
Boolean functions with restricted input and their robustness; application to
the FLIP cipher

Claude Carlet1, Pierrick Méaux2, Yann Rotella3.

1 LAGA, Department of Mathematics, University of Paris 8, and Paris 13 and CNRS, Saint–Denis cedex 02, France.
E-mail: claude.carlet@univ-paris8.fr

2 Inria, CNRS, ENS and PSL Research University, Paris, France.
E-mail: pierrick.meaux@ens.fr

3 Inria, University Pierre
& Marie Curie Paris 6, Paris, France.
E-mail: yann.rotella@inria.fr

Abstract. We study the main cryptographic features of Boolean functions (balancedness, nonlinearity, algebraic
immunity) when, for a given number n of variables, the input to these functions is restricted to some subset E of
Fn2 . We study in particular the case when E equals the set of vectors of fixed Hamming weight, which plays a role
in the FLIP stream cipher and we study the robustness of the Boolean function in this cipher.

Keywords: FLIP, Boolean function, balance, nonlinearity, algebraic immunity, constrained input

1 Introduction

In a cryptographic framework, Boolean functions are classically studied with an input ranging over the
whole vector space Fn2 of binary vectors of some length n. This is the case when the Boolean functions are
used as the (main) nonlinear components of a stream cipher, in the so-called combiner and filter models of
pseudo-random generators. However, it can happen that the function be in fact restricted to a subset (say E)
of Fn2 . A recent example of such situation is given by the cipher FLIP (see [MJSC16]).

1.1 FLIP: filtering a constant Hamming weight register

The cipher FLIP is one of the encryption schemes appeared in the very last years: specifically designed to be
combined with an homomorphic encryption scheme to improve the efficiency of somewhat homomorphic
encryption frameworks. As for Kreyvium [CCF+16] and LowMC [ARS+15] the goal of the cipher
is to present a decryption algorithm whose homomorphic evaluation is as insignificant as possible in
term of homomorphic error growth. This homomorphic-friendly design requires to drastically reduce the
multiplicative depth of the decryption circuit and in the case of FLIP it led to use a non generic construction:
the filter permutator. This symmetric primitive consists in updating a key register only by wire-cross
permutations and then in filtering it with a Boolean function with input the whole register to generate the
keystream. At each clock cycle the wire-cross permutation used to shuffle the secret key is given by the
output of a PRNG by the intermediate of a generator of permutation. The PRNG seed acting as an IV, at
each clock cycle the input to the filtering function is only a reordering of the secret key bits.

This specificity produces an unusual situation for stream ciphers: the Hamming weight of the key register
is invariant, equal to the Hamming weight of the secret key. For the instances of FLIP, the Hamming weight
of the secret key is set to n

2 , with n the size of the secret key, way larger than usual key sizes (> 500
and > 1000 bits for security parameters 80 and 128). These sizes prevent an exhaustive search but it still

restricts the input of the filtering function to the half Hamming weight vectors of Fn2 . It raises a very natural
question, which was not addressed in [MJSC16] but which is mandatory when evaluating the security: how
is behaving f on this restricted input with respect to classical attacks? The Boolean criteria commonly used
to study the robustness of a filtering function are always considered on the whole space Fn2 ; and therefore
they do not apply on restricted inputs. Therefore in this work we study the Boolean functions on restricted
inputs, focusing on criteria adapted to restricted sets.

1.2 Boolean criteria on restricted sets

Let us begin with a preliminary remark: for the FLIP family of stream ciphers, the divide-and-conquer
technique introduced by Siegenthaler [Sie84, Sie85] does not seem to apply, because of the application of a
permutation at each clock cycle on the entire state. It seems very difficult to find a bias between the output
to the function and a fixed set of input variables. In general, it seems very difficult to apply Siegenthaler’s
attack on other ciphers by regarding restricted input, because the principle of the correlation attack is to
make an exhaustive search on some part of the initial state, without having any restriction on the rest of the
state, while here, by fixing the weight, we impose a dependence between the two parts. Consequently we
do not study the resilience of ”restricted Boolean functions”. But all the other classical features of Boolean
functions (namely balancedness, algebraic immunity and nonlinearity) continue to play a direct role with
respect to attacks in such new framework. However, their behavior changes because of the restriction on the
input.

A first commonly accepted requirement on cryptographic Boolean functions is to be balanced -or at
least almost balanced- since otherwise, if there is a fairly big bias in the output distribution of the function,
then the attacker could detect the resulting statistical bias between the plaintext and the ciphertext, allowing
at least to distinguish when two texts of the same length have high probability to be a plaintext and the
corresponding ciphertext. We shall then be focussed on those functions which are balanced on the input set
E. But since E may change in the process (this is not the case in FLIP but it could be in a variant), we are
interested in Boolean functions whose restrictions to all setsE in some family E are balanced. Even ifE does
not change, we may wish to have a Boolean function which is balanced on a family of sets E, so that it can
be used in a variety of situations. We shall be in particular interested in the case of E = {En,1, . . . , En,n−1},
where En,k = {x ∈ Fn2 ;wH(x) = k}, wH denoting the Hamming weight. We shall then call such functions
weightwise perfectly balanced.

A second parameter, which plays an important role for quantifying the contribution of the function
to a resistance against attacks by affine approximations, like the fast correlation attack [MS88b], is the
minimum of the Hamming distance dH(f, h) = |{x ∈ Fn2 ; f(x) 6= h(x)}| between f(x) and affine functions
h(x) = a · x + ε, a ∈ Fn2 , ε ∈ F2 (where “·” is some inner product in Fn2 ; any choice of an inner product
will give the same definition). This parameter is called the nonlinearity of the function, and we shall denote
it by NL(f) when there is no restriction on the input to f , and NLE(f) when the input to f is taken from a
set E.

A third parameter plays a role for quantifying the contribution of the function to a resistance against
algebraic attacks, giving the minimal degree of the algebraic system to solve for recovering the initialization
of the register. It is called the algebraic immunity of the function; we shall denote it by AI(f) when there is
no restriction on the input to f , and AIE(f) when the input to f is taken from a set E.

1.3 Previous works

Studying the robustness of Boolean functions from these criteria has been largely applied for the security
analysis of stream ciphers, and the corresponding attacks are considered as the standard attacks to consider

1

for any stream cipher. In that sense many works consider the three Boolean criteria previously presented for
the particular case of a design it introduce or the cryptanalysis it develops. A study has been made by Yuval
Filmus et al. on the restrictions of Boolean functions to sets of inputs of fixed Kamming weight (that he
calls ”slices”) [Fil16a, Fil16b, FKMW16, FM16]; this study is asymptotical and does not really fit with our
cryptographic framework; the results from these papers have no overlap with ours.

The bias of a stream cipher output in presence of Hamming weight leakage is considered in [JD06].
Precisely, it is shown that knowing the Hamming weight of a register when the updating function is an
LFSR in a particular representation enables to distinguish, the keystream from a random binary stream. The
authors also describe a correlation attack in this setting. Therefore [JD06] compares to our work by using
the balancedness flaw on a function on the sets {x|wH(x) = k} (the fact that this function is not weightwise
perfectly balanced) with other equations to attack these LFSR.

On the algebraic immunity criteria, following the algebraic side channel attacks, the work [CFGR12]
realises a theoretical study of the algebraic phase of this kind of attacks on block ciphers. The authors define
an adapted notion of algebraic immunity depending on the leakage model, Hamming weight or Hamming
distance and show that in both cases they are able to obtain enough equations of degree one and that they
can solve the algebraic system with Gröbner methods. For our work we consider a reverse approach, we also
study an adapted notion of the algebraic immunity (on f with restricted input) and for the case we focus
mostly on - fixed Hamming weight input - it is related to side channel approaches. Then our study directly
applies to the Hamming weight model but not to the Hamming distance model, another major difference is
that we focus on functions with one bit of output and not S-boxes functions.

1.4 Our contributions

We realise the first study of balancedness, nonlinearity and algebraic immunity on Boolean functions with
restricted inputs, centred on the fixed Hamming weight input. For each criterion, we compare its behaviour
in this constrained framework to the properties well known in Fn2 , we consider the functions with highest
criterion on En,k = {x|wH(x) = k} that we can construct. Moreover, we study the degradation of the
parameters for optimal functions in the whole space.

More precisely for the balancedness criterion, we prove necessary conditions on the Algebraic Normal
Form of f to be weightwise perfectly balanced and we exhibit a class of such functions and a secondary
construction for designing them. We also give a construction of weightwise almost perfectly balanced
function for all n and present a relation between balancedness on fixed weight inputs and a transform
similar to the Walsh transform involving symmetric functions. For the nonlinearity criterion we give for
every subset E of Fn2an upper bound for those functions restricted to E and show that contrarily to the
case of all input space this bound (related to bent functions) cannot be reached for most En,k. We use
an error correcting code perspective to construct functions with non null NLk for all k ∈ [1, n]. We also
determine some bent functions which are linear for all restricted Hamming weight and hence have null NLk
for every k. We generalise the algebraic immunity upper bound for all set E and give precise results in the
constant Hamming weight case. We show how the general algebraic immunity can decrease on En,k and
prove counter-intuitive results for direct sums (used in the design of the FLIP Boolean function).

We give a cryptanalysis aspect of this study explaining in which case constant Hamming weight
cryptanalysis is applicable in general and how it can be. We provide a proof of concept analysis on the
stream cipher Grain assuming a side channel attacker. We specially analyse the 4 instances of the cipher
FLIP. For these functions we prove bounds for the three main criteria, also considering possible attack
improvements with guess and determine attacks. We provide a new security analysis of this cipher, based on
filtered function with fixed Hamming weight input.

2

1.5 Paper organisation

In Section 2 we study the criterion of balancedness, then Section 3 concerns the nonlinearity and the
algebraic immunity study is made in Section 4. Section 5 details constant Hamming weight cryptanalysis
and finally Section 6 presents the security analysis of FLIP with fixed Hamming weight input.

2 Balancedness

2.1 Weightwise perfectly balanced Boolean functions

Notation 1. We denote by wH(f)k the Hamming weight of the evaluation vector of function f on all the
entries of fixed Hamming weight k:

wH(f)k = |{x ∈ Fn2 ,wH(x) = k, f(x) = 1}|,

where wH denotes the Hamming weight. We accordingly denote wH(f)i = |{x,wH(x) = i, f(x) = 0}| =(
n
i

)
− wH(f)i. We denote by En,k the set of such entries: En,k = {x ∈ Fn2 ;wH(x) = k}.

Definition 1. Let f be a Boolean function defined over Fn2 . It will be called weightwise perfectly balanced
(WPB) if, for every k ∈ {1, . . . , n − 1}, the restriction of f to En,k, is balanced, that is, ∀k ∈ [1, n −
1],wH(f)k =

(nk)
2 .

To make the function balanced on its whole domain Fn2 , we shall additionally impose that f(0, . . . , 0) 6=
f(1, . . . , 1) and more precisely that

f(0, . . . , 0) = 0; f(1, . . . , 1) = 1.

This last constraint does not reduce the generality (when f(0, . . . , 0) 6= f(1, . . . , 1)), up to the addition
of constant 1 to f , and it makes some constructions clearer. Note that weightwise perfectly balanced Boolean
functions exist only if, for every k ∈ [1, n − 1],

(
n
k

)
is even and this property is satisfied if and only if n is

a power of 2. Note that wH(f)k =
(2
`

k)
2 is then even for k ∈ [1, . . . , 2`−1 − 1] ∪ [2`−1 + 1, . . . , 2` − 1] and

odd for k = 2`−1 = n/2. To be able to address the case where n is not a power of 2, we introduce:

Definition 2. Let f be a Boolean function defined over Fn2 . It will be called weightwise almost perfectly

balanced functions (WAPB) if, for every k ∈ [1, n−1], wH(f)k =
(nk)
2 when

(
n
k

)
is even and wH(f)k =

(nk)±1
2

when
(
n
k

)
is odd.

Relation with ANF Recall that any Boolean function over Fn2 has a unique algebraic normal form (ANF)
f(x) =

∑
I⊆{1,...,n} aI

∏
i∈I xi, where aI ∈ F2. Any term

∏
i∈I xi in such ANF is called a monomial and

its degree equals |I|. The algebraic degree of f equals the global degree maxI;aI=1 |I| of its ANF. Function
f is affine if and only if its algebraic degree is at most 1.

Remark 1. For every even n and ε = 0 or 1, function `(x1, x2, . . . , xn) = ε + x1 + x2 + · · · + xn
2

is
balanced on all words of fixed odd Hamming weight, since for such word, either wH(x1, . . . , xn

2
) is odd

and `(x1, x2, . . . , xn) = ε + 1, or wH(xn
2
+1, . . . , xn) is odd and `(x1, x2, . . . , xn) = ε, and the words of

the former kind are the shifted by n
2 positions of the words of the latter kind and are then no more and no

less numerous. “Conversely”, any affine function balanced on words of Hamming weight 1 has the form

3

ε+ xi1 + xi2 + · · ·+ xin
2

, where ε = 0 or 1. Any weightwise perfectly balanced Boolean function has then
the following form :

f(x1, x2, . . . , xn) = ε+ xi1 + xi2 + · · ·+ xin
2
+ g(x1, x2, . . . , xn),

where g is non null and is the sum of monomials of degrees at least 2, since all monomials of degree at least
2 vanish at inputs of Hamming weight 1.

More precisely:

Proposition 1. If f is a weightwise (almost) perfect Boolean function of n variables then the ANF of f
contains dn/2c monomials of degree 1 and at least bn/4c monomials of degree 2, where dn/2c equals n/2
if n is even and (n± 1)/2 if n is odd.

Proof. In the particular case where f is linear, wH(f)k is exactly the number of entries of weight k for
which an odd number of the monomials of f are set to 1. Therefore denoting by d the number of (degree 1)
monomials in the ANF of f , we have: wH(f)k =

∑
i odd

(
d
i

)(
n−d
k−i
)
.

For any function f , as wH(f)k is only determined by the monomials of f of degree at most k, let us partition
f into `f , qf and f ′, respectively made of the monomials of degree 1, 2 and strictly larger than 2 in the ANF
of f . For k = 1, we have:

wH(f)1 = wH(`f)1 =

(
|`f |
1

)
,

where |`f | is the number of monomials of `f .
Therefore, if f is (almost) balanced for fixed weight 1, then |`f | = n

2 for n even and |`f | = n±1
2 for n odd.

We have:
wH(f)2 = wH(`f + qf)2 = wH(`f)2 + wH(qf)2 − 2wH(`f · qf)2,

Therefore, if f is (almost) balanced for fixed weights 1 and 2, then, for n even, wH(`f)2 =
(n

2
1

)(n
2
1

)
= n2

4

and wH(`f)2 −
(n2)
2 = n

4 so wH(qf)2 ≥ bn/4c, and for n odd, wH(`f)2 =
(n+1

2
1

)(n−1
2
1

)
= n2−1

4 and

wH(`f)2 −
(n2)
2 = n−1

4 so wH(qf)2 ≥ bn/4c.

Proposition 2. If f is a weightwise perfectly balanced Boolean function of n variables, then the ANF of f
contains at least one monomial of degree n/2.

Proof. Let md be a monomial of degree d, we focus on the parity of wH(md)k; for all 1 ≤ k ≤ n − 1 and
1 ≤ d ≤ k:

wH(md)k =

(
n− d
k − d

)
More particularly when k = d, wH(mk)k =

(
n−k
0

)
= 1. We have seen that f being perfectly balanced

implies that n = 2` and therefore wH(f)k =
(2
`

k)
2 is even for k ∈ [1, . . . , 2`−1 − 1] ∪ [2`−1 + 1, . . . , 2` − 1]

and odd for k = 2`−1 = n/2. This enables to determine the parity of the number of monomials of each
degree of f smaller than or equal to 2`−1 = n/2. Concretely, f has an even number of monomials of degree
d for 1 ≤ d ≤ n/2− 1 (by induction at weight k = d this number has to be even due to wH(mk)k = 1) and
an odd number of monomials of degree n/2, finishing the proof.

4

Remark 2. The previous results show that the ANF of every weightwise perfectly balanced function of 2`

variables contains monomials of degrees 20, 21 and 2`−1. It raises the question whether having monomials
whose degrees cover all powers of 2 is a necessary condition for weightwise perfectly balancedness. It turns
out that it is not necessary; for example the function of 16 variables and algebraic degree 3

f =
8∑
i=1

xi +
4∑
i=1

xixi+8 + x1x2x5 + x1x4x16

is weightwise balanced for k ∈ [1, . . . , 4] and can be completed in a weightwise perfectly balanced function
only by adding monomials of degree greater than 4.

Constructions A well-known secondary construction of Boolean functions is the so-called direct sum:
given two functions f(x) and g(y) depending on distinct variables, the Boolean function h(x, y) = f(x) +
g(y), where x, y ∈ Fn2 , is called the direct sum of f and g. This secondary construction does not build a
weightwise perfectly balanced function from two weightwise perfectly balanced functions as we can see
from the next Lemma and Corollary.

Lemma 1. Let f be a Boolean function with n = 2` variables (` ∈ N∗) such that there exists two Boolean
functions g1 and g2 in n

2 variables such that f(x1, . . . , xn) = g1(x1, . . . , xn
2
)+g2(xn

2
+1, . . . , xn), and such

that g1(0 . . . 0) + g1(1 . . . 1) + g2(0 . . . 0) + g2(1 . . . 1) ≡ 0 mod 2, then f cannot be weightwise perfectly
balanced.

Proof. Let f be a Boolean function such that f is a direct sum of two Boolean functions g1 and g2 with n
2

variables. As f is a direct sum of g1 and g2, we can link the value of wH(f)k to wH(g1)i and wH(g2)i with
i ≤ k for every k ∈ [1, n− 1]:

wH(f)k =
k∑
i=0

wH(g1)i

((n
2

k − i

)
− wH(g2)k−i

)
+ wH(g2)k−i

((n
2

i

)
− wH(g1)i

)

Now we suppose that f is weightwise perfectly balanced; in particular, wH(f)n
2
= 1

2

(
n
n
2

)
≡ 1 mod 2 and

developing:

wH(f)n
2
=

n
2∑
i=0

(n
2

n
2 − i

)
wH(g1)i +

(n
2

i

)
wH(g2)n

2
−i − 2wH(g1)iwH(g2)n

2
−i

Moreover, we know that, as n
2 is also a power of 2, then for each i ∈ [1, n2 − 1],

(n
2
i

)
is even. To conclude, if

f is weightwise perfectly balanced, then we have the following relation:

1 ≡ wH(g1)0 + wH(g1)n
2
+ wH(g2)0 + wH(g2)n

2
mod 2

Then we need that g1(0 . . . 0) + g1(1 . . . 1) + g2(0 . . . 0) + g2(1 . . . 1) ≡ 1 mod 2

Corollary 1. If g1(x1, . . . , xn
2
) and g2(xn

2
+1, . . . , xn) are two weightwise perfectly balanced functions,

then the Boolean function defined by the direct sum of g1 and g2 cannot be weightwise perfectly balanced.

5

Hence, the direct sum, when applied to perfectly balanced functions, does not lead to a weightwise
perfectly balanced function; nevertheless we can derive such construction from weightwise perfectly
balanced functions by applying the direct sum after modifying one of the functions: if f and g are two
n-variable weightwise perfectly balanced functions, then h(x, y) = f(x)+

∏n
i=1 xi+ g(y) is a 2n-variable

weightwise perfectly balanced function. In fact, this result is a particular case of a more general construction,
inspired by the so-called indirect sum, which builds a Boolean function from four Boolean functions as
follows: h(x, y) = f(x) + g(y) + (f(x) + f ′(x))(g(y) + g′(y)), and which allowed to construct bent and
correlation immune functions:

Theorem 1. Let f , f ′ and g be three weightwise perfectly balanced n-variable functions and let g′ be any
n-variable Boolean function, then h(x, y) = f(x)+

∏n
i=1 xi+g(y)+(f(x)+f ′(x))g′(y), where x, y ∈ Fn2 ,

is a weightwise perfectly balanced 2n-variable function.

Proof. – If k = 0, then wH(x, y) = k is equivalent to x = y = (0, . . . , 0) and we have h(x, y) =
f(0, . . . , 0) + g(0, . . . , 0) = 0.

– If k ∈ {1, . . . , n − 1}, then, the set {(x, y) ∈ F2n
2 ;wH(x, y) = k} equals the disjoint union of the

following sets:
• {(0, . . . , 0)} × {y ∈ Fn2 ;wH(y) = k}, on which h(x, y) equals f(0, . . . , 0) + g(y) (since
f(0, . . . , 0) + f ′(0, . . . , 0) = 0) and is then balanced;
• {x ∈ Fn2 ;wH(x) = i}×{y}, where 1 ≤ i ≤ k and wH(y) = k− i, on each of which h(x, y) equals
f(x) + g(y) if g′(y) = 0 and f ′(x) + g(y) if g′(y) = 1; in both cases, it is balanced;

– If k = n, then the set {(x, y) ∈ F2n
2 ;wH(x, y) = k} equals the disjoint union of the following sets:

• {((0, . . . , 0), (1, . . . , 1))}∪{((1, . . . , 1), (0, . . . , 0))}, on which h(x, y) equals respectively f(0, . . . , 0)+
g(1, . . . , 1) = 1 (since f(0, . . . , 0)+f ′(0, . . . , 0) = 0) and f(1, . . . , 1)+g(0, . . . , 0)+1 = 0 (since
f(1, . . . , 1) + f ′(1, . . . , 1) = 0) and is then globally balanced;
• {x ∈ Fn2 ;wH(x) = i} × {y}, where 1 ≤ i ≤ n − 1 and wH(y) = n − i, on each of which h(x, y)

equals f(x) + g(y) if g′(y) = 0 and f ′(x) + g(y) if g′(y) = 1; in both cases, it is balanced;
– If k ∈ {n + 1, . . . , 2n − 1}, then the set {(x, y) ∈ F2n

2 ;wH(x, y) = k} equals the disjoint union of the
following sets:
• {(1, . . . , 1)} × {y ∈ Fn2 ;wH(y) = k − n}, on which h(x, y) equals f(1, . . . , 1) + g(y) + 1 and is

then balanced;
• {x ∈ Fn2 ;wH(x) = i} × {y}, where k − n+ 1 ≤ i ≤ n− 1 and wH(y) = k − i, on each of which
h(x, y) equals f(x) + g(y) if g′(y) = 0 and f ′(x) + g(y) if g′(y) = 1; in both cases, it is balanced;

– If k = 2n, then wH(x, y) = k is equivalent to x = y = (1, . . . , 1) and we have h(x, y) = 1+1+1 = 1.

Note that for f = f ′ or g′ = 0, we obtain the construction related to the direct sum mentioned above.
Noting that f(x1, x2) = x1 is perfectly balanced, we can recursively build perfectly balanced Boolean
functions of 2` variables, for all ` in N∗. For instance, applying the construction with f = f ′, we get:

f(x1, x2, . . . , x2`) =
∑̀
a=1

2`−a∑
i=1

2a−1−1∏
j=0

xi+j2`−a+1

And since g′ can be freely chosen and f ′ can be a version of f in which the coordinates of x are permuted,
we have a large number of weightwise perfectly balanced functions by applying Theorem 1.

We can extend the previous example to get weightwise almost perfectly balanced Boolean function on
n variables for all n.

6

Proposition 3. The function fn in n ≥ 2 variables, recursively defined by f2(x1, x2) = x1 and for n ≥ 3:
fn(x1, . . . , xn) =

fn−1(x1, . . . , xn−1) if n odd

fn−1(x1, . . . , xn−1) + xn−2 +
∏2d−1

i=1 xn−i if n = 2d; d > 1

fn−1(x1, . . . , xn−1) + xn−2 +
∏2d

i=1 xn−i if n = p · 2d; p > 1 odd ; d ≥ 1

is a weightwise almost perfectly balanced Boolean function of degree 2d−1, where 2d ≤ n < 2d+1, and with
n − 1 monomials in its ANF if n is even and n − 2 monomials if n is odd. Note that this function can be
written as a direct sum for all n ≥ 2.

Proof. The degree and number of monomials of fn are easily checked by induction on n for n ≥ 2. We
prove the weightwise almost perfect balance property by induction on n as well:

– for n = 2, f2 = x1 is WPB.
We now assume that n ≥ 3 and that, for every 2 ≤ i ≤ n−1, fi is WAPB. We prove under this induction
hypothesis that fn is WAPB.

– for n odd:
• if k = 0, then wH(fn)0 = wH(fn−1)0 = 0;
• if k ∈ [1, n− 1], then wH(fn)k = wH(fn−1)k + wH(fn−1)k−1. As n− 1 is even, at least one of the

coefficients
(
n−1
k

)
,
(
n−1
k−1
)

is even (as n−1 is even and k or k−1 is odd therefore one of those written
in binary has a digit equal to 1 where the corresponding one of n is 0 which characterise the even

parity of this binomial coefficient), therefore wH(fn−1)k + wH(fn−1)k−1 =
(n−1
k)+(n−1

k−1)
2 =

(nk)
2 if

both are even and wH(fn−1)k + wH(fn−1)k−1 =
(n−1
k)+(n−1

k−1)±1
2 =

(nk)±1
2 otherwise;

• if k = n, then wH(fn)n = wH(fn−1)n−1 = 1

Hence, fn is WAPB.
– for n = 2d; d > 1, we can view fn as the following direct sum:

fn(x1, . . . , xn) =

f2d−1(x1, · · · , x2d−1−1, xn) + f2d−1(x2d−1 , · · · , xn−1) +
2d−1∏
i=1

xn−i.

As f2d−1 is WPB by hypothesis, we can apply Theorem 1 with g′ = 0, giving that fn is WPB.
– n = p · 2d; 1 < p odd ; we decompose fn in a direct sum and use techniques of Theorem 1’s proof:

fn(x1, . . . , xn) =

f(x1, · · · , xn−2d−1, xn) + g(xn−2d , · · · , xn−1) +
2d∏
i=1

xn−i

reordering the variables we get f = fn−2d and g = f2d , with f2d WPB and fn−2d WAPB by hypothesis.

fn being a direct sum of f and g +
∏2d

i=1 xn−i we get:
• if k = 0: wH(fn)0 = wH(f)0wH(g)0 + wH(f)0wH(g)0 = 0

7

• if k ∈ [1, 2d − 1]:

wH(fn)k =

k∑
i=0

wH(g)iwH(f)k−i + wH(g)iwH(f)k−i (1)

= wH(f)k +
k∑
i=1

wH(g)i(wH(f)k−i + wH(f)k−i) (2)

= wH(f)k +
1

2

k∑
i=1

(
2d

i

)(
n− 2d

k − i

)
(3)

= wH(f)k +
1

2

((
n

k

)
−
(
n− 2d

k

))
(4)

Equation (2) comes from g being WPB of 2d variables, therefore wH(g)i = wH(g)i for i ∈
[1, 2d − 1. Equation (3) is obtained using that wH(f)k−i + wH(f)k−i =

(
n−2d
k−i
)

by definition and

wH(g)i =
1
2

(
2d

i

)
because f is a WPB function. Equation (4) is obtained Vandermonde convolution:∑k

i=0

(
n
i

)(
m
k−i
)
=
(
n+m
k

)
.

Therefore wH(fn)k =
1
2

(
n
k

)
if
(
n−2d
k

)
is even and wH(fn)k =

1
2

((
n
k

)
± 1
)

otherwise.
• if k ∈ [2d, n− 1]:

wH(fn)k =
2d−1∑
i=1

wH(g)iwH(f)k−i + wH(g)iwH(f)k−i

+ wH(g)0wH(f)k + wH(g)0wH(f)k

+ wH(g)2dwH(f)k−2d + wH(g)2dwH(f)k−2d

=
2d−1∑
i=1

1

2

(
2d

i

)(
n− 2d

k − i

)
+ wH(f)k + wH(f)k−2d

=
1

2

((
n

k

)
−
(
n− 2d

k

)
−
(
n− 2d

k − 2d

))
+ wH(f)k + wH(f)k−2d

As n − 2d ≡ 0[2d+1] at least one of
(
n−2d
k

)
,
(
n−2d
k−2d

)
is even therefore wH(fn)k = 1

2

(
n
k

)
if both are

even and wH(fn)k =
1
2

((
n
k

)
± 1
)

otherwise.
• if k = n: wH(fn)n = wH(f)n−2dwH(g)2d + wH(f)n−2dwH(g)2d = 1 Giving that fn is WAPB.

To conclude for n ≥ 2, fn is weightwise (almost) perfectly balanced.

Remark 3 (Balancedness degradation with weightwise consideration). For all n ≥ 2, there exists an (n−1)-
resilient function (i.e. a balanced Boolean function which remains balanced when at most n − 1 of its
variables are arbitrarily fixed) which is unbalanced for all weight k ∈ [1, n− 1].

Proof. The first elementary symmetric Boolean function σ1 =
∑n

i=1 xi = wH(x) (mod 2) is (n − 1)-
resilient and is constant on all fixed weight input, its weightwise restrictions are as much unbalanced as
possible.

8

2.2 A relation between balancedness when the input weight is fixed and a transform similar to the
Walsh transform involving symmetric functions

For i ∈ {1, . . . , n}, let us recall that σi denotes the ith elementary symmetric Boolean function:

σi(x) =
∑

1≤j1<···<ji≤n

i∏
l=1

xjl

(sum performed in F2) and Σ the vectorial (n, n)-function whose ith coordinate function is σi. For k ∈
{1, . . . , n}, we have wH(x) = k if and only if, for every i = 1, . . . , n, we have σi(x) =

(
k
i

)
(mod 2).

Indeed, the σi’s generate by linear combinations all those symmetric Boolean functions which are null at
input 0, and we know that two vectors x, y have the same nonzero Hamming weight if and only if every
symmetric Boolean function null at input 0 takes the same value at inputs x and y (indeed, the indicator of
the set of those vectors of some nonzero Hamming weight k is a symmetric function null at input 0). We
have then: (

n

k

)
− 2 wH(f|wH(x)=k) =

∑
x∈Fn2 ;wH(x)=k

(−1)f(x)

=
∑

x∈Fn2 ; ∀i=1,...,n,

σi(x)=(ki) (mod 2)

(−1)f(x)

= 2−n
∑
v∈Fn2

(−1)
∑n
i=1 vi(

k
i)
∑
x∈Fn2

(−1)f(x)+v·Σ(x).

Indeed, for every x ∈ Fn2 , we have:∑
v∈Fn2

(−1)
∑n
i=1 vi(

k
i)+v·Σ(x) =

∑
v∈Fn2

(−1)
∑n
i=1 vi[(

k
i)+σi(x)]

=

{
2n if σi(x) =

(
k
i

)
(mod 2),∀i = 1, . . . , n,

0 otherwise.

With the same notation, we have wH(x) = wH(y) if and only if Σ(x) = Σ(y), and we have then:

1

n+ 1

n∑
k=0

[∑
wH(x)=k

(−1)f(x)
]2

=
1

n+ 1

n∑
k=0

[∑
wH(x)=k

(−1)f(x)
][∑

wH(y)=k

(−1)f(y)
]

=
1

n+ 1

∑
wH(x)=wH(y)

(−1)f(x)+f(y)

=
2−n

n+ 1

∑
x,y,v∈Fn2

(−1)f(x)+f(y)+v·(Σ(x)+Σ(y))

=
2−n

n+ 1

∑
v∈Fn2

(∑
x∈Fn2

(−1)f(x)+v·Σ(x)
)2
.

9

Hence, the quadratic mean of the sequence: k →
∑

wH(x)=k
(−1)f(x) equals 1√

n+1
times the quadratic

mean of the sequence:
g →

∑
x∈Fn2

(−1)f(x)+g(x) (5)

where g ranges over the set of all symmetric Boolean functions null at 0 input.
Expression (5) corresponds to a transformation similar to the Walsh transform where the linear functions

a · x are replaced by the symmetric functions null at input 0.

3 Nonlinearity of Boolean functions with restricted input

3.1 Definitions and upper bound

Let E be any subset of Fn2 and f any Boolean function defined over E (i.e. any function from E to F2). Let
`(x) = a · x + ε be any affine function. Denoting by fa(x) the sum (in F2) of f(x) and a · x, we have:∑

x∈E(−1)f(x)+a·x =
∑

x∈E(1−2fa(x)), and the Hamming distance between f and a ·x on inputs ranging
over E equals

∑
x∈E fa(x) = |E|

2 −
1
2

∑
x∈E(−1)f(x)+a·x (sums performed in Z). Hence, the Hamming

distance betweeen f and ` over E equals:

|E|
2
− (−1)ε

2

∑
x∈E

(−1)f(x)+a·x.

Definition 3. Let E be any subset of Fn2 and f any Boolean function defined over E. We call nonlinearity
of f over E and denote by NLE(f) the minimum Hamming distance between f and the restrictions to E of
affine functions over Fn2 .

We deduce from the observations above:

Proposition 4. For every n-variable Boolean function f over Fn2 and every subset E of Fn2 , we have:

NLE(f) =
|E|
2
− 1

2
max
a∈Fn2

|
∑
x∈E

(−1)f(x)+a·x|.

Note that, for every b ∈ Fn2 , denoting f ′(x) = f(x) + b · x, we have nl(f ′) = nl(f). This obvious
observation will be useful below.

We have:

∑
a∈Fn2

(∑
x∈E

(−1)f(x)+a·x
)2

=
∑
x,y∈E

(−1)f(x)+f(y)
∑
a∈Fn2

(−1)a·(x+y)

= 2n |E|.

The maximum of a sequence of numbers being always bounded below by the arithmetic mean, we deduce:

Proposition 5. For every subset E of Fn2 and every Boolean function f defined over E, we have:

NLE(f) ≤
|E|
2
−
√
|E|
2

.

10

This bound when applied with E = Fn2 is called the covering radius bound and the functions achieving
it with equality are called bent and are characterized by the balancedness of their derivatives Daf(x) =
f(x) + f(x+ a), for a 6= 0.

We show that this bound can be improved for some E and in particular when E is the set of vectors of
fixed Hamming weight:

Let F be any vector subspace of Fn2 . Then we have:

∑
a∈F

(∑
x∈E

(−1)f(x)+a·x
)2

=
∑

(x,y)∈E2

(−1)f(x)+f(y)
∑
a∈F

(−1)a·(x+y)

= |F |
∑

(x,y)∈E2

x+y∈F⊥

(−1)f(x)+f(y)

= |F |

|E|+ ∑
(x,y)∈E2

0 6=x+y∈F⊥

(−1)f(x)+f(y)

 ,

which implies:

max
a∈Fn2

|
∑
x∈E

(−1)f(x)+a·x| ≥
√√√√|E|+ ∑

(x,y)∈E2

0 6=x+y∈F⊥

(−1)f(x)+f(y),

and

nlE(f) ≤
|E|
2
− 1

2

√√√√|E|+ ∑
(x,y)∈E2

0 6=x+y∈F⊥

(−1)f(x)+f(y).

Let us assume that there exists v in Fn2 such that, for all (x, y) ∈ E2 such that 0 6= x + y ∈ F⊥, we have
v · (x + y) = 1. Suppose that

∑
(x,y)∈E2

0 6=x+y∈F⊥

(−1)f(x)+f(y) 6= 0, say
∑

(x,y)∈E2

0 6=x+y∈F⊥

(−1)f(x)+f(y) = λ 6= 0. Then λ

may be without loss of generality assumed to be positive. Indeed, if λ is negative, then let v be as above, and
let f ′(x) = f(x) + v · x; we have

∑
(x,y)∈E2

0 6=x+y∈F⊥

(−1)f ′(x)+f ′(y) =
∑

(x,y)∈E2

0 6=x+y∈F⊥

(−1)f(x)+f(y)+v·(x+y) = −λ > 0.

We deduce:

Proposition 6. Let E be any subset of Fn2 , f a Boolean function over E, and F a family of vectorspaces F
for each of which there exists v in Fn2 such that v ·(x+y) = 1 for all (x, y) ∈ E2 such that 0 6= x+y ∈ F⊥.
Then we have:

nl(f) ≤ |E|
2
− 1

2

√
|E|+ λ,

where
λ = max

F∈F
|

∑
(x,y)∈E2

0 6=x+y∈F⊥

(−1)f(x)+f(y)|.

In particular, taking for F the family of all linear hyperplanes of Fn2 (for which such v always exists
since F⊥ has dimension 1), we have:

11

Corollary 2. Let E be a subset of Fn2 and f a Boolean function over E. Then:

nl(f) ≤ |E|
2
− 1

2

√
|E|+ λ,

where
λ = max

a∈Fn2 ;a6=0
|
∑

(x,y)∈E2

x+y=a

(−1)f(x)+f(y)|.

Remark 4. Note that this result applied for E = Fn2 proves again that the derivatives of bent functions are
all balanced.

Fixed input Hamming weight Let us now consider the case of E = En,k for k = 0, . . . , n, where En,k is
the set of vectors of Hamming weight k in Fn2 . Denoting NLwH(x)=k(f) as NLk(f), we have:

NLk(f) ≤
(
n
k

)
2
− 1

2

√(
n

k

)
. (6)

Note that this bound could be tight only if
(
n
k

)
is a square, but we shall see that even in that case, it is not.

Of course, we have NLk(f) ≤
⌊
(nk)
2 −

1
2

√(
n
k

)⌋
, and it seems difficult to determine for which values of n

this latter bound is tight.
Let us denote by i the Hamming weight of a. If i is odd then {(x, y) ∈ E2

n,k; x+ y = a} is empty and if i
is even, then |{(x, y) ∈ E2

n,k; x+ y = a}| equals the number of possible choices (for building the support
of x) of i

2 indices in the support of a and of k− i
2 indices outside the support of a. It equals then

(
i
i
2

)(n−i
k− i

2

)
.

Clearly, since
∑

(x,y)∈E2

x+y=a

(−1)f(x)+f(y) is invariant when swapping x and y, if
(
i
i
2

)(n−i
k− i

2

)
is not divisible by

4, λ equals twice the sum of an odd number of integers equal to ±1; it is then strictly positive. For instance
for k = 2 and i = 4,

(
i
i
2

)(n−i
k− i

2

)
= 6

(
n−4
0

)
= 6 for n ≥ 4 and the sum

∑
(x,y)∈E2

x+y=a

(−1)f(x)+f(y) cannot be

null. We deduce:

Corollary 3. For all n and k ∈ {1, . . . , n − 1}, Bound (6) is never tight, except maybe for two particular
pairs (n, k) : (50, 3) and (50, 47).

Proof. As already observed, the bound can only be tight when En,k is a square. Erdős showed that the
binomial coefficient

(
n
k

)
with 3 ≤ k ≤ n/2 is a power of an integer for the single case

(
50
3

)
, therefore we

only consider the cases k ∈ 0, 1, 2, n− 2, n− 1, n.

– k = 0 (or k = n): Proposition 5 gives NL0(f) ≤ 0 which is tight because for all n and for all Boolean
function f , fk when k = 0 (or k = n) is constant.

– k = 1 (or k = n− 1): |En,1| is a square if and only if n is a square; using Proposition 7, every function
restricted to its entries of Hamming weight 1 (or n − 1) is linear therefore NL1(f) = 0 whereas the
bound tells NL1(f) ≤ n−

√
n

2 .
– k = 2 (or k = n− 2):

Using corollary 2, for i = 2,
(
i
i
2

)(n−i
2− i

2

)
= 2(n − 2) and if n is odd, the sum

∑
(x,y)∈E2

x+y=a

(−1)f(x)+f(y)

cannot be null, and for i = 4,
(
i
i
2

)(n−i
2− i

2

)
= 6
(
n−4
0

)
= 6 for n ≥ 4 and the sum

∑
(x,y)∈E2

x+y=a

(−1)f(x)+f(y)

cannot be null. Therefore for all n and for all Boolean function f NLEn,2(f) <
|En,2|−

√
|En,2|

2 .

12

For k = 0 or n, NLk(f) is of course always null and reaches the bound as En,k has size 1.

3.2 Error correcting codes perspective

Reed Muller codes RM(r, n) are binary codes of length 2n whose codewords are the evaluations of all
Boolean functions of algebraic degrees at most r in n variables on their 2n entries. Fixing the Hamming
weight of the entries gives particular punctured Reed Muller codes whose characteristics are directly linked
to Boolean functions with fixed weight entries.

Definition 4. For all n ∈ N∗; r, k ∈ [0, n] we denote by RM(r, n)k the punctured Reed Muller code of
length

(
n
k

)
obtained by puncturing RM(r, n) on all entries of Hamming weight different from k.

Remark 5. RM(1, n)k corresponds to the evaluation of all affine functions in n variables on entries of
Hamming weight k; therefore, for every Boolean function f , NLk(f) is the distance between f ’s truth table
restricted to Hamming weight k entries and RM(1, n)k. The maximal value of NLk(f) when f ranges over
the set of all Boolean functions equals the covering radius of RM(1, n)k.

Proposition 7. RM(1, n)k is a linear code of parameters [
(
n
k

)
, n, d] with

d =

(
n
k

)
−max(0<`≤n/2)

∣∣∣∑i∈Z(−1)i
(
`
i

)(
n−`
k−i
)∣∣∣

2
.

Proof. Let l(x) =
∑

i∈I xi be any linear Boolean function whose restriction to the entries of Hamming
weight k is non constant, and let |I| = `. We have ` ∈ {1, . . . , n−1}. The number of entries x of Hamming
weight k such that |supp(x)∩ I| = i equals

(
`
i

)(
n−`
k−i
)
. We deduce that the minimum distance of RM(1, n)k

equals:

min
(0<`<n)

(
min

(∑
i odd

(
`

i

)(
n− `
k − i

)
,
∑
i even

(
`

i

)(
n− `
k − i

)))
=

min(0<`<n)

(
min

(∑
i∈Z

(
`
i

)(
n−`
k−i
)
−
∑

i∈Z(−1)i
(
`
i

)(
n−`
k−i
)
,
∑

i∈Z

(
`
i

)(
n−`
k−i
)
+
∑

i∈Z(−1)i
(
`
i

)(
n−`
k−i
)))

2
=

min(0<`<n)

(∑
i∈Z

(
`
i

)(
n−`
k−i
)
−
∣∣∣∑i∈Z(−1)i

(
`
i

)(
n−`
k−i
)∣∣∣)

2
.

In other words, writing P [Xk] for the coefficient of Xk in a polynomial P (X), the minimum distance
of RM(1, n)k equals:

min(0<`<n)
(
(1 +X)`(1 +X)n−`[Xk]−

∣∣(1−X)`(1 +X)n−`[Xk]
∣∣)

2
=

min(0<`<n)
((
n
k

)
−
∣∣(1−X)`(1 +X)n−`[Xk]

∣∣)
2

=(
n
k

)
−max(0<`<n)

∣∣∣∑i∈Z(−1)i
(
`
i

)(
n−`
k−i
)∣∣∣

2
.

13

Note that
∣∣∣∑i∈Z(−1)i

(
`
i

)(
n−`
k−i
)∣∣∣ is invariant when changing ` into n− ` (by changing i into k − i); we can

then replace max(0<`<n) by max(0<`≤n/2).

We observed that this gives:

– 0 ≤ k < n/2, d =
(
n−1
k−1
)

– k = n/2, d =
(
n−2
k−2
)

– n/2 < k ≤ n− 1, d =
(
n−1
k

)
– k = n, d = 1.

Note that the maximal value of NLk(f) when f ranges over the set of all Boolean functions (i.e. the covering
radius of RM(1, n)k) is bounded from below by d

2 . It is then nonzero except for particular values of k
and enables to directly build functions reaching this minimal bound for all k from this correcting code
perspective.

3.3 Nonlinearity degradation with weightwise consideration

Fixing the input Hamming weight may deteriorate in an extreme way the nonlinearity of a Boolean function:
for every n, there exist n-variable bent functions f such that, for every k = 0, . . . , n, NLk(f) = 0. This is
for instance the case of the function f(x) =

(wH(x)
2

)
=
∑

1≤i<j≤n xixj . This function is, up to the addition
of an affine function, the only bent symmetric function (see e.g. [Car10]). Since it is symmetric, fixing the
Hamming weight of its input makes it constant and therefore with null nonlinearity. More generally, it would
be interesting to characterize those bent functions whose restrictions to En,k have null nonlinearity (i.e. are
affine), for every k. This task seems very difficult but we are able to achieve it in the particular case of
quadratic functions. We begin with an observation:

Remark 6. A Boolean function satisfies NLk(f) = 0 for every k, i.e. has all its restrictions to En,k
affine, if and only if there exist symmetric Boolean functions ϕ0, ϕ1, . . . , ϕn such that f(x) = ϕ0(x) +∑n

i=1 ϕi(x)xi. Any symmetric Boolean functions ϕ(x) can be written in the form `◦Σ(x) where ` is affine
and Σ is the vectorial (n, n)-function whose ith coordinate function is the elementary symmetric function∑

1≤j1<···<ji≤n
∏i
l=1 xjl . We deduce that f satisfies NLk(f) = 0 for every k if and only if it has the form

f(x) = `0 ◦Σ(x)+
∑n

i=1 `i ◦Σ(x)xi, where the `i’s are affine. In other words (after gathering all the terms
in this expression which involve each elementary symmetric function σi):

f(x) = `′0(x) +

n∑
i=1

σi(x)`
′
i(x),

where the `′i’s are all affine.

Then we have:

Proposition 8. For every even n ≥ 4, the quadratic bent functions satisfying NLk(f) = 0 for every k are
those functions of the form f(x) = σ1(x)`(x) + σ2(x) where `(1, . . . , 1) = 0.

Proof. According to Remark 6, a quadratic function satisfies NLk(f) = 0 for every k if and only if, up to
the addition of an affine function, it has the form:

f(x) = σ1(x)`(x) + εσ2(x)

14

where ` is linear and ε ∈ F2. The symplectic form associated (x, y)→ f(x+ y)+ f(x)+ f(y)+ f(0) (see
e.g. [Car10]) equals:

σ1(y)`(x) + σ1(x)`(y) + ε
∑

1≤j 6=i≤n
xjyi.

Denoting `(x) =
∑n

i=1 lixi, the kernel

E = {x ∈ Fn2 ;∀y ∈ Fn2 , f(x+ y) + f(x) + f(y) + f(0) = 0}

of this symplectic form is the vector space of equations:

(Li) : `(x) + li

n∑
j=1

xj + ε
∑
j 6=i

xj = 0,

where i ranges from 1 to n. The sum Li + Li′ of two of these equations equals

(Li + Li′) : (li + li′)

n∑
j=1

xj + ε(xi + xi′) = 0.

If li = li′ we obtain: ∀x ∈ E, xi = xi′ if ε = 1 and no condition on x ∈ E otherwise. If li 6= li′ , we obtain:
∀x ∈ E,

∑n
j=1 xj = xi + xi′ if ε = 1 and ∀x ∈ E,

∑n
j=1 xj = 0 otherwise. Hence, denoting

I = {i = 1, . . . , n; li = 0},

we have that, if ε = 1, then all the coordinates of indices i ∈ I of an element of E are equal to some bit
η and all those such that i ∈ Ic are equal to η +

∑n
j=1 xj , and if ε = 0, there is no condition on x ∈ E if

I = ∅ or I = {1, . . . , n} and if I 6= ∅, {1, . . . , n}, the condition is
∑n

j=1 xj = 0. We then have two cases:

– if x ∈ E is such that
∑n

j=1 xj = 0 then:
• if ε = 1, then either all xi’s are null, in which case (Li) is satisfied, or all are equal to 1, in which

case (Li) becomes (since n is even) `(1, . . . , 1) = 1; hence, if this latter equality is true (i.e. if I has
odd cardinality), E 6= {0};
• if ε = 0 then all equations Li are equal to `(x) = 0; then E 6= {0} unless the hyperplane ker ` has

a trivial intersection with the hyperplane of equation
∑n

j=1 xj = 0, which is possible only if n = 2;
the case ε = 0 is then compatible with f bent only for n = 2; we shall not consider it anymore.

– if x ∈ E is such that
∑n

j=1 xj = 1 then if ε = 1, all xi’s such that i ∈ I are equal to η and those xi’s
such that i ∈ Ic are equal to η + 1, which implies η|I|+ (η + 1)|Ic| = |Ic| = 1 (mod 2); hence I has
odd cardinality and we have seen that E 6= {0} in such case.

The only case where f is bent, that is, where E = {0}, for n ≥ 4, is then

{
ε = 1

`(1, . . . , 1) = 0
.

Two n-variable Boolean functions f and g are called EA-equivalent if there exist an affine automorphism
L over Fn2 and an affine n-variable function ` such that f = g ◦L+ `. All these functions are EA-equivalent
to each others, since this is the case of all quadratic bent functions, but EA-equivalence is not preserving the
Hamming weight.

15

4 Algebraic immunity of Boolean functions with restricted input

4.1 General restricted input

Let E be any subset of Fn2 and f any Boolean function defined over E. The principle of the algebraic attack
is to use the existence of Boolean functions g and h over Fn2 , such that h and gf coincide over E, while g is
not identically null on E. In the case of the standard attack, both functions g and h must have low algebraic
degree, and in the case of the fast algebraic attack, g must have low algebraic degree and h must have an
algebraic degree reasonably low (say, not much larger than n/2).

In the case of E = Fn2 , Courtois and Meier [CM03] have shown that, for every non-negative integers d
and e such that d + e ≥ n, there exists a nonzero Boolean function g of algebraic degree at most e and a
Boolean function h of algebraic degree at most d such that h = gf . For e = d = dn/2e, this proved that
the so-called algebraic immunity of f (see Definition 5 below) is at most dn/2e. We revisit these results for
functions defined over a subset of Fn2 .

Proposition 9. Let E be any non-empty subset of Fn2 and f any Boolean function defined over E. Let d and
e be two non-negative integers. Let Md,E be the (

∑d
i=0

(
n
i

)
) × |E| matrix whose term at row indexed by

u ∈ Fn2 , wH(u) ≤ d, and at column indexed by x ∈ E equals xu :=
∏n
i=1 x

ui
i . Assume that the ranks of

matrices Md,E and Me,E are such that

rank(Md,E) + rank(Me,E) > |E|,

then there exists a Boolean function g of algebraic degree at most e over Fn2 , whose restriction to E is not
identically null, and a Boolean function h of algebraic degree at most d on Fn2 , such that functions gf and
h coincide on E.

Proof. LetFd (resp.Fe) be a maximum size free family of restrictions toE of monomials xu of algebraic
degree wH(u) at most d (resp. at most e). By definition of the rank of a matrix, the size of Fd equals
rank(Md,E) and that of Fe equals rank(Me,E). Let us consider now the family, that we shall denote by
Fef , whose elements (with possible repetitions) are the products of the elements of Fe by function f . By
hypothesis, |Fd|+ |Fef | is strictly larger than the dimension of the F2-vectorspace of all Boolean functions
over E, that is, |E| (indeed, the number of Boolean functions over E equals 2|E|). There exists then a
linear combination of the elements of Fd and of those of Fef , which equals the zero function and whose
coefficients are not all null. Gathering the part of this linear combination dealing with the elements of Fd
and those dealing with Fef , we obtain respectively functions h and g such that h and gf coincide over E,
and the restrictions of g and h to E are not both null (since both families Fe and Fd are free), that is, the
restriction of g to E is nonzero. 2

Taking e = 0 in Proposition 9, we have rank(Me,E) = 1, since constant function 1 does not vanish over
E, and:

Corollary 4. Let E be any non-empty subset of Fn2 and f any Boolean function defined over E. Let n and
d be such that rank(Md,E) = |E|, then there exists a Boolean function over Fn2 of algebraic degree at most
d which coincides with f on E.

In other words, the algebraic degree of any Boolean function over E is bounded above by the least value
of d such that rank(Md,E) = |E|. Indeed, in Propositon 9, we have g = 1 and gf = h on E where h has
algebraic degree at most d.

16

Taking d = 0, we have rank(Md,E) = 1 and, calling annihilator of f on E any Boolean function g over
E whose product with f vanishes:

Corollary 5. Let E be any non-empty subset of Fn2 and f any non-constant Boolean function defined over
E. Let n and e be such that rank(Me,E) ≥ |E|, then there exists an annihilator of f of algebraic degree at
most e over E.

Indeed, in Propositon 9, we have h constant and since gf = 1 on E is impossible, we have then h = 0.
Note that this shows that the algebraic immunity of a function (see Definition 5 below), which for a random
Boolean function over Fn2 lies not far from n/2 as shown by F. Didier in [Did06], can tumble down when
the input is restricted to a set E.

This being observed, we have in fact a stronger result when taking e = d; we have:

Corollary 6. Let E be any non-empty subset of Fn2 and f any Boolean function defined over E. Let n and
e be such that rank(Me,E) >

|E|
2 , then there exists g of algebraic degree at most e, whose product with f or

f + 1 is null on E, and whose restriction to E is nonzero.

Indeed, using a classical idea of Meier et al. [MPC04], either the functions g and h of Proposition 9
coincide on E, and we have then gf + h = g(f + 1) = 0 on E, where g has algebraic degree at most e
and nonzero restriction to E, or they do not and we have, after multiplication of equality h = gf by f , that
(g + h)f = 0, where g + h has algebraic degree at most e and nonzero restriction to E.

The situation is then similar to that described by Meier et al. and this leads to the following definition
and properties:

Definition 5. We call algebraic immunity of a function f over a set E the number:

min{deg(g); g annihilator of f or of f + 1 over E and g not identically null over E}.

Corollary 7. The algebraic immunity of any Boolean function overE is bounded above by min{e; rank(Me,E) >
|E|
2 }.

4.2 Input restricted by Hamming weight

In this section, we focus on the particular case when the input is restricted to the words of Hamming weight
fixed: En,k for some k ∈ [1, n − 1], note that Mn,k,d is a generator matrix of the code RM(d, n)k from
definition 4. To be able to evaluate efficiently in such situation the algebraic immunity by using Proposition
9 and its corollaries, there remains to calculate the rank of the matrix Mn,k,d for each d and k:

Theorem 2. The rank of Mn,k,d is equal to(
n

min(d, k, n− k)

)
Proof. The principle of this proof is to find a recurring relation on the rank of Mn,k,d. To this aim, we use a
construction which looks like the well-known u ‖ u+ v construction of Reed-Muller codes: every Boolean
function f of algebraic degree at most d can be written in the form :

f(x1, · · · , xn) = g(x1, · · · , xn−1) + xnh(x1, · · · , xn−1),

17

where g has algebraic degree at most d and h has algebraic degree at most d − 1. In all the sequel of the
proof, we shall use the notations:

Nk =

(
n

k

)
and D =

∑
0≤i≤d

(
n

i

)
.

Let ψn,k,d be the following linear application, mapping every Boolean function in n variables (defined by
its ANF) of algebraic degree at most d to the restriction of its truth table to the elements in En,k:

ψn,k,d : FD2 −→ FNk2

(au)u∈Fn2 ,wH(u)≤d 7−→
(∑

u�x au

)
x∈Fn2 ,wH(x)=k

where u � x means ui ≤ xi for every i. This application ψn,k,d is linear and moreover, the rank of Mn,k,d

is exactly the rank of this linear application ψn,k,d.
Denoting by mu the monomial xu, the rank of ψn,k,d is the rank of the family of the following vectors:

(ψn,k,d(mu))u∈Fn2 ,wH(u)≤d.

We split the family of vectors u ∈ Fn2 ,wH(u) ≤ d, into:

F1 = {u ∈ Fn2 ,wH(u) ≤ d;un = 0} and F2 = {u ∈ Fn2 ,wH(u) ≤ d;un = 1}.

We also split the vectors x of Fn2 of Hamming weight k into:

E1 = {x ∈ Fn2 ,wH(x) = k;xn = 0} and E2 = {x ∈ Fn2 ,wH(x) = k;xn = 1}.

Notice that for every u ∈ F2 and every x ∈ E1, we have mu(x) = 0.

The FD2 × FNk2 matrix Mn,k,d representing the linear application ψn,k,d has then the form given in figure 1.
An,k,d takes its entries on the set of monomials in which xn does not occur and of degrees at most d.

The output of the linear application defined by An,k,d is the truth table of Boolean functions on those inputs
of Hamming weight k where the value of xn is set to 0. Then, as xn does not occur in the entries and is
fixed to 0 in the output, An,k,d defines exactly the linear application which gives the truth table on words of
weight k of all Boolean functions with n− 1 variables (xn is fixed) and of degrees at most d.

Bn,k,d defines the linear application which gives the truth table on words of weight k− 1 (because xn is
fixed to 1 and not 0 anymore) of all Boolean functions with n− 1 variables (xn being fixed) and of degrees
at most d− 1. Hence, An,k,d defines the linear application ψn−1,k,d and Bn,k,d defines ψn−1,k−1,d−1.

Moreover, let us prove that the rank of this matrix is equal to the rank of An,k,d plus the rank of Bn,k,d
(i.e.Mn−1,k−1,d does not play any role in the rank of the whole matrix). Indeed, if we have a vector of length(
n
k

)
which is a linear combination on the lines such that the last

(
n−1
k

)
coordinates of the resulting vector

are null, (i.e. we are in the kernel of An,k,d) then this vector is linearly dependent from the vectors defined
by Bn,k,d. By viewing this in terms of Boolean functions, we prove that if f is a Boolean function in the
linear span of F1 such that ∀x ∈ E1, f(x) = 0 (i.e. in the kernel of An,k,d) then f is in the linear span of
F2; indeed: f(x1, · · · , xn) = xng(x1, · · · , xn−1) + h(x1, · · · , xn−1). The Boolean function f is of degree
less than d, then h is of degree less than d and g is of degree less than d − 1. But for all x ∈ E1, we have
f(x) = 0, then that means that h(x1, · · · , xn−1) = 0, then f is in the linear span of F2. Then we deduce the
following recurring relation:

18

Bn,k,d

Mn−1,k−1,d

0

An,k,d

(ψ(mu))X∈E2
(ψ(mu))X∈E1

(ψ(mu))mu∈F2

(ψ(mu))mu∈F1

(
n−1
k−1
) (

n−1
k

)
∑

0≤i≤d−1
(
n−1
i

)

∑
0≤i≤d

(
n−1
i

)

Fig. 1

dim(=(ψn,k,d)) = dim(=(ψn−1,k−1,d−1)) + dim(=(ψn−1,k,d))

Moreover, if d ≥ k then dim(=(ψn,k,d)) =
(
n
k

)
. In fact, the monomials of degree exactly k correspond

to the canonical basis of the Boolean functions defined over En,k (representing within their truth table). For
d ≥ n−k, we can choose the Boolean functions defined by f(x) = (1+xi1)(1+xi2) · · · (1+xin−k) which
are of degree less than d and form also the canonical basis of the Boolean functions defined over En,n−k.
Then, as we found a recurring relation between dim(=(ψn,k,d)), dim(=(ψn−1,k−1,d−1)) and dim(=(ψn−1,k,d)),
at some point there will be k = d or n− k = d. Then the initialisation step (d = k or d = n− k or d = 0)
of the recurring relation is true.

Then we deduce by induction that

dim(=(ψn,k,d)) =
(

n

min(d, k, n− k)

)

From Corollary 6 and Theorem 2, we deduce:

Corollary 8. Let k be any positive integer such that k ≤ n/2. The algebraic immunity of the restriction of
F to En,k is bounded above by

min

{
e; 2

(
n

e

)
>

(
n

k

)}
.

Remark 7. For r > 0, we have: 2
(
n
k−r
)
=
(
n
k

) 2k(k−1)...(k−r+1)
(n−k+r)...(n−k+1) and if k−r+1

n−k+1 > 2−1/r, that is if k >

2−1/r(n+1)+r−1
1+2−1/r = n+1+(r−1)21/r

21/r+1
, then we have a fortiori k−r+2

n−k+2 > 2−1/r, . . . , k
n−k+r > 2−1/r, and we

19

have then 2
(
n
k−r
)
>
(
n
k

)
. For k = n/2, the condition k > n+1+(r−1)21/r

21/r+1
becomes n(21/r + 1) > 2(n +

1 + (r − 1)21/r), that is, n > 2+2(r−1)21/r
21/r−1 . Hence, the best possible algebraic immunity of a function with

constrained input Hamming weight is lower than for unconstrained functions.

With theorem 2, we have the dimension of the image of ψn,k,d and then of its kernel. Let us exhibit a
basis of this kernel.

Proposition 10. Let k, r and n be such that k ≤ n
2 and let 0 ≤ i1 < i2 < · · · < ir ≤ n. Then any Boolean

function defined as:

xi1xi2 · · ·xir

 ∑
j 6=i1,i2,··· ,ir

xj

 if k − r ≡ 0 mod 2,

xi1xi2 · · ·xir

1 +
∑

j 6=i1,i2,··· ,ir

xj

 if k − r ≡ 1 mod 2

is null on the set En,k of all binary vectors of size n with Hamming weight equal to k. More generally, for
every j < k and s, and any u of Hamming weight equal to j, the function defined as:

xu ×

 ∑
{i1,...,is−j}∩supp(u)=∅

s−j∏
l=1

xil

 if
(
k − j
s− j

)
≡ 0 mod 2

xu ×

1 +
∑

{i1,...,is−j}∩supp(u)=∅

s−j∏
l=1

xil

 if
(
k − j
s− j

)
≡ 1 mod 2

is null on En,k.

Proof. Without loss of generality, we take xu = x1x2 · · ·xj We note f such a function. Let x of Hamming
weight k, then if xu = 0 then f(x) = 0, if xu = 1, then f(x) =

∑
{i1,...,is−j}∩supp(u)=∅

∏s−j
l=1 xil +

(
k−j
s−j
)

mod 2, but as xu = 1, x1 = x2 = · · · = xj = 1 the Hamming weight of the vector (xj+1, xj+2, · · · , xn)
is then fixed to k − j. The Boolean function

∑
{i1,...,is−j}∩supp(u)=∅

∏s−j
l=1 xil is a elementary symmetric

Boolean function on n − j variables of degree s − j, then it is constant when the Hamming weight of the
entry is fixed (which is the case when xu = 1 here) and its value is

(
k−j
s−j
)

mod 2. So f(x) = 0 if x is of
Hamming weight k.

The sum involved in this definition is an elementary symmetric Boolean function but defined on a smaller
set of variables.

Corollary 9. If d ≥ k, then a basis of = (Mn,k,d) = F
(nk)
2 is the set of all the monomials of degree k.

Corollary 10. If d ≥ n− k, then a basis of = (Mn,k,d) = F
(nk)
2 is the set of all the Boolean functions of the

form (1 + xi1)(1 + xi2) · · · (1 + xin−k) with i1 < i2 < · · · < in−k

Proof. See the end of the proof of theorem 2

20

4.3 Bounding the algebraic immunity of direct sums of functions
One of the main purposes of this paper is to discuss (see the Section 6) the robustness of the filter function
in FLIP [MJSC16]. This function being built as a direct sum (the definition of direct sum has already been
given in Section 2), we need then to study the algebraic immunity of direct sums.

Theorem 3. [Link between AIk and AI in direct sum] Let F be the direct sum of f and g with n and m
variables respectively. Let k be such that n ≤ k ≤ m. Then the following relation holds:

AIk(F) ≥ AI(f)− deg(g).

Proof. Let h(x, y) be a non-null annihilator of F over En+m,k. Let (a, b) ∈ Fn+m2 have Hamming weight k
and be such that h(a, b) = 1. Since (a, b) has Hamming weight k, we may, up to changing the order of the
input coordinates (and without loss of generality), assume that for every j = 1, . . . , n, we have bj = aj + 1
and for every j = n + 1, . . . k, we have bj = 1 (so that for every j = k + 1, . . .m, we have bj = 0). We
define the following affine function over Fn2 :

L(x) = (x1 + 1, x2 + 1, . . . , xn + 1, 1, . . . , 1, 0, . . . , 0),

where the length of the part “1, . . . , 1” equals k − n. We have L(a) = b. The n-variable function
h(x, L(x)) is then non-zero and is an annihilator of f(x) + g(L(x)) over Fn2 . If g(b) = 0, then function
h(x, L(x)) (g(L(x)) + 1) is a non-zero annihilator of f and has algebraic degree at most deg(h) + deg(g);
then we have deg(h) + deg(g) ≥ AI(f). If g(b) = 1, then by applying the same reasoning to f +1 instead
of f and g + 1 instead of g, we have deg(h) + deg(g) ≥ AI(f). If h(x, y) is a non-null annihilator of
F + 1 over En+m,k, we have the same conclusion by replacing f by f + 1 or g by g + 1. This completes
the proof.

This bound proves in particular that, if k ≥ n, then adding m ≥ k virtual variables to a function
(taking g = 0) does not lower the algebraic immunity with inputs of Hamming weight k with respect to
the (global) original algebraic immunity. This was already true (with no condition on n, k,m) when dealing
with functions with no restriction on the input and it was completely straightforward to prove it, while here
it was less obvious. Note that the bound of Theorem 3 is tight when deg(g) = 0: take for f a function
whose algebraic immunity equals its algebraic degree; we have then that AIk(F) equals AI(f) = deg(f),
since it cannot be larger than the algebraic degree of f over En,k (as defined after Corollary 4) which is at
most equal to deg(f); the three parameters AIk(F), the algebraic degree of f over En,k and deg(f) are then
equal.

But the bound of Theorem 3 also suggests that making the direct sum with a non-constant Boolean
function g may lower the algebraic immunity over inputs of Hamming weight k with respect to the (global)
original algebraic immunity. This may seem rather counter-intuitive, but it is true. Let us give an example:
take f(x1, x2, x3) = x1 + x2x3; g(x4, . . . , x10) =

∑10
i=4 xi and k = 5, then AI(f) = deg(f) = 2,

AI(f)− deg(g) = 1, and x2 being an annhilator of f(x1, x2, x3) + g(x4, . . . , x10) over inputs of Hamming
weight 5, because x2(f(x1, x2, x3) + g(x4, . . . , x10)) = x2(1 +

∑10
i=1 xi) vanishes when the input has

weight 5, we have AI5(f(x1, x2, x3) + g(x4, . . . , x10)) = 1; the bound is then tight here. In fact, making
the direct sum with a non-constant Boolean function g may decrease drastically the algebraic immunity
over inputs of Hamming weight k: take n odd, f(x) = 1 + maj(x) where maj is the majority function
over n variables (which has optimal algebraic immunity n+1

2) and g(y) = maj(y) over n variables as well.
Then F (x, y) = f(x) + g(y) is null at fixed input weight n, because if wH(x) + wH(y) = n then either
wH(x) ≤ n−1

2 and wH(y) ≥ n+1
2 or wH(x) ≥ n+1

2 and wH(y) ≤ n−1
2 . We fall then down to a null algebraic

immunity with input weight n (however, the bound is not tight here because the algebraic degree of maj is
in general strictly larger than its algebraic immunity).

21

5 Cryptanalysis general impact of Boolean functions with restricted input

Motivated by the fixed Hamming weight in the FLIP stream cipher instances, we develop the cryptanalysis
aspect of the results presented in the first sections. We present the general aspects and proof of concepts of
this approach in this section, the particular security analysis of FLIP stream cipher is developed in the next
section.

Previous sections focus on the criteria of Boolean functions with restricted inputs: balancedness,
nonlinearity and algebraic immunity, more particularly when the Hamming weight of the input is fixed.
In this part we introduce these criteria as new mathematical tools for cryptanalysis, thereafter called the
constant Hamming weight cryptanalysis. Knowing the Hamming weight of values in encryption schemes is
generally a strong assumption, nevertheless a bad criterion for constant Hamming weight inputs can lead to
a strong weakness too. On one side the last part of the three previous sections illustrates that some functions
used for their optimality relatively to a particular criterion on all inputs are critically weak for this criterion
on constant Hamming weight inputs. On the other side, the given constructions and upper bounds enable to
state on the minimum robustness of functions relatively to the attacks. Therefore the following cryptanalysis
can be seen as a warning for particular cases where it can be efficiently applied, and serve the designing
process of an encryption scheme.

5.1 Prerequisites and principles

Prerequisite to constant Hamming weight input cryptanalysis
Three points are necessary to realise a constant Hamming weight input cryptanalysis. First the

cryptanalysis focuses on pairs {wH(x), f(x)} where the Hamming weight of the variable x is known
together with the result of f applied on x. The Boolean function f is the second prerequisite, this function
should be known by the adversary and its potentially bad behaviour relatively to balancedness, nonlinearity
or algebraic immunity on constant weight entries is the target of the attack. The last point is therefore the
weights targeted by the attack, which depend both on the pairs in her possession and the criteria of f , leading
to the concept of promising set.

Definition 6. Promising Set
Let f be a Boolean function of n variables, for k ∈ [0, n] we call promising set {f(x)|wH(x) = k} and

denote it Sk if its cardinality is a ”big enough” portion of
(
n
k

)
.

The ”big enough” cardinality defining a promising set is dictated by the data complexity of an attack
based on f fixed Hamming weight input criteria. In the following part we present three attack scenarii
derived from standard symmetric cryptanalysis, respectively based on balancedness, nonlinearity and
algebraic immunity on fixed weight input Boolean function. We explain how the standard attack on Fn2
can be adapted on En,k, then we bound the complexity to stand on the promising sets, enabling to describe
a more concrete scenario.

Attack scenarii
For these scenarii we precise our cryptanalysis on a stream cipher, with f the function generating the

keystream, fed by linear retroactions. This example enables to describe various attacks as distinguishing,
fast correlation attacks and algebraic attacks.

22

Distinguisher: For any stream cipher, it is important to guarantee that the keystream has good statistical
properties (i. e. looks like a random sequence), to avoid the possibility for an attacker to distinguish the
keystream from a random sequence. That is a reason why Boolean functions used in cryptography should be
balanced and therefore in our model Boolean functions should be weightwise perfectly balanced functions.
Indeed, let us denote pk = Pr[f(x) = 1|wH(x) = k] = 1

2 − εk. Then if there exists k such that εk 6= 0,
then there exists a distinguisher on the function f for this weight. The amount of data needed to detect the
bias εk is equal to 1

εk2
; defining the promising sets for this attack. If we consider all entries of f , we scale

the probability of having a word of weight k, so the amount of data needed for our distinguisher to detect a
bias is therefore:

min
k

(
1

εk2
× 2n(

n
k

))
It is important to notice that the complexity of the distinguisher can be improved by regrouping different

k where the bias εk has the same sign. For this improvement the attacker regroups some weights such that
the number of ones in the truth table of the Boolean function restricted to this subset of input is much larger
than the number of zeros, or the number of zeros much larger than the number of ones. It is then possible to
obtain a better bias by combining sets that were not promising by themselves.

Attack scenario 1 (balancedness):

1. Compute f(x) on all weight k entries
2. Determine pk and εk
3. If |Sk| > ε2k the attacker can distinguish the keystream from a random sequence with high probability.

Improvement:
4. Compute the other pk and εk
5. Join the Sk with same sign of bias giving the set SK associated to the set of weight K

6. If |SK | >
(
0.5−

∑
k∈K (nk)pk∑
k∈K (nk)

)2

the attacker can distinguish the keystream from a random sequence

with high probability.

Remark 8. Notice that for this scenario we do not need to assume any property on the structure of the stream
cipher itself. More precisely, for LFSR, NLFSR or other building blocks, the attack applies with the same
success rate: since wH(x) and f(x) are known, the degree of x’s coordinates (x as a Boolean vector) in
the unknowns is not relevant for this bias. The bias of restricted balancedness has already been studied in a
particular case; LFSR with its Galois representation. Joux and Delaunay have shown at INDOCRYPT 2006
that having some information on the weight of the state could lead to guess some output bits, using the
number of XOR gates used in the implementation of these stream ciphers [JD06].

Fast correlation attack: In our model we target only the function f generating the keystream, in this sense
correlation attacks cannot work because there is no way we can do a divide-and-conquer technique as in
Siegenthaler’s attack [Sie84] in this case only fast correlation attack [MS88a] could have smaller complexity
than an exhaustive search in our model. The attacker first computes the linear approximations lk of fk where
NLk(f) is small. Approximating the keystream equations by their linear approximation, she builds a linear
system and relies it to a decoding problem. When no particular code structure is used, this system can be
seen by the attacker as an instance of the Learning Parity with Noise problem, where the noise parameter
is εk = NLk

(nk)
. Standard algorithms can be used to solve this instance, as BKW [BKW03] or LF [LF06]

23

algorithms giving an attack with data complexity of O(2hε−2(x+1)
k) where the parameters h and x depend

on the algorithm used and the number of variables used in `f , and define the promising sets for this attack.
As proved in section 3 the non-linear characteristic of a Boolean function can rudely decrease on a

particular restricted set. Moreover as the approximation of a function by portions is at least as good as
approximating the all function, the nonlinearity on weight k inputs leads to better linear approximations,
even for bent functions. The attack feasibility also relies on the size of En,k; a great approximation for
an extreme weight is less expected to give enough equations to be able to solve the LPN problem. On the
other side, a better approximation lk on fk for a medium weight than l on the entire function f can lead
to a solvable system. An improvement of the attack is to consider various promising sets where the bias is
less than a constant ε, to combine the corresponding equations, and to solve the LPN problem with error
parameter ε.

Attack scenario 2 (non-linearity):

1. Compute the generator matrix M of RM(1, n)k
2. Find the combination of rows of M minimizing the Hamming distance with f
3. Change all equations by c(x) with c the linear function corresponding to the row combination
4. Create the LPN system with parameter εk =

NLk(f)

(nk)
5. if sufficiently many independent equations are available and the noise parameter is low enough, solve

the system using BKW or LF algorithm.
Improvement:

6. Compute NLk(f) for all weight
7. Keep all the promising sets Sk with nlk(f) < ε

8. Create the algebraic system with the corresponding equations and solve the corresponding LPN problem.

Algebraic attack: Assuming that an attacker does not want to distinguish the keystream but instead to
recover some internal state of the cipher, it could improve the so-called algebraic attacks. Algebraic attacks
(and fast algebraic attacks [Cou03]) were first introduced by Courtois and Meier in [CM03] and applied to
the stream cipher Toyocrypt. Their main idea is to build an over-defined system of equations with the initial
state of the stream cipher as unknown, and to solve this system with Gaussian elimination. More precisely,
by using a nonzero function g such that both g and h = gf have low algebraic degree, an adversary is able
to obtain T equations with monomials of degree at most AI(f). g can be taken equal to an annihilator of
f or of f ⊕ 1, i.e. such that gf = 0 or g(f ⊕ 1) = 0. After a linearisation step, the adversary obtains a
system of T equations in D =

∑AI(f)
i=0

(
n
i

)
variables. Therefore, the time complexity of the algebraic attack

is O(Dω), that is, O(nωAI(f)).
The fast version consists in finding a function g with low degree and a function h with degree slightly

higher than AI(f) solutions of the equation h = gF , providing an easier algebraic system to solve. In our
context the data complexity will drop to D′ =

∑AIk(f)
i=0

(
n
i

)
, the number of independent equation needed to

mount a solvable algebraic system, this data complexity defines the promising sets.
We proved in section 4, that the algebraic immunity of Boolean functions with restricted input of fixed

Hamming weight can be much smaller than the original one. For small k or k near to n (the number of
variables), we showed that the algebraic immunity cannot be larger than k or n − k. Moreover, if k is near
to n/2, then we also proved that the algebraic immunity cannot be dn/2e but is in fact much smaller. Those
remarks are for any Boolean functions, but for particular Boolean functions well designed in general there is
no guarantee that the algebraic immunity has a nice behaviour when restricted to a fixed Hamming weight. In

24

our model, the time complexity of the algebraic attack isO(nωAIk(f)), and it can be improved using various
promising sets. The attacker can combine equations from various sets together with weight equations as the
attack strategy used on blockciphers [CFGR12]. Using only low degree equations from the most promising
sets the attacker can try to build an easier to solve algebraic system.

Attack scenario 3 (algebraic immunity):

1. Set r to 1

2. Compute the generator matrices M of RM(r, n)k
3. Separate the columns of M : in M0 if the corresponding input x is such that f(x) = 0, in M1 otherwise
4. If rank(M0) = rank(M1) = rank(M), increase r by 1 and go to step 2

5. Else,AIk(f) = r, find the linear relation inM0 orM1 rows giving the functions g and h of degree equal
or less than r such that fg = h on En,k.

6. If sufficiently many independent equations T are available and g has a small enough degree, solve the
algebraic system as for standard (fast) algebraic attack.
Improvement:

7. Compute AIk(f) for all weight
8. Keep all the promising sets Sk with low AIk(f)

9. Create the algebraic system with the corresponding equations and the weight equations, solve this
system.

Discussions Once the prerequisites are fulfilled an attacker can mount a constant weight input cryptanalysis,
trying various attack scenarii. One interest of this strategy is the easiness of translating the standard
symmetric attacks on all entries to constant weight sets: we showed that we can build a distinguisher or
use algebraic or fast correlation attacks in this setting; we describe and apply it to the stream cipher Grain
in Section 5.3 as proof of concept. Moreover all the criteria of a Boolean function are decreasing when the
input weight is fixed then the described strategy leads to a direct improvement on a standard symmetric
cryptanalysis. The valour of this cryptanalysis comes when this improvement is strictly better than using the
equations extracted from wH(x) = k with standard attacks. It is the case when a criterion falls down, giving
critical information on unknowns bit rather than not exploitable equations.

The critical point of constant Hamming weight input cryptanalysis is to find Hamming weights for which
the targeted function f has a bad behaviour for one criterion, which we can qualify as a structural flaw. As
shown in the previous sections, these flaws do not seem to be rare in commonly used functions. The typical
functions used in stream ciphers were not designed at first to have good criteria respected to fixed Hamming
weight. This is the reason why constant Hamming weight input cryptanalysis may lead to better attacks.

Another interesting point of this cryptanalysis comes from the fact that the three attack scenarii crucially
depend on the promising sets. For all approaches the attack will be easier to mount if the corresponding
Boolean criteria are bad for medium weights, where the sets are bigger relatively to 2n. Nevertheless a
promising set with an extreme weight will result in effective attack as the Boolean criteria are generally very
low on these sets. An important focus is how the attacker acquires the promising sets; it can be a consequence
of the particular design of the cipher, or the result of a guess and determine technique for example. In the
following subsection we explain how constant Hamming weight input cryptanalysis can be completed with
side channel attacks.

25

5.2 Constant Hamming weight cryptanalysis and side channel attacks

In this part we consider side channel attacks as a case of application of constant Hamming weight
cryptanalysis; it illustrates a proof of concept rather than a real-world attack. As getting informations on
Hamming weights corresponds to a leakage model, we describe a setting where a side channel attack enables
to build the sets needed for constant Hamming weight cryptanalysis. After recalling the Hamming weight
leakage model, we detail a side channel attack based on constant Hamming weight cryptanalysis before
concluding on the feasibility and interest of this strategy.

Leakage model A common assumption in side channel attacks [BCO04] is to consider that when processing
the algorithm, the device leaks a noisy observation of the Hamming weight of the same manipulated
values [MR04]. More formally it gives leakage equations on manipulated internal values:

Definition 7. Leakage Function
Let x ∈ Fn2 be a manipulated value, we define as leakage function:

`(x) = wH(x) + e, where e $← N (0, σ).

For simplicity we will consider the strongest version of this model relatively to the attacker, where σ = 0
and therefore each leakage equation obtained by this attacker is true with probability 1.

Attack description
Recall that there are three prerequisites to realise a Hamming weight input cryptanalysis, supposing that

the particular function f of the cipher targeted is known, the goal of the side channel phase is to collect
the sets {wH(x), f(x)} and identify the promising sets. The value of f(x) (with the value of x not known)
can be obtained using plaintext-ciphertext pairs, as described with a stream cipher. The information on the
Hamming weight of x is given by the equation functions `(x), enables to collect the sets {wH(x), f(x)} and
find the promising sets relatively to f fixed Hamming weight criteria.

The setting we focus on consists in a stream cipher containing one ore more registers which are updated
with linear and/or non-linear functions until the production of a keystream, which is combined with the
plaintext. Let f be the function producing the keystream and the targeted function of the cryptanalysis,
with inputs being key or IV bits. If the attacker gets plaintext-ciphertext pairs, she can xor it to recover
values f(x) and then the side channel attack goal is to obtain leakage functions `(x) for these values. We
consider in this setting that the value x is loaded on a register before computation of f in the device which
enables to get a leakage function of x or equivalently that we can do a measure on f input wires. During the
encryption process the leakage equations are collected at each clock time, requiring the measurement to be
well synchronised with the stream cipher. This consists in a DPA targeting x the input of the last function
used in the production of a keystream bit. If the DPA enables to build a promising set, the constant Hamming
weight cryptanalysis described previously applies.

Conclusions In this description we presented a strong side channel attacker fulfilling the prerequisites
of constant Hamming weight input cryptanalysis. The model with very high number of collected leakage
functions, perfect synchronisation with the cipher and perfect leakage is not realistic but it may be interesting
to see the novelties of this approach. One of the first question with this model is whether constant Hamming
weight cryptanalysis is the best strategy to use; the leakage equations are already revealing a lot of
information (log n), and extremal weight information on key registers can be sufficient to make an exhaustive

26

search on the key bits. It can be the case, but the interest of the described cryptanalysis is to exhibit usable
equations in the values. If a non-linear retroaction is applied in the cipher the leakage informations concern
relations on high degree equations in the unknowns bits. On the other side the algebraic properties of f
on its restricted inputs enables to directly simplify some equation or target more efficiently the sensitive
information. When the attack can be considered with only one promising set, corresponding to only one
fixed Hamming weight, the effort of solving one small system of equations rather than one relative to all
equations is different. and this gap is increasing when some equation are noisy.

From these considerations we argue that constant Hamming weight cryptanalysis could be used for
particular ciphers in a more reasonable side channel setting; for simplicity we assumed in this section a
leakage with no noise; for a (standard) noisy leakage the previous attacks can be adapted, applied with ranges
of Hamming weight where f criterion has the same behaviour, or using error correcting codes techniques.
For example we can expect the balancedness bias to be of the same sign for ranges of consecutive weights
(as shown for Grain example in Section 5.3), or the best linear approximation or low degree annihilator of
f being the same for consecutive weights. In these cases the improved attacks, combining different weights,
are more suitable and can be adapted relatively to the noise parameter σ. For the SCA point of view we
can also consider other leakage models where constant Hamming weight input cryptanalysis could apply,
nevertheless it does not seem to apply in the Hamming distance model: the study of Boolean functions with
fixed input weight does not appear relevant for this other model, it could lead to a very different work.

An interest of the presented cryptanalysis with SCA is that a particular attack can be considered relatively
to a particular Hamming weight, therefore a new kind of divide and conquer method can be used for side
channel attacks on stream ciphers, based on a partition following the Hamming weight. This remark shows
that the side channel phase can be very adaptive in this context, the attack complexity will depend on
the leakage results: more measures giving a certain Hamming weight will enable to try an attack for this
particular k and increase the probability of success. Therefore the attacker strategy evolves with the DPA
measures and can be optimized depending more on the samples than the algorithm itself, leading to an
effective adaptive attack. On the other side; the particular flaws of the studied Boolean function can lead the
first phase to target only some range of Hamming weight inputs.

5.3 Proof of concept on a stream cipher: Grain

In 2008 at the eSTREAM competition, Grain [HJMM08] was proposed as a stream cipher. This cipher has
been cryptanylised a lot since. In Grain 128, the output sequence is generated by a combination of 17 bits
taking in the NLFSR and the LFSR components. This Boolean function that we denote h′ is the target of
the Hamming weight cryptanalysis. We consider that the attacker can access to the Hamming weight of x
for some samples, the plaintext-ciphertext pairs enable to compute keystream bits h′(x) where the 17 bit
components of x depends on the 256 bits of key and IV.

We compute the Boolean criteria of the function h′ relatively to constant Hamming weight cryptanalysis,
comparing it to the upper bounds from previous sections. Then we explain which attack scenario can be
mounted (assuming the knowledge of samples wH(x)) and we finally discuss on the feasibility of this
approach.

With the table 5.3 of criteria of the function h′ we can state on the best attack we can try, in this case
it is a distinguishing attack based on the balancedness. The function h′ is not WAPB, for all possible k the
probability pk is not 0.5 and quite far from this value for all weights superior than 8. In Table 6.1 we join to
the probability pk the value Ck = (d12 −pk)

−2e standing for the amount of sample needed to distinguish the
output from a random sequence i.e. the cardinality of the corresponding set to be a promising set. Recalling

27

k N ωk pk NLk bound NLk εk AIk boundAIk

0 1 0 0.000000 0 0 0.000000 0 0

1 17 8 0.470588 0 6 0.000000 1 1

2 136 76 0.558824 4 62 0.029412 1 2

3 680 341 0.501471 61 326 0.089706 2 3

4 2380 1130 0.474790 418 1166 0.175630 3 4

5 6188 3151 0.509211 1703 3054 0.275210 3 5

6 12376 6376 0.515191 4608 6132 0.372334 3 6

7 19448 9281 0.477221 8049 9654 0.413873 3 6

8 24310 12302 0.506047 10578 12077 0.435130 3 6

9 24310 12843 0.528301 10591 12077 0.435664 3 6

10 19448 8396 0.431715 8294 9654 0.426471 3 6

11 12376 7487 0.604961 4889 6132 0.395039 3 6

12 6188 2246 0.362961 2068 3054 0.334195 3 5

13 2380 1597 0.671008 569 1166 0.239076 3 4

14 680 192 0.282353 94 326 0.138235 2 3

15 136 107 0.786765 7 62 0.051471 1 2

16 17 2 0.117647 0 6 0.000000 1 1

17 1 1 1.000000 0 0 0.000000 0 0

Table 1: Constant weight input criteria of Grain stream cipher function h′(x) = x0 + x1 + x2 + x3 + x4 +
x5 + x6 + x7 + x8x9 + x10x11 + x12x13 + x14x15 + x8x12x16. The first columns are parameters for the
three criteria, k denotes the Hamming weight and N =

(
n
k

)
the binomial coefficient. For the weightwise

balancedness ωk = |fk(x) = 1| is the number of weight k input with output 1 by h′, pk = ωk/N stands for
the probability Pr[f(x) = 1|wH(x) = k] , which is to compare with 0.5 for a random output distribution. 4

28

that h′ input space without restriction is Fn2 we also use the notation δk = dCk ∗ 2n

N e to link the amount of
data needed with weight k to the all input space.

k N ωk pk Ck δk

0 1 0 0 4 524288

1 17 8 0.470588235294118 1156 8912896

2 136 76 0.558823529411765 289 278528

3 680 341 0.501470588235294 462401 89129153

4 2380 1130 0.474789915966387 1574 86684

5 6188 3151 0.509211376858436 11786 249647

6 12376 6376 0.515190691661280 4334 45901

7 19448 9281 0.477221308103661 1928 12994

8 24310 12302 0.506046894282188 27349 147458

9 24310 12843 0.528301110654052 1249 6735

10 19448 8396 0.431715343480049 215 1450

11 12376 7487 0.604961215255333 91 964

12 6188 2246 0.362960568842922 54 1144

13 2380 1597 0.671008403361344 35 1928

14 680 192 0.282352941176471 22 4241

15 136 107 0.786764705882353 13 12529

16 17 2 0.117647058823529 7 53979

17 1 1 1.00000000000000 4 524289

Table 2: Balancedness and distinguisher parameters for constant input cryptanalysis on Grain filtering
function. k denotes the Hamming weight considered, N the binomial coefficient

(
n
k

)
, ωk and pk are criteria

of h′ balancedness on E17,k, Ck and δk are parameters for the data complexity of the distinguishing attack.

Reading the table 5.3 we know which Hamming weight k can be used to a practical attack, having a look
on the Ck column. The weights for which the quantity of data needed is greater than the potential number
of samples cannot be used as for the weights 0 ≤ k ≤ 3 where Ck > N . Nevertheless for some weights
the quantity Ck is very small compared to N , as for k = 11 or k = 12 where an attacker obtaining a set
as small as 1% of N gets a promising set. The column δk shows that with for example 2000 samples an
attacker can expect to distinguish the keystream from uniform as with high probability one of the sets for
k ∈ [10, 11, 12, 13] will be a promising set. Noting that the small values of Ck are for the weights k > 8
and that the corresponding biases εk = 1

2 − pk are positive for odd values and negatives for even values, we
can optimize the attack strategy by grouping weights. The parameters for this strategy are summarized in
table 5.3, it leads to better biases and consequently less data complexity for the potential attack.

Based on table 5.3 we focus on finding a distinguisher rather than recover the state with an algebraic or
correlation like attack for various reasons. First if we consider the different AIk, for all medium k we get

29

K N ωK pK CK δK

9, 11, 13, 15, 17 39203 22035 0.562074331046093 260 870

10, 12, 14, 16 26333 10836 0.411498879732655 128 638

Table 3: Balancedness and distinguisher parameters for constant input cryptanalysis on Grain filtering
function, grouping weights.K denotes the Hamming weights considered,N the sum of binomial coefficient∑

k∈K
(
n
k

)
, ωK , pK ,CK and δK are the obtain with the corresponding parameters for the various k ∈ K

considered.

AIk = 3, as h′ is a Boolean function of degree 3, for these weight we are not getting an important advantage
over standard algebraic attack over Fn2 . For the criterion of nonlinearity, there are no medium weight with
critical NLk leading to very practical attack. The most important argument in disfavour of these attacks is
the update function of this stream cipher, containing a NLFSR. Due to the NLFSR the inputs bits of h′ can be
expressed as non linear equation of the key and IV bits, where the degree of the equations increase quickly
to the number of unknown bits. Therefore the attack complexities relatively to the algebraic immunity and
nonlinearity criteria will no more depend on n but on n′ linearised variables, increasing drastically the
attack complexities. Another strategy to circumvent the impact of the NLFSR is to study the behaviour
of it’s feedback relation g′ on constant weight inputs. However our study on this function does not reveal
exploitable flaws enabling to keep linear the equations of h′ inputs.

Moreover, it is important to notice that we assume here that we have access to the weight of the input of
the function h′ but not the weight of the two registers, which is here a strong hypothesis. The complexity of
the algorithms to compute AIk and NLk are not suitable for 128 or 256 variables if the attacker consider the
entry of the function h with the all state. Nevertheless it is possible to compute the balancedness bias of h on
fixed Hamming weight on the all 256 bit state. These computations give that for all weight k (k ∈ [0, 256]),
the bias | 0.5−pk | is never less that 2−33, which is extremely low for medium weights. The data complexity
parameter Ck which scales the number of samples needed at weight k by the proportion over all possible
2n samples fall down to 260 for various weights. The sign of (0.5 − pk) is the same for relatively large set
of consecutive weights, there are only 12 sign changes and the longest set of consecutive weights with the
same sign is of cardinality 93.

In conclusion the constant Hamming weight input cryptanalysis on Grain could lead to a distinguisher
(and potentially bit prediction) with less than 1000 samples with exact Hamming weight samples of h′ inputs
or 260 samples for h inputs. The feasibility of a concrete attack resides now on the complexity of getting
theses samples. As the keystream is produced after an initialization step, it seems difficult to know the weight
of x only choosing the IV and making guesses on the key bits. On the opposite a side channel attack appears
to be a good candidate for obtaining this information on x, but this corresponds to a strong model of attacker.
For the attack on h′, it consists in assuming that the attacker obtains leakages on a register where x is loaded
from the LFSR-NFSR component before h′ computation (or wires where these inputs transit). For the attack
on h we assume that the attacker gets leakage from the entire 256 bits state. The attacker is able to identify
when the keystream function is computed during the keystream generation process (synchronization effort)
and to obtain leakage equations without noise. The last assumption is not realistic, but some relaxations
could still be compatible with the constant Hamming weight input study on Grain. The results on h′ show
that if the parity of the weight is determined it can apply, nevertheless it seems to be even more inadequate
with the Hamming leakage model. On the other side, the results on h show that an approximation of the

30

weight can be enough, as the sign of the bias is constant on big ranges of consecutive Hamming weights.
In this context the leakage equations on the entire state of Grain obtained by the side channel attacker can
be used when the leakage measure induce high confidence in the Hamming weight of x to create the sets
enabling to distinguish the output of h from a random sequence.

6 Impact of Boolean functions with restricted input on FLIP

The stream cipher FLIP [MJSC16] has a non standard design (i.e. the filter permutator) where the updating
process of the internal state consists in permuting its coordinates. Therefore the Hamming weight of the
internal state is constant during all the encryption. In the 4 proposed instances the Hamming weight of this
register is forced to n

2 where n is the size of the register (n is larger than the security parameter λ, enough
to ensure that

(
n
n/2

)
≥ 2λ). As the Hamming weight of the input of the filtering function f is constant and

known, a constant Hamming weight input cryptanalysis is directly applicable. Therefore we claim that the
security analysis of FLIP([MJSC16],section 3.4) based on the criteria of Boolean functions over all Fn2
inputs is not done in the most adequate model. As the stream cipher function is only evaluated on entries
from En,n

2
, it’s security should be studied in the constant Hamming weight model.

The purpose of this section is then to stand on the fixed input weight criteria of the proposed filtering
functions and the potential flaws revealed by Hamming weight input cryptanalysis before concluding on
the security of this stream cipher in the Hamming weight model. In an article published at CRYPTO 2016
[DLR16], Duval et al. gave an attack on preliminary instances of FLIP, leading the authors of FLIP to add
more triangular functions in the filtering function. We then also study the case of Guess and Determine like
attacks combined with algebraic like attacks and correlation like attacks when the Hamming weight is fixed.

Definition 8 (Direct Sum). Let f be the direct sum of two Boolean functions g anf h:

∀x ∈ Fr2,∀y ∈ Fs2, f(x, y) = g(x) + h(y),

where n = r + s.

Direct sum and balancedness We first show that knowing the weights of g an h on all constant weight
inputs enables to determine exactly the weight of f on all Ek with 0 ≤ k ≤ r + s.

Proposition 11. Recall that we denote by wH(f)k the Hamming weight of the evaluation vector of function
f on all the entries of fixed Hamming weight k: wH(f)k = |{x ∈ Fn2 ,wH(x) = k, f(x) = 1}| .Let f be the
direct sum of h and g, then we have the following relation :

wH(f)k =
k∑
i=0

wH(g)i

((
s

k − i

)
− wH(h)k−i

)
+

((
r

i

)
− wH(g)i

)
wH(h)k−i

Direct sum and NLk Let n be any positive integer and k ∈ {1, . . . , n}. We recall that the nonlinearity
NLEn,k(f) of an n-variable function f over a set En,k equals the minimum Hamming distance between
the restriction of f to En,k and the restrictions of affine functions to En,k. For readability we simply denote
NLEn,k(f) by NLk(f).

Lemma 2 (Direct sum and NLk).

31

Let f be the direct sum of g and h, we have:

NLk(f) ≥
k∑
i=0

(
r

i

)
NLk−i(h) +

k∑
i=0

NLi(g)

((
s

k − i

)
− 2NLk−i(h)

)
Proof. We have:

NLk(f) =

(
n
k

)
2
− 1

2
max

(a,b)∈Fr2×Fs2
|

∑
(x,y)∈En,k

(−1)f(x,y)+a·x+b·y|

≥
(
n
k

)
2
− 1

2
max

a∈Fr2,b∈Fs2

k∑
i=0

∣∣∣∣∣∣
∑

x∈Er,i,y∈Es,k−i

(−1)g(x)+h(y)+a·x+b·y
∣∣∣∣∣∣

=

(
n
k

)
2
− 1

2
max

a∈Fr2,b∈Fs2

k∑
i=0

∣∣∣∣∣∣
∑
x∈Er,i

(−1)g(x)+a·x
∣∣∣∣∣∣
∣∣∣∣∣∣
∑

y∈Es,k−i

(−1)h(y)+b·y
∣∣∣∣∣∣

≥
(
n
k

)
2
− 1

2

k∑
i=0

max
a∈Fr2

∣∣∣∣∣∣
∑
x∈Er,i

(−1)g(x)+a·x
∣∣∣∣∣∣
max

b∈Fs2

∣∣∣∣∣∣
∑

y∈Es,k−i

(−1)h(y)+b·y
∣∣∣∣∣∣

=

(
n
k

)
2
− 1

2

k∑
i=0

((
r

i

)
− 2NLi(g)

)((
s

k − i

)
− 2NLk−i(h)

)

=

k∑
i=0

(
r

i

)
NLk−i(h) +

k∑
i=0

(
s

k − i

)
NLi(g)− 2

k∑
i=0

NLi(g)NLk−i(h)

=

k∑
i=0

(
r

i

)
NLk−i(h) +

k∑
i=0

NLi(g)

((
s

k − i

)
− 2NLk−i(h)

)
.

Direct sum and AIk For every Boolean function say f for example, we will denote by fk the Boolean
function restricted on its input of Hamming weight k.

Lemma 3 (Direct sum and AIk). Let f be the direct sum of g and h with r and s variables respectively.
Then for all k ≤ min(r, s), AIk(f) follows the bound :

AIk(f) ≥ min
0≤`≤k

(max[AI`(g),AIk−`(h)])

.

Proof. Suppose that we have A(x) a non-zero annihilator of fk. Then we will show that A is a non-zero
annihilator of g` or 1 + g` and hk−` or 1 + hk−` for some `
∀X ∈ Ek, A(X)f(X) = 0. Moreover, A is non-null on Ek, so, there exists X̃ ∈ Ek such that A(X̃) = 1.
We write X̃ as (x̃, ỹ) where x̃ ∈ Fn2 and we define ` as wH(x̃), then the weight of ỹ ∈ Fm2 is k − `. Finally
for this `, we fix for X ∈ Ek the x part to the value x̃ and we consider all possible values for y ∈ Fs2
of Hamming weight k − `. By doing so, it appears that Ak is an annihilator of hk−` or 1 + hk−`, and is
non null by construction. We can also fix y to ỹ and consider all possible values for x of Hamming weight
` and find out that Ak is also a non-zero annihilator of g` or 1 + g`. Therefore deg(A) ≥ deg(Ak) ≥
max[AI`(g),AIk−`(h)]. Recalling that ` = wH(x̃) and then 0 ≤ ` ≤ k finishes the proof.

32

6.1 Fixed Hamming weight input cryptanalysis on FLIP filtering function

FLIP instances We recall the 4 filtering functions proposed in FLIP in table 6.1, each one defined by 4
parameters n1, n2, nb and h where the filtering function is the direct sum of a linear function of n1 variables,
a quadratic function of n2 variables (obtained by direct sum) and nb triangular functions of degree h. A
triangular function of degree h is a direct sum of one monomial of each degree from 1 to h. Notice that in
the ANF of f each variable is used once, and f can therefore be expressed as a direct sum in various ways,
which is determinant to bound its criteria on fixed Hamming weight inputs.

Name N n1 n2 nb h λ

FLIP-530 530 42 128 8 9 80

FLIP-662 662 46 136 4 15 80

FLIP-1394 1394 82 224 8 16 128

FLIP-1704 1704 86 238 5 23 128

Table 4: FLIP filtering function instances, N is the total number of variables, n1 is the number of variables
over the linear part, n2 is the number of variables over the quadratic part, nb is the number of triangular
functions, h is the degree of the triangular functions and λ is the security parameter.

Balancedness of FLIP The number of variables in the functions of the FLIP instances is never a power
of 2. Moreover, the filtering function is defined with a direct sum, and has a small degree compared to the
number of variables. In this sense, there is no way that the filtering function of FLIP could be weightwise
perfectly balanced neither weightwise almost perfectly balanced. However, we calculate the bias for each
weight on toy versions of FLIP, and it appears that for all not extreme k (k close to 0 or n) the Boolean
function is not balanced. Nevertheless the calculated bias are totally not exploitable to distinguish the output
from another random sequence, regarding that we cannot have more than 280 or 2128 bits of keystream.

Using proposition 11, we can exactly compute the values |{f(x) = 1|wH(x) = k}| for all k for the
four filtering functions and the bias from a random sequence. In table 6.1 we summarize our computation
results, providing for which weights k the bias is inferior to 2−

λ
2 . As the impact of Guess and Determine

attack on the balancedness on restricted inputs is not known, for the 4 instances we study this criterion for
three particular guesses. The first guess consists in cancelling (forcing to be 0) λ/2 linear variables, the
second one on λ/2 variables of the quadratic part and the third one on λ/2 variables of the highest degree
monomials. These three strategies represent the best deterioration that an attacker can obtain on one part
of a FLIP filtering function. We assume that if none of these strategy reveal a sufficient bias for a concrete
cryptanalysis then no hybrid approach will lead to an efficient attack.

Interpreting the results of table 6.1, as k = n
2 is in the ranges of the v0 column for the 4 instances of f ,

we conclude that we can not apply our distinguisher based on the balancedness criterion. Even considering
a combination with guess and determine attack, the biases on the simpler functions obtained are insufficient
to mount a concrete attack.

NLk of FLIP The high number of variables of FLIP instances makes impossible to compute exactly the
nonlinearity on constant weight inputs. Nevertheless using the lower bound of the NLk of a direct sum

33

Instance N v0 ` N1 v1 N2 v2 N3 v3

FLIP-530 530 [78, 482] 40 490 [134, 446] 450 [70, 409] 250 [30, 190]

FLIP-662 662 [102, 621] 40 622 [178, 585] 582 [97, 547] 242 [29, 185]

FLIP-1394 1394 [207, 1325] 64 1330 [348, 1266] 1266 [203, 1205] 594 [69, 514]

FLIP-1704 1704 [257, 1643] 64 1640 [429, 1582] 1576 [254, 1519] 610 [70, 533]

Table 5: Balancedness (with constant weight inputs) bias on FLIP filtering function instances, and modified
instances. N is the number of variables of the instance, ` is the number of variables guessed to be 0. vi
stands for the range of weights with bias < 2−` for the various strategies of guesses i and Ni the number of
variables of the resulting function, with v0 the attack without guesses of the N variable function

we can give a lower bound of the nonlinearity on constant weight inputs for the 4 instances. To do so we
recursively compute the NLk for a direct sum with lower bounds for NLi(g) and exact value of NLk−i(h).
In table 6.1 we summarize the results, the exact NLk values are computed on functions with n ≤ 22 for
the quadratic functions (Dickson functions), n ≤ 15 for the triangular functions and n ≤ 17 for sums of
two monomials functions. Note that the NLk of a function in d variables consisting in only one monomial is
null for all k with 0 < k < d. The results are obtained by first combining the quadratic functions, then the
triangular part and finally the linear (and higher than 9 degree) part.

Instance N v0 ` N1 v1

FLIP-530 530 [107, 464] 40 450 [142, 383]

FLIP-662 662 [136, 556] 40 582 [189, 453]

FLIP-1394 1394 [221, 1239] 64 1266 [296, 1094]

FLIP-1704 1704 [266, 1492] 64 1576 [363, 1321]

Table 6: Lower bound on NLk of FLIP instances,N refers to the number of variables, v0 the range of weight
k for which NLk(f)

(nk)
≥ 0.499. ` refers to the number of cancelled monomials of the quadratic part by the

guess strategy, N1 and v1 are the corresponding number of variables and range of weights.

The results in table 6.1 show that for k = n
2 , NLk(f) is higher enough to ensure that considering

the system of equations described in the attack scenario 2, the LPN system will be unsolvable with data
complexity inferior to 2λ as the error is considered as coming from a Bernouilli distribution with mean
0.499 ≤ p ≤ 0.5. Even with a guess and determine attack (with simulated results form the right part of
the table), The NLk of the various functions and the number of variables are too big to lead to a concrete
cryptanalysis with our attack scenario based on NLk.

AIk of FLIP For the FLIP family of stream cipher, the filtering function is defined by a direct sum but
we cannot conclude on the exact algebraic immunity of FLIP instances (regarding the restricted input) with
the corresponding bound. However, we have shown with theorem 3 that defining a Boolean function with

34

a direct sum can lower the algebraic immunity regarding the degree when the input has a fixed Hamming
weight. However, theorem 3 can be useful to find a lower bound on the algebraic immunity of FLIP. To
apply it, we define each filtering function of the four instances of FLIP using the following form:

F (x, y) = f(x)⊕ g(x)

where f has r variables and a high algebraic immunity and g has s variables with the smallest degree as
possible. The inputs in FLIP are the words of Hamming weight n2 where n = r+s. Then to apply theorem 3,
r and s have to satisfy the condition r ≤ n

2 ≤ s. Then for each instances of FLIP, we take f the Boolean
function taking all monomials with the highest degree. In each f chosen there is more monomials in direct
sum than the degree of the f , so the algebraic immunity (over Fr2) of f is its degree. With the lower bounds
on the four instances of FLIP, we then can calculate a lower bound on the complexity of an algebraic attack

on FLIP which is
(∑AI

i=1

(
n
i

))log 7
. The results and the bounds giving us the complexity are shown in table

6.1.

Instance N AI(f)) deg(g) r Bound D Dlog(7)

FLIP-530 530 9 5 240 4 231.6 288.7

FLIP-662 662 15 9 300 6 246.7 2131.1

FLIP-1394 1394 16 10 648 6 253.2 2150.2

FLIP-1704 1704 23 15 780 8 270.6 2198.2

Table 7: Lower bounds on AIk of FLIP instances and complexity of the algebraic attack, N refers to the
number of variables, AI(f) is equal to the degree of f , r is the number of variables in f , and the lower
bound is given with theorem 3. f is the Boolean function defined by the direct sum of all the monomials of
degree strictly greater than deg(g) and g takes all monomials of degree less or equal to deg(g), D refers to
the number of variables after linearization and Dlog(7) to the corresponding attack complexity.

It is important to notice that the lower bounds here could be not tight and the algebraic immunity of
FLIP instances could be as great as AI(F). Then it remains to prove the exact algebraic immunity of
FLIP instances. Moreover, it remains not clear what could happen by considering all possible guesses in
a Guess and Determine attack to the algebraic immunity regarding the large number of possible guesses
that an attacker could make. Moreover, the high number of triangular functions used in FLIP where used to
prevent the Guess and Determine attack combined with fast algebraic attack. Nevertheless, it appears here
that if the number of triangular functions is smaller, then the lower bound on the algebraic immunity is
increased. Supposing that we cannot compute the exact AIk of FLIP filtering functions, there is then for now
a compromise to find on the number of triangular functions: if there is few triangular function, then the Guess
and Determine attack consisting in cancelling monomials with high degree is more efficient, but if there is
too much triangular functions, then the lower bound on the algebraic immunity of FLIP is decreasing.

6.2 Conclusions and cautionary note

Finally the lower bounds exhibited for balancedness, nonlinearity and algebraic immunity do not reveal any
concrete attack on the four instances of the FLIP family of stream ciphers. The security analysis is made

35

in the right model, however, we get only lower bounds on the different criteria. We do not know which is
the exact algebraic immunity of FLIP for the four instances. If the bounds we proved are tight, then maybe
a Guess and Determine attack on FLIP could be efficient in that way. Nevertheless, we still do not have
the exact value of nonlinearity and algebraic immunity of FLIP, but our first security analysis of FLIP is
in the right model and the lower bounds (which can be not tight) do not exhibit any attack regarding the
security claims of the authors of FLIP. We remark that the two potential tweaks proposed by the authors
(use whitening or add a linear layer) avoid a constant Hamming weight cryptanalysis, in both cases f input
is then Fn2 , but the whitening still enables to know the parity of f input.

6.3 Open Questions

Considering Boolean functions on restricted input with a cryptographic point of view is quite new. Our
theoretical study focusing on fixed Hamming weight input tries to address most of the natural questions in
this context. In this part we enlight some other questions of variable interest and presumed difficulty which
are not answered yet.

WPB function with minimal number of monomials. We proved in Section 2.1 that a WPB function
has an ANF containing at least 3n

4 + 1 monomials (for n > 4) and we exhibited a construction with n − 1
monomials. It remains then to determine whether this number of monomials in the ANF is the smallest
number of monomials to obtain a WPB Boolean function. Determining the minimal number of monomials
necessary to fulfill a Boolean criterion could lead to low cost functions usable in the FHE or MPC context.

Tightness of NLk bound. In Section 3 we proved the upper bound:

NLk(f) ≤
(
n
k

)
2
− 1

2

√(
n

k

)
.

As this bound is unreacheable for almost all values of n and k, it would be nice to investigate if the
floor of this value is a tight upper bound. Moreover this quantity being the covering radius of a punctured
Reed-Muller code, various approaches could help to precise its value or give intuition on weightwise bent
functions.

Exact behavior of algebraic immunity. We proved in Section 4 that the algebraic immunity e when the
input is restricted to the Hamming weight k is bounded with the relation:

2

(
n

e

)
>

(
n

k

)
It would be nice to determine the smallest integer e satisfying this relation, and the asymptotic behavior of e
relatively to the standard algebraic immunity upper bound dn/2e for meaningfull values of k (around n/2).
The most commun function considered in cryptography for its optimal AI is the majority function, which is
constant when the input weight is fixed, therefore optimal functions for restricted weight algebraic immunity
could lead to very different constructions.

Tightness of AIk bound. Back to Section 4, we linked the algebraic immunity upper bound to the rank
of the generator matrix of a punctured Reed-Müller code RM(d, n)k. As shown in Section 5 in the secund
attack scenario, this matrix can be used to compute the exact AIk of a given function, by partitionning
the columns depending on the value of f on the column entry. For matrices with rank r at least twice the
number of columns, proving the existence of a partition of the columns in two rank r matrices will prove
the tightness of the AIk upper bound e.

36

References

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ciphers for MPC
and FHE. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT (1), volume 9056 of Lecture Notes in
Computer Science, pages 430–454. Springer, 2015.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis with a Leakage Model. In Marc
Joye and Jean-Jacques Quisquater, editors, CHES, volume 3156 of Lecture Notes in Computer Science, pages 16–29.
Springer, 2004.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the statistical query
model. J. ACM, 50(4):506–519, 2003.

[Car10] Claude Carlet. Boolean Functions for Cryptography and Error Correcting Codes,, pages 257–397. Y. Crama and
P. Hammer eds, Cambridge University Press, 2010.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, Marı́a Naya-Plasencia, Pascal Paillier, and
Renaud Sirdey. Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression. In Thomas
Peyrin, editor, FSE, volume 9783 of Lecture Notes in Computer Science, pages 313–333. Springer, 2016.

[CFGR12] Claude Carlet, Jean-Charles Faugère, Christopher Goyet, and Guénaël Renault. Analysis of the algebraic side channel
attack. J. Cryptographic Engineering, 2(1):45–62, 2012.

[CM03] Nicolas Courtois and Willi Meier. Algebraic Attacks on Stream Ciphers with Linear Feedback. In Advances
in Cryptology - EUROCRYPT 2003, International Conference on the Theory and Applications of Cryptographic
Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, pages 345–359, 2003.

[Cou03] Nicolas Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21,
2003, Proceedings, pages 176–194, 2003.

[Did06] F. Didier. A New Upper Bound on the Block Error Probability After Decoding Over the Erasure Channel. IEEE
Transactions on Information Theory, 52(10):4496–4503, Oct 2006.

[DLR16] Sébastien Duval, Virginie Lallemand, and Yann Rotella. Cryptanalysis of the FLIP Family of Stream Ciphers. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, volume 9814 of Lecture
Notes in Computer Science, pages 457–475. Springer, 2016.

[Fil16a] Yuval Filmus. Friedgut-kalai-naor theorem for slices of the boolean cube. Chicago J. Theor. Comput. Sci., 2016,
2016.

[Fil16b] Yuval Filmus. An orthogonal basis for functions over a slice of the boolean hypercube. Electr. J. Comb., 23(1):P1.23,
2016.

[FKMW16] Yuval Filmus, Guy Kindler, Elchanan Mossel, and Karl Wimmer. Invariance principle on the slice. In 31st Conference
on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 15:1–15:10, 2016.

[FM16] Yuval Filmus and Elchanan Mossel. Harmonicity and invariance on slices of the boolean cube. In 31st Conference on
Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 16:1–16:13, 2016.

[HJMM08] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The grain family of stream ciphers. In
Matthew J. B. Robshaw and Olivier Billet, editors, New Stream Cipher Designs - The eSTREAM Finalists, volume
4986 of Lecture Notes in Computer Science, pages 179–190. Springer, 2008.

[JD06] Antoine Joux and Pascal Delaunay. Galois LFSR, Embedded Devices and Side Channel Weaknesses. In Rana Barua
and Tanja Lange, editors, Progress in Cryptology - INDOCRYPT 2006, 7th International Conference on Cryptology
in India, Kolkata, India, December 11-13, 2006, Proceedings, volume 4329 of Lecture Notes in Computer Science,
pages 436–451. Springer, 2006.

[LF06] Éric Levieil and Pierre-Alain Fouque. An Improved LPN Algorithm. In Roberto De Prisco and Moti Yung, editors,
SCN, volume 4116 of Lecture Notes in Computer Science, pages 348–359. Springer, 2006.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet. Towards Stream Ciphers for
Efficient FHE with Low-Noise Ciphertexts. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT (1),
volume 9665 of Lecture Notes in Computer Science, pages 311–343. Springer, 2016.

[MPC04] Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic Attacks and Decomposition of Boolean Functions. In
Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings,
volume 3027 of Lecture Notes in Computer Science, pages 474–491. Springer, 2004.

[MR04] Silvio Micali and Leonid Reyzin. Physically Observable Cryptography (Extended Abstract). In Moni Naor, editor,
TCC, volume 2951 of Lecture Notes in Computer Science, pages 278–296. Springer, 2004.

37

[MS88a] W. Meier and O. Staffelbach. Fast Correlation Attacks on Certain Stream Ciphers. In EUROCRYPT, pages 301–314,
1988.

[MS88b] Willi Meier and Othmar Staffelbach. Fast Correlation Attacks on Stream Ciphers (Extended Abstract). In Christoph G.
Günther, editor, EUROCRYPT, volume 330 of Lecture Notes in Computer Science, pages 301–314. Springer, 1988.

[Sie84] Thomas Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE
Trans. Information Theory, 30(5):776–780, 1984.

[Sie85] Thomas Siegenthaler. Decrypting a Class of Stream Ciphers Using Ciphertext Only. IEEE Trans. Computers,
34(1):81–85, 1985.

38

	Boolean functions with restricted input and their robustness; application to the FLIP cipher
	Claude Carlet1, Pierrick Méaux2, Yann Rotella3.

