7ce021c1 79fc86b6 d481a6b1 fb0e9972 a523f0c6 a21c0dbb

Table 7: Resulting points S from salting points M with Ted’s private key s.

Client unmasking

Unmask. Now that Ted has salted the masked points, Alice can unmask each point. For each random
scalar mi, Alice computes the inverse mask m−1

i (mod r) shown in Table 8, and multiplies the resulting
scalar with its respective point Si to obtain Ui = m−1

i ∗ Si shown in Table 9.
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Scalar m−1
i (mod r)

m−1
0

d0216c93 1290f984 5596a916 ca6208be 8dfbaa02 311112d4

dd4f726c 95665d07 3f11e3d7 6cd2f2a0 4a1c6584 163ebecb

m−1
1

dfb76a82 4d721faa 28670a21 be9246ef 32ee3dde e4fe8ecc

4e2c4d91 110c6e15 40a2bc4d 17153221 46107a7d fb3e85ec

m−1
2

fca7d3b4 cbd0a157 b761fa3f b05aa618 7bb02d4a f4d375dc

c6d2b06b a42437c3 51cd7a75 9ca387f6 a81dddb9 5a2edd4a

Table 8: Multiplicative inverses m−1 of Alice’s mask set m modulo r.

EC Point Ui = m−1
i ∗ Si

U0

x
6723853e b2079a61 144f7ccc 96d2a29c 73db81a8 f454defb

e85fee0d a92cb33a ab52ca23 51e01a9a a965793e 41c9cfe1

y
6899ae01 8468f7dd 26f9f0cd 29545a87 a27dd036 51136609

1e7cca7c 00637994 64b7c6a5 fa4dc5c9 c82cecfc 976dbdcc

U1

x
5403ca6a 59b8ca57 ccf2f8b9 c3eb8bb7 7443d1b3 2692a0cf

9eea1a80 0e8744bb 3cde0e3e 6ec27d0c 49bcfb77 b8a14f74

y
ce7c86b2 e4b9d6ad 512adb4e b9fc283d 2ee0b00e 8a8247bb

61e7a77b be874990 24bb21a8 e3e1c818 4e3ad89c 114e7e34

U2

x
a51b0851 0be9eebc c13665e9 971bad76 36a96353 41daf84b

cc1a9202 27ef156b 53c51eb3 8287675f 0fbc3840 168973dd

y
35d17c05 42238c0c 0d350598 ec09efa6 3349f4a8 21dcf98a

ba875d3b fb915c6c d3c81a5e 92999f45 b831ffcd 30225c72

Table 9: Points U unmasked by the Alice’s mask m−1.

5 Generalizations

The EC-OPRF protocol described in Section 3 is based on elliptic curve arithmetic, but the underlying
protocol naturally extends to other abelian groups. For instance, the elliptic curve group E(a, b, p) over
GF(p) can be replaced by the cyclic group (Z/nZ)× to give a protocol similar to the RSA algorithm. See
Section 5.2 for details. It should be noted that the EC-OPRF protocol makes full use of the abelian group
axioms. In particular, both commutativity and invertibility are essential to the Unmask step.

5.1 Masking Alternatives

The Mask and Unmask steps in the EC-OPRF involve scalar multiplication of an elliptic curve point,
which can be computationally expensive. As an alternative, Alice and Ted agree upon a base point B ∈ E
as part of the initial elliptic curve parameters, and Ted uses B to compute T = s ∗ B and then publicizes
B and T . The alternative algorithm proceeds as before, but with the Mask and Unmask steps defined as
follows:

2. (Mask) For each Gi in G, Alice generates a random integer mi as a mask for Gi, and computes the
point addition

Mi = (Gi) + (mi ∗B)

and sends the list M = (M0, . . . ,Ml−1) to Ted.

Ted proceeds to salt each point in M as before (see Section 3.1), but the S values are computed as

Si = s ∗Mi = s ∗ (Gi +mi ∗B) = s ∗Gi + (s ·mi) ∗B = s ∗Gi +mi ∗ T.

While Ted is computing S, Alice can pre-compute the values (−mi) ∗ T to accelerate the unmasking step:
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4. (Unmask) Upon receipt of S, Alice removes the mask using the point addition

Ui = Si + (−mi) ∗ T = s ∗Gi + (mi −mi) ∗ T = s ∗Gi

to once again arrive at the secured version (Ui) of the hashed point Gi.

The final Pepper step, performed by Claude, uses scalar multiplication as before.
Avoiding the two scalar multiplications and the multiplicative inverse calculations in the Unmask step

yields a near 100x speed increase (excluding pre-computation time), which can be measured as the difference
between the computation time listed for the client unmask and server salt steps in Table 10.

In this alternative, Ted and Claude can still perform a key rotation, but Ted will also have to update his
public point T – at which time an eavesdropper will be able to detect that a key rotation has taken place.

5.2 OPRFs based on cyclic groups

Without loss of generality, we consider arithmetic over the cyclic group (Z/nZ)× for some integer n, known
to Alice, Ted, and Claude. Initially, Ted and Claude choose private integers s and t, respectively.

5.2.1 DH-OPRF

The security of the DH-OPRF protocol relies upon the order of (Z/nZ)×, so we take n to be a large prime.
This construction can then follow:

1. (Hash) For an input w, Alice hashes w with a cryptographically secure hash function H : {0, 1}∗ → Zn

according to w 7→ H(w) 6≡ 0 (mod n).

2. (Mask) Alice chooses a random m ∈ Z relatively prime to ϕ(n), and sends Ted G ≡ H(w)m (mod n).

3. (Salt) Ted uses his private s to reply to Alice with S ≡ Gs = H(w)ms (mod n).

4. (Unmask) Alice calculates d ≡ m−1 (mod ϕ(n)) from her mask m, and sends Claude U ≡ Sd

(mod n). Note that U = H(w)(m
−1m)s ≡ H(w)s (mod n).

5. (Pepper) Claude computes R ≡ U t = H(w)st (mod n).

Similarly, a key rotation between Ted and Claude can be accomplished if Ted chooses a random integer k
relatively prime to ϕ(n) and sends Claude k−1 (mod ϕ(n)). Ted and Claude update their respective private
keys as

ŝ← s · k (mod n) and t̂← t · k−1 (mod n) ,

and the final keyed hash R̂ = H(w)(s k)(t k
−1) ≡ H(w)st ≡ R (mod n) remains unchanged.

5.2.2 RSA-OPRF

Just as in Section 5.1, the Mask and Unmask steps can be accelerated by replacing several costly expo-
nentiation steps with integer multiplication, at the cost of Ted publicizing an addition public key.

Before the RSA-OPRF begins, Ted generates large primes p and q, computes n = p · q and ϕ(n) =
(p− 1)(q − 1), chooses a key s ∈ Z relatively prime with ϕ(n), and computes the value e such that e ≡ s−1

(mod ϕ(n)). Ted then shares the public values n and e with Alice (and optionally n with Claude). For
completeness, the analogous updates to the Mask, Salt, and Unmask steps within the RSA context are as
described below:

2. (Mask) Alice chooses a random m ∈ Z that is relatively prime to n, and sends Ted

G ≡ me ·H(w) (mod n) ,

where e is Ted’s public exponent.
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3. (Salt) Ted uses his private exponent s to sign Alice’s message with

S ≡ Gs = (me ·H(w))s = me·s ·H(w)s ≡ m ·H(w)s (mod n),

which follows the fact that e · s ≡ 1 (mod ϕ(n)).

4. (Unmask) Alice calculates m−1 (mod n) from her mask m, and sends Claude

U ≡ m−1 · S = (m−1 ·m) ·H(w)s ≡ H(w)s (mod n) .

Note that steps 2-4 describe Chaum’s blind signature scheme [8]. After the Unmask step, Alice can send
U to Claude, who can enable key rotation by applying the Pepper step and computing R ≡ U t = H(w)st

(mod n). As in Section 5.2.1, the key rotation takes place when Ted – or a trusted party with knowledge of
the secret ϕ(n) – generates a k ∈ Z relatively prime to ϕ(n), computes k−1 (mod ϕ(n)), and distributes k
and k−1 to Ted and Claude, respectively. Once again, Ted and Claude update their respective private keys
as

ŝ← s · k and t̂← t · k−1 ,

and Ted additional updates his public exponent to ê← ŝ−1 (mod ϕ(n)).

5.3 Comparison of EC-OPRF and RSA-OPRF

We implemented the EC-OPRF using the alternative masking scheme introduced in Section 5.1 and com-
pared this with the RSA-OPRF algorithm introduced in Section 5.2.2 by running the following performance
comparison.

Benchmark tests were conducted using implementations written in C++, utilizing core cryptographic
components from Crypto++ [10], and run on a Windows 7 virtual machine with 2 GB of RAM and 2 CPUs.
Our RSA-OPRF (based on Section 5.2.2) was implemented using a 2048-bit key, and the EC-OPRF (based
on Section 5.1) was implemented using the NIST curve secp256k1. The code was compiled using Microsoft
Visual Studio in the Win32 (x86) release configuration with the /O2 flag to optimize for speed. The results
from these computational experiments are shown in Table 10.

Party Step EC-OPRF (sec) RSA-OPRF (sec)

Client Hash + Mask 0.831 0.687
Server Salt 10.850 26.908
Client Unmask 0.160 0.206

Table 10: Speeds for 10,000 repetitions of the EC-OPRF (alternative masking) and RSA-OPRF protocols.

We observe that this implementation of the EC-OPRF offers a substantial overall speed reduction as
compared to the RSA-OPRF, and only offers a slight time increase on the client side, which is beneficial
when optimizing for many clients and a few servers, as it distributes the computational load to the clients.

We also see a significant improvement in the network bandwidth usage by the EC-OPRF construction
as compared to other constructions. For example, Table 11 demonstrates that EC-OPRF uses 25% of the
network bandwidth compared to RSA-OPRF.

Public Key
(PEM)

Phrase
(raw)

Phrase
(Base64)

EC-OPRF 174 bytes 512 bytes 684 bytes
RSA-OPRF 451 bytes 2048 bytes 2731 bytes

Table 11: Network Bandwidth Comparison of EC-OPRF and RSA-OPRF
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6 Summary

In this paper, we have built a cryptographically secure OPRF based on elliptic curve arithmetic inspired by an
existing blind signature scheme. The EC-OPRF output is a value that is signed by one or more semi-trusted
parties, and can be used as a primitive within other applications. We have provided a detailed construction
for the EC-OPRF protocol, an example with test vectors, and a brief statistical analysis of the benchmark
tests for an implementation written in C++. Further, an extension to the protocol was introduced that
provides forward secrecy – while maintaining a minimal storage overhead. Several additional variants to
EC-OPRF protocol were considered, which include a method that speeds up the client side calculations via
modifications to the masking steps, and other generalizations based on commutative groups. In particular,
we explored the analogous DH-OPRF and RSA-OPRF constructions. The computational complexity, pre-
computation requirements, and security conditions were discussed for each of the protocol variations, and
we showed that the C++ implementation of the EC-OPRF is faster and more space efficient than the
RSA-OPRF protocol.
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