
Making NSEC5 Practical for DNSSEC
Dimitrios

Papadopoulos

HKUST

Duane Wessels

Verisign Labs

Shumon Huque

Salesforce

Moni Naor

Weizmann Institute

Jan Včelák

NS1

Leonid Reyzin

Boston University

Sharon Goldberg

Boston University

ABSTRACT
NSEC5 is a proposed modification to DNSSEC that guarantees two

security properties: (1) privacy against offline zone enumeration,

and (2) integrity of zone contents, even if an adversary compro-

mises the authoritative nameserver responsible for responding to

DNS queries for the zone. In this work, we redesign NSEC5 in

order to make it practical and performant. Our NSEC5 redesign

features a new verifiable random function (VRF) based on elliptic

curve cryptography (ECC), along with a cryptographic proof of

its security. This VRF is also of independent interest, as it is being

standardized by the IETF and being used by several other projects.

We show how to integrate NSEC5 using our ECC-based VRF into

DNSSEC, leveraging precomputation to improve performance and

DNS protocol-level optimizations to shorten responses. Next, we

present the first full-fledged implementation of NSEC5 for both

nameserver and recursive resolver, and evaluate performance under

aggressive DNS query loads. We find that our redesigned NSEC5

can be viable even for high-throughput scenarios.

KEYWORDS
DNSSEC, verifiable random functions, elliptic curve cryptography,

implementation

1 INTRODUCTION
NSEC5 is a new proposal for providing authenticated denial of
existence for DNSSEC, i.e., for providing authenticated responses to
DNS queries (“What is the IP address of aWa2j3.com?”) for names

that do not exist in a zone (“NXDOMAIN: aWa2j3.com does not

exist in the .com zone.”). NSEC5 has two key properties.

First, NSEC5 provides strong integrity, protecting the integrity of
the zone contents even if an adversary compromises the authorita-

tive nameserver (who is responsible for responding to DNS queries

for the zone) and steals any secret keys stored on the nameserver.

Second, NSEC5 provides privacy against offline zone enumera-
tion [14, 22, 26, 58, 67, 70, 85, 86, 88], an attack in which an adversary
makes a small number of online DNS queries and then processes

the retrieved records offline in order to learn all the domain names

in a zone. An enumerated zone can be “a source of probable e-mail

addresses for spam, or as a key for multiple WHOIS queries to

reveal registrant data that many registries may have legal obliga-

tions to protect” [58] (e.g., per data protection laws [77], [17, pg.

37]). Moreover, zone enumeration can be used to identify routers,

servers or other “things” (thermostats, fridges, baby monitors, etc.)
that could be targeted for attacks, as DNS is increasingly being

∗
Parts of this work conducted while the first and third authors were at Verisign Labs

and the fifth author was at VCZ.NIC.

used to support other Internet protocols [76]. For example, in DNS

there are resource types that are used to store host secure shell

(SSH) key hashes and other entries that may identify mail servers

for a domain. In particular, in the context of the DNS-Based Au-
thentication of Named Entities (DANE) protocol, zone enumeration

can be used to extract public-key/certificate lists together with the

corresponding user identifiers [60].

While today’s DNSSEC standard has several mechanisms for au-

thenticated denial of existence, they all either fail to provide strong

integrity against a compromised nameserver (i.e., online signing
used in NSEC3White Lies [42] andMinimally-Covering NSEC [87]),

or fail to prevent offline zone enumeration (NSEC [18], NSEC3 [58]).

In fact, offline zone enumeration is an issue introduced by DNSSEC,

and is not a possible attack on legacy DNS. Several publicly avail-

able network reconnaissance tools can be used to launch DNSSEC

zone-enumeration attacks [9, 14, 26, 67, 70, 85] and the risk of zone

enumeration attacks has deterred some deployments of DNSSEC

(see e.g., [45]).

The need for online crypto. Somewhat surprisingly, Goldberg et
al. [47] demonstrated that anymechanism that (a) provides integrity

and (b) prevents offline zone enumeration necessarily requires the

nameserver to perform at least one online cryptographic operation

for each negative response. This explains why the only existing

DNSSEC mechanism (besides NSEC5) to prevent zone-enumeration

attacks has to resort to online signing. However, online signing

provides only weak integrity (i.e., against network attackers but not
compromised nameservers), while NSEC5 provides strong integrity

(i.e., even when the nameserver is compromised and any secret

keys stored on the nameserver are stolen).

Summary of Our Contributions. Goldberg et al. [47] gave the
first proposal for NSEC5. However, that work focused mostly on

the cryptographic aspects of the problem and did not satisfactorily

handle the issues that arise in relation to deploying NSEC5 in prac-

tice and the complex realities of DNSSEC. We improve three key

aspects of that work.

First, we completely redesign the cryptographic mechanism be-

hind NSEC5, basing it on elliptic-curve cryptography rather than

on RSA cryptography used in [47]. This redesign aligns with the

current push in the DNS community to replace RSA, which is widely

used in DNSSEC deployments [16, 81], with elliptic curve cryptog-

raphy (ECC) [51, 80, 83] in order to have shorter DNSSEC responses

at a better security level. Second, we design and optimize the pro-

tocol that integrates the NSEC5 crypto into the DNSSEC, taking

particular care with wildcard records, which were explicitly ignored

in prior work [47, footnote 2]. Third, we present a full-fledged im-

plementation of an authoritative nameserver and recursive resolver

that support both RSA- and our new ECC-based NSEC5, and eval-

uate their performance. This evaluation is necessary in order to

understand how the need for on-line cryptography (which we know

is necessary to prevent zone enumeration) affects overall DNSSEC

perfomance.

Desiderata. Our design focuses on two key desiderata. First, even

though NSEC5 necessarily requires the nameserver to perform

online cryptographic computations, we want our new ECC-based

NSEC5 to be viable even for high-throughput nameserver scenarios.

Second, we want NSEC5 to produce short DNSSEC responses.

DNSSEC naturally amplifies DNS responses by including cryp-

tographic keys and digital signatures. Several unfortunate things

occur when long DNSSEC responses no longer fit in a single IP frag-

ment [69–71]. Long responses sent over UDP can be fragmented

across multiple IP fragments, and thus risk being dropped by a

middlebox that blocks IP fragments [79, 84] or being subject to

an IP fragmentation attack [49]. Alternatively, the resolver can re-

send the query over TCP [37, 64], harming performance (due to

roundtrips needed to establish a TCP connection) and availability

(because some middleboxes block DNS over TCP) [79]. Worse yet,

long DNSSEC responses can be used to amplify DDoS attacks [41].

In a DDoS amplification attack, a botnet sends nameservers many

small DNS queries that are spoofed to look like they come from a

victim machine, and the nameservers respond by pelting the vic-

tim machine with many long DNSSEC responses. Long DNSSEC

responses increase the volume of traffic that arrives at the victim.

1.1 Results

Design (Sections 2–4). We achieve our desiderata by attack-

ing the problem along two lines: (1) cryptographic design and (2)

DNSSEC protocol design.

To redesign the cryptography behind NSEC5, in Section 2 we

start from an observation from [65] that NSEC5 can be constructed

from any VRF [62]. We construct a fast and practical VRF based on

ECC that is also of independent interest (Section 2.3) and is being

currently considered for standardization by the IETF. We prove our

VRF’s security in the random oracle model, using concrete analysis

per the formulation of [24]. Our detailed security analysis also

allows us to optimize performance. For an ℓ = 128 bit security level,

our ECC-based VRF produces proofs that are 5x shorter and 9x faster

than the RSA-based crypto of the original NSEC5 proposal [47].

Section 3 presents NSEC5 and its properties, and describes how

it can be based on our ECC-based VRF. Section 4 then re-designs the

way DNS interacts with NSEC5, using optimizations that precom-

pute parts of the response (thus resulting in faster query processing),

and reducing the number of records in the response (thus resulting

in shorter proofs).

NSEC5 Implementation and Performance (Section 5). We im-

plemented an authoritative nameserver and recursive resolver that

support both RSA- and ECC-based NSEC5. For the nameserver im-

plementation, we extended Knot DNS 1.6.4 [10], a highly-optimized

authoritative implementation. For the recursive resolver, we ex-

tended Unbound 1.5.9. one of the most widely used recursive re-

solver implementations.

Our experimental evaluation demonstrates that our ECC-based

NSEC5 can be viable even for high-throughput scenarios. Our name-

server can handle a few tens of thousands of queries per second

(64K query/second) on a moderately-sized multi-core server (i.e.,
24 threads). This is roughly an order of magnitude larger than the

average negative response rate at a single server in the DNS root

zone [1]. In fact, our ECC-based NSEC5 nameserver achieves a

throughput that is about 2x higher than the only nameserver im-

plementation that prevents offline zone enumeration, and is widely

deployed and compliant with the DNSSEC standards (PowerDNS

with NSEC3 White Lies [15]). Our NSEC5-ready resolver performs

comparably to DNSSEC’s existing denial-of-existence mechanisms

which, however, fail to simultaneously achieve strong integrity and

privacy against zone enumeration.

Response lengths (Section 5.1). We show that our ECC-based

NSEC5 responses fit into a single IP fragment, and have lengths that

are comparable to ECC versions of the current DNSSEC protocol

(i.e., NSEC3 with ECDSA signatures). In fact, ECC-based NSEC5

produces NXDOMAIN responses that are shorter than those pro-

duced by today’s dominant DNSSEC deployment configuration (i.e.,
NSEC3 with 1024-bit RSA signatures [16, 81]), which has a lower

security level!

2 EFFICIENT VERIFIABLE RANDOM
FUNCTIONS

A Verifiable Random Function [62] is the public-key version of a

keyed cryptographic hash. Only the holder of the secret VRF key

can compute the hash, but anyone with the corresponding public

key can verify the correctness of the hash. While this cryptographic

primitive has been around for almost two decades, recent years have

seen its use in a variety of practical applications including NSEC5,

end-user public-key transparency [61], and cryptocurrencies [44].

To support NSEC5, we now present a fast and practical ECC-

based VRF construction. We carefully prove its security in the

random oracle model, using concrete security analysis (in Appen-

dix B) per the formulation of [24], which allows us to optimize

performance. Our VRF produces proofs that are 5x shorter and 9x

faster than the RSA-based VRF that was implicit in [47], for the

same ℓ = 128 bit security level (see Table 1).

This VRF is of independent interest because of the other applica-

tions mentioned above. In fact, a VRF very similar to ours, but with

a crucial security flaw, was already suggested in [39]; this flaw mi-

grated into the CONIKS paper and implementation [61], the Google

Key Transparency project [2], and the Yahoo! coname project [3].

These have since been corrected as a result of our work [6, 7]. A

similar VRF, but without security proofs or exact security analysis

that allows us to set lengths, is described in [73, Section 4]. Our VRF

is being standardized by IETF [48]
1
and was already adopted by

others (including the Algorand cryptocurrency [44] and the Yahoo!

coname project for providing transparency for end-user keys).

Description of Verifiable Random Function. A VRF comes

with a public-key pair (PK, SK); SK is held by the Prover, and PK by

the Verifier. The Prover hashes an input α using SK as β = FSK (α) .
This hashing is deterministic, in the sense that F always produces

1
In August 2017, the Crypto Forum Research Group (CRFG) adopted our VRF Internet

draft as a working group document.

2

the same output β given a pair of inputs (SK,α). The secret key SK
is also used to construct a proof π that β is the correct hash output:

π = ProveSK (α). All the VRFs we consider allow anyone to deter-

ministically compute β directly from π as β = Proof2Hash(π). This
is useful for communication-constrained applications like NSEC5,

since the Prover can just send π , without sending β . (Note: this
‘API’ formulation for a VRF—using the Proof2Hash function—is

our own.) The proof π allows a Verifier with the public key PK to

verify that β is the correct VRF hash of input α under key PK . Thus,
the VRF also comes with an algorithm Ver(PK,α, π) that outputs
VALID if β = Proof2Hash(π) is the correct VRF hash of α under

key PK , and INVALID otherwise.

2.1 VRF Security Properties
The VRF’s security properties, which we overview here, combine

those of a pseudorandom function (PRF) (e.g., HMAC) and an un-

keyed cryptographic hash (e.g., SHA-256). Formal definitions are in

Appendix B.

Pseudorandomness. VRF pseudorandomness guarantees that β
is indistinguishable from random by anyone who does not know

the secret key SK . More precisely, suppose that (PK, SK) were gen-
erated in a trustworthy manner. Then, for any adversarially-chosen

‘target’ VRF input α , the VRF hash output β (without its corre-

sponding VRF proof π) is indistinguishable from random for any

computationally-bounded adversary who does not know SK . This
holds even if the adversary can choose other VRF inputs α ′

and

observe corresponding VRF outputs β ′ and proofs π ′
. PRFs have

a similar pseudorandomness property but unkeyed cryptographic

hash functions (e.g., SHA-256) do not (because an adversary that

knows α can trivially compute β (as β = SHA-256(α)) and distin-

guish β from random).

Uniqueness. For any fixed PK and any input α , there is a unique
VRF output β that can be proven valid. Uniqueness holds even for

an adversarial Prover that knows the VRF secret key SK . More pre-

cisely, a computationally-bounded adversary cannot, even given SK ,
find a target input α , two different VRF hash outputs β1 , β2, and
proofs π1 and π2 such that βi = Proof2Hash(πi) and Ver(PK,α, πi)
outputs VALID, for i = 1, 2. Unkeyed cryptographic hash functions

(e.g., SHA-256) have a similar property, but PRFs do not.

Collision resistance. Like an unkeyed cryprographic hash func-

tion, VRFs need to be collision resistant. Collision resistance must

hold even for an adversarial Prover that knows the VRF secret key

SK . More precisely, it should be computationally infeasible for an

adversary to find two distinct VRF inputs α1 and α2 that have the
same VRF hash β , even if that adversary knows SK . (PRFs lack such
a property, since the party holding the secret key to the PRF can

always falsely claim that two inputs hash to the same output.)

2.2 VRF Based on RSA
The original NSEC5 construction [47] was not described in terms of

VRFs. However, it actually uses the VRF in Figure 1. The VRF proof

is simply a deterministic RSA signature (using a “full-domain hash”

construction [23]), and the output is simply the cryptographic hash

of the VRF proof. VRF verification amounts to an RSA verification

of the proof. For completeness, we prove this is a secure VRF (based

Keys. Let N be a public RSA modulus, let d be a secret RSA exponent

and e be its corresponding public exponent. The public VRF key is (e , N)

and the secret VRF key is (d , N).

Proving. To hash input α using the private RSA key (d , N), computing

the proof value

π = (MGF (α))d mod N
MGF is an IETF-standard cryptographic hash that produces outputs one

bit shorter than the RSA modulus [20, Sec. 10.2] (aka, a “full domain

hash” [23]).

Proof2Hash. Compute the hash value β from π as

β = H (π)
where H is a cryptographic hash function (e.g., SHA-256)

Verifying. To verify that π is a valid VRF proof for α , use the public
RSA key (e , N) to verify that π is a valid RSA signature onMGF (α), i.e.,
that π e = MGF (α) mod N .

Figure 1: VRF based on RSA.

on the RSA assumption in the random oracle model) in the extended

version of our paper [72].

Why not build a VRF using ECDSA? At this point, one would
naturally wonder why we cannot simply replace the RSA signature

in Figure 1 with ECDSA. After all, ECDSA signatures are much

shorter than RSA signatures at the same security level. (For instance,

ECDSA signatures over 256-bit elliptic curves are just 512 bits long

and are understood to have an ℓ = 128-bit security level, comparable

to 3072-bit RSA.)

The problem is that there are multiple valid ECDSA signatures

for a given message and public key. With randomized ECDSA sig-

natures, the signature is computed using a random nonce. Even

“deterministic” ECDSA [74] fails to provide uniqueness given only
the public key PK , since the signer derives the nonce from a keyed

hash of the message. Because the symmetric key k to this hash is

independent of the ECDSA public key PK , the prover could produce
a different ECDSA signature just by choosing a different key k , and
the verifier would never know the difference. Thus, if ECDSA sig-

natures were used in Figure 1, then the VRF prover could produce

any number of valid VRF proofs π for a given input α and public

key PK , violating VRF uniqueness.

2.3 VRF Based on Elliptic Curves
The starting point for our VRF based on elliptic curves (ECC) is a

construction in [40, 46]. We cannot, however, use the construction

of [40] as is. While [40] claimed their construction was also a VRF,

they did not formally prove that it achieves the VRF properties from

Section 2. In fact, their construction has a critical flaw. Specifically,

a malicious prover could trivially violate uniqueness for any input

α , producing valid VRF proofs for any arbitrary VRF hash output β
by using simple algebra. As explained above, this flaw subsequently

migrated to follow-up works [61] and deployed protocols.

Our full VRF construction can be seen in Figure 2 and our formal

proof of its security properties in Appendix B. Our construction

fixes the flaw of [40],
2
without any downgrade in performance. On

the contrary, since we provide a concrete (as opposed to asymptotic)

2
Our fix is to include hx in the input to H3 in Figure 2. We also found and fixed other,

smaller flaws; we were able to find them because of our detailed concrete security

analysis.

3

Public parameters. Let q be a prime number, and let G a cyclic group

of prime order q with generator д. Because checking membership in G
may be expensive, we assumeG is a subgroup of some group E such that

(1) checking membership in E is easy, and (2) the cofactor f = |E |/ |G |

is not divisible by q. (G may equal E , in which case f = 1.) We assume

that q, д, f ,G and E are public parameters. Let H1 be a hash function

(modeled as a random oracle) mapping arbitrary-length bitstrings to

G − {1}. Let H2 be a function that takes the bitstring representation of an

element of E and shortens it to the appropriate length; we need a 2ℓ-bit

output for ℓ-bit security. Let H3 be a hash function (modeled as a random

oracle) mapping arbitrary-length inputs to ℓ-bit integers.

Keys. The secret VRF key x ∈ {1, . . . , q − 1} is chosen uniformly at

random. The public VRF key is PK = дx .
Proving. Given the secret VRF key x and input α , compute the proof π
as follows:

(1) Obtain the group element h = H1(α) and raise it to the power

of the secret key to get γ = hx .
(2) Choose a secret random value k ∈ {0, . . . , q − 1} (for security

k must be (pseudo)random and secret; it can, in particular, be a

pseudorandom function of x and α)
(3) Compute c = H3(д, h, дx , hx , дk , hk).
(4) Let s = k − cx mod q.

The proof π is the group element γ and the two exponent values c , s , i.e.,
π = (γ , c , s).
Proof2Hash. Given proof π = (γ , c , s), the VRF output β is computed

as β = H2(γ f).
Verifying. Given public key PK , verify that proof π = (γ , c , s) corre-
sponds to the input α and output β as follows:

(1) Compute u = (PK)c · дs .
(2) Given input α , hash it to obtain h = H1(α).

Check that γ ∈ E .
Compute v = γ c · hs .

(3) Check that c = H3(д, h, PK , γ , u , v).

Figure 2: The EC-VRF. (Multiplicative group notation.) Ap-
pendix B proves its security in the random oracle model,
based on the decisional Diffie-Hellman (DDH) assumption in
groupG, which roughly says that hx looks random given the
tuple (д,дx ,h).

security analysis as per the formulation of [24], we can optimize

the VRF’s parameters. Our design shortens the length of VRF proof

π , by truncating value c in Figure 2 so that it is only ℓ bits long

(rather than 2ℓ bits long). This results in VRF proofs that are ℓ

bits shorter, which is important for communications-constrained

applications like NSEC5. Finally, following ideas from [73], our VRF

design supports groups where the cofactor f is not 1, so that it can

be instantiated over the popular Ed25519 elliptic curve [57] which

was recently standardized for use with DNSSEC [80].
3

High-level description. The idea behind the EC-VRF construc-

tion in Figure 2 is best understood as follows. The Prover holds

secret key x and the verifier holds public key дx (where д is a gen-

erator of group G). To hash an input α , the prover hashes α into

the group G to obtain h = H1(α), and then raises the result to the

power of the secret key to obtain γ = hx . The VRF hash output β
is β = H2 (γ) = H2 (h

x) . Thus, the Prover can send γ as its VRF

3
To avoid unnecessary friction with the IETF standards process, we focus on standard-

ized curves and security assumptions.

Table 1: Proving and verifying time benchmarks for ourRSA
and EC-based VRFs. Experiments on a MacBook Pro with
2.2 GHz Intel Core i7 and 16 GB DDR3 RAM, averaging of
10

6 runs on random strings of 32 characters. (Standard devi-
ations < 20%)

VRF security proof proving verifying

ciphersuite parameter (bits) time (ms) time (ms)

RSA-VRF (3072) ℓ = 128 3072 3.1 0.09

RSA-VRF (2048) ℓ = 112 2048 0.7 0.05

EC-VRF (P-256) ℓ = 128 641 0.3 0.68

proof and anyone can use γ to obtain the VRF output β by using

H2 as the Proof2Hash function. This is not sufficient, however. To

satisfy uniqueness, the Prover must convince the Verifier that γ
was computed correctly, without revealing the secret key x . Thus,
the Prover also attaches a non-interactive zero-knowledge proof

(NIZK) that γ = hx and the public key дx have the same discrete

logarithm x base д and h, respectively. This NIZK consists of c and s
in Figure 2, and it implements an adaptation of the Chaum-Pedersen

discrete-log equality protocol [34].

Ciphersuites. Our VRF can be instantiated over any group where

the decisional Diffie-Hellman (DDH) problem is hard, including

the elliptic curves currently standardized in DNSSEC. We designed

our VRF to accommodate groups where the cofactor f is not unity,

so it can be used with the Ed25519 curve [57] which has cofac-

tor f = 8. Our design also supports the (traditionally used with

DNSSEC) NIST P-256 curve [53, Sec. 3]) which has cofactor f = 1.

We instantiate H3 as the first ℓ bits output by the SHA-256 hash

function, while H2 is the (untruncated) SHA-256 hash function.

The hash-to-curve algorithm H1 should be public-key-dependent,

so that a fresh random oracle is created for each public key (this

technique is known as “salting” and forces a brute-force attacker to

work hard for each key rather for all keys at once). We show one

example of H1 in Appendix B.1; other approaches, such as Icart’s

[54], SimpleSWU [32], and Elligator [27], are summarized in [78].

2.4 VRF Performance
Let us set security level ℓ = 128. This allows us to use the NIST

P-256 curve or the Ed25519 curve, which operate in finite field

Fp where p is a 256-bit prime, and have a security level of 128

bits [25, 53]. We now compute the length of the VRF proof. Because

s is a field element, it is 256 bits long. c can be set to 128 bits for 128-

bit security. Meanwhile, γ is a point on the elliptic curve, which can

be represented with 256+ 1 bits using point compression. It follows

that the proof π will be |π | = 256+1+128+256 = 641 bits (5ℓ+1) for

an ℓ = 128-bit security level. To put this in perspective, achieving

the same security level with the RSA-VRF requires 3072-bit RSA,

which makes VRF proofs about 5 times longer!

We have implemented the RSA-VRF and EC-VRF (with the NIST

P-256 curve) in C. As shown in Table 1, EC-VRF proving is faster

than RSA-VRF proving, whereas RSA-VRF has faster verification

than EC-VRF. This is great for NSEC5, since the prover (name-

server) may typically have to handle large numbers of requests

from multiple verifiers (resolvers).

4

2.5 VRF Security
We now provide proof sketches of three VRF properties: uniqueness,

psuedorandomness, and collision resistance. We define and prove

them formally in Appendix B. For the purposes of these sketches,

assume E = G and therefore f = 1.

Uniqueness. The proof is by contradiction. Suppose an adversary,

given the secret key x , can come up with some α and an incorrect

VRF output value β1 , H2([H1(α)]
x) for that α , and a valid proof

π1 = (γ1, s1, c1) for value β1. The verification function for the VRF

computes h = H1(α) and

u = (дx)c1дs1 v = (γ1)
c1hs1

Now take the logarithm of the first equation base д and the log-

arithm of the second equation base h, subtract the two resulting

equations, and express c1, to get

c1 ≡
logд u − logh v

x − logh γ1
(mod q) . (1)

Now since γ1 , hx (since β1 is not the correct output value), the
denominator is not zero, and there is exactly one c1 modulo q that

satisfies equation (3) for a given (д,h,дx ,γ ,u,v), regardless of s1.
However, recall that the verifier checks that c1 is equal to the output
of the cryptographic hash function H3 on input (д,h,дx ,γ ,u,v).
SinceH3 is a randomoracle, its output is random, and the probability

that it equals the unique value determined by its inputs according

to (1) is negligible.
4
Thus, we have arrived at our contradiction.

Pseudorandomness. This follows from the DDH assumption, in

the random oraclemodel. Roughly speaking, the pseudorandomness

adversary does not know the secret VRF key x , but must distinguish

between between pairs (α, β) where β is the VRF hash output on

input α , and pairs (α, r) where r is a random value in the range of

H2. This adversary knows the public values д and д
x
, and can easily

computeh = H1(α) for anyα . However, by the DDH assumption,hx

looks random even given (д,дx ,h), and soH2(h
x) is pseudorandom

in the range of H2. We note that pseudorandomness can also be

proven from the CDH assumption if H2 is modeled as a random

oracle, but the security reduction will be lossier.

Collision resistance. For a collision to happen, H2(h
x
1
) should

equal to H2(h
x
2
) where h1 = H1(α1) and h2 = H1(α2) for some

α1 , α2. Since h1 and h2 are obtained via random oracle queries

and raising to the power x is a permutation, the values being fed to

H2 are random. Assuming random values are not likely to collide

under H2, we get collision resistance.

3 NSEC5 FOR DNSSEC
With DNSSEC, a trustworthy zone owner is trusted to determine the

set of names (www.example.com) present in the zone and their map-

ping to corresponding values (172.18.216.34). Nameservers receive
information from the zone owner, and respond to DNS queries for

the zone made by resolvers. DNSSEC’s schemes for authenticated

denial of existence reflect tradeoffs between integrity and privacy

against offline zone enumeration. For the rest of this section, we

assume that the reader is familiar with the DNSSEC standard’s ex-

isting mechanisms for authenticated denial of existence: NSEC [18],

4
The birthday paradox does not apply here, so that for a 128-bit security level is suffices

to have c be 128 bits long.

NSEC3 [58], and online signing with NSEC3 White Lies [42]. Read-

ers not familiar with these mechanisms should refer to Appendix A.

We now present NSEC5 and its security properties. Sections 3.1–3.2

review prior work, while Section 3.3 is a new contribution.

3.1 Constructing NSEC5 from VRFs
NSEC5 was introduced in [47, 65], to provide both strong integrity

(even when the nameserver is compromised and its keys are stolen)

and privacy against offline zone enumeration attacks. In an offline

zone-enumeration attack, an adversary makes a small number of

online queries to the nameserver to collect NSEC* records, and then

learns the names present in the zone via offline dictionary attacks on

the (hash) values in the NSEC* records. (See Appendix A.) Table 2

summarizes properties of NSEC5 and compares it to DNSSEC’s

existing mechanisms for authenticated denial of existence.

Structurally, NSEC5 is very similar to NSEC3, except that we

replace the cryptographic hashes used in NSEC3 with the hashes

computed by a VRF. We now describe NSEC5, and its three types

of DNSSEC records: NSEC5, NSEC5KEY and NSEC5PROOF.

The NSEC5KEY. NSEC5 uses a VRF with its own keys. These

keys are distinct from the zone-signing key (ZSK) that is used to

compute signatures on DNSSEC records. The secret VRF key is

known to both the nameserver and the trusted owner of the zone.

Meanwhile, the secret ZSK is only known to the trusted owner of

the zone. Finally, resolvers get the public ZSK (in a DNSKEY record),

and the public VRF key (in an NSEC5KEY record) using the usual

DNSSEC key distribution mechanisms.

Why dowe need two separate keys, namely the ZSK (for DNSSEC-

signing records) and the VRF key (for NSEC5)? This allows us to

separate our two security goals. To achieve strong integrity, we

follow the approach in NSEC and NSEC3, and provide the secret

ZSK to the trusted zone owner but not to the untrusted nameserver.
Meanwhile, any reasonable definition of privacy against zone enu-

meration must trust the nameserver; after all, the nameserver holds

all the DNS records for the zone, and thus can trivially enumerate

all the records in the zone. For this reason, we will provide the

secret VRF key to the nameserver, and use the VRF only to deal

with zone enumeration attacks.

In [47], cryptographic lower bounds are used to prove the name-

server must necessarily have some secret cryptographic key. How-

ever, NSEC5 manages to provide integrity even if the secret VRF

keys stored on the nameserver are compromised or made public—all

that is lost is privacy against zone enumeration. This is contrast

to any online signing approach, such as NSEC3 White Lies, where

compromising the nameserver’s secret key eliminates both integrity

and privacy against zone enumeration. This follows because with

NSEC3 White Lies nameserver holds the secret ZSK(see Appen-

dix A).

Signing NSEC5 records. The trusted zone owner uses the secret

VRF key SK to compute the VRF hashes of all the names present

in the zone, and lexicographically orders all the hash values. Each

consecutive pair of hashes comprises an NSEC5 record. Each NSEC5

record is signed using the secret ZSK. The NSEC5 records and their

associated signatures are provided to the nameserver along with

the secret VRF key SK .

5

Table 2: Properties of NSEC*. Online Signing may, for exam-
ple, refer to NSEC3 White Lies. Note that [47] proved that
it is impossible to provide both privacy and weak/strong in-
tegrity without online crypto.

no online weak strong

crypto integrity integrity privacy

legacy DNS ✓ X X ✓
NSEC or NSEC3 (plain) ✓ ✓ ✓ X
online signing X ✓ X ✓
NSEC5 X ✓ ✓ ✓

Responding with NSEC5 and NSEC5PROOFs. To prove the

non-existence of a queried name α , the nameserver uses the secret

VRF key SK to obtain the VRF hash proof π = ProveSK (α) and VRF
hash output β = Proof2Hash(π). The nameserver responds with

(1) an NSEC5PROOF record containing π , and
(2) the precomputedNSEC5 record (and the associatedDNSSEC

signatures) for the pair of hashes lexicographically before

and after β .

NSEC5 is almost identical to NSEC3, except that NSEC3 does not

have a ‘PROOF’ record because resolvers can hash α by themselves.

(This is why NSEC3 is vulnerable to offline zone enumeration:

because the hash is publicly computable.) Notice also we want the

VRF proof π to be short, in order to minimize communication from

nameserver to resolver.

Validating. The resolver validates the response by

(1) using the public VRF key PK in the NSEC5KEY record to

validate that proof π from the NSEC5PROOF corresponds

to the query α , i.e., that Ver(PK,α, π) =VALID,
(2) checking that β = Proof2Hash(π) falls strictly between

the two hash values in the NSEC5 record, and

(3) using the public ZSK to validate the DNSSEC signatures

on the NSEC5 record.

3.2 Properties of NSEC5
Table 2 summarizes the properties of NSEC5.

Online crypto. NSEC5 requires online cryptographic computa-

tions for negative responses. (But not for positive responses.) For

every query α eliciting a negative response, the nameserver uses

the secret VRF key SK to compute the NSEC5PROOF record on

the fly; this is why it is important for VRF proof computation to

be fast. Note that online signing (e.g., ‘NSEC3 White Lies’, see Ap-

pendix A) also requires online cryptographic computations. This

is no coincidence: [47] proved that any solution that both (a) pre-

vents zone enumeration and (b) provides at least weak integrity,

must necessarily use online cryptography. What is interesting about

NSEC5 is that it provides strong integrity (i.e., even when the name-

server is malicious or compromised). Meanwhile, online signing

provides only weak integrity (i.e., against network attackers but

not compromised nameservers).

There may be a concern that online cryptographic computations

allow an attacker to perform a denial-of-service attack via CPU

saturation. This concern is not unique to NSEC5: it exists for any

solution that prevents zone enumeration and provides integrity (e.g.,
‘NSEC3White Lies’, see Appendix A, and ‘Black Lies’, see Section 6),

because online crypto is required per [47]. Currently, the most

frequent distributed denial-of-service attacks against DNS utilize

botnets to target bandwidth saturation [35, 63]. Due to the relatively

low cost of such attacks, their observed scale is often massive (e.g.,

more than 1Tbps [66]). Further experimentation would be necessary

to determine whether CPU-saturation attacks can significantly

expand an attacker’s capabilities.

Privacy. An attacker can only enumerate the zone by brute force—

by sending an online query to the nameserver for each name α that

it suspects is in the zone.

Suppose an adversary has collected all the NSEC5 records for

the zone, and now wants to enumerate the zone using an offline-

dictionary attack that ‘cracks’ the VRF hashes. The adversary must

first hash each entry in his dictionary, and then check if any of the

hashed dictionary entries match any VRF hashes in the collected

NSEC5 records; if there is a match, the adversary has successfully

cracked the VRF hash. However, because the adversary does not

know the secret VRF key, by pseudorandomness the VRF hash

values are indistinguishable from random values. It follows that the

adversary cannot hash any of the entries in its dictionary, and thus

cannot perform a offline dictionary attack. A formal security proof

of this property is in [65].

Strong integrity. Strong integrity is provided even even if a

malicious nameserver, or any other adversary, knows the secret VRF

key SK . This is because the untrusted nameserver does not know

the secret zone-signing key (ZSK). The idea behind the formal proof

(see [65]) of this property is simple. Suppose that the secret VRF key

SK used with NSEC5 is made public. Resolvers know the correct

public VRF key PK , so the VRF’s trusted uniqueness ensures that

an adversary (that knows SK) cannot trick resolvers into accepting

an incorrect VRF hash output. Then, NSEC5 is essentially the same

as (plain) NSEC3: the adversary can correctly hash queries on its

own, but cannot forge NSEC* records. Thus, for any name α that is

present in the zone, the adversary cannot forge an NSEC5 record

that falsely claims that α is absent from the zone. In other words,

even if the secret VRF key SK is leaked to an adversary, the security

of NSEC5 just downgrades to that of (plain) NSEC3.

3.3 Basing NSEC5 on Elliptic Curves
We now describe how our new ECC-based VRF significantly im-

proves the performance of NSEC5. Concrete performance numbers

using our full-fledged NSEC5 implementation are in Section 5. The

original NSEC5 construction from [47] uses the RSA-based VRF of

Section 2.2. Each precomputed NSEC5 record contains two SHA-

256 hash outputs, (each corresponding to β in Figure 1), and one

DNSSEC signature. Each NSEC5PROOF, generated on the fly, has

one RSA value (π in Figure 1). With 2048-bit RSA, this means that

NSEC5PROOFs are |π | = 2048 bits long, and that the nameserver

must perform one RSA signing operation (to generate π) for each
negative response. Now consider using our EC-VRF. Each NSEC5

record will once again contain two SHA-256 hash outputs (each

corresponding to β in Figure 2) along with a DNSSEC signature.

Meanwhile, each NSEC5PROOF record will contain the proof value

π = (γ , c, s). Per Table 1, this means that NSEC5PROOFs that are

|π | = 641 bits long (3x shorter), 2x faster for the nameserver to

compute, at a better security level (ℓ = 128 bits as compared to

ℓ = 112 bits for 2048-bit RSA)!

6

4 DESIGNING THE DNS PROTOCOL USE OF
NSEC5

Our next contribution is to design the DNS protocol for NSEC5. To

do this, we must move beyond the clean and idealized model used

thus far, where each query (“What is the IP for example.com?”)
elicits either a positive response (“172.18.216.34.”) or a negative

response (“NXDOMAIN: The name does not exist.”) In practice, the

behavior of NSEC* is much messier, primarily due to a seemingly-

unrelated issue: DNS wildcards [58, Section 7.2.1],[43, 59]. It turns

out that the performance of each NSEC* rests heavily on how it

deals with wildcards, so careful protocol design is crucial. Thus,

we begin by describing how DNS wildcards are handled. Then we

present some protocol optimizations that are deployed by NSEC5.

Finally, we describe how NSEC5 copes with DNS types and key

management in Section 4.2.

Background:Wildcards. Awildcard record maps a set of queries

to a particular response. For example, if there is a wildcard record

for *.example.com, then queries for the records c.example.com
and a.b.c.example.com would all be answered with the value in

the wildcard record (e.g., “172.18.216.35”).
Consider a simple zone consisting of the following four records:

example.com A, bar.example.com A, www.example.com A, and

*.www.example.com A. Suppose a DNS query is made to the zone

for a.b.c.example.com. The correct response is NXDOMAIN (i.e.,
the name does not exist).Why? First, example.com is the longest an-
cestor of the queried name that exists in the zone. In DNS terminol-

ogy, example.com is the closest encloser for a.b.c.example.com [59].
Next, *.example.com—the wildcard child of the closest encloser—is
not in the zone. Thus, there is no wildcard expansion of the queried

record a.b.c.example.com and the response is NXDOMAIN.

But how can a nameserver use DNSSEC to securely prove the
absence of relevant wildcards? First, the nameserver must prove

that example.com is the closest encloser, by proving:

(1) The presence of the closest encloser example.com.
(2) The absence of the next closer c.example.com, the name

one label longer than the closest encloser.

(Notice that the next closer is sometimes identical to the queried

name, e.g., if we had instead queried for c.example.com.) Once this
is done, the nameserver must additionally prove:

(3) The absence of *.example.com, the wildcard child of the

closest encloser.

NSEC3 and wildcards. How does NSEC3 prove the three items

above? The middle and last item are easily dealt with, by providing

the NSEC3 record proving the absence of the name, i.e., that contains
a pair of hashes h1,h2 such that h1 < h(name) < h2. But what about
proving the presence of a name (i.e., the first item)? One way to do

this is to provide an NSEC3 record that matches the name, i.e., that
contains a pair of hashesh1,h2 such thath1 = h(name). Thus NSEC3
proves the three items by returning three NSEC3 records [58]:

(1) A NSEC3 record matching the closest encloser, i.e., an
NSEC3 record with two hash values h1,h2 such that h1 =
h(example.com).

(2) An NSEC3 record covering the next closer, i.e., an NSEC3

record containing two hash values h1,h2 such that h1 <
h(c.example.com) < h2.

Table 3: Performance characteristics of NXDOMAIN re-
sponses for NSEC*. NSEC3WL stands forWhite Lies. RRSIG
records are DNSSEC signatures. σ is the bitlength of a
DNSSEC signature, 2ℓ is the bitlength of the hash output in
the NSEC3 or NSEC5 record, and |π | is the bitlength of an
NSEC5PROOF.

online crypto verifications max response

at nameserver at resolver length

NSEC none 2 RRSIGs 2σ
NSEC3 none 3 RRSIGs 3(σ + 4ℓ)
NSEC3 WL 1 RRSIG 3 RRSIGs 3(σ + 4ℓ)
NSEC5 1 NSEC5PROOF 2 RRSIGs 2(σ + 4ℓ + |π |)

2 NSEC5PROOFs

(3) An NSEC3 record covering the wildcard, i.e., an NSEC3

record containing two hash values h1,h2 such that h1 <
h(∗.example.com) < h2.

Thus, wildcards significantly impact performance: a single query

can solicit up to threeNSEC3 records. Only two records are needed if

the same recordmatchesh(example.com) and coversh(c.example.com).
Indeed, this is always true for NSEC, so at most two NSEC records

are returned for each query. We summarize the impact on perfor-

mance in Table 3.

4.1 NSEC5 Protocol Optimizations
Adding thewildcard bit toNSEC5. In [43], Gieben andMekking

observed that wildcards could be dealt with by using just twoNSEC3
records. Their proposal simply requires awildcard bit to be added to
each NSEC3 record. If an NSEC3 record contains the pair of hashes

h1,h2 where h1 = h(example.com), then the wildcard bit is set if

*.example.com is present in the zone, and cleared otherwise. This

simple trick allows us to eliminate the third NSEC3 record! Instead,

we just check that the wildcard bit is cleared on the first NSEC3

record. The wildcard bit was not standardized as part of NSEC3,

and has not been deployed [42].

NSEC5 uses the wildcard bit, which has significant impact on

response lengths and performance (see Table 3). Every query can

elicit a response containing (up to) two NSEC5 records, each in-

cluding a DNSSEC signature (length σ bits) and two hash values

(each of length 2ℓ bits), and up to two NSEC5PROOF records (each

of length |π | bits). We can therefore estimate the total bitlength of

a response as

|nsec5| = 2(σ + 4ℓ + |π |) = 2σ + 8ℓ + 2|π | (2)

Adding precomputation to NSEC5. Perhaps the biggest perfor-

mance challenge with NSEC5 is the need for the nameserver to

perform online crypto. We now see how to lower this burden on

the nameserver.

First recall that all DNSSEC signatures on NSEC5 records must
be precomputed. (This is because NSEC5 records are signed by the

zone-signing key (ZSK). To preserve strong integrity, the name-

server must not know the secret ZSK.) It is also possible to precom-

pute one of the twoNSEC5PROOFs. Specifically, the first NSEC5PROOF

and NSEC5 record prove the presence of the closest encloser (i.e.,
example.com) are as follows: (1) The NSEC5 record has two hash

values h1,h2, where h1 is the VRF hash of the closest encloser,

and (2) the NSEC5PROOF has a proof π that h1 is a correct VRF
hash value. The NSEC5PROOF for h1 can therefore be precomputed

7

and cached at the same time as the NSEC5 record. This improves

performance, since online crypto is only needed for the second

NSEC5PROOF.
5

4.2 Other Protocol Considerations
NODATA Responses. So far, our exposition assumed that all DNS

queries are of the same type: the query contains a domain name

(www.example.com), and the response contains an IPv4 address

(“172.18.216.34”). Actually, this is a query for an A record. In prac-

tice, there are other query types (e.g., the AAAA record for IPv6

addresses). Suppose the example zone described above receives a

AAAA query for www.example.com. The zone has an A record for

www.example.com, but not a AAAA one. Thus, the correct response

is NODATA, (i.e., “The name exists, but not for queried type”).

Because NSEC5, NSEC3, and NSEC records all have the same

structure, they all deal with NODATA responses as follows. Every

NSEC* record includes a type bitmap [18, 58], containing a bit for

each type of DNS record (e.g., A, AAAA, NS, MX). Consider the

NSEC* record matching www.example.com, i.e., that contains a pair
of hash values h1,h2 such that h1 is the hash of www.example.com.
In our example zone, this NSEC* record has its type A bit set, and

its other type bits cleared. This NSEC* record would be used to

respond to an AAAA query for www.example.com. The resolver
would conclude the response is NODATA by checking that the

AAAA bit cleared. Notice that NODATA responses always use just

one NSEC* record.

Key management. NSEC5KEY records can be distributed in the

same way as DNSKEY records. Meanwhile, as discussed in Sec-

tion 3.2, the nameserver must store the secret VRF key but not the

secret ZSK. The secret VRF key is not subject to the same security

requirements as a regular DNSSEC secret key (i.e., ZSK), because
the damage from a compromised VRF key is the same as the damage

from a downloaded zone file; integrity is not damaged. Moreover,

an attacker who can break into a nameserver to steal the VRF key

can probably also download the zone file, anyway. Moreover, the

NSEC5KEY can be rolled over using the same procedure to roll

a ZSK [56]: the new NSEC5KEY record is published at the name-

server, then old NSEC5 records are replaced by NSEC5 records

computed using the new NSEC5KEY, and finally the old NSEC5KEY

is removed.

5 NSEC5 PERFORMANCE EVALUATION
We designed and implemented the two NSEC5 variants (RSA and

ECC), extending existing DNS software. For the authoritative name-

server, we extended Knot DNS 1.6.4 and for the recursive resolver

we extended Unbound 1.5.9. Our implementation supports the full

spectrum of negative responses, (i.e., NXDOMAIN, NODATA, Wild-

card, Wildcard NODATA, and unsigned delegation). The authorita-

tive nameserver implements the optimization that precomputes the

NSEC5PROOFs matching each NSEC5 record (Section 4.1). We did

not introduce additional library dependencies; all cryptographic

5
As noted in Table 3, a similar precomputation approach is possible with NSEC3

White Lies. Specifically, the presence of the closest encloser example.com and the

presence/absence of its wildcard child *.example.com are known at the time that the

zone is signed. Thus, their corresponding NSEC3 records can be precomputed. This

optimization is (sort of) performed by the PowerDNS nameserver, which caches and

reuses NSEC3 records generated on-the-fly for the closest encloser and wildcard.

primitives are already present in OpenSSL v1.0.2j, which is used

by both implementations. We implemented our elliptic-curve VRF

for the NIST P-256 curve. Overall, we added about 9,000 lines of C

code.

We now evaluate the performance of NSEC5 and compare it

against (plain) NSEC3 and online signing with NSEC3 White Lies

(see Appendix A). We consider response length, query processing

time at the recursive resolver and nameserver, and throughput,

memory and CPU usage at the nameserver.

Configurations. We tested our Knot DNS nameserver implemen-

tation in four configurations:

(1) NSEC3 with 2048-bit RSA signatures (DNSSEC Algorithm

8),

(2) NSEC3 with ECDSA signatures over the NIST P-256 curve

(DNSSEC Algorithm 13),

(3) NSEC5with 2048-bit RSA signatures (RRSIG) andNSECPROOF

records,

(4) NSEC5 with ECC using the NIST P-256 curve for both

signatures (RRSIG) and NSECPROOFs.

The NSEC3 configurations used 10 hash iterations. (This is a com-

mon choice in practice, e.g., at the .ru zone.) Finally, we used Pow-

erDNS
6
4.0.1 in “narrow” mode with BIND back-end to evaluate

(5) NSEC3White Lies with ECDSA signatures over NIST P-256

(DNSSEC Algorithm 13).

For the recursive resolver, we used our NSEC5-ready extension of

Unbound in validating and caching mode.

System. All experiments were executed on a machine with 20X

Intel Xeon E5-2660 v3 cores with dual thread support for a total of

40 virtual CPUs, and 256GB RAM, running CentOS Linux 7.1.1503

and OpenSSL 1.0.2j. We would expect a typical second level domain

(SLD) to have multiple nameservers of roughly this size, possibly at

multiple locations. Because network latency is a common denom-

inator for all our schemes, all experiments were performed with

this machine hosting both the nameserver (using 24 threads) and

the recursive resolver (using up to 16 threads), each listening to a

different port.

Stress testing with “purely negative” query loads. Unless

otherwise specified, our measurements use synthetic query loads.

We elicit negative (NXDOMAIN) responses by sending queries for

names from the zone prepended with a random six-alphanumeric-

character sequence. We deliberately chose to stress-test our im-

plementation using this aggressive “purely negative” query load.

Importantly, a purely negative query load would typically occur

only when a server is subject to a volumetric denial-of-service at-

tack; natural DNS traffic usually elicits both positive responses as

well as negative ones (NXDOMAIN) [5].

Zone. We test against a real Alexa-100 SLD zone that consists of

about 1000 names.
7
Note that most of our results (except for those

for the RAM footprint at the nameserver) are largely agnostic to the

choice of zone. This follows because we use worst-case query load

6
We acknowledge that this is not an apples-to-apples comparison but, to the best of

our knowledge, PowerDNS is the only widely-deployed open-source nameserver that

supports DNSSEC online signing in an RFC-compliant way. Meanwhile, we chose to

base our NSEC5 implementation on the performant Knot DNS nameserver.

7
We used the only domain in the Alexa 100 that we could completely enumerate

because it used DNSSEC with NSEC records. (The rest were unsigned, or did not use

NSEC records.)

8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

NSEC3

 R
SA2048

 N
SEC3

ECDSAp256

NSEC5

 R
SA2048

 N
SEC5

ECDSAp256

"L
egacy

"

NSEC3

RSA1024

Ethernet MTU

Figure 3: Average length for a single NXDOMAIN response
(standard deviation < 1%).

of purely negative traffic, which eliminates the effect of caching, and

therefore the size of the zone itself has little impact on performance.

5.1 Response Lengths
We want DNSSEC responses to be short enough to fit into a single

IP fragment and to limit DDoS amplification (Section 1). We find

that NSEC5-ECC response lengths are comparable to NSEC3 with

ECDSA, and shorter than today’s dominant deployment configura-

tion (NSEC3 with 1024-bit RSA).

Figure 3 shows the average response size for 100,000 NXDO-

MAIN responses for our four Knot DNS configurations. When RSA

is used, both NSEC5 (at 1731 bytes, on average) and NSEC3 (1517

bytes) do not fit in a 1500-byte IP fragment (Ethernet MTU). Mean-

while, ECC-based NSEC5 is much shorter (827 bytes, on average),

which is comparable to ECC-based NSEC3 (783 bytes).

Comparison to “legacy” NSEC3. Modern cryptographic rec-

ommendations mandate a security level of at least 112 bits [21].

Despite these recommendations, NSEC3 only supports (outdated)

SHA1 as its hash function [58], for an (outdated) security level of

ℓ = 80 bits. (NSEC5 records use 2ℓ = 256-bit hash outputs, for a

ℓ = 128-bit security level.) Also, most domains deploying DNSSEC

still use 1024-bit RSA (σ = 1024 bits) [16, 81], for an (outdated)

80-bit security level [21]. NSEC3 with 1024-bit RSA has an aver-

age response length of 1069 bytes. This is about 29% longer than
ECC-based NSEC5, which also has a much stronger security level

(ℓ = 128 versus ℓ = 80 bits)!

5.2 Nameserver Performance
Both NSEC5 and NSEC3 White Lies prevent offline zone enumer-

ation by requiring online public-key crypto computations at the

nameserver. (See Table 2.) We therefore compare their performance

at the nameserver, and find that our ECC-based NSEC5 implemen-

tation (extending Knot DNS) is faster than PowerDNS’s implemen-

tation of NSEC3 White Lies.

Processing time per query. To measure the time it takes to pro-

cess a query at the authoritative nameserver, we ran 100,000 se-

quential queries, each eliciting an NXDOMAIN response. To fairly

compare across implementations, we report round-trip time as

observed by the query issuer. Plain NSEC3 (with RSA-2048 and

ECDSA-P256) uses precomputed responses; as such, the nameserver

can respond to queries in approximately 0.1ms on average (standard

deviation ≈ 16%). Meanwhile NSEC5 and NSEC3 White Lies use

online crypto, therefore process queries more slowly. RSA-based

NSEC5 takes 1.93ms on average, while ECC-based NSEC5 presents

a 2.3x speedup, for an average query processing time of 0.81ms

(standard deviation < 11% for both of them). This is faster than the

1.12ms query processing time for the PowerDNS implementation

of NSEC3 White Lies (standard deviation ≈ 19%).

Throughput with purely negative traffic. Next, we consider

aggregate query throughput. We used Dnsperf 2.1.1 [13], a popular

open-source DNS performance evaluation tool, to issue negative

queries at fixed rates from 1K to 128K queries per second (qps).

Figure 4-(left) presents throughput on a logarithmic scale.

Plain NSEC3 does not use online cryptographic computations,

and so throughput scales easily to 128 Kqps and beyond. (Of course,

plain NSEC3 is also vulnerable to offline zone enumeration attacks.)

The remaining schemes do use online crypto computations. RSA-

based NSEC5 plateaus earliest—the nameserver cannot cope with

a query rate greater than about 20 Kqps. Turning to elliptic-curve

configurations, PowerDNS’s NSEC3 White Lies plateaus at about

32 Kqps, while our ECC-based NSEC5 improves on this to almost

64 Kqps. This 2x improvement follows from differences in the Knot

DNS and PowerDNS implementations, which is also in line with

benchmark results of [11]. Our NSEC5-ECC throughput results

should bewell above the needs of most zone operators. To put this in

context, the A root server operator [1] reports an average negative

query load per server that is roughly one order of magnitude smaller.

(On July 7, 2017 the total number of NXDOMAIN responses (RCODE

3) that day is 2640833191 split across 5 servers for an average of

6113 queries/second/server.)

Throughput with mixed traffic. In practice, throughput should

be even higher, because normal traffic should elicit positive re-

sponses (signed A, AAAA, MX, etc., records), which are precom-

puted, in addition to NXDOMAIN responses. To better demonstrate

this, we also tested the ECC-based NSEC5 nameserver at a steady

rate of 32 Kqps, using only 4 threads (which makes saturating the

nameserver easier). In this case, when fewer than 50% of responses

were NXDOMAIN, throughput remained steady at 32 Kqps. Mean-

while, throughput peaked at 13 Kqps with purely NXDOMAIN

traffic.

CPU utilization. For a 32 Kqps query load of purely NXDOMAIN

traffic, NSEC5 has a CPU utilization (≈ 60%) that is only slightly

higher than that of plain NSEC3 (≈ 50%) and better than that of

NSEC3 White Lies (with PowerDNS) (≈ 85%). Details are in the

extended version [72].

Memory footprint. Table 4 considers the memory footprint at

the authoritative nameserver, once the zone is loaded. Because our

test SLD zone had only 1000 records, we repeated this experiment

for the .name TLD, which has about 460, 000 records. We see that

ECC generally has a much smaller memory footprint than RSA.

NSEC5 also takes up more space than plain NSEC3 because: (i)

NSEC5PROOFs are precomputed and cached to optimize perfor-

mance (Section 4.1), and (ii) NSEC5 records use 256-bit hash values,

while NSEC3 uses (outdated, insecure) 160-bit SHA1 hash values.

Finally, the overhead for NSEC3 White Lies is only approximately

36MB, as NSEC3 records are computed on the fly.

9

 1000

 2000

 4000

 8000

 16000

 32000

 64000

 128000

1000 20000 40000 60000 80000100000 120000

ac
h
ie

v
ed

 t
h
ro

u
g
h
p
u
t

queries/second

NSEC3-RSA2048
NSEC3-ECDSAp256

NSEC5-RSA2048
NSEC5-ECDSAp256

PowerDNS-WhiteLies-ECDSAp256 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

ti
m

e
(m

s)

% of queries

NSEC3-RSA2048
NSEC3-ECDSAp256

NSEC5-RSA2048
NSEC5-ECDSAp256

PowerDNS-WhiteLies-ECDSAp256

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

Resolved
 from cache

Resolved with
 trip to authoritative

ti
m

e
(m

s)

% of queries

 0% NXDOMAIN
 10% NXDOMAIN
 20% NXDOMAIN
 30% NXDOMAIN
 40% NXDOMAIN

Figure 4: (left) Throughput at the authoritative nameserver under stable query rate when all queries result in NXDOMAIN
responses. Overall per query processing time at the recursive resolver andnameserver for (center) NXDOMAIN response across
configurations, (right) ECC-based NSEC5 under positive & NXDOMAIN traffic.

Table 4: Memory footprint (MB) at the authoritative name-
server.

u
n
s
ig
n
e
d
D
N
S

N
S
E
C
3

R
S
A
2
0
4
8

N
S
E
C
3

E
C
D
S
A
p
2
5
6

N
S
E
C
5

R
S
A
2
0
4
8

N
S
E
C
5

E
C
D
S
A
p
2
5
6

P
o
w
e
r
D
N
S
-
W
L

E
C
D
S
A
p
2
5
6

tested SLD 18.1 49.3 43.9 64 53.3 18.6

.name TLD 108.3 417.2 254.7 634.1 492.2 144.4

5.3 Recursive Resolver Performance
NSEC3 and NSEC5 both require recursive resolvers to perform

public-key crypto verifications (Table 3). We therefore find that

query processing times at the recursive resolver for our RSA- and

ECC-based NSEC5 implementations are comparable to those of

NSEC3.

Overall per-query processing time. Figure 4-(center) reports

the overall query processing time per NXDOMAIN response, as

observed by a stub resolver. This includes the processing time both

at the recursive resolver (which verifies DNSSEC responses) and at

the authoritative nameserver (with serves or generates responses).

We set up the stub resolver, recursive resolver, and nameserver

on our single machine. Our query load was 100,000 sequential

unique queries, each eliciting an NXDOMAIN response from the

nameserver.

Figure 4-(center) shows that plain NSEC3, NSEC3 White Lies,

andNSEC5 all have processing times of the same order ofmagnitude.

This follows because they all require public-key crypto verifications

at the recursive resolver. Overall processing time for plain NSEC3

is fastest (1ms on average, standard deviation ≈ 12%); again, this

follows because plain NSEC3 does not require online crypto at the

nameserver. Of the three configurations that use online crypto at

the nameserver to prevent zone enumeration, RSA-based NSEC5

takes the longest (3.4ms on average), followed by NSEC5-ECC

(3.1ms on average) and NSEC3 White Lies using PowerDNS (2.4ms

on average). Standard deviation < 8% across the three of them.

Mixed traffic. The average query processing time is likely to be

faster in practice, since real DNSSEC traffic contains positive re-

sponses (e.g., signed A records) as well as NXDOMAIN responses.

To highlight this, Figure 4-(right) shows the overall query process-

ing time for ECC-based NSEC5, when handling traffic containing

both positive and NXDOMAIN responses. Positive queries were

sampled from the zone according to a Zipf distribution, which

has been shown to be a good fit for DNS query distributions [55].

Naturally, NSEC5 only affects performance for negative queries;

everything else is validated from cache in minimal time.

Validation time. In the extended version of our paper [72], we

show that our recursive resolver can validate RSA-based NSEC5

responses (0.5ms) faster than ECC-based NSEC5 responses (1.2ms).

(This is natural: RSA verification is known to be faster than ECDSA

verification.) We also find that ECC-based NSEC5 validation is

slower than PowerDNS’s NSEC3 White Lies with ECDSA (0.5ms).

The slowdown is due to (1) parsing the NSEC5 response, (2) fetching

the NSEC5KEY from cache, and (3) a performance gap between

our (unoptimized) ECC-based VRF verification and the highly-

optimized OpenSSL verification of ECDSA.

Remark: Speedups with Ed25519? Our implementation uses

the NIST P-256 elliptic curve. However, the literature suggests that

computational speedups are possible by moving from P-256 to the

Ed25519 [80] elliptic curve, which we leave for future work.

6 NSEC5 VS. RECENT INNOVATIONS
We now consider the relationship between NSEC5 and some recent

DNS innovations. “Black Lies” [82] is a (concurrent, not standard-

ized) NSEC* proposal. It is an online-signing solution that answers

each negative querywith anNODATA response, even if the “correct”

response is NXDOMAIN. For example, suppose the simple zone

from Section 4 receives an AAAA query for a.example.com. The
Black Lies response is a single NSEC recordmatching a.example.com,
with its AAAA type bit cleared, that is generated and signed on

the fly. To prevent zone enumeration, the second name in the

NSEC record is the immediate lexicographic successor of query,

i.e., \000.a.example.com. Responses are short because only one

NSEC record is required for a NODATA response (see Section 4.2).

Black Lies comes with some caveats. Most importantly, it fails to

provide strong integrity as it requires the nameserver to know

the secret zone-signing key (ZSK). Moreover, because Black Lies

gives a NODATA response when the “correct” response is NXDO-

MAIN, it is not compatible with the performance optimization of

10

RFC8020 [30]. Also, Black Lies thwarts any diagnostic or security

tool (e.g., [38, 75]) that uses NXDOMAIN responses to infer that a

name definitely does not exist in the zone.

7 THE TRANSITION TO NSEC5
The DNS community had to handle issues related with protocol

transitions in the past. First, the NSEC3 specification [58] came out

after the earliest deployments of DNSSEC [68], and so resolvers

and nameservers had to transition from NSEC to NSEC3 [58, Sec-

tion 10.4]. Second, there is currently a proposal to transition from

RSA to ECDSA signatures over the NIST P-256 elliptic curve [83].

Third, a desire to avoid NIST-specified curves [28] and to have short

responses, is motivating the community to consider transitioning

to digital signatures over Edwards elliptic curves [80, 89]. Fourth,

there is also the DPRIVE initiative that seeks to add confidentiality

to DNS transactions, to mitigate concerns surrounding pervasive

network monitoring [4]. Given that other transitions may be on the

horizon, this might also be a good time to consider transitioning to

NSEC5.

The mechanics of the transition. We believe that a transition

to NSEC5 can be accomplished similarly to the transition to NSEC3.

DNSSEC records have an algorithm number that specifies the cryp-
tographic algorithms they use (e.g., 5 specifies RSA signatures with

SHA1 hashing [8]). To transition to NSEC3, two new algorithm

numbers were introduced—6:DSA-NSEC3-SHA1 and 7:RSASHA1-

NSEC3-SHA1. (Once the transition period ended, subsequent DNSSEC

algorithmnumbers (8,10, 12, etc.) implied support of NSEC3.) Per [19,

Sec 5.2], resolvers that did not support NSEC3 ignored DNSSEC

records with algorithms 6 or 7, and either ‘hard failed’ (i.e., rejected
the response) or ‘soft failed’ (i.e., accepted the response) depending

on their local policies. Algorithm numbers could also be used to

transition to NSEC5. There are two ways [56, Sec 4.1.4] to transition

to a new algorithm number.

1. Conservative approach. The nameserver simultaneously sup-

ports both algorithms. Thus, the nameserver answers each query

with a DNSSEC response has records for both the old and the

new algorithm number. The resolver can validate the response if

recognizes at least one algorithm. The downside is that DNSSEC

responses contain twice as many keys and signatures.

2. Liberal approach. The nameserver stops serving responses

with the old algorithm, and uses the new algorithm instead. The

downside is that resolvers that do not support the new algorithm

number will treat the zone as unsigned [19, Sec 5.2]. Thus, the

liberal approach is unlikely to be used until many resolvers support

the new algorithm number.

There are several reasons why the liberal approach seems right

for NSEC5. First, it does not blow up the length of DNSSEC re-

sponses. Secondly, and more importantly, a zone that simultane-

ously supports both NSEC3 and NSEC5 will not reap the security

benefits of NSEC5. If (plain) NSEC3 is supported in parallel with

NSEC5, then offline zone enumeration is possible by collecting the

NSEC3 records (this also suggests that algorithm negotiation [50]

may be less helpful in a transition to NSEC5—a zone-enumeration

attacker can simply negotiate to speak NSEC3). If online signing

(e.g., NSEC3 White Lies) is supported in parallel with NSEC5, then

the nameserver must hold the secret ZSK key and NSEC5 loses

its strong integrity guarantees. On the other hand, this approach

is unlikely to be used in a transition until a majority of resolvers

support NSEC5. However, given resolvers might soon be upgraded

to add support for Edwards curves, now might also be a good time

to consider adding support for NSEC5.

8 CONCLUSION
In [47], Goldberg et al. proved that providing integrity while pre-

venting offline zone enumeration necessarily requires the name-

server to perform online public-key crypto computations for each

negative query. While this seems expensive, we demonstrate that

our ECC-based NSEC5 nameserver implementation can be viable

even for high-throughput scenarios. In Section 5.2 we found that

it supports a throughput of 64, 000 negative queries per second

(qps) on a moderately-sized server with 24 threads on 40 virtual

cores. This is about 2x the throughput of the only implementation

of RFC-compliant online signing that is widely deployed and pub-

licly available (PowerDNS’s implementation of NSEC3 White Lies).

A throughput of 64 Kqps should be well above the needs of most

zone operators—even public statistics from the A-root operator [1]

indicate an average negative query load about one order of mag-

nitude smaller per server. Without access to proprietary statistics

regarding corporate second-level-domains, it is not easy to esti-

mate their throughput requirements. Nevertheless, this 64 Kqps

throughput is achieved even with purely negative traffic (rather

that normal traffic, i.e., a mix of positive and negative queries) and a

single server (rather than a cluster of nameservers, a more common

configuration).

Thus, we believe that NSEC5 can be a practical solution for

zones that care about protecting sensitive information (names of

hosts, servers, routers, IoT devices, DANE certificates [52], etc.)
from offline zone enumeration attacks. Currently, such zones must

use NSEC3 White Lies, which requires them to trust their name-

servers with the sensitive secret zone-signing key. We have shown

that NSEC5 provides comparable/improved performance to NSEC3

White Lies (Section 5), while protecting integrity even in the face

of a compromised nameserver (Table 2). That said, operators that

don’t care about zone enumeration should use plain NSEC3.

Transitioning DNSSEC to a new algorithm has never been easy.

Nevertheless, DNSSECmight be faced with several algorithm transi-

tions on the horizon, including a transition from RSA to ECDSA [83]

to EdDSA [80, 89]. Thus, we believe that the time is right to consider

a transition to NSEC5. Indeed, the results presented in this paper

have helped motivate practitioners to take a closer look at NSEC5,

as evidenced by the support of engineers at several major DNS

providers, recent presentations at IETF98, DNS-OARC, DPRIVE,

and the IETF draft specifying NSEC5.

ACKNOWLEDGEMENTS
We thank innumerable DNS practitioners for pushing us to de-

velop a more performant version of NSEC5. We thank David C.

Lawrence for his ongoing work on the NSEC5 project and Asaf Ziv,

Sachin Vasant, Ondrej Sury and Tomofumi Okubo for earlier work

on NSEC5. We thank Trevor Perrin for helpful suggestions. This

research was supported, in part, by NSF grants 1012798, 1012910,

1350733 and 5245250 and a gift from Verisign Labs.

11

REFERENCES
[1] A Root server raw data. http://a.root-servers.org/raw-data/index.html (Accessed:

1/4/2017).

[2] Google Key Transparency: A transparent and secure way to look up public keys.

https://github.com/google/keytransparency/.

[3] Yahoo! Coname Project. https://github.com/yahoo/coname/.

[4] DNS PRIVate Exchange Working Group Charter (DPRIVE), 2015. https://

datatracker.ietf.org/doc/charter-ietf-dprive/.

[5] A-root Query Volume. http://a.root-servers.org/metrics/index.html, January 6

2016.

[6] A CONIKS implementation in Golang: Issue 175: Uniqueness of VRF is violated.

https://github.com/coniks-sys/coniks-go/issues/175, April 2017.

[7] Google Key Transparency Project: Issue 567: Uniqueness of VRF is violated.

https://github.com/google/keytransparency/issues/567, April 2017.

[8] IANADomainName System Security (DNSSEC) AlgorithmNumbers http://www.

iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml, 2017.

[9] Kali Tools: DNSRecon. http://tools.kali.org/information-gathering/dnsrecon,

2017.

[10] Knot DNS. https://www.knot-dns.cz/, 2017.

[11] Knot DNS: Benchmark. https://www.knot-dns.cz/benchmark/, 2017.

[12] Nmap: dns-nsec-enum. https://nmap.org/nsedoc/scripts/dns-nsec-enum.html,

2017.

[13] Nominum Measurement Tools. http://www.nominum.com/measurement-tools/,

2017.

[14] nsec3map: John the Ripper plugin. https://github.com/anonion0/nsec3map, 2017.

[15] PowerDNS. https://www.powerdns.com/, 2017.

[16] Verisign Labs SecSpider: Global DNSSEC deployment tracking, 2017. http://

secspider.verisignlabs.com/.

[17] B. Aitken. Interconnect communication MC / 080:DNSSEC Deployment Study.

http://stakeholders.ofcom.org.uk/binaries/internet/domain-name-security.pdf,

2011.

[18] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. RFC 4034: Resource
Records for the DNS Security Extensions. IETF, 2005.

[19] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. RFC 4035: Protocol
Modifications for the DNS Security Extensions. IETF, 2005.

[20] J. S. B. Kaliski. RFC 2437: PKCS #1: RSA Cryptography Specifications, Version 2.0.
IETF, 1998.

[21] E. Barker and Q. Dang. Recommendation for Key Management - Part 3

Application-Specific (Revised). NIST Special Publication 800-57, January 2015.

[22] J. Bau and J. C. Mitchell. A security evaluation of DNSSEC with NSEC3. In NDSS,
2010.

[23] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for

designing efficient protocols. In ACM CCS, pages 62–73, 1993.
[24] M. Bellare and P. Rogaway. The exact security of digital signatures - How to

sign with RSA and Rabin. In EUROCRYPT, pages 399–416, 1996.
[25] D. J. Bernstein. Curve25519: new Diffie-Hellman speed records. In PKC, pages

207–228. 2006.

[26] D. J. Bernstein. NSEC3 Walker. http://dnscurve.org/nsec3walker.html, 2011.

[27] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: Elliptic-curve

points indistinguishable from uniform random strings. In ACM CCS, pages
967–980, 2013.

[28] D. J. Bernstein, T. Lange, and R. Niederhagen. Dual EC: A standardized back

door. In The New Codebreakers, pages 256–281. Springer, 2016.
[29] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing. In

ASIACRYPT, pages 514–532, 2001.
[30] S. Bortzmeyer and S. Huque. RFC 8020: NXDOMAIN: There Really Is Nothing

Underneath. IETF, 2005.
[31] C. Boyd, P. Montague, and K. Nguyen. Elliptic Curve Based Password Authenti-

cated Key Exchange Protocols. In Information Security and Privacy, volume 2119

of LNCS, pages 487–501. 2001.
[32] E. Brier, J. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient

indifferentiable hashing into ordinary elliptic curves. In T. Rabin, editor, Ad-
vances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes
in Computer Science, pages 237–254. Springer, 2010.

[33] M. Chase and A. Lysyanskaya. Simulatable VRFs with Applications to Multi-

theorem NIZK. In CRYPTO’07, pages 303–322, 2007.
[34] D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO,

pages 89–105, 1992.

[35] H. Choi, H. Lee, H. Lee, and H. Kim. Botnet detection by monitoring group activ-

ities in DNS traffic. In Seventh International Conference on Computer and Infor-
mation Technology (CIT 2007), October 16-19, 2007, University of Aizu, Fukushima,
Japan, pages 715–720. IEEE Computer Society, 2007.

[36] J. Coron. On the Exact Security of Full Domain Hash. In CRYPTO, pages 229–235,
2000.

[37] J. Damas, M. Graff, and P. Vixie. RFC 6891: Extension Mechanisms for DNS
(EDNS(0)). IETF, 2013.

[38] C. Deccio. DNSviz: a tool for visualizing the status of a DNS zone. http://dnsviz.

net/, 2010.

[39] M. Franklin and H. Zhang. Unique ring signatures: A practical construction.

Technical Report 2012/577, ePrint Cryptology Archive, 2012 (updated 2017).

[40] M. Franklin and H. Zhang. Unique ring signatures: A practical construction. In

FC, pages 162–170. Springer, 2013.
[41] S. Gibson. Distributed Reflection Denial of Service (DrDoS) Attacks. Technical

report, Gibson Research, 2002.

[42] R. Gieben and W. Mekking. RFC 7129: Authenticated Denial of Existence in the
DNS. IETF, 2014.

[43] R. Gieben and W. Mekking. draft-gieben-nsec4-00:DNS Security (DNSSEC)

Authenticated Denial of Existence, 2015.

[44] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling

Byzantine Agreements for Cryptocurrencies. In SOSP, pages 51–68, 2017.
[45] D. K. Gilmore. Meeting minutes, DNSOP meeting at IETF98. https://www.ietf.

org/proceedings/98/minutes/minutes-98-dnsop-00.txt, March 2017.

[46] E. Goh and S. Jarecki. A Signature Scheme as Secure as the Diffie-Hellman

Problem. In EUROCRYPT, pages 401–415, 2003.
[47] S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin, S. Vasant, and A. Ziv. NSEC5:

provably preventing DNSSEC zone enumeration. In NDSS, 2015.
[48] S. Goldberg, D. Papadopoulos, and J. Vcelak. draft-goldbe-vrf: Verifiable Random

Functions, 2017.

[49] A. Herzberg and H. Shulman. Fragmentation considered poisonous, or: One-

domain-to-rule-them-all. org. In IEEE CNS, pages 224–232, 2013.
[50] A. Herzberg and H. Shulman. Negotiating DNSSEC Algorithms over Legacy

Proxies. In CANS, pages 111–126, 2014.
[51] A. Herzberg and H. Shulman. Cipher-Suite Negotiation for DNSSEC: Hop-by-

Hop or End-to-End? Internet Computing, IEEE, 19(1):80–84, 2015.
[52] P. Hoffman and J. Schlyter. RFC 6698: The DNS-Based Authentication of Named

Entities (DANE) Transport Layer Security (TLS) Protocol: TLSAC. IETF, 2012.
[53] P. Hoffman and W. Wijngaards. RFC 6605: Elliptic Curve Digital Signature Algo-

rithm (DSA) for DNSSEC. IETF, 2012. https://tools.ietf.org/html/rfc6605.

[54] T. Icart. How to hash into elliptic curves. In S. Halevi, editor, Advances in
Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677 of Lecture
Notes in Computer Science, pages 303–316. Springer, 2009.

[55] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS performance and the effec-

tiveness of caching. In ACM IMW, pages 153–167, 2001.

[56] O. Kolkman, W. Mekking, and R. Gieben. RFC 6781: DNSSEC Operational Practices,
Version 2. IETF, 2012.

[57] A. Langley, M. Hamburg, and S. Turner. RFC 7748: Elliptic Curves for Security.
IETF, 2016.

[58] B. Laurie, G. Sisson, R. Arends, and D. Blacka. RFC 5155: DNS Security (DNSSEC)
Hashed Authenticated Denial of Existence. IETF, 2008.

[59] E. Lewis. RFC 4592: The Role of Wildcards in the Domain Name System. IETF,

2006.

[60] A. Mankin and S. Huque. DNS Privacy Overview. DNS-OARC Fall Work-

shop. https://indico.dns-oarc.net/event/24/contributions/357/attachments/330/

586/dns-privacy.pdf, 2015.

[61] M. S. Melara, A. Blankstein, J. Bonneau, E.W. Felten, andM. J. Freedman. CONIKS:

Bringing Key Transparency to End Users. In USENIX Security, pages 383–398,
2015.

[62] S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable Random Functions. In FOCS,
pages 120–130, 1999.

[63] J. Mirkovic and P. L. Reiher. A taxonomy of ddos attack and ddos defense

mechanisms. Computer Communication Review, 34(2):39–53, 2004.
[64] P. Mockapetris. RFC 1035: Domain Names - Implementation and Specification.

IETF, 1987. https://tools.ietf.org/html/rfc1035.

[65] M. Naor and A. Ziv. Primary-secondary-resolver membership proof systems. In

TCC, pages 199–228. 2015.
[66] L. H. Newman. What we know about Friday’s massive East Coast Internet outage,

2016. https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/.

[67] NLNetLabs. ldns. http://git.nlnetlabs.nl/ldns/tree/examples/ldns-walk.c, 2017.

[68] E. Osterweil, D. Massey, and L. Zhang. Observations from the DNSSEC Deploy-

ment. In NPSec, 2007.
[69] E. Osterweil, D. Massey, and L. Zhang. Availability problems in the DNSSEC

deployment, 2009. http://irl.cs.ucla.edu/talks/2009-05-RIPE-PMTU.pptx.

[70] E. Osterweil, D. Massey, and L. Zhang. Deploying and monitoring DNS security

(DNSSEC). In ACSAC, pages 429–438, 2009.
[71] E. Osterweil, M. Ryan, D. Massey, and L. Zhang. Quantifying the operational

status of the DNSSEC deployment. In ACM IMC, pages 231–242, 2008.
[72] D. Papadopoulos, D. Wessels, S. Huque, M. Naor, J. Včelák, L. Reyzin, and S. Gold-

berg. Making NSEC5 Practical for DNSSEC. Cryptology ePrint Archive, Report

2017/099, 2017. https://eprint.iacr.org/2017/099.

[73] T. Perrin. The XEdDSA and VXEdDSA signature schemes (rev. 1, 2-16-1020),

2016. https://signal.org/docs/specifications/xeddsa/xeddsa.pdf.

12

http://a.root-servers.org/raw-data/index.html
https://github.com/google/keytransparency/
https://github.com/yahoo/coname/
https://datatracker.ietf.org/doc/charter-ietf-dprive/
https://datatracker.ietf.org/doc/charter-ietf-dprive/
http://a.root-servers.org/metrics/index.html
https://github.com/coniks-sys/coniks-go/issues/175
https://github.com/google/keytransparency/issues/567
http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
http://tools.kali.org/information-gathering/dnsrecon
https://www.knot-dns.cz/
https://www.knot-dns.cz/benchmark/
https://nmap.org/nsedoc/scripts/dns-nsec-enum.html
http://www.nominum.com/measurement-tools/
https://github.com/anonion0/nsec3map
https://www.powerdns.com/
http://secspider.verisignlabs.com/
http://secspider.verisignlabs.com/
http://stakeholders.ofcom.org.uk/binaries/internet/domain-name-security.pdf
http://dnscurve.org/nsec3walker.html
http://dnsviz.net/
http://dnsviz.net/
https://www.ietf.org/proceedings/98/minutes/minutes-98-dnsop-00.txt
https://www.ietf.org/proceedings/98/minutes/minutes-98-dnsop-00.txt
https://tools.ietf.org/html/rfc6605
https://indico.dns-oarc.net/event/24/contributions/357/attachments/330/586/dns-privacy.pdf
https://indico.dns-oarc.net/event/24/contributions/357/attachments/330/586/dns-privacy.pdf
https://tools.ietf.org/html/rfc1035
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
http://git.nlnetlabs.nl/ldns/tree/examples/ldns-walk.c
http://irl.cs.ucla.edu/talks/2009-05-RIPE-PMTU.pptx
https://eprint.iacr.org/2017/099
https://signal.org/docs/specifications/xeddsa/xeddsa.pdf

[74] T. Pornin. RFC 6979: Deterministic Usage of the Digital Signature Algorithm (DSA)
and Elliptic Curve Digital Signature Algorithm (ECDSA). IETF, 2013.

[75] Root Server System Advisory Committee (RSSAC). RSSAC002: RSSAC

Advisory on Measurements of the Root Server System. Technical re-

port, ICANN, November 2014. https://www.icann.org/en/system/files/files/

rssac-002-measurements-root-20nov14-en.pdf.

[76] S. Rose and A. Nakassis. Minimizing information leakage in the DNS. IEEE
Network, 22(2):22–25, 2008.

[77] M. Sanz. DNSSEC and the Zone Enumeration. European Inter-

net Forum: http://www.denic.de/fileadmin/public/events/DNSSEC_testbed/

zone-enumeration.pdf, 2004.

[78] S. Scott, N. Sullivan, and C. Wood. draft-sullivan-hash-to-curve-01: Hashing to
Elliptic Curves: Internet Draft. IETF, 2018.

[79] M. Sivaraman, S. Kerr, and L. Song. draft-muks-dns-message-fragments-00: DNS
message fragments. IETF, 2015.

[80] O. Sury and R. Edmonds. draft-ietf-curdle-dnskey-ed25519: Ed25519 for DNSSEC.
IETF, 2016.

[81] L. Valenta, S. Cohney, A. Liao, J. Fried, S. Bodduluri, and N. Heninger. Factoring

as a Service. In FC, pages 321–338, 2016.
[82] F. Valsorda and O. Gudmundsson. draft-valsorda-dnsop-black-lies: Compact

DNSSEC Denial of Existence or Black Lies (expired). IETF, 2016.
[83] R. van Rijswijk-Deij, A. Sperotto, and A. Pras. Making the Case for Elliptic

Curves in DNSSEC. ACM CCR, 45(5):13–19.
[84] R. van Rijswijk-Deij, A. Sperotto, and A. Pras. DNSSEC and its Potential for DDoS

Attacks: A Comprehensive Measurement Study. In ACM IMC, pages 449–460,
2014.

[85] M. Wander. nsec3breaker. https://www.vs.uni-due.de/trac/dnssec, 2016.

[86] M. Wander, L. Schwittmann, C. Boelmann, and T. Weis. GPU-Based NSEC3 Hash

Breaking. In IEEE NCA, 2014.
[87] S. Weiler and J. Ihren. RFC 4470: Minimally Covering NSEC Records and DNSSEC

On-line Signing. IETF, 2006.
[88] H. Yang, E. Osterweil, D. Massey, S. Lu, and L. Zhang. Deploying Cryptography

in Internet-Scale Systems: A Case Study on DNSSEC. IEEE TDSC, 8(5):656–669,
2011.

[89] D. York, O. Sury, P. Wouters, and O. Gudmundsson. draft-york-dnsop-deploying-
dnssec-crypto-algs: Observations on Deploying New DNSSEC Cryptographic Algo-
rithms. IETF, 2016.

A BACKGROUND: TODAY’S DNSSEC
With DNSSEC, a trustworthy zone owner determines the set of

names (www.example.com) present in the zone and their mapping

to corresponding values (172.18.216.34). Nameservers receive infor-
mation from the zone owner, and respond to DNS queries for the

zone made by resolvers. DNSSEC’s schemes for authenticated denial

of existence reflect tradeoffs between integrity and privacy against

offline zone enumeration. We describe each scheme below:

NSEC (RFC 4034 [18]). The NSEC record is defined as follows.

The trusted owner of the zone prepares a lexicographic ordering of

the names present in a zone, and uses the secret zone signing key
(ZSK) to sign a record containing each consecutive pair of names.

The precomputed NSEC records are then provided to the name-

server. Then, to prove the non-existence of a name (x.example.com),
the nameserver returns the NSEC record corresponding to the pair

of existent names that are lexicographically before and after the

non-existent name (w.example.com and z.example.com), with its

associated DNSSEC signatures. NSEC provides strong integrity—
it not only protects against network attackers that attempt to alter

DNSSEC responses, but is also robust to a malicious nameserver.

This is because NSEC records are precomputed and signed by the

trusted owner of the zone, and so the nameserver does not need

to know the secret ZSK in order to produce a valid NSEC record.

Without the secret ZSK, a malicious nameserver cannot sign bo-

gus DNSSEC responses. On the other hand, NSEC is vulnerable

to trivial zone enumeration attacks: N online queries to the name-

server suffice to enumerate all N names in the zone. Several net-

work reconnaissance tools use NSEC records to enumerate DNS

zones [9, 12, 67, 70].

NSEC3 (RFC 5155 [58]). NSEC3 is meant to raise the bar for

zone enumeration attacks. The trusted owner of the zone crypto-

graphically hashes all the names present in the zone using SHA1,

lexicographically orders all the hash values, and uses the secret ZSK

to sign a NSEC3 record containing every consecutive pair of hashes.

To prove the non-existence of a name, the nameserver returns the

precomputed NSEC3 record (and associated DNSSEC signatures)

for the pair of hashes lexicographically before and after the hash of

the non-existent name.

Since NSEC3 records are precomputed, it also provides strong

integrity. However, [26, 86] demonstrated (and RFC 5155 [58, Sec.

12.1.1] acknowledged) that hashing does not eliminate zone enu-

meration. To enumerate a zone that uses NSEC3, the adversary

again makes a number of online queries to the nameserver to col-

lect all the NSEC3 records, and then uses an offline dictionary attack
to crack the hash values in the NSEC3 records, thus learning the

names present in the zone. These offline attacks will only become

faster as new tools come online [12, 14, 85] and technologies for

fast hashing continue to improve (e.g., GPUs [86], ASICs).

Online signing with NSEC3White Lies (RFC 7129 [42]). Nei-

ther NSEC nor NSEC3 prevent zone enumeration. As a result, the

DNS community introduced a radically different approach that

prevented zone enumeration at the cost of sacrificing strong in-

tegrity. DNSSEC online signing requires the nameserver to hold the

secret zone-signing key (ZSK), and to use it to generate NSEC3 re-

sponses on the fly. Crucially, online signing does not provide strong

integrity—it protects only against network attackers that intercept

DNSSEC responses, but integrity is totally lost if the nameserver is

compromised, because the nameserver holds the secret ZSK that

can be used to sign bogus DNSSEC responses. We call this weak
integrity.

RFC 7129 [42] describes an online signing approach called “NSEC3

White Lies” which is supported by at least one major nameserver

implementation (PowerDNS). NSEC3White Lies requires the name-

server to use the secret ZSK to generate, on the fly, an NSEC3 record

that covers a query with the minimal pair of hash values.
8
That is,

given a query α and its hash value h(α), the nameserver generates

an NSEC3 record containing the pair of hashes (h(α) − 1,h(α) + 1),
and signs the NSEC3 record with the secret ZSK. Because the NSEC3

record only contains information about the queried name α , but not
any name present in the zone, it provides privacy against zone
enumeration. Offline zone enumeration attacks no longer work.

Instead, enumeration is only possible by brute force—sending an

online query to the nameserver for each name that is suspected to

be in the zone. NSEC3 White Lies is also backwards-compatible

for resolvers: resolvers just need to validate the NSEC3 record, but

do not need to know or care whether the server is doing online

signing (with NSEC3 White Lies) or not (with plain NSEC3).

8
RFC4470 [87] also proposes “Minimally Covering NSEC Records” an analogous online

signing approach that uses NSEC records instead of NSEC3 ones. We omit further

discussion of this approach as it is not supported bymajor nameserver implementations

(i.e., BIND, PowerDNS, Microsoft DNS, etc.).

13

https://www.icann.org/en/system/files/files/rssac-002-measurements-root-20nov14-en.pdf
https://www.icann.org/en/system/files/files/rssac-002-measurements-root-20nov14-en.pdf
http://www.denic.de/fileadmin/public/events/DNSSEC_testbed/zone-enumeration.pdf
http://www.denic.de/fileadmin/public/events/DNSSEC_testbed/zone-enumeration.pdf
https://www.vs.uni-due.de/trac/dnssec

B SECURITY OF ECC-BASED VRF
We define the necessary security properties that a VRF needs to

satisfy in order to be used in our application, and provide formal

proofs that they are satisfied by ECC-based VRF from Figure 2.

It suffices to prove three properties: Trusted Uniqueness (see [65,

Definition 10]), Selective Pseudorandomness (see [65, Definition

11]), and Collision-Resistance (not formally discussed in [65], but

mentioned in the proof of Theorem 4). Sufficiency of these three

properties for constructing NSEC5 follows from [65, Theorem 4].

We discuss each property in turn. We model the hash functions H1

and H3 as random oracles (we do not need to model H2 as a ran-

dom oracle—weaker assumptions suffice for H2). We use notation

VerPK (α, β, π) to denote the verification algorithm, which outputs

1 if and only if the proof π and hash output β are valid for input α
and public key PK .
Uniqueness. Recall that uniqueness requires that there should

be only one provable VRF output β for every input α (this output

is denoted by FSK (α)). Trusted uniqueness limits this requirement

to only the case when the public key is valid. Following the VRF

literature, Naor and Ziv [65, Definition 10]) define uniqueness un-

conditionally: for a validly generated public key, each input α to

the VRF has at most one provably correct hash output β . However,
the construction in Section 2.3 satisfies it only computationally:

more than one hash output y may exist, but only the β produced

by FSK (α) can be proven correct by any computationally bounded

adversary, even given the secret key. Since we are not aware of

any prior work defining this relaxation of the uniqueness property

(although Chase and Lysyanskaya [33] mention that such a relax-

ation can be defined), we define it here. Our definition is in terms

of concrete, rather than asymptotic security, because this allows us

to set length parameters.

Definition B.1. (Computational Trusted Uniqueness.) A VRF sat-

isfies (QH , ϵU)-trusted uniqueness if for all adversariesA that make

at most QH queries to the random oracle, for a key pair (PK, SK)
produced according to the key generation algorithm, it holds that

Pr[A(PK, SK) → (α, β1, π1) s.t. β1 , FSK (α) and VerPK (α, β1, π1) =
1] ≤ ϵU .

We now prove that the VRF satisfies Definition B.1 based on the

randomness of the oracle H3. Note that this proof does not rest

on any computational assumptions or on programming a random

oracle. Note also that it does not assume that H1 is random (this

assumption is needed for proofs of pseudorandomness and collision

resistance, below), and would work essentially the same way even

if the range of H1 was the entire group G rather than G − {1} (we

exclude 1 to get a slightly cleaner proof of pseudorandomness).

ClaimB.2. The VRF satisfies (tU , ϵU)-computational trusted unique-
ness of Definition B.1 for ϵU = (QH + 1)/min(q/2, ρ), where ρ =
|range(H3)| and QH ≤ tU is the number of queries the adversary
makes to the random oracle H3.

Note that the quantitative bound on ϵU in the above claim implies

that the bit length log ρ of the output c of H3 can be equal to the

desired security parameter; in particular, it can be shorter than the

prime order q of the group G (whose bit length needs to be at least

twice the security parameter in order to protect against attacks on

the discrete log). This claim is the only part of the security analysis

affected by the output length of H3 (and thus the bit length of the

integer c from the VRF proof π).

Proof. Suppose there is an adversary A that violates compu-

tational trusted uniqueness with probability ϵU . That is, on input

д, x , the adversary Amakes QH queries to the H3 oracle and wins

by outputting (α, β1, π1) s.t. β1 , FSK (α) and Ver(α, β1, π1) = 1

with probability ϵU . We will show that ϵU ≤ (QH + 1)/min(q/2, ρ),
where q is the order of the group G and ρ = |range(H3)|.

The proof π1 contains γ1 such that β1 = H2(γ
f
1
). Note that the

correct β = FSK (α) is computed as H2(γ
f) for γ = [H1(α)]

x
. Since

β1 , β , we have γ
f
1
, γ f , i.e., γ

f
1
, hxf , where h = H1(α).

Now, it must be that π1 = (γ1, c, s) for some c, s that ensure that
Ver(α, β1, π1) = 1. The verification function Ver ensures that γ1 ∈ E
and computes h = H1(α) andu = д

sPKc
andv = hsγ c

1
. Because the

VRF parameters and public keys are trusted, it follows that д ∈ G
and PK = дx ∈ G . The range ofH1 isG−{1} so h ∈ G . SinceG ⊂ E,
all variables in the above equations are in E.

For any a ∈ E, we define â = af . By the structure theorem

for finite abelian groups, E has exactly one subgroup of order q,
because q does not divide f . This subgroup isG = {b ∈ E | bq = 1}.

Therefore, â ∈ G, because âq = af q = a |E | = 1 (by Fermat’s little

theorem).

We can now raise both equations to the power of the cofactor f to

obtain similar equations, but with all the variables inG: û = д̂s ˆPKc

and v̂ = ˆhsγ̂ c
1
. Note that h , 1 (since the range of H1 is G − {1}).

BecauseG is of prime order, h is also a generator ofG . Since q does

not divide f , ˆh = hf , 1 and thus
ˆh is also a generator of G. Same

for д̂. Therefore we can take the logarithm of the first equation

base д̂ and that of the second one base
ˆh. Solving these for s we get

logд̂ û − cx ≡ s (mod q) and log
ˆh v̂ − c log

ˆh γ̂1 ≡ s (mod q) which

implies that

c ≡
logд̂ û − log

ˆh v̂

x − log
ˆh γ̂1

(mod q) (3)

Since γ̂1 , ˆhx , the denominator is not zero, and so there is only one c
moduloq that satisfies equation (3) givenд,дx ,h,γ1,u, andv . Recall
that for verification to pass, it holds that c = H3(д,h,д

x ,γ1,u,v).
Note that the contents of the query toH3 contain every value in the

right hand side of equation (3), and thus the correct c is uniquely
defined at the time the query is made (assuming G is fixed).

What is the probability, for a given query to H3, that the ran-

dom value returned by the H3 oracle is congruent to that correct c
modulo q? Let ρ denote |range(H3)|. If the range of H3 is a subset

of {0, . . . ,q − 1}, then this probability is either 1/ρ or 0, depend-

ing on whether the correct c is in range(H3). Else (i.e., if q < ρ),
think of reducing every element in range(H3)modulo q. Then some

values c modulo q will be hit ⌊ρ/q⌋ times, while others will be hit

⌈ρ/q⌉ times. Thus, the probability that any given c is hit is at most

⌈ρ/q⌉/ρ ≤ ((ρ/q) + 1)/ρ = 1/q + 1/ρ < 2/q. Assume the adver-

sary outputs β1, π1 and then the verification algorithm is run. This

causes a total ofQH + 1 queries to H3 (QH by A and one by the ver-

ifier), so by the union bound, the chances that any of them returns

a correct c for that query are at most (QH + 1)/min(q/2, ρ). □

Remark. Our computational trusted uniqueness property is slightly

weaker than the unconditional trusted uniqueness of Naor and Ziv’s

14

[65, Definition 10]. Thus, the proof that NSEC5, when constructed

from the VRF of Figure 2, satisfies the soundness property in [65,

Theorem 4] needs a slight change, as follows. The proof in [65]

is a reduction from an adversary A who violates soundness to an

adversary B who forges signatures. The reduction relies on the

fact that Amust provide the correct β value (called y in [65]) and

proof π for the VRF as part of its soundness-violating output on an

input α (called x in [65]). Computational trusted soundness ensures

that this happens except with negligible (i.e., (QH + 1)/min(q/2, ρ))
probability. Thus, the success probability of the reduction reduces

from ϵU to ϵU − (QH + 1)/min(q/2, ρ).

Uniqueness without trusting the key. Our VRF can be modified to

attain the stronger property of computational uniqueness (without

needing to trust the key generation). There are three cases:

• If the group E is fixed and trusted to have been correctly

generated (i.e., E is known to have a subgroup of prime

order q), and the generator д is known to be in G − {1},

then the verifier just needs to check that PK ∈ E. (This is
the only requirement on PK from the proof above.)

• If the group E is fixed and trusted, but д and PK are not,

then the verifier needs to check that д ∈ E, дf , 1, as

well as that PK ∈ E (the scheme’s design ensures that

the expensive checks whether д ∈ G and PK ∈ G are not

needed).

• If the group E is not fixed, then we need to include an

unambiguous identifier of E as input to H3 (so that a mali-

cious prover cannot choose E after seeing c), and verifier

needs to check that G is a subgroup of E of order q, q is

prime, |E | = qf , q does not divide f , д ∈ E, дf , 1, and

PK ∈ E. Finally, the adversary should not be allowed to

choose the mapping from E to its identifier after seeing c .

Pseudorandomness. We will state and prove pseudorandomness

in terms of concrete, rather than asymptotic, security. This allows

us to set parameters and work with fixed groups G, E.
In this section, we will need to use the notion of adversarial

advantage. We remind the reader that it is defined as follows: the

adversary can be used to play one of two games. At the end of

each game, the adversary will output a single bit. The advantage is

defined as the difference between the probabilities of outputting 1

in the two games.

The definition of pseudorandomness is as follows:

Definition B.3. (Pseudorandomness) AVRF satisfies (tP ,QH ,QP , ϵP)
pseudorandomness for output distribution S if no adversary D
(which can depend on the fixed VRF parameters, such as G, E, etc.)
whose running time and description size are bounded by tP , total
number of random oracle queries is bounded by QH and total num-

ber of Prove and F queries is bounded by QP , can distinguish the

following two games with advantage more than ϵP . In both games,

VRF keys (PK, SK) are honestly generated, andD(PK) gets to query
ProveSK , FSK , and the random oracles on arbitrary inputs. In both

games, D chooses a challenge input α∗ that has been queried to

neither Prove nor F . In one game, D receives FSK (α
∗), while in the

other D receives a random element drawn from S . Finally, after
additional queries to ProveSK and FSK (except on α∗), D outputs

one bit indicating which game D thinks it is playing. The weaker

notion of (tSP ,QH ,QP , ϵSP) selective pseudorandomness is defined

the same way, except D has to choose α∗ before any queries and

before seeing PK ; D then gets either FSK (α
∗) or a random element

from S as an input along with PK .

Note that our definition gives a slightly generalized version of

the notions of pseudorandomness and selective pseudorandomness

from [65, Definition 11]: instead of addressing only indistinguisha-

bility from the uniform distribution, it addresses indistinguishabil-

ity from some specified distribution S . This allows us to present a

modular proof of the pseudorandomness of our VRF.

For purposes of modularity, first we will not make any assump-

tions on H2; rather, at first we will show that the output of our

VRF is indistinguishable from H2 applied to a uniformly random

element of G − {1}, i.e., from the distribution H2(UG), whereUG is

the uniform distribution on G − {1}. We will then (in Claim B.6)

address pseudorandomness for the uniform output distribution, by

making an assumption on H2.

Pseudorandomness of our VRF depends on the following assump-

tion about the groupG and generatorд, known as the (tDDH , ϵDDH)-
DDH (Decisional Diffie-Hellman) Assumption: for any adversary C
whose description size and running time are bounded by tDDH ,
the difference in probabilities (where the probabilities are over a

random choice of h,h′ ∈ G − {1} and x ∈ {1, . . . ,q − 1}) that

C(дx ,h,hx) = 1 and C(дx ,h,h′) = 1 is at most ϵDDH . (Because the
assumption is specifically for the group G, we think of the fixed

VRF parameters G,q, E, f , and д as hardwired into the adversary

C .)
We note that pseudorandomness can also be proven from the

Computational Diffie-Hellman (CDH) assumption if H2 is modeled

as a random oracle, but the security reduction will be lossier; we

do not present this proof here.

We now prove that our VRF satisfies both pseudorandomness

and selective pseudorandomness for output distribution H2(UG).
We address selective pseudorandomness first, because it is simpler.

Our proof relies on programming the random oracles H1 and H3.

Claim B.4. Under the (tDDH , ϵDDH)-DDH assumption, for any
QH ,QP , the VRF satisfies (tSP ,QH ,QP , ϵSP) selective pseudorandom-
ness for output distribution H2(UG), for tSP ≈ tDDH (minus the time
for Θ(QH +QP) exponentiations in G and one evaluation of H2) and
ϵSP = ϵDDH +QP (QP +QH)/q.

Proof. We need to show the following: if

• D chooses α∗,
• then receives an honestly generated PK = дx and

– either H2([H1(α
∗)]xf)

– or H2 applied to a random element of G − {1},

• is allowed QH queries to random functions H1 and H3 and

QP queries to ProveSK or FSK (except on α∗)
• can distinguish the two cases with advantage ϵSP after

running time tSP
then we can buildC that breaks (tDDH , ϵDDH)-DDH assumption for

tDDH ≈ tSP (plus the time for Θ(QH +QP) exponentiations inG and

one evaluation of H2) and ϵDDH = ϵSP −QP (QP +QH)/q. Because
FSK is computable, in our case, from ProveSK via Proof2Hash, we
can assume without loss of generality that D never queries FSK—
every query to FSK can be replaced with a query to ProveSK .

15

Given (дx ,h,h′) (where h′ is either hx or a random element of

G − {1}), C gets α∗ from D, sets the VRF public key PK as дx and

runs D with public key PK and input H2(h
′f). Note that if h′ is a

random element of G − {1}, then so is h′f , because raising to the
power f is a permutation ofG−{1}, since q does not divide f . Thus,
D is getting as input either the correct VRF output (because C will

define H1(α
∗) to equal h) or H2(UG), as required by Definition B.3.

C answers the queries of D as follows:

• If D queries α∗ to random oracle H1, C returns h.
• If D queries any other αi to H1, C first checks if this value

has been queried to H1 before; if so, C returns the same

answer as previously returned. Else, C chooses a random

ρi ∈ {1, . . . ,q − 1} and programs random oracle H1 as

H1(αi) := д
ρi
. (Note: this response is distributed uniformly

in G − {1}, just like with the honest H1, because д is a

generator of G.)
• IfD queriesH3,C first checks if this value has been queried

toH3 before; if so,C returns the same answer as previously

returned. Else, C return a fresh random value in the ap-

propriate range. (Note that these responses are distributed

just like honest H3).

• If D makes a query qi to ProveSK (note that qi , α∗),
– C queries H1(qi) as described above to get ρi ,
– C sets γ = (дx)ρi where дx was the public key given

as input to D,
– C chooses random values s ∈ {0, . . . ,q − 1} and c ∈

range(H3) and then computes u = дs (дx)c and v =
[дρi]s [(дx)ρi]c . (Note thatu,v, x,h = дρi , s , and c are
distributed identically to the distribution produced by

Prove. The difference in how these distributions are

obtained is simply that Prove chooses a uniform k
whileC chooses a uniform s , where k and s are tied by

the equation s +cx ≡ k (mod q), and u = дk ,v = hk .)
If H3(д,д

ρi ,дx , (дx)ρi ,u,v) is already defined, thenC
fails and aborts. Else, C programs the random oracle

H3 to let H3(д,д
ρi ,дx , (дx)ρi ,u,v) := c . (Note: if C

does not abort, then H3 is uniformly random, just like

honest H2 and H3).

If C does not abort, then its simulation for D is faithful and

C can just output what D outputs. The probability that C aborts

is simply the probability that H3(д,д
ρi ,дx , (дx)ρi ,u,v) is already

defined during the computation of the response to Prove; since at
mostQH +QP values ofH3 are defined, andu is a uniformly random

value in G (because s is uniformly random in {0, . . . ,q − 1} and д
is a generator), the chances that a single query to Prove causes an
abort are (QH +QP)/q, and the chances that any of the queries to

Prove causes an abort are QP (QH +QP)/q. Thus, the advantage of
C is at least ϵSP −QP (QP +QH)/q. □

We can also prove pseudorandomness, but with a lossier security

reduction than selective pseudorandomness.

Claim B.5. Under the (tDDH , ϵDDH)-DDH assumption, for any
QH ≥ 1,QP , the VRF satisfies (tP ,QH ,QP , ϵP) pseudorandomness
for output distribution H2(UG), for tP ≈ tDDH (minus the time for
Θ(QH + QP) exponentiations in G and an evaluation of H2) and
ϵP = 4ϵDDH ·QP +QP (QP +QH)/q.

Proof. We explain the proof by showing the differences from

the proof of Claim B.4. The problem is that C does not know what

α∗ is—it could be in any of the H1 queries. We follow the approach

of [36] to deal with this problem.

Whenever D makes a query αi to H1, C flips a biased coin to

decide whether this query is going to be “type-sig” (with probability

QP/(QP + 1)) or “type-attack” (with probability 1/(QP + 1)). If the

query is “type-sig,” then C works the same way as in the proof of

Claim B.4. Else, C returns hρi for a random ρi ∈ {1, . . . ,q − 1}. C
remembers the type of the query and the ρi value. If D makes a

query qi to Prove, then C aborts if qi = αi for an αi of type-attack
(else C proceeds as before). At some point D produces α∗; before
proceeding, C makes sure α∗ has been queried to H1 (performing

the query if it hasn’t been). C aborts if α∗ = αi for some αi of

type-sig, and otherwise returns H2(h
′ρi f) as the response to the

challenge.

We note that all the responses to H1 queries are still uniformly

distributed overG − {1} and independent, because both д and h are

generators of G. If h′ = hx , then D receives the correct value for

FSK (α
∗), namely H2(h

′ρi f) = H2(h
xρi f) = H2([H1(α

∗)]xf). On the

other hand, if h′ is a uniform element of G − {1}, then instead of

FSK (α
∗), D receives a uniform response chosen independently of

anything else fromH2(G − {1}), because a uniform value inG − {1}

raised to f (a fixed power not divisible by q) is uniform in G − {1}.

NowC succeeds as long as (1) there is no abort due to a collision

ofH3 inputs as in the proof of Claim B.4) and (2) the guesses for the

H1 query type (type-sig or type-attack) don’t lead to an abort. Note

that these guesses are independent of the view of D and therefore

of the success of D. The probability that the guesses are correct for

each Prove query and for α∗ is
(

QP
QP+1

)QP
1

QP+1
≥ 1

4QP
whenever

QP ≥ 1. (The bound is obtained by observing that the left-hand side

multiplied by QP is increasing for QP ≥ 1, and its value at QP = 1

is 1/4.) We thus obtain the claimed result. □

Proving pseudorandomness for uniform output distribution re-

quires making an assumption on H2. Namely, we assume that

H2(UG) is indistinguishable from the uniform distribution on bit

strings of length 2ℓ, where 2ℓ is output length of H2. The assump-

tion, known as (tPH2 , ϵPH2)-pseudorandomness of H2, is as follows:

for any adversary C whose description size and running time are

bounded by tPH2 , the difference in probabilities (where the proba-

bilities are over a random choice of γ ∈ G − {1} and β ∈ {0, 1}2ℓ)

that C(H2(γ)) = 1 and C(β) = 1 is at most ϵPH2 . This assumption is

strictly weaker than modeling H2 as a random oracle.

ClaimB.6. Under the (tDDH , ϵDDH)-DDH assumption and (tPH2 , ϵPH2)-
uniformity of the H2 assumption, for any QH ,QP , the VRF satisfies
(tSP ,QH ,QP , ϵSP) selective pseudorandomness for output distribution
UH2

, for tSP ≈ min(tDDH , tSP) (minus the time for Θ(QH + QP) ex-
ponentiations in G and one evaluation of H2) and ϵSP = ϵDDH +
QP (QP +QH)/q + ϵPH2 . The VRF also satisfies (tP ,QH ,QP , ϵP) pseu-
dorandomness for output distribution UH2

, for tP defined the same
way as tSP and ϵP = 4ϵDDH ·QP +QP (QP +QH)/q + ϵPH2 .

Proof. We prove the first part of the claim. The proof is by a

standard hybrid argument. Suppose an adversary D breaks pseudo-

randomness for output distribution UH2
with advantage more than

16

ϵSP . We know, by Claim B.4, that D cannot distinguish whether

its second input is equal to FSK (α
∗) or chosen from H2(UG) with

advantage more than ϵDDH +QP (QP +QH)/q. Therefore, D must

distinguish whether its second input is chosen from H2(UG) orUH2

with advantage at least ϵSP − (ϵDDH +QP (QP +QH)/q) = ϵPH2 , by

the triangle inequality. But when D’s second input is H2(UG) or
UH2

, all the other informationD receives can be faithfully simulated.

Thus, D can be used to build a distinguisher C to violate the uni-

formity of H2: specifically, on input b (which is either H2(γ) or β),
C will generate a VRF key pair, run D on input (PK,b), answer the
queries of D by running the VRF algorithms, and output whatever

D outputs.

The proof of the second part is essentially identical, except it

uses Claim B.5 instead of Claim B.4, and the reduction C provides

the value b not as input to D, but as a response to the adaptively

chosen challenge query α∗. □

Collision Resistance. We now define trusted collision resistance,

which states that an adversary cannot produce a collision even

given SK , as long as the keys are honestly generated. This prop-

erty, while not explicitly defined in [65], is necessary to ensure the

completeness of NSEC5, i.e., to ensure that a valid non-existence

proof can always be generated by the nameserver and accepted by

the resolver whenever the record does not exist (see [65, Proof of

Theorem 4]).

Definition B.7. (Trusted Collision Resistance) A VRF satisfies

(QH , ϵC) trusted collision resistance if no adversary making QH
random oracle queries, can, given an honestly generated SK , output
two values α , α ′

such that FSK (α) = FSK (α
′) with probability

greater than ϵC .

Proving collision resistance requires a mild assumption about the

structure ofH2: namely, thatH2 of two random inputs is unlikely to

produce the same output. This assumption is strictly weaker than

modeling H2 as a random oracle.

Claim B.8. Assume that the probability that two uniformly ran-
dom elements γ1, γ2 of G − {1} satisfy H2(γ1) = H2(γ2) is at most
ϵCH2 . Then our VRF satisfies ϵC -trusted collision resistance for ϵC =
ϵCH2 · (QH + 2)

2/2.

Proof. Let α,α ′
be the output of the adversary. Without loss of

generality, assume α and α ′
have been queried to H1; if not, add

those queries to the code of the adversary, for a total of QH + 2

queries.

Recall that in the random oracle model, H1 is assumed to be

chosen uniformly after the adversary is designed; in particular, H1

should be different for each public key PK (this can be accomplished

by using PK as a hash function salt). Let α1, . . . ,αQH+2 be the

queries the adversary makes to H1. Given two values αi , α j ,
what is the probability (for a random choice of the oracle H1) that

FSK (αi) = FSK (α j)? Such a collision happens if [H1(αi)]
xf

collides

with [H1(α j)]
xf

after the application ofH2. SinceH1(αi) andH1(α j)
are uniform inG−{1} and raising to the power x f is a permutation

of G − {1}, the probability they collide is at most ϵCH2 . Applying

the union bound over at most (QH + 2)
2/2 pairs of distinct queries

to H1, we get that a successful output α,α
′
exists among queries to

H1 with probability at most ϵCH2 (QH + 2)
2/2. □

Collision resistance without trusting the key. Similarly to the case of

uniqueness, our VRF can be modified to attain collision resistance

without needing to trust the key generation. The modifications are

the same as in the case of uniqueness (to ensure that FSK is uniquely

defined), with the additional check that PK f , 1 to ensure that x is

not divisible by q.

B.1 Hashing onto the Curve
The ECC-based VRF (Figure 2) uses a hash function H1 that maps

arbitrary-length strings to points on an elliptic curve. How can we

instantiate such a hash function? Ideally we want an instantiation

that works for both curves we have considered: NIST P-256 and

Ed25519.

One lightweight technique was proposed in [29]. It proceeds as

follows. Assume an elliptic curve with equation y2 = x3 + ax + b
and order qf . Given an input α (the queried name in our case), set

counter i = 0 and compute h = H (PK,α, i), where H is a standard

cryptographic hash function, e.g., SHA-256. Then, if h3 + ah + b is

a quadratic residue (that is, h is the valid x-coordinate of a point

on the curve) output the point (h, (h3 + ah + b)1/2) raised to the

power of cofactor f (there are generally two square roots; which

one to choose can be determined by having one additional output

bit of H , or the numerically smaller of the two roots can be chosen

deterministically, which will cut the hash range in half and will

not significantly affect security). Otherwise, increment the counter

by 1 and try again. This simple process is expected to terminate

after two steps, and the involved operations are very fast, with an

expected running time of (O log
3(n)), if the curve is defined over

finite field GF (n). The range of this function is only half of the

group G (if only one y is chosen for a random x), but that does not
materially change the proofs of security.

As first shown in [31], the above technique is not suitable when α
must be kept secret; this is because the running time of the hashing

algorithm depends on α , and so it is susceptible to timing attacks.

However, this attack is not relevant for NSEC5, because the only

value hashed in the query phase is the query α itself, which is

already known to the adversary.

Other options for instantiating H1 are discussed in [78]. Many of

these options do not produce a uniform element ofG − {1}. Rather,

they use a hash function (which we will model as a random oracle)

to get a uniform bit string in some range {0, 1}t for 2t > |G | and

then map the bit string to E using a map M that covers a large

portion (e.g., a quarter) of E and is such that every element of G
has not too many (e.g., at most 8) preimages. The resulting value in

E is then raised to the cofactor f to obtain a value inG . We need to

show that our proofs still hold for such instantiation of H1.

B.2 Security of Hashing onto the Curve
Specifically, assume H1 is instantiated as follows. First map input

α to a uniform bit string in the range {0, 1}t , via a random oracle

J . Then map J (α) to an element of E via a map M . Then map the

element of E to an element of G by raising to the cofactor f . Thus,

H1(α) = M(J (α))f . Assume M has the following properties: any

element of E has at most d preimages underM (i.e.,M is at-most-

d-to-1) and these preimages can efficiently computed (i.e., M is

17

invertible). We will now describe the changes to the security proof

that are necessary to accommodate such H1.

First, let us introduce the following algorithmpreimage-sample(b)
to sample a uniform value j such that the discrete logarithm ofM(j)f

is known. On input b ∈ G − {1}, it returns a uniformly random

j ∈ {0, 1}t and z ∈ [0,q − 1] such thatM(j)f = bz .
(1) Let T be the f -torsion subgroup of E, i.e., the set of all

elements τ such that τ f = 1. Note that it is easy to obtain

a uniform element of T by taking a uniform element of E
and raising it to the power q.

(2) done = false

(3) repeat until done
• pick uniformly at random y ∈ 0, . . . ,q − 1

• pick uniformly at random τ ∈ T
• With probability |M−1(τby)|/d , set done = true

(4) Sample j uniformly fromM−1(τby)
(5) Output j and z = y f mod q

Observe that the output is correct:M(j)f = (τby)f = byf = bz . We

will now prove that this algorithm outputs a uniform j and bound

the algorithm’s expected running time and the probability z = 0.

Let δ = dqf /2t . Note that if 2t ≥ qf = |E |, then δ ≤ d .

Claim B.9. The above procedure preimage-sample returns a uni-
form j . the expected number of iterations before the output is produced
is δ . Pr[z = 0] ≤ d f /2t .

Proof. To show that j is uniform, if suffices to show that ev-

ery j is equally likely to be output by a given iteration. Note that

τby is uniform in E (because b is a generator of G, so by is uni-

form in G; τ is uniform in T ; and E is isomorphic to T ×G by the

structure theorem for finite abelian groups). Fix j ∈ {0, 1}t ; let s =
|M−1(M(j))|. Prz [j is output in a given round]=Prz [τb

y = M(j)] ·
Pr[done is set to true] · Pr[j is picked fromM−1(τby)] = (1/(|E |)) ·
(s/d) · (1/s) = 1/(|E | · d) = 1/(dqf), regardless of j.

To show that the expected number of iterations is δ , we need
to show that each iteration sets done to true with probability 1/δ .
It is easier to see this if we think of line 4 as being inside the

loop (this change does not change the number of iterations or the

output of the algorithm). Then each iteration outputs a given j with
probability 1/(dqf , as proven in the previous paragraph. There are

2
t
possible values of j than an iteration could output. Thus, each

iteration succeeds with probability 2
t /(dqf) = 1/δ .

Finally, that because j is uniform, Pr[z = 0] = Prj ∈{0,1}t [M(j)f =

1] = Prj ∈{0,1}t [M(j) ∈ T] ≤ d |T |/2t = d f /2t , because T has f
elements and each of them has at most d preimages underM . □

We now investigate the three properties (uniqueness, pseudo-

randomness, and collision-resistance) when H1(·) is replaced by

M(J (·)).
The proof of uniqueness does not change.

For the proof of selective pseudorandomness, let us introduce

(M, tMDDH , ϵMDDH)-DDH Assumption: for any adversary C whose

description size and running time are bounded by tDDH , the differ-
ence in probabilities (where the probabilities are over a uniform

choice of j ∈ {0, 1}t such that M(j)f , 1, a uniform choice of

h′ ∈ G − {1}, and a uniform choice of x ∈ {1, . . . ,q − 1}) that

C(дx , j,M(j)xf) = 1 and C(дx , j,h′) = 1 is at most ϵDDH .

Claim B.10. If (tDDH , ϵDDH)-DDH assumption holds, then the
(M, tMDDH , ϵMDDH)-DDH assumption holds for ϵMDDH = ϵDDH +
d f /2t and tMDDH = tDDH− running time of preimage-sample.

Proof. Suppose an adversaryC whose description size and run-

ning time are bounded by tMDDH is able to distinguish (дx , j,M(j)xf)
from (дx , j,h′) with advantage more than ϵMDDH . We will build

C ′
as follows: given дx ,h,h′ as input, the goal of C ′

is to distin-

guish the case of h′ = hx from the case of h′ being uniform in

G − {1}. To do so, C ′
will run preimage-sample(h) to get j and z.

By Claim B.9 above, j is uniform in {0, 1}t . If z = 0 (i.e.,M(j)f = 1),

C ′
will output 0. Else C ′

will run C on дx , j,h′z . When h′ = hx ,

then h′z = hxz = M(j)xf . When h′ is uniform in G − {1}, then h′z

is uniform in G − {1} for any non-zero 0 (because raising to the

power z is a permutation of G − {1}). Thus, C will distinguish the

two cases with advantage ϵMDDH − Pr[z = 0]. □

Switching from H1(·) to M(J (·)) will change the statements of

Claims B.4, B.5, and B.6 as follows: the values of tP and tSP will get

reduced not by Θ(QH +QP) exponentiations inG but by Θ(δ (QH +

QP + 1)) exponentiations in G and evaluations ofM−1
; the values

of ϵp and ϵSP will get increased by d f (QH +QP + 1)/2
t
.

The easiest way to prove these claims is to first rely on the

(M, tMDDH , ϵMDDH)-DDH assumption, and subsequently convert

to the (tDDH , ϵDDH)-DDH assumption per Claim B.10, losing δ ex-

ponentiations in G and evaluations of M−1
in running time and

d f /2t in adversarial advantage.

The proof of Claim B.4 will then require the following changes.

First, because of (M, tMDDH , ϵMDDH)-DDH assumption, C is given

(дx , j,h′) rather than (дx ,h,h′). Second, D will query J rather than
H1. The value j is how C will respond to D’s J -query on α∗. For
queries to any other αi , C will run preimage-sample(д) to get ji
and ρi such that M(ji)

f = дρi ; C will abort if ρi = 0; else, C will

return ji to D.
The proof of Claim B.5 will require similar changes. Addition-

ally, C will set h = M(j). If a J -query is “type-attack”, C will run

preimage-sample(h) to get ρi and ji such thatM(ji) = h
ρi
;C will

abort if ρi = 0; else, C will return ji to D.
The proof of Claim B.6 will remain the same.

The proof of collision-resistance now requires a different assump-

tion onH2: namely, thatH2(M(·)) on two random inputs is unlikely

to produce the same output. If d is small, then this assumption is

still strictly weaker than the assumption that H2 is a random oracle.

18

	Abstract
	1 Introduction
	1.1 Results

	2 Efficient Verifiable Random Functions
	2.1 VRF Security Properties
	2.2 VRF Based on RSA
	2.3 VRF Based on Elliptic Curves
	2.4 VRF Performance
	2.5 VRF Security

	3 NSEC5 for DNSSEC
	3.1 Constructing NSEC5 from VRFs
	3.2 Properties of NSEC5
	3.3 Basing NSEC5 on Elliptic Curves

	4 Designing the DNS Protocol Use of NSEC5
	4.1 NSEC5 Protocol Optimizations
	4.2 Other Protocol Considerations

	5 NSEC5 Performance Evaluation
	5.1 Response Lengths
	5.2 Nameserver Performance
	5.3 Recursive Resolver Performance

	6 NSEC5 vs. Recent Innovations
	7 The Transition to NSEC5
	8 Conclusion
	References
	A Background: Today's DNSSEC
	B Security of ECC-based VRF
	B.1 Hashing onto the Curve
	B.2 Security of Hashing onto the Curve

