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ABSTRACT

Proof of Work (PoW) blockchains regulate the frequency and
security of extensions to the blockchain in a decentralized
manner by adjusting the difficulty in the network. However,
analogous decentralized measures to regulate the replica-
tion level of the associated transactions and blocks data are
completely missing so far. We argue that such measures are
required as well. On the one hand, the smaller the number
of replicas, the higher the vulnerability of the system against
compromises and DoS-attacks. On the other hand, the larger
the number of replicas, the higher the storage overhead, and
the higher the operational blockchain cost are.

In this paper, we propose a novel solution, EWoK (Entan-
gled proofs of WOrk and Knowledge), that regulates in a
decentralized manner the minimum number of replicas that
should be stored by miners in the blockchain. EWoK achieves
this by tying replication to the only directly-incentivized pro-
cess in PoW-blockchains — which is PoW itself. EWoK only
incurs small modifications to existing PoW protocols and
is fully compliant with the specifications of existing mining
hardware. Our implementation results confirm that EWoK
can be easily integrated within existing mining pool protocols,
such as GetBlockTemplate and Stratum mining, and does
not impair the mining efficiency.

1 INTRODUCTION

Blockchains realize a conflict-free, “extend-only”, distributed
data structure without the need for a central root of trust.
Proof of work (PoW) based blockchains such as Bitcoin and
Ethereum account for more than 90% of the total market
capitalization of existing digital cryptocurrencies [10]. These
blockchains enable miners to “vote” with their computing
power on the next set of transactions to be added by “mining’
blocks—which effectively limits the power of individual users
and makes Sybil attacks difficult. The difficulty in PoW
mining is self-adjusted by the network to ensure that the
block generation time (and therefore the system throughput)
lies within reasonable bounds [16].

However, similar mechanisms that attempt to regulate
the storage of the associated blocks/transactions are missing

i

*Work done while author was affiliated with NEC Laboratories Europe

Jens-Matthias Bohli*
Mannheim University of Applied Sciences
Germany
j.bohli@hs-mannheim.de

Wenting Li
NEC Laboratories Europe
Germany
wenting.li@neclab.eu

so far. This resulted in a sharp variance in the number of
blockchain replicas over time. Namely, during the early years
of PoW blockchains, every miner was also a “full-node” and
stored a full copy of the blockchain. As a result, the blockchain
witnessed an unprecedented level of replication (>200,000
replica) until early 2014 [14, 15]. Nowadays, the current
difficulty level of PoW mining is prohibitively high enough
that miners do not have incentives to operate solo. Instead,
joining a mining pool emerges as an attractive option for
miners to receive a portion of the block reward on a consistent
basis. Here, workers do not connect directly to the blockchain;
instead, they only connect to the pool operator which defines
their search space parameters (e.g., workers are typically
required to solve a PoW with a reduced difficulty). In fact,
most existing workers run dedicated mining protocols, such as
Stratum mining (STM) [25] or GetBlockTemplate (GBT) [17],
in which they solve specific outsourced PoW puzzles without
having to store any parts of the blockchain. This resulted in
a sharp decrease in the number of full nodes from hundreds
of thousands to a few thousands of nodes [14, 15].

While, in theory, ensuring that the system has a few
“trusted” replicas suffices for security, the essence of blockchain
is not to rely on such “trusted nodes”. This makes it essential
that a sufficient number of replicas are stored within the
system. However, this number depends on many aspects of
the system and could dynamically change in the future. On
the one hand, the smaller the number of replicas, the higher
the vulnerability of the system against compromises and DoS-
attacks. On the other hand, the larger the number of replicas,
the higher the storage overhead, and the higher the opera-
tional blockchain cost. In many ways, this is analogous to
the need of regulating block generation times using PoW diffi-
culty: a large difficulty increases the block generation times
and lowers system throughput, while a low difficulty decreases
the generation time and increases the throughput.

In this paper, we propose a solution, EWoK (Entangled
proofs of WOrk and Knowledge), to regulate in a decentral-
ized manner the level of ledger replication amongst miners
(and mining pools) in the network. EWoK ties the replication
to the only directly-incentivized process in PoW-blockchains—
which is mining itself. To this end, EWoK effectively divides
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the blockchain into dynamically adapting partitions and re-
quires mining pool workers to use different partitions in order
to correctly solve the standard hash-based PoW. EWoK al-
lows to freely scale the size of the partitions to fit them into
the memory of typical miner hardware. This encourages pool
workers, i.e., parties that aim to maximize their efficiency, to
store the individual partitions locally for faster access instead
of fetching the information from a remote external resource.
In doing so, EWoK ensures a minimum bound on the number
of replicas in the system as mandated by a system-wide pa-
rameter. We implemented and evaluated a prototype based
on EWoK using GPU mining and integrated it with STM and
GBT. Our results show that EWoK does not require changes
in existing mining hardware, and achieves a 2% higher hash
rate than GBT and only deteriorates the hash rate of STM
by 1%.

Related Work. The literature features a number of contribu-
tions that propose a re-purposing of the PoW to e.g., prove
storage of archival data, but require either drastic changes
or are not applicable in practice. Note that most PoW-based
blockchains, such as Bitcoin, use a hash-based PoW to find
an input that is hashed to a value with certain properties
(see Example 2.2 in Section 2.2). That is, a PoW usually
requires many hash executions over randomly chosen inputs.
In Permacoin [18] and Retricoin [23], the PoW is replaced by
a Proof of Retrievability (PoR) over a large archival data file.
Here, the archival data file needs to be known a-priori in its
entirety to get extended by a maximum-distance-separable
code and to allow the miners to pick their own selection of
file shares to be stored in their local storage. That is, these
systems do not support a dynamically increasing file—such
as the blockchain ledger.

Spacemint [21], Burstcoin [8], and Filecoin [13] aim to
replace PoW by a Proof of Space. This means that a miner
has to prove that a certain amount of storage has been
invested (instead of computation as in the case of a PoW).
This would require likewise drastic changes in existing mining
hardware. PieceWork [2, 11] leverages a 2-phase PoW protocol
similar to EWoK; it is however not designed to incorporate
proofs of knowledge over blockchain data. BetterHash [9] is
a newly proposed mining protocol that allows the workers
to construct their own block template while benefiting from
the payout as a pool worker. It aims to encourage miners
to become full nodes by removing the restriction that only
the pool coordinator decides the block template. However,
BetterHash does not incentivize miners to store blockchain
data.

Summing up, all existing approaches either do not solve
the problem that we target or would require additional in-
vestments in different types of machinery, e.g., storage and
exponentiation-optimized machinery. Due to their large mar-
ket capitalization, it is clear that drastic changes to the rules
governing the dynamics of the PoW ecosystem will be widely
resisted by the backing industry. In contrast, EWoK does
not require any modification to PoW nor to the underlying
blockchain (it does not require any soft/hard-forks), is fully
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compliant with the specifications of existing mining hardware,
and only incurs minor changes to the existing PoW protocols.
Hence, EWoK emerges as the first workable attempt to reg-
ulate the dispersal of the blockchain data amongst various
workers.

Outline. In Section 2, we briefly recall basic information about
blockchains based on Proofs of Work (PoW) and shed lights
on their shortcomings. In Section 3, we introduce our exten-
sion of PoW-based blockchains, p-covering blockchain, which
ensures that the blockchain is stored among the workers with
a specified level of redundancy. In Section 4, we detail EWoK
and analyze its security. In Section 5, we evaluate a prototype
implementation based on the integration of EWoK with GPU
mining based on STM and GBT, and we conclude the paper
in Section 6.

2 PRELIMINARIES
2.1 Notations.

A denotes the security parameter and negl(1) a function that
is negligible in A. We denote by H a cryptographically se-
cure hash function that accepts bitstrings of arbitrary length.
For the sake of readability, if the input x is the concatena-
tion of several individual strings x1, xz, ..., we simply write
H(x1,x2,...) instead of H(x1||x2]|...). For a probabilistic al-
gorithm A, we denote by y < A(x) the event that A on input
x outputs y. In case that the random coins p need to be
specified explicitly, we write y < A(x, p). Otherwise, we omit
these to keep the formalism short and assume that all proba-
bilities are also over the random coins. To capture the notion
of effort, we express by Steps,(x) the number of steps (i.e.,
machine/operation cycles) executed by algorithm A on input
x. This includes also idle steps, e.g., when an algorithm has

to wait for some data. x <i X means that an element x has
been sampled uniformly from a set X. When we consider a
function g = id, we refer to the identity function.

2.2 PoW-Based Blockchains

A blockchain BC = [BC[0],BC[1],...] is a list where new
data, i.e., blocks, are appended within each time epoch. A
blockchain system is composed of a blockchain BC and a set
W of workers who maintain the blockchain?.

To regulate content addition to the blockchain, most ex-
isting (open) blockchains (e.g., Bitcoin, Litecoin, Ethereum)
require the workers to solve a proof of work (PoW) first before
appending a block. We adapt and extend the model from [3]
to formalize the notion of PoW. Roughly speaking, a PoW sys-
tem allows to generate cryptographic puzzles that are easy to
generate, hard to solve, and whose potential solutions are easy
to verify. More formally, it comprises a parameter space PP,
a puzzle space PS, a solution space SS, and a publicly known

LFor the sake of simplicity, we restrict to the case that the set of
workers W is fixed. It is straightforward to extend the definition
(and the follow-up discussion) to capture dynamically changing sets of
workers W;.
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Figure 1: Sketch of the PoW block header structure in Bitcoin. The grey area indicates system-wide parameters.

verification parameter pp,..;.- Moreover, there exist three algo-
rithms Sample, Solve, and Verify. Sample(ppy,,,) takes a puzzle
parameter PPpuz € PP and outputs a puzzle instance puz € PS.
Solve(puz) is a probabilistic puzzle solving algorithm that on
input a puzzle instance puz € PS outputs a potential solution
sol € SS. Verify(ppyeri, Puz sol) is a deterministic puzzle verifi-
cation algorithm that validates whether sol is a solution to
the puzzle puz.

Naturally, a PoW system should be complete and sound.
Completeness means that a solution found by Solve for a
correctly sampled puzzle will always be accepted. Soundness
means that for any attacker A, the effort to solve a puzzle
cannot be lower (up to a function g) than the effort for
running the ”official” solving algorithm Solve. To simplify the
presentation of the following definitions, we introduce

puz « Sample(pppuz) A sol « A(puz)A
Verify (ppyeri> Puz, sol) = TRUE A
Steps 4 (puz) < g(Stepsg,,. (puz))

Event(pppuz, A, g) expresses the event that a puzzle has been
sampled with puzzle parameter PPpuz; SOme algorithm A pro-
duced a correct solution, and the time effort deviated from
the effort of Solve up to a function ¢g.2 The parameter g will
be used to characterize the soundness of PoW in the sense
that requiring less effort than given by g is unlikely:

Event(pppuz, Ag) =

Definition 2.1 (PoW Soundness). A PoW system is g-
sound for some function g if for every PPT adversary A

and every PPpu; € PP, it holds that Pr [Event(pppuz, A, 9)| =

negl(1). A PoW-based blockchain is g-sound for some function
g if appending new blocks requires to solve one g-sound PoW.

All parties in ‘W use the same PoW system and the same
puzzle sampling algorithm Sample but can select the puzzle
parameter ppy, from a given range.

Ezample 2.2 (Hash-Based PoW—HPoW). Most PoW-
based blockchains, such as Bitcoin, use a hash-based PoW
(short: HPoW) as follows. Omitting details, the puzzle pa-
rameter ppp,,, essentially describes a set of possible bitstrings
while the verification parameter specifies a cryptographically
secure hash function H and a positive integer bound target.
Given a a bitstring puz (= the output of Sample), the task
is to find a bitstring sol such that H(puz, sol) < target for a
pre-defined target target. The corresponding Solve algorithm
randomly picks values sol and checks if the condition is met
(Verify). In case that H is idealized as a random oracle, all

2In this work, we will only consider puzzles that are id-sound with
id being the identity function. Still, we decided to present the more
generic definition based on some function g as g # id may hold in other
cases.
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Figure 2: Sketch of a GBT work template and corresponding
worker’s response. The pool operator outsources to its workers
a block template that also contains the field CoinbaseAux. This
field contains auxiliary information given by the pool operator
which is used by the worker to populate parts of the coinbase
transaction.

values sol are equally likely to be a solution — making HPoW
id-sound.

2.3 Mining Pool Protocols.

To generate a block, miners must find a block header that
represents the solution of a PoW and include it (as well as
the additional fields) into a new block, allowing any entity
to verify the PoW. Upon successfully generating a block, a
miner is granted a monetary reward (i.e., in the form of a
coinbase transaction CB3 that specifies the ID of the recipient
of the reward). The resulting block is forwarded to all peers in
the network, who can then check its correctness by verifying
the hash computation. If the block is deemed to be “valid”?,
then blockchain nodes append it to their previously accepted
blocks. Notice that the hash function H and most of the
values in the block header are either system-wide parameters
or implicitly given and cannot be changed by the miner. In
the sequel, we refer to these parameters as 7mpjcihdr-

The current difficulty level of mining valid blocks is so
prohibitively high that it reduces the incentives for miners to
operate alone. Joining a mining pool is an attractive option to
receive a portion of the Bitcoin block reward on a consistent
basis. Miners contribute their resources to generate a block
and to split the reward between all the pool members (referred
to as workers in the sequel) who present valid proof-of-work.
In more detail, a mining pool sets target between 1 and
the blockchain’s target difficulty (denoted in the sequel as
pool target level). Subsequently, a share is assigned to those

3The coinbase CB contains on the one hand fixed information CByix
about the miner (so that the mining reward can be claimed afterwards)
and also a field CByqr (typically of 100 bytes) that can be fully changed
depending on the underlying mining pool protocol.
4That is, the block contains correctly formed transactions that have
not been previously spent, and has a correct PoW.
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subscription

Subscription ID (V) Extranoncel (V) Extranonce2_size (4) |

reply
s Job ID (V) PrevBlockHash (32) Bits(V)
3 Current Time (4) coinbl (V) coinb2 (V)
§ Merkle-Branch (V)
_-g Other Fields
coinbase tx | coinbl | Extranoncel | Extranonce2 | coinb2 |

Figure 3: Sketch of an STM work template and corresponding
worker’s response. Here, workers first receive the value of
Extranoncel and the size of Extranonce2 from the pool operator
right after the initial subscription to the mining pool. Unlike
GetBlockTemplate, the pool operator fixes all the transactions
to be confirmed in the PoW excluding the Extranonce2 field in
the coinbase transaction. The workers only receive the sibling
paths of the coinbase transaction in the transaction Merkle
tree, using which they compute the Merkle root once the
coinbase transaction is determined.

workers that provide a block header that scores a difficulty
level between the pools difficulty level and the currency’s
difficulty level. The main purpose of these block headers is to
show that the worker is contributing with a certain amount
of processing power.

Algorithm 1 Work flow for solving the PoW.

Input: Non-changeable block header parameters mpckhdr
1: while PoW not solved do
2: Choose a new value for CBponce to specify the coinbase CB
3: Compute the Merkle root MR over the coinbase CB and the set
of transactions T
for nonce € {0,1}3? do
Compute h := H(mpickhdr, MR, nonce)
if h < target then
break; {Solution found.}
end if
end for
10: end while
Output: The solution sol = (CBponce, noOnNCE).

© 0P o

To pool mining, most existing mining pools either adopt
the GetBlockTemplate [17] protocol (cf. Figure 2) or Stratum
mining [25] (cf. Figure 3). These protocols are supported by
all existing hash-optimized mining hardware, such as ASICs,
FPGAs, and GPUs.

2.3.1 GetBlockTemplate (GBT). GetBlockTemplate (GBT) [5,
6, 17] is a mining pool protocol natively supported in Bitcoin.

In this protocol, the mining pool operator orchestrates task

assignment to the various connected workers. The GetBlock-

Template protocol gives workers some degrees of freedom in

choosing some PoW parameters while still ensuring that no

two workers work on towards the same PoW solution.

More specifically, upon request, the pool operator out-
sources to its workers a block template (cf. Figure 2) that
contains the following fields: previous block hash, block height,
list of transactions, the target, the coinbase transaction, and
time, among others.

Frederik Armknecht, Jens-Matthias Bohli, Ghassan O. Karame, and Wenting Li

The field CoinbaseAux contains auxiliary information given
by the pool operator which is used by the worker to populate
parts of the coinbase transaction.® Notice that the worker can
add up to around 100 bytes of arbitrary data to the coinbase
transaction, which is commonly used by workers as an extra
nonce when searching for PoW solutions.

The worker then constructs the Merkle root of all trans-
actions (including the modified coinbase transaction) and
searches for a 4 byte nonce to solve the PoW according to
the pool difficulty specified in the field Target. If no solution
can be found, the worker restarts as shown in Algorithm 1.
Notice that a worker can freely modify or shuffle the trans-
actions in the block and compute the corresponding Merkle
tree accordingly; this gives workers additional flexibility when
solving their tasks.

Once a solution is found, the worker constructs the corre-
sponding block header (cf. Figure 1), appends it to the full
corresponding block (including all transactions), serializes
the result, and submits the serialized block along with his
worker ID back to the pool operator.

2.3.2 Stratum Mining (STM). Stratum (STM) is one of the
most commonly adopted mining pool protocols. In Stratum,
workers first receive the value of Extranoncel and the size
of Extranonce2 from the pool operator right after the initial
subscription to the mining pool. Subsequently, the workers
are regularly notified of new mining work with templates
consisting of coinbase data, the block version, the difficulty,
the time, the prefix (coinb1), suffix (coinb2) of the coinbase
transaction, and the Merkle tree branches among other in-
formation (cf. Figure 3). Unlike GetBlockTemplate, the pool
operator here fixes all the transactions to be confirmed in
the PoW excluding the coinbase transaction. The workers
only receive the sibling paths of the coinbase transaction in
the transaction Merkle tree, which is enough to compute the
Merkle root once the coinbase transaction is determined.

The worker then searches for the value Extranonce2 which
results in a Merkle root that solves the PoW. The resulting
coinbase transaction is then formed by appending the follow-
ing information: (coinb1|| Extranoncel|| Extranonce2|| coinb2),
where Extranonce2 is generated locally by each worker.

As such, the Stratum protocols gives workers the flexibility
to cycle through the 32-bit nonce and the Extranonce2 field
in the coinbase transaction whose size is determined by the
pool operator during the subscription stage. Similar to GBT,
workers can additionally adjust the timestamp and the nonce
in the block header to gain additional flexibility.

2.4 Rational Worker Model.

We model a worker as a machine that comprises one or several
processing units and one local memory. It can fetch data
and store data from/to the local memory and can process
data units. In addition, a worker can also request data from
external data sources. In practice, these workers refer to

5More specifically, CoinbaseAux contains auxiliary information guiding
the worker in creating the scriptSig field of the coinbase transaction.
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Algorithm 2 Informal work flow for solving the strawman
solution.

Input: Non-changeable block header parameters 7my)ckhdr
1: while PoW not solved do
2:  Choose a new value for CBponce to specify the coinbase
CB
3:  Compute the Merkle root MR over the coinbase CB and
the set of transactions T
4:  for nonce € {0,1}3? do
5 Compute h := H(mpckhdrs MR, nonce)
6: if h < target then
7 break the WHILE-loop; {Solution found.}
8 end if
9 end for
10: end while
11: Set IND := []; {Index set of challenges}
12: fori=1,...,¢ do
13:  Compute index ind := H(CBponce, i) mod s {s denotes
the current size of the blockchain}
14:  Append ind to IND.
15: end for
16: Let IND = [iy,...,ir]
17: Compute h := H(BC[i1],...,BCli¢])
Output: The solution sol = (CBponce, nonce, h).

the multitude of nodes who commonly join mining pools to
increase their mining advantage in the system.

We assume all workers to be rational, i.e., to maximize
their probability in solving the PoW while minimizing their
effort (which translate into costs). In this work, we consider
the scenario that reading data from external sources requires
network communication and that downloading data takes
so much more time than simply reading it directly from
local memory that a rational worker aims to work with local
memory only.

3 P-COVERING BLOCKCHAIN

We start by considering a strawman design which combines
the notion of proofs of knowledge [13, 18, 21, 23] with the
standard PoW mechanism. The core idea is that an algorithm
can only efficiently solve a PoW if it knows a certain file F.
We then discuss the shortcomings of this strawman design
and present our solution, EWoK.

3.1 Overview

A strawman solution to the problem that we consider is to
couple the PoW with a proof of knowledge (PoK) with respect
to a file F, being the blockchain BC in our case. To this end,
one can proceed as follows:

(1) A worker has to find a solution sol for a PoW puzzle
puz.

(2) The worker has to compute from sol a PoK-challenge
over BC.

Since checking knowledge of the full blockchain is infeasible
and since the "file”, i.e., the blockchain, is publicly known,
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a straightforward approach is to require the hash over a
pseudorandom selection of blocks as given in Algorithm 2.

Note that existing schemes that re-purpose PoW to prove
storage of a file F [13, 18, 21, 23] follow a similar approach
but cannot be directly used in our case where F = BC is
the entire blockchain. First of all, these solutions typically
assume that the file is fixed (e.g., Permacoin extends the
file with an erasure code)—which is not the case in existing
blockchains that constantly grow in size. Moreover, workers
are typically equipped with dedicated mining hardware that
only possess limited storage capabilities (typically few GBs
of storage and RAM) and cannot store the full blockchain.
As a consequence, such a solution only ensures that the pool
operator (or any other entity) stores the full blockchain and
does not guarantee that the workers store any parts of the
blockchain.

To overcome the limitations of the aforementioned straw-
man solution, we restrict the PoK to a part of the blockchain
which is small enough to fit into local memory of typical
workers. The part to be stored is called a partition, which
is dynamically determined by a data partitioning function
from the current blockchain and depends (randomly) on the
worker.

In what follows, we formally model this concept, dubbed
Partitions-Bound PoW. We then discuss the various design
choices used in EWoK in Section 4 in greater detail.

3.2 Modeling a Partitions-Bound PoW

We now define a p-Covering Blockchain as a means to for-
mally introduce the concept of a Partitions-Bound PoW. To
this end, we adopt the common concept of extractors, e.g.,
see [24, Section 2]. An extractor algorithm Extr is given ac-
cess to an algorithm A, represented by Extr®. Note that this
access is non-black-box, e.g., Extr is allowed to rewind A and
is given access to the states of A. The interpretation is that
the outputs generated by Extr are extracted from algorithm
A.

Next, we introduce in Definition 3.1 an extension of the
PoW-notion that binds a PoW to a file, i.e., a bitstring in gen-
eral. For the definition, we introduce a procedure create for
creating PoW that depends on a given bitstring and a security
parameter A. More formally, create takes as input a security
parameter A and a bitstring F € {0,1}* and outputs a PoW-
system, i.e., it outputs descriptions of the spaces (PP, PS, SS)
and specifications of the algorithms (Sample, Solve, Verify).
Then, the notion of a PoW being bound to some file is
as follows:

Definition 3.1 (File-Bound PoW). We say that a PoW-
creating process create is g’-file-bound if there exists a knowl-
edge extractor Extr such that the following holds for any file
F € {0,1}* and any PoW that results from running create
on A and F. For every PPT adversary A and every puzzle
parameter ppy,,, € PP, it holds that:

Pr [Event(pppy,, A, g) AF* — Extr™ . F* # F| = negl(}).
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We say that a PoW is g’-bound to some file F if it is the output
of create(A,F) for a g’-file-bound PoW-creating process create.
Note that if A is clear from the context, we sometimes omit
it and simply write create(F) instead of create(A,F).

We stress that the function g’ in Definition 3.1 is different
from the function g to express g-soundness of a PoW g (cf.
Definition 2.1.) However, there are some relations.

Both functions g and ¢’ are positive, i.e., output non-
negative values only, are both defined on integer values, and
it holds g(x) < ¢g’(x’) for any input x. The first function, g,
is used to characterize the hardness of solving the PoW by
expressing a threshold such that no PPT can solve the POW
with an effort lower than this. Similarly, the function ¢’ is
used to express a threshold for the effort of an attacker but
restricted to attackers who do not know the file F (in the
sense of extractability). More precisely, Definition 3.1 says
that if an attacker aims to have an effort that is below a
certain upper bound, specified by g’, then it has to store the
file F.

In consequence, we see different types of thresholds with
respect to the time effort an attacker can achieve:

(1) Stepsn(puz) < g(Stepsg,,.(puz)) is practically impossi-

ble if the blockchain system is g-sound.

(2) g(Stepsg,,.(puz)) < Stepsy(puz) < g’(Stepsg,,.(puz)) is
possible but only if A stores the file F if the blockchain
system is g’-bound to the file F.

(3) g’ (Stepsg,. (puz)) < Steps(puz) could be possible even
without storing the file F.

As mentioned earlier, the idea is to use a file-bound PoW
that is restricted to a part of the blockchain, which is small
enough to fit into local memory of typical workers. The part
to be stored is called a partition, which is determined by a
data partitioning function on the blockchain.

Definition 3.2 (Partitioning Function). Consider a file F,
divided into ¢ blocks F[i]. A partitioning function prt (with
respect to the file F) is a mapping that accepts inputs x from
some input space £ and outputs a fraction of the file, i.e.,
prt(x) = [F[i1],...,Flip]] where 0 < i; < ... <ip and ¢’ < ¢.
Slightly abusing notation, we say for a block F[i] that F[i] €
prt(x) if prt(x) = [F[i1],...,Flir]] and F[i] € {F[i1],...,F[ig]}.

We say that the partitioning function is p-covering with
0 < p <1 if it holds for any block F[i] that

Pr|x & P : F[i] € prt(x)| = p.

In EWoK (Section 4), the partition is determined by data
that is connected to the worker (to realize a distributed
storage of the blockchain) but is independent of the puzzle
(to encourage the storage in local memory).

We consider now a variant of file-bound PoW where effi-
ciently solving a puzzle puz requires to store a partition of
the file F only. To this end, we require that a solving algo-
rithm can only be time-optimal, i.e., the effort being below a
certain threshold, if the algorithm has direct access to the in-
volved partition. The following definition is a straightforward
extension from Definition 3.1.
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Definition 3.3 (Partitions-Bound PoW). We say that a
PoW-creating process create is g’-partition-bound if there
exists a knowledge extractor Extr such that the following
holds for any tuple (F,prt) where prt is a partition for F with
P = PP, i.e., input space of prt equals the puzzle parameter
space, for any PoW that results from running create on (F, prt),
and for any pp,, € PP:

Pr Event(ppyy, A, g') AF Extr . F* # prt(pppuz)] = negl(4).

(1)
We say that a PoW is g’-bound to (F, prt) (or partitions-bound
for short) if it is the output of create(F) for a g’-partition-
bound PoW-creating process create.

Notice that by setting prt(x) = F for all x € P, a partitions-
bound PoW becomes a file-bound PoW.

Theorem 3.4 explains how these concepts help to solve the
problem stated in Section 1:

THEOREM 3.4. Consider a PoW-based blockchain system
and a p-covering partitioning function prt’ with respect to
the blockchain BC with input space P. Moreover, let a hash
function H : PP — P be given and we define prt(pppuz) =
prt’ (H(pppy,)) for each ppy,, € PP. Finally, we assume that
the PoW is partitions-bound (cf. Definition 3.8) for the iden-
tity function g’ = id with respect to prt.

Let ‘W refer to the set of rational workers in the system.
If the following two conditions are met:

Condition 1: prt(pppuz) fits completely into local memory
of any worker for each PPpus € PP.

Condition 2: The workers in ‘W operate over different
puzzle parameter ppp,,.

Then, the following holds: Any randomly selected block is
on average locally stored by a p-fraction of ‘W so that the
expected number of replicas per block is p - |'W|. Moreover, the
probability that a block is not locally stored by any worker in
W is at most (1 —p)|w|.

PROOF OF THEOREM 3.4. We model H as a random ora-
cle. As the workers operate over different puzzle parameters
PPpu; (Condition 2), the inputs to prt” are uniformly and
independently selected from P. As prt’ is p-covering by as-
sumption and the blockchain system is partitions-bound, it
follows that each block of the blockchain needs to be known
on average by a p-fraction of ‘W. As any prt’(x) fits into local
memory of any worker (Condition 1), a rational worker will
store "its” partition in local memory to minimize access time.
This shows that each block is on average locally stored by a
p-fraction of ‘W. The other claim follows analogously. o

This ensures for any block a minimum number of decentral-
ized replicas are distributed over randomly selected miners
if p is accordingly chosen. Note that these replicas are not
meant to be frequently involved in the verification process
but merely constitute a backup copy. Our goal in this pa-
per is to devise a partitions-bound blockchain system for a
p-covering partitioning function such that the Conditions 1
and Condition 2 mentioned in Theorem 3.4 are fulfilled while
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Algorithm 3 Sketch of the partitioning function prt in EWoK.

Input: Value x € P

1: part := [] {Initialize an empty partition }

2 fori=1,...,[x1do

3:  Compute j := H(x,i) mod N {Specifies which block
within the i-th chunk is to be appended to the parti-
tion.}

4:  Compute ind := (i — 1) - N + j {Gives the total index of
the block to be appended.}

5. Append(part, BC[ind]) { Appends the selected block to
the partition. If BC[ind] does not exist yet, this com-
mand is ignored.}

6: end for

Output: Partition part.

(i) requiring minimal changes to existing PoW blockchains
and (1) being compliant with the specifications of existing
mining hardware.

4 DETAILING EWOK

In what follows, we detail our solution, EWoK, and analyze
its security.

4.1 Protocol Specification

We start by describing the partitioning function (see Defini-
tion 3.2) and explain afterwards how to turn the standard
PoW into a partitions-bound PoW (see Definition 3.3).

4.1.1 Specification of the Partitioning Function. Recall that
BC denotes the blockchain of size s and BC[i] the i-th block.
The partitioning function divides the blockchain into chunks
with equal chunk size N, i.e., the first N blocks form the
first chunk and so on, and selects pseudorandomly (with H)
exactly one block per chunk. A complete description is given
in Algorithm 3.

This partitioning function provides various advantages. It is
p-covering (see Section 4.3) and is independent of the current
size of the blockchain. Although the partitions grow over
time (this is a consequence of the p-covering requirement),
this does not affect those blocks that are already stored in
the partition. Moreover, the parameters can be reasonably
chosen to ensure that the partition’s size fits within the
available memory of existing dedicated mining hardware
(see Section 5). Finally, it does not require any involved
computation and supports mechanisms already contained in
existing PoW-based blockchains. We confirm this by means
of implementation in Section 5.

4.1.2 Specification of the Partitions-Bound PoW. The partitions-

bound PoW in EWoK is composed of two phases, each using
a variant of HPoW (cf. Example 2.2) with sampling algorithm
Sample; and target target; resp. Sample, and target,. In the
first phase, the workers reach consensus on the exact set
(including order) of transactions to be confirmed in a given
block. In the second phase, the workers solve HPoW based
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on this set that entangles the proof of work with a proof of
knowledge on their specific partition.

Notice that, while this entanglement of PoW with PoK
ensures that the PoW is partition-bound, it does not guaran-
tee that different workers store independent partitions. Since
PoW (by design) does not embed any notion for coupling
workers with a unique system-wide identity, the straight-
forward approach of coupling identities to partitions is not
possibleb. Instead, EWoK gives economic incentives to the
workers to store independent partitions by ensuring that two
workers operating over the same partition effectively decrease
their combined mining capabilities. This is achieved by select-
ing the parameters such that on average, only one solution
can be expected in the second phase. As a worker can vary
both the set of transactions and the nonces, EWoK restricts
the set of transactions in phase 1 and the set of allowed
nonces in phase 2.

Fixing the partition: Recall that the transactions exclude
the coinbase transaction CB. In the sequel, we assume that
the coinbase transaction is divided into two parts CB =
(CBfix, CBoar) such that CBy;, contains all information that
are fixed by a pool operator, including the specification of
the rewarding transaction for the miner. This is conforming
with the operation of GBT and STM (cf. Section 2). Each of
these parts of CB plays a different role in EWoK. The first
part, CBy;y, determines the partition to which the PoW is
bound: part = partcpy,, = prt(H(CByix)). The second part,
CByar, is used as input for solving the PoW in the second
phase.

First phase—fixing the transactions: Assume a set of trans-
actions T* that are candidate for inclusion in the next block.
The goal of this first phase is to enforce workers to operate
all over the same set of transactions (including their order).
To achieve such consensus while leveraging existing mining
hardware/software, EWoK deploys HPoW with target target,
and a sampling algorithm Sample; that takes as input T*, i.e.,
a set of transactions, and outputs a sequence of transactions
T, i.e., with a specified order. T is said to be valid with respect
to a nonce noncerans if it holds:

H(T,noncetrans) < target;. (2)

Second phase—mining a block: Given some block header pa-
rameters mpchdr and a valid set of transactions T together
with an appropriate value noncesrqns, the second phase mainly
deals with the generation of the appropriate block header.
To this end, EWoK entangles HPoW with in-memory proofs
of knowledge of the partition partcpy;, = prt(H(CByix)). The
HPoW consists of finding values CByq, and nonce such that

H(mtplckhdrs MR((CBfix, CBuar), T), nonce) < target,.  (3)

Here, MR(CB, T) denotes the root of the Merkle tree where
CB defines the first leaf and the following leaves are specified
by T.

6Permission-based blockchains (where workers have a clear identity)
directly enforce the property of independent partitions, i.e., by coupling
them to the identity of the worker.
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Formally, the sampling algorithm Sample, has the values
Thlckhde 1> nONncerrans as fixed internal parameters and takes
as input the PPpuz = CBfix as puzzle parameter. Recall that
CBrix (part of CB) determines the partition per worker and
has been fixed by the operator. CBy,r has the form CBygr =
(noncetranss CBnonce), where noncetrqns is output by the first
phase and only the second value, CBponce, can be varied.

‘We now show how to couple this PoW with a PoK over
the partition partcpy,, - To this end, the values of CBponce are
derived as follows:

CBhonce := (H (UT,partCBfix[index],pn), pn). (4)

Here, v7 is a fingerprint for T, e.g., its hash value. Note that
this value does not change during phase 2 and hence needs
to be computed only once per worker at the beginning of the
phase. partcp i [index] are blocks involved in the partition
that are pseudorandomly selected as follows:

index := H(vr,pn) mod fpart. (5)

That is, H(vr, pn) determines which block of the partition of
length £art is involved.

pn is a value called the pre-nonce (to reflect the fact that
it will be used as a seed to determine the nonce CBnonce)- In
EWOoK, we restrict the space of possible pre-nonces to enforce
independent partitions. As we will show in Section 4.3, this
gives incentives to rational workers to store independent
partitions. To restrict the nonce space, EWoK enforces an
upper bound Spre-nonce When choosing pn:

pnvalid & pn< 5pre—n0nce- (6)

If h < target,, a solution is found. The complete solution
is then given by CB and nonce together with the valid set of
transactions T. The validation of a solution (T, CB, nonce) is
given in Algorithm 4. Notice that the verification of the blocks
is done by parties that store the full, public blockchain, such
as the mining pools or full nodes. Recall that pool operators
currently store the full blockchain in order to verify new
blocks and outsource new puzzles.

4.2 Practical Considerations

4.2.1 Parameter Selection: To ensure a smooth migration
from an HPoW-based blockchain to a EWoK-based blockchain,
the overall computational effort for successful mining should
remain the same, ensuring that the hash rate remains un-
changed.

To this end, we suggest to set both target; and target,
to 2 X target where target denotes the target used in HPoW.
This ensures that the work efforts for the proofs of work in
phase 1 and 2, respectively, are about half the effort of the
HPoW each.

In addition, we restrict the nonce space within phase 2 to
a set of size 22Xt4rget For example, assuming the difficulty
in the Bitcoin network in April 2020, this can be achieved by
restricting the nonce space to approximately 76 bits. Note
that a worker can control two values in phase 2, the 32-bit
value nonce and the pre-nonce value pn. Thus, we restrict the
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Algorithm 4 The verification algorithm Verify EWoK.

Input: Block header parameters mpxndr, Possible solution
(T, CB, nonce)

: Check if set of transactions is valid (first phase)
: Parse from CB the value noncesrans
if H(T, noncesrans) > target; then
Solution invalid. Abort.
: end if

UL W N

: Check Proof of Work solution (second phase)

. if H(mpjekhdrs MR(CB, T), nonce) > target, then
Solution invalid. Abort.

: end if

© ® N o

10: Check validity of parameters (second phase)
11: Check if nonce restriction applies

12: Parse from CB the value CBnonce

13: Parse pn from CBnonce

14: if pn > Spre—nonce then

15:  Solution invalid. Abort.

16: end if

17: Check if correct partition block involved.

18: Compute characteristic value o from T

19: Compute index index := finq(vr, pn)

20: if CBponce # (H (UT,partCBfix [index],pn), pn) then

21:  Solution invalid. Abort.
22: end if

freedom of the latter to 44 bits. The reason for restricting
the nonce space is to give economic incentives for workers
to store and operate over different partitions (cf. Claim 4 in
Section 4.3 for more details). Note that while a worker could
in addition also vary the timestamp, this is possible within a
certain range only as otherwise the block becomes outdated.
This can be accommodated by reducing target, accordingly.

4.2.2 Work Flow: We stress that, in practice, the computa-
tion of the partition is done only once by each worker. The
process of fixing a shard for each miner in the mining pool
can take place in agreement with the mining pool operator;
indeed, we show in Claim 4 in Section 4.3 that a set of ratio-
nal workers in the same mining pool are incentivized to work
on different shards to maximize the pool rewards.

To ensure efficient execution of phases 1 and 2, the work-
ers are likely to load their respective partitions in RAM.
We show in Section 5 that this is a reasonable assumption;
namely, we show how to realize modest partition sizes (with
approximately few hundred MBs) that can easily fit into the
available RAM of most existing mining hardware. Even when
the partitions grow over time, EWoK ensures that this does
not affect or modify the storage of blocks already contained
in the partitions stored by each worker.

Moreover, as we show in Section 4.3, it is a good strategy
for the operator to distribute the search for a valid set of
transactions (phase 1) among the workers in the mining pool,
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e.g., by splitting the space of noncetrqns values. Once one
worker succeeded, the solution of phase 1 (i.e., the fixed
transaction set) is forwarded to the others who can then
immediately start with phase 2. In this sense, Algorithm 5
should not be seen as a representation of the work of a single
worker; instead, it summarizes all single processes occurring
within a mining pool.

Algorithm 5 The algorithm SolveEWoK.

Input: The block header parameters mpcrngr including hash
function H : {0,1}* — {0,1}", set of transactions T%,
thresholds target, target,, and dpre-nonce

1: Find valid set of transactions (first phase)
2: while No valid set of transactions found do
Choose a set of transactions T from T* (including an
order)
Choose value noncesrgns
if H(T,noncetrans) < target; then
Valid set of transactions found. Break WHILE-loop.
end if
: end while

w

L B

9: Solve Proof of Work (second phase)

10: Split the coinbase CB = (CBfjy, CByar)

11: Compute part := prt(H(CByiy)).

12: Compute characteristic value o from T

13: while Proof of Work not solved do

14:  Choose a pre-nonce pn < Spre—nonce

15:  Compute index index := fi,q(oT, pn)

16:  Compute CBnonce := (H (v, part[index], pn), pn)
17:  Set CB = (CBfix, (noncetrans, CBnonce))

18:  for nonce € {0,1}3% do

19: Compute h := H(mpjekhdrs MR(CB, T), nonce).
20: if h < target, then

21: PoW-solution found. Break WHILE-loop.
22: end if

23:  end for
24: end while
Output: Solution (T, CB, nonce).

4.2.3 Compatibility with existing mining protocols: This afore-
mentioned process can be best instantiated practically by first
requiring all workers to solve a GBT work template where all
other fields—besides the worker ID, the target difficult, and
the set of transactions—are set to zero. Once a worker finds
a solution for phase 1, he reports it in the serialized block
output in GBT. For all practical reasons, if a worker is able
to find a nonce for the exact set (and order) of transactions
reported in the GBT work template, he can only submit the
nonce and his worker ID back—without the need to serialize
the entire resulting block.

Given the output of GBT in phase 1, the operator quickly
constructs the sibling paths associated with the Merkle root
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Figure 4: Instantiating EWoK using GBT and STM work
templates.

and proceeds similarly to STM. Namely, the operator out-
sources a work template asking workers to solve the corre-
sponding solution for phase 2. This process is detailed in
Figure 4. We stress at this point that this process is not
necessarily restricted to pooled mining but can be equally
applied by a solo miner.

While phase 2 of EWoK is compatible with all current
mining hardware, phase 1 might require some tailoring to
make it compatible with existing non-programmable mining
hardware in the market. For example, ASIC-based Gigahash
machines are optimized to compute hashes on inputs of 80
bytes while the transaction set T has typically a larger size.
To accommodate for this, one could first compute the hash
of T before handing it over to the Gigahash machine and
pad the 32-byte output along with noncesrgns to be 80 bytes.
The security analysis can be transported to this case in a
straightforward manner.

4.2.4 Coping with large mining pools: The existence of large
mining pools has been identified as a risk for PoW-based
blockchains for a while. For instance, the pool GHash.IO held
54% of the hashrate for a day, which exceeds the theoretical
attack threshold of 51% [1]. Prior work [11, 20] addresses this
problem by suggesting the use of non-outsourcable puzzles.
In a nutshell, this means that the puzzle can be solved safely
only by the miner receiving the mining reward. This would
limit the size of the pool to parties that are trusted by the
pool operator and would particularly disincentivize large
public mining pools. For instance, Daian et al.[11] suggest
a 2-phase-PoW where outsourcing of puzzles of the second
phase result in exposure to theft of mining rewards. Notice
that the same holds for EWoK as well: the coinbase that
specifies the recipient of the mining fee is fixed after phase
1, allowing workers that join a public mining pool to "steal”
the solution of phase 1 and then proceed on their own.
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4.3 Security Analysis

In this section, we show that EWoK fulfills all requirements
of Theorem 3.4 by showing the following four claims. Claims
1 and 2 are the prerequisites mentioned at the beginning of
Theorem 3.4 while Claims 3 and 4 shows Conditions 1 and
2, respectively, mentioned there. The arguments are based
on the random oracle model with respect to the deployed
hash function H. Moreover, we assume a distinguished input
message format in each context to have formally independent
H-calls in the different phases.

Claim 1: The partitioning function prt in Algorithm 3 is
(% - zﬁn)—covermg (cf. Definition 3.2), where N denotes the
chunk size and n the output size of the hash function. If
2" > N, the term zﬂ" can be ignored and prt is practically
ﬁ—covering.

Recall that prt splits the blockchain into chunks of size N
and selects exactly one block per chunk. The probability for
each index j € {0,..., N —1} to be selected is exactly ﬁ under
the assumption that the outputs of the hash function are
uniformly distributed. In case the number of possible outputs
of the hash function is not a direct multiple of the chunk
size, the higher indexes have a smaller probability of at least

L _ N to be selected. O

N 2n

Claim 2: EWoK is id-bound to (partCBfix,prt).

We now show that the PoW used in the second phase of
EWoK is id-bound to (partCBfl.x,prt). Notice that this PoW is
actually a variant of HPoW (cf. Section 2.2) that is id-sound
in the random oracle model. That is, the optimal solving al-
gorithm consists of choosing as many hash inputs as possible
until it holds that
H(mpjekhdrs MR(CB,T), nonce) < target. Recall that the val-
ues for CBponce, that is part of CB, are indirectly given by
CBhonce = (H (v, part[index], pn), pn) where only the value
pn is under full control of the worker. Notice also that a worker
who does not select the values CBponce as given above will
eventually fail as pn is part of the solution to be published and
as H is preimage-resistant. Whenever a new value CBponce is
to be determined based on a new pn, it requires the execution
of the hash function H over part[index]. Similar to the above,
a worker who does not use part[index] will not be able to
eventually produce a valid solution. Moreover, we point out
that the values index are generated by the random oracle, i.e.,
index := H(vT, pn); these indexes also differ between epochs
due to or. Therefore, the values index cannot be predicted,
making all blocks of the partition equally necessary. O

Claim 3: For appropriately chosen parameters, prt(pppuz) fits
completely into local memory of any worker for each PPpuz €
PP.

We refer the readers to Section 5 for more details.

Claim 4: Assuming claim 3, a set ‘W of rational workers will

operate over at least |'W| different puzzle parameter PPpuz-
For workers that operate in different mining pools, the

rewarding transaction is different which in turn determines
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PPpuz- Thus, it remains to investigate Claim 4 for a set of
workers that all operate in the same mining pool. Recall that
PPpuz = CBrix and that CByj, contains all information that
are fixed by a pool operator, including the specification of
the rewarding transaction for the miner. This ensures that
workers belonging to different mining pools are going to use
different parameters pp,,, and we can restrict to the case
that all workers in ‘W belong to the same mining pool.

The mining process of EWoK includes two phases and each
phase requires to solve an instantiation of HPoW. We call
an attempt to solve the HPoW of the first phase a phase-
1-attempt and define phase-2-attempts analogously. As the
probability for successful mining grows linearly with the
number of phase-2-attempts only, the optimal strategy for
any worker is to minimize the number of phase-1-attempts
and to maximize the number of phase-2-attempts. Therefore,
once one worker has found a solution for the PoW in phase
1, it is incentivized to share it with the other workers among
the mining pool so that all workers proceed to phase 2.

Now, consider the case that w := |'W/| workers are collabo-
ratively trying to solve phase 2. Notice that the nonce space
restriction deployed in phase 2 actually limits the number of
possible phase-2-attempts with respect to a fixed choice of
PPpuz- Let us denote this number by v. Moreover, the parame-
ter is chosen such that for any choice of ppy,,,, one worker can
exhaust the set of permitted nonces during one time period.
That is, the average time period of phase 2 permits w different
workers to compute in total up to « - v phase-2-attempts.

Due to claim 3, we know that such a strategy can be re-
alized: each worker can locally store a partition prt(pppuz)
for pairwise different pp,,. In case that W decides to oper-
ate over w’ < w puzzle parameters, then due to the nonce
restriction at most o’ - v < w - v different phase-2-attempts
are possibly - effectively lowering the success probability.
This shows that any optimal strategy will involve at least w
different pppuz.7 O

LEMMA 4.1. In EWoK, if a rational worker aims to solve
the PoW with respect to a certain partition, it will store it in
local memory in its entirety if possible.

PROOF. Solving the PoW in the 2nd phase requires to
repetitively compute CBnonce = (H (vr, part[index], pn), pn)
for different pre-nonces pn < Spre-nonce and with index :=
find(vT, pn) (see also Algorithm 4). As one cannot predict if
and which part[index] will be successful, a worker cannot
predict which blocks in part will be required—each block is
equally likely to be needed in phase 2. Thus, on average each
block in part that is not locally stored will add some time
overhead for fetching it remotely (e.g., from the mining pool
operator or some remote storage) with some probability. Since
rational workers aim to maximize their success probability,
they will opt to minimize the overall time effort on average
without adding more delay is possible—by fully storing part
locally. O

7Neither the claim nor the proof excludes that good strategies may
exist that involve more than « different puzzle parameters.
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5 IMPLEMENTATION & EVALUATION

We evaluate a prototype implementation of EWoK integrated
within GPU mining. By showing that EWoK can be instanti-
ated within existing mining protocols without modifications,
we stress that EWoK can be immediately deployed on other
mining hardware, such as ASIC and FPGA mining. Notice
that, in our implementation, we only focus on GPU mining
owing to its popularity and reasonable value for the money.

5.1 Implementation Setup

We integrate EWoK within the popular open-source mining
tool BFGMiner [4] implemented in C. BEGMiner is a mid-
dleware which resides on a host machine and communicates
with the mining pool(s) to retrieve the work template. More
specifically, BEGMiner uses OpenCL to define and assign the
mining tasks to GPU. To this end, it first pre-calculates the
intermediate state of the SHA-256 computation over parts of
the PoW input data (i.e., the block header) and then feeds
this intermediate state to the GPU worker which finalizes the
hash function computations over different nonces in parallel.

We deploy our implementation on an Intel Core i5-7400
equipped with 8GB of RAM which implements the BEFGMiner
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orchestration, and on an AMD Radeon RX480 GPU featuring
1120 MHz of clock frequency and 4GB of RAM.

We instantiate EWoK by leveraging functionality from
GBT and STM as described in Section 4.2. Namely, we as-
sume that the operator distributes the search for a valid
set of transactions (phase 1) among the workers using GBT.
Given the output of GBT in phase 1, the operator quickly
constructs the sibling paths associated with the Merkle root
and proceeds similarly to STM to solve the corresponding
solution for phase 2. When benchmarking EWoK, we prepare
a local pool by leveraging the BFTMiner implementation of
the work templates. We only measure the performance of
EWoK witnessed by the worker and do not evaluate the over-
head incurred by EWoK on the operator (since this overhead
is exactly similar to that witnessed by operators executing
GBT and STM). In our setup, we assume a 1 MB block size
and transaction sizes of approximately 250 Bytes conform-
ing with the Bitcoin blockchain [7]. Each data point in our
plots is averaged over 10 independent measurements; where
appropriate, we include the corresponding 95% confidence
intervals.

5.2 Performance Evaluation

Hash rate performance: In Figure 5, we evaluate the hash
rate performance of EWoK when compared to GBT and
STM as follows. We measure the time that the worker spends
in preparing the block headers (in GBT) and searches for
the corresponding PoW solutions (GBT and STM), and we
count the number of hashes that the worker computed for
each puzzle. Notice that EWoK is composed of two phases:
phase 1 which is instantiated with GBT and phase 2 which
we instantiate with STM. The runtime for phases 1 and
2 are similar since the target difficulty in both phases is
the same. Therefore, we compute the hash rate of EWoK
as the average hash rate exhibited by phases 1 and 2. Our
results show that EWoK achieves 712 hashes per second and
is almost 2% faster than GBT. Notice that phase 1 in EWoK
incurs less hash computations than GBT since the worker
only needs to compute the hash over the ordered transaction
set instead of building the entire Merkle tree. Recall that
STM achieves a higher hash rate performance than GBT
since it only outsources to the worker a small number of
additional information for computations to construct the
Merkle root. Despite the additional operations in phase 2
when compared to STM, EWoK is only 1.1% slower than
STM; our results therefore show that EWoK emerges as a
strong tradeoff between the performance of GBT and STM.

Number of solutions per minute: We measure the number of
effective solutions computed by EWoK when compared to
GBT and STM. Here, we set the pool target difficulty [12]
to be 2 (target 0x1d007fff) for GBT and STM. Following
EWOoK’s specification in Section 4.1, phases 1 and 2 in EWoK
each exhibit half the difficulty (set to 1 with target 0x1d0OfHT).
Our results show that on average both phases 1 and 2 in
EWOoK achieve approximately double the number of effective
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Figure 7: GPU usage of EWoK over time when compared to GBT and STM. Here, the white shaded areas in correspond to phase
1 of EWoK, while the gray shaded areas in the figure correspond to phase 2.

PoW solutions due to the higher target: 9.9 solutions/min
compared to 5 and 4.6 solutions/min for GBT and STM.

GPU usage: In Figure 7, we evaluate the GPU usage incurred
on a EWoK worker when compared to GBT and STM. We use
the RadeonTop tool [22] to fetch the utilization of the GPU
with a sampling interval of 1 second. Our results suggest that
the switch between phases 1 and 2 in EWoK exhibit a smooth
transition that mimics the work template transition exhibited
by GBT and STM since the new work templates (for the
various phases) are fetched in the background in parallel to
the PoW mining. We additionally note that GBT exhibits the
highest variance in GPU utilization when compared to EWoK
and STM. We also point out that the VRAM consumption
in EWoK, GBT, and STM is fixed at 113.80 MB, compared
to the memory usage of 85.65 MB in the idle state. That
is, in all investigated protocols, the worker only consumes
approximately 30 MB even when mining.

Number of effective replicas: Table 1 shows the number of ef-
fective blockchain replicas achieved by EWoK with respect to
the partition size when integrated with the Bitcoin, Litecoin,
Dogecoin, and the Ethereum blockchains. Here, we assume
that there are a total of 100,000 workers (adapted from [19])
and we vary the partition size in EWoK between 50 MB,
200 MB, and 500 MB by setting the chunk size accordingly.
We measure the data growth per year for each of the inves-
tigated blockchains by analyzing their respective publicly
available blockchain datasets. We implement the partitioning
routine described in Algorithm 3 which results in a pseu-
dorandom distribution of partitions amongst workers. We
then compute the partition size averaged over all considered
100,000 workers. Our results show that assuming partition
sizes of 200 MB and 500 MB results in the replication factor
of almost 72 and 179, respectively, in the case of the Bitcoin
blockchain, and almost 147 and 368 times (respectively) in
the case of the Ethereum blockchain. Even small partition
sizes of 50 MB result in a reasonable replication by 18 times
in Bitcoin, 198 times in Litecoin, 143 times in Dogecoin, and
37 times in Ethereum.
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Our results confirm that EWoK can be easily integrated
within existing dedicated mining hardware; most dedicated
hardware mining are equipped with at least 500 MB RAM
capacity and the growth rate of the partition sizes in EWoK
is slow enough to easily fit into planned growth in RAM
capacities in the foreseeable future.

6 CONCLUSION

In this paper, we propose a solution, EWoK, to regulate
the storage of the blockchain data among miners in the
system. Our solution plugs an efficient proof of knowledge into
standard hash-based PoW mechanism to force mining pool
workers to store (in-memory) a modest (but fixed) partition of
the blockchain data. EWoK leverages two sequential phases:
in the first phase, the workers reach consensus on the exact
set (including order) of transactions to be confirmed in a
given block. In the second phase, the workers solve a proof
of work instantiation based on this set and on their specific
partition.

Our implementation results show that EWoK can be eas-
ily integrated within GBT and STM and does not impair
their mining efficiency. This makes EWoK one of the few
economically-viable and workable solutions that regulate, in
a decentralized manner, the level replication of the blockchain
data among mining pool workers.
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