
This is the full version of a paper which appears in Financial Cryptography
and Data Security - 21st International Conference, FC 2017, Sliema, Malta,
April 3-7 2017, Revised Selected Papers, Springer, LNCS.

Homomorphic Proxy Re-Authenticators and
Applications to Verifiable Multi-User Data

Aggregation

David Derler‡, Sebastian Ramacher‡,‖, and Daniel Slamanig‡

IAIK, Graz University of Technology, Graz, Austria
{dderler,sramacher,dslamanig}@iaik.tugraz.at

Abstract. We introduce the notion of homomorphic proxy re-authentic-
ators, a tool that adds security and verifiability guarantees to multi-user
data aggregation scenarios. It allows distinct sources to authenticate their
data under their own keys, and a proxy can transform these single sig-
natures or message authentication codes (MACs) to a MAC under a
receiver’s key without having access to it. In addition, the proxy can
evaluate arithmetic circuits (functions) on the inputs so that the result-
ing MAC corresponds to the evaluation of the respective function. As
the messages authenticated by the sources may represent sensitive infor-
mation, we also consider hiding them from the proxy and other parties
in the system, except from the receiver.

We provide a general model and two modular constructions of our
novel primitive, supporting the class of linear functions. On our way, we
establish various novel building blocks. Most interestingly, we formally
define the notion and present a construction of homomorphic proxy re-
encryption, which may be of independent interest. The latter allows users
to encrypt messages under their own public keys, and a proxy can re-
encrypt them to a receiver’s public key (without knowing any secret
key), while also being able to evaluate functions on the ciphertexts. The
resulting re-encrypted ciphertext then holds an evaluation of the function
on the input messages.

1 Introduction

Proxy re-cryptography [BBS98] is a powerful concept which allows proxies to
transform cryptographic objects under one key to cryptographic objects un-
der another key using a transformation key (a so called re-key). In particular,
proxy re-encryption has shown to be of great practical interest in cloud sce-
narios such as data storage [CD16, BBL16], data sharing [XXW+16], publish-
subscribe [BGP+16] as well as cloud-based identity management [NAL12,NA14,
ZSSH14,SSZ14]. In contrast, other proxy re-primitives, and in particular proxy
re-signatures (or MACs), seem to unleash their full potential not before consid-
ering them in combination with homomorphic properties on the message space.

‡ Supported by EU H2020 project Prismacloud, grant agreement n◦644962.
‖ Supported by EU H2020 project Credential, grant agreement n◦653454.

1

mailto:dderler@iaik.tugraz.at
mailto:sramacher@iaik.tugraz.at
mailto:dslamanig@iaik.tugraz.at

Interestingly, however, this direction has received no attention so far. To this
end, we introduce the notion of homomorphic proxy re-authenticators (HPRAs),
which allows distinct senders to authenticate data under their own keys, and
an evaluator (aggregator) can transform these single signatures or message au-
thentication codes (MACs) to a MAC under a receiver’s key without knowing
it. Most importantly, the aggregator can evaluate arithmetic circuits (functions)
on the inputs so that the resulting MAC corresponds to the evaluation of the
respective function. Furthermore, we investigate whether we can hide the input
messages from the aggregator. On the way to solve this, we formally define the
notion of homomorphic proxy re-encryption (HPRE). Data aggregation is the
central application of our framework, but it is not limited to this application.

Motivation. Data aggregation is an important task in the Internet of Things
(IoT) and cloud computing. We observe a gap in existing work as the important
issue of end-to-end authenticity and verifiability of computations on the data
(aggregation results) is mostly ignored. We address this issue and propose a
versatile non-interactive solution which is tailored to a multi-user setting. The
additional authenticity features of our solution add robustness to errors occurring
during transmission or aggregation even in the face of a non-trusted aggregator.

Multi-User Data Aggregation. Assume a setting where n senders, e.g., sensor
nodes, regularly report data to some entity denoted the aggregator. The aggre-
gator collects the data and then reports computations (evaluations of functions)
on these data to a receiver. For example, consider environmental monitoring of
hydroelectric plants being located in a mountainous region, where small sen-
sors are used for monitoring purposes. Due to the lack of infrastructure (e.g.,
very limited cell coverage) sensors are not directly connected to the Internet and
collected data is first sent to a gateway running at the premise of some telecom-
munication provider. This gateway aggregates the data and forwards it to some
cloud service operated by the receiver.

Obviously, when the involved parties communicate via public networks, se-
curity related issues arise. Apart from achieving security against outsiders, there
are also security and privacy related issues with respect to the involved parties.

In general, we identify three main goals. (1) End-to-end authenticity, i.e., pro-
tecting data items from unauthorized manipulation and preserving the source
authenticity. (2) Concealing the original data from the aggregator and the re-
ceiver, and, even further, concealing the result of the computation from the
aggregator. Clearly, in (2) we also want to conceal data from any outsider. (3)
Establishing independent secret keys for the involved parties so that they do not
share a single secret. Latter facilitates a dynamic setting.

Below, we present such an aggregation scenario, discuss why straightforward
solutions fall short, and sketch our solution. Then, we discuss the problems
popping up when we require stronger privacy guarantees and show how our
primitives help to overcome these issues.

Authenticity & Input Privacy. In our first scenario, the n senders each hold their
own signing key and within every period sender i reports a signed data item di to
the aggregator. The aggregator must be able to evaluate functions f ∈ F (where

2

F is some suitable class of functions, e.g., linear functions) on d1, . . . , dn so that
a receiver will be convinced of the authenticity of the data and the correctness
of the computation without fully trusting the aggregator (recall the end-to-end
authenticity requirement). Moreover, although the inputs to the aggregator are
not private, we still want them to be hidden relative to the function f , i.e., so
that a receiver only learns what is revealed by f and d̂ = f(d1, . . . , dn), as a
receiver might not need to learn the single input values.

A central goal is that the single data sources have individual keys. Thus, we
can not directly employ homomorphic signatures (or MACs). Also the recent
concept of multikey-homomorphic signatures [FMNP16, DS16, LTWC16] does
not help: even though they allow homomorphic operations on the key space,
they do not consider transformations to some specific target key.1 With HPRAs
we can realize this, as the aggregator (who holds re-keys from the senders to some
receiver) can transform all the single signatures or MACs to a MAC under the
receiver’s key (without having access to it). Moreover, due to the homomorphic
property, a MAC which corresponds to the evaluation of a function f on the
inputs can be computed. The receiver can then verify the correctness of the
computation, i.e., that d̂ = f(d1, . . . , dn), and the authenticity of the used inputs
(without explicitly learning them) using its independent MAC key.

Adding Output Privacy. In our second scenario, we additionally want data pri-
vacy guarantees with respect to the aggregator. This can be crucial if the ag-
gregator is running in some untrusted environment, e.g., the cloud. We achieve
this by constructing an output private HPRA. In doing so, one has to answer the
question as how to confidentially provide the result of the computation to the
receiver and how to guarantee the authenticity (verifiability) of the computation.
We tackle this issue by introducing a HPRE where the homomorphism is com-
patible to the one of the HPRA. The sources then additionally encrypt the data
under their own keys and the aggregator re-encrypts the individual ciphertexts
to a ciphertext under a receiver’s key and evaluates the same function f as on the
MACs on the ciphertexts. This enables the receiver to decrypt the result d̂ using
its own decryption key and to verify the MAC on d̂ together with a description
of the function f . In addition, we use a trick to prevent public verifiability of the
signatures from the single data sources, as public verifiability potentially leaks
the signed data items which trivially would destroy output privacy.

Contribution. Our contributions in this paper can be summarized as follows.

– We introduce the notion of homomorphic proxy re-authenticators (HPRA).
Our framework tackles multi-user data aggregation in a dynamic setting. For
the first time, we thereby consider independent keys of the single parties, the
verifiability of the evaluation of general functions on the authenticated inputs
by the sources, as well as privacy with respect to the aggregator.

1 While the homomorphic properties might allow one to define a function mapping to
a target key, it is unclear whether handing over the description of such a function to
a proxy would maintain the security requirements posed by our application.

3

– As a means to achieve the strong privacy requirements imposed by our
security model, we formally define the notion of homomorphic proxy re-
encryption (HPRE), which may be of independent interest.

– We present two modular constructions of HPRA schemes for the class Flin of
linear functions, which differ regarding the strength of the provided privacy
guarantees. On our way, we establish various novel building blocks. Firstly,
we present a linearly homomorphic MAC which is suitable to be used in
our construction. Secondly, to achieve the stronger privacy guarantees, we
construct a HPRE scheme for linear functions. All our proofs are modular in
the sense that we separately prove the security of our building blocks; our
overall proofs then build upon the results obtained for the building blocks.
Thus, our building blocks may as well easily be used in other constructions.

Related Work. Subsequently, we review related work. As our focus is on non-
interactive approaches, we omit interactive approaches where clients download
all the data, decrypt them locally, compute a function, and send the results back
along with a zero-knowledge proof of correctness (as, e.g., in [DL11]).

Proxy Re-Cryptography. Proxy re-encryption (PRE) [BBS98] allows a semi-
trusted proxy to transform a message encrypted under the key of some party into
a ciphertext to the same message under a key of another party, where the proxy
performing the re-encryption learns nothing about the message. This primitive
has been introduced in [BBS98], further studied in [ID03] and the first strongly
secure constructions have been proposed by Ateniese et al. in [AFGH06]. Boneh
et al. construct PRE in the symmetric setting [BLMR13]. Follow-up work focuses
on even stronger (IND-CCA2 secure) schemes (cf. [CH07,LV11,NAL15,NAL16]).
Since we, however, require certain homomorphic properties, we focus on IND-CPA
secure schemes (as IND-CCA2 security does not allow any kind of malleability). In
previous work by Ayday et al. [ARHR13], a variant of the linearly homomorphic
Paillier encryption scheme and proxy encryption in the sense of [ID03] were com-
bined. Here, the holder of a key splits the key and gives one part to the proxy and
one to the sender; with the drawback that the secret key is exposed when both
collude. We are looking for proxy re-encryption that is homomorphic, works in
a multi-user setting but is collusion-safe and non-interactive, i.e., re-encryption
keys can be computed by the sender using only the public key of the receiver
without any interaction and a collusion of sender and proxy does not reveal the
receiver’s key. Also note that, as our focus is on practically efficient construc-
tions, we do not build upon fully homomorphic encryption [Gen09], which allows
to build HPRE using the rather expensive bootstrapping technique. In concur-
rent work Ma et al. [MLO16] follow this approach and propose a construction
of a PRE scheme with homomorphic properties which additionally achieves key
privacy. They build upon [GSW13] using the bootstrapping techniques in [AP14]
and apply some modifications for key privacy. While their construction can be
seen as a HPRE in our sense, they do not formally define a corresponding security
model and we are not aware of a suitable formalization for our purposes.

Proxy re-signatures, i.e., the signature analogue to proxy re-encryption, have
been introduced in [BBS98] and formally studied in [ID03]. Later, [AH05] in-

4

troduced stronger security definitions, constructions and briefly discussed some
applications. However, the schemes in [AH05] and follow up schemes [LV08] do
not provide a homomorphic property and it is unclear how they could be ex-
tended. The concept of homomorphic proxy re-authenticators, which we propose,
or a related concept, has to the best of our knowledge not been studied before.

Homomorphic Authenticators. General (non-interactive) verifiable computing
techniques (cf. [WB15] for a recent overview) are very expressive, but usually
prohibitive regarding proof computation (proof size and verification can, how-
ever, be very small and cheap respectively). In addition, the function and/or
the data needs to be fixed at setup time and inputs are not authenticated.
Using homomorphic authenticators allows evaluations of functions on authen-
ticated inputs under a single key (cf. [Cat14] for a recent overview). They
are dynamic with respect to the authenticated data and the evaluated func-
tion, and also efficient for interesting classes of functions. Evaluating results
is typically not more efficient than computing the function (unless using an
amortized setting [BFR13, CFW14]). Yet, they provide benefits when saving
bandwidth is an issue and/or the inputs need to be hidden from evaluators (cf.
[LDPW14,CMP14]). Computing on data authenticated under different keys us-
ing so called multi-key homomorphic authenticators [FMNP16,DS16,LTWC16],
has only very recently been considered. Even though they are somewhat related,
they are no replacement for what we are proposing in this paper.

Aggregator-Oblivious Encryption (AOE). AOE [RN10,SCR+11] considers data
provided by multiple producers, which is aggregated by a semi-honest aggregator.
The aggregator does not learn the single inputs but only the final result. Follow-
up work [JL13, LEM14, BJL16] improved this approach in various directions.
Furthermore, [CSS12] introduced a method to achieve fault tolerance, being
applicable to all previous schemes. There are also other lines of work on data
aggregation, e.g., [LC13,CCMT09], [LCP14,GMP14]. Very recently, [LEÖM15]
combined AOE with homomorphic tags to additionally provide verifiability of the
aggregated results. Here, every user has a tag key and the aggregator additionally
aggregates the tags. Verification can be done under a pre-distributed combined
fixed tag key. Their approach is limited to a single function (the sum) and
requires a shared secret key-setting, which can be problematic.

In all previous approaches it is impossible to hide the outputs (i.e., the ag-
gregation results) from the aggregator. In contrast to only hiding the inputs, we
additionally want to hide the outputs. In addition, we do not want to assume
a trusted distribution of the keys, but every sender should authenticate and
encrypt under his own key and the aggregator can then perform re-operations
(without any secret key) to the receiver.

2 Preliminaries

Unless stated otherwise, all algorithms run in polynomial time and return a
special symbol ⊥ on error. By y ← A(x), we denote that y is assigned the
output of the potentially probabilistic algorithm A on input x and fresh random

5

coins (we may also use sans serif font to denote algorithms). Similarly, y←R S
means that y is assigned a uniformly random value from a set S. If a and b are
strings, a‖b is the concatenated string and ~a‖b means extending the vector ~a
with element b. For a sequence of vectors (~vi)i∈[n] of length `, we use f((~vi)i∈[n])
to denote the element-wise application of the function f , i.e., f((~vi)i∈[n]) :=
(f(vi1)i∈[n], . . . , f((vi`)i∈[n])). We let [n] := {1, . . . , n} and let Pr[Ω : E] denote
the probability of an event E over the probability space Ω. A function ε(·) : N→
R≥0 is called negligible, iff it vanishes faster than every inverse polynomial, i.e.,
∀ k : ∃ nk : ∀ n > nk : ε(n) < n−k. A polynomial function is denoted by poly(·).

Let G1 = 〈g〉, G2 = 〈ĝ〉, and GT be cyclic groups of prime order q. A paring
e : G1 × G2 → GT is an efficiently computable, bilinear, non-degenerate map.
For simplicity we present our results in the (symmetric) Type-1 setting where
G1 = G2. We stress that there are tools [AGH15, AHO16] to automatically
translate them to the more efficient (asymmetric) Type-3 setting. Henceforth we
use BG to denote a description of a bilinear group and use boldface letters to
denote elements in GT . We formally define bilinear group generation and the
required computational hardness assumptions in Appendix A.1.

Linearly Homomorphic MACs (HOM-MACs). Our subsequent definition is
inspired by [AB09]. Let Flin denote the class of linear functions.

Definition 1 (HOM-MAC). A HOM-MAC is a tuple (P,G,S, C,V) of algorithms
defined as:

P(κ, `) : Takes a security parameter κ and an upper bound ` on the vector length
as input and outputs public parameters pp.

G(pp) : Takes the public parameters pp as input and outputs a secret key sk.
S(sk, ~v, id, τ) : Takes a MAC key sk, a vector ~v, an identifier id, and a tag τ as

input, and outputs a MAC µ.
C(f, (µi)i∈[n]) : Takes a function f ∈ Flin and a sequence of valid MACs (µi)i∈[n]

on vectors (~vi)i∈[n] as input, and outputs a MAC µ on ~v = f((~vi)i∈[n]).
V(sk, ~v, µ, τ, (idi)i∈[n], f) : Takes a MAC key sk, a vector ~v, a MAC µ, a tag τ ,

a sequence of identifiers (idi)i∈[n], and a function f ∈ Flin as input, and
outputs a bit.

A linearly homomorphic MAC is required to be correct and unforgeable. We
postpone the formal definitions to Appendix A.2.

Proxy Re-Encryption. A proxy re-encryption (PRE) scheme is an encryption
scheme that allows a proxy to transform a message m encrypted under public
key rpkA of party A into a ciphertext to m under rpkB for another party B, so
that the proxy learns nothing about m. A PRE scheme is called non-interactive if
party A can produce a re-encryption key from A to B locally by having access to
its private key and only B’s public key, collusion-safe if the proxy colluding with
either of the parties can not recover the other parties private key, unidirectional
if a re-encryption key only allows transformations in one direction (e.g., from A
to B), and single-use if one ciphertext can be transformed only once. For our
formal definitions, we largely follow [AFGH06].

6

Definition 2 (PRE). A PRE is a tuple (P,G, ~E , ~D,RG,RE) of algorithms, where
~E = (E i)i∈[2] and ~D = (Di)i∈[2], which are defined as follows:

P(1κ) : Takes a security parameter κ and outputs parameters pp.
G(pp) : Takes parameters pp and outputs a key pair (rsk, rpk).
RG(rskA, rpkB) : Takes a secret key rskA and a public key rpkB and outputs a

re-encryption key rkA→B.
E i(rpk,m) : Takes a public key rpk and a message m and outputs a ciphertext c.
RE(rkA→B , cA) : Takes a re-encryption key rkA→B and a ciphertext cA under

rpkA, and outputs a re-encrypted ciphertext cB for rpkB.
Di(rsk, c) : Takes a secret key rsk and a ciphertext c, and outputs m.

A PRE scheme needs to be correct. This notion requires that for all security
parameters κ ∈ N, all honestly generated parameters pp ← P(1κ), all key pairs
(rskA, rpkA) ← G(pp), (rskB , rpkB) ← G(pp), all re-encryption keys rkA→B ←
RG(rskA, rpkB), all messages m it holds with probability one that

∀ i ∈ [2] ∃ j ∈ [2] : Dj(rskA, E i(rpkA,m)) = m, and

∃ i ∈ [2] ∃ j ∈ [2] : Dj(rskB ,RE(rkA→B , E i(pkA,m))) = m.

Thereby i and j determine the level of the ciphertexts. We will henceforth use
the following semantics: first-level ciphertexts (E1) cannot be re-encrypted by a
proxy, whereas second-level ciphertexts (E2) can be re-encrypted.

In addition, a PRE needs to be IND-CPA secure. We, henceforth, only require
a relaxed IND-CPA notion which we term IND-CPA−. It is clearly implied by
the original IND-CPA notion from [AFGH06] (some oracles are omitted and the
adversary only gets to see a second-level ciphertext).

Definition 3 (IND-CPA−). A PRE is IND-CPA− secure, if for all PPT adver-
saries A there is a negligible function ε(·) such that

Pr

pp← P(1κ), b←R {0, 1}, (skt, pkt)← G(pp),
(skh, pkh)← G(pp), rkt→h ← RG(skt, pkh),
(m0,m1, st)← A(pp, pkt, pkh, rkt→h),
c← E2(mb, pkt), b

? ← A(st, c)

: b = b?

 ≤ 1/2 + ε(κ).

We remark that RG as defined in [AFGH06] also takes the target secret key to
cover interactive schemes. As we only deal with non-interactive ones, we omit it.

3 Homomorphic Proxy Re-Authenticators

We introduce homomorphic proxy re-authenticators (HPRAs) and rigorously for-
malize a suitable security model. Our goal is to obtain a flexible framework with
various possible instantiations. Accordingly, our definitions are rather generic.
We stress that both the source and receiver re-key generation, besides the secret
key of the executing party, only require public inputs, i.e., are non-interactive.

7

Definition 4 (HPRA). A homomorphic proxy re-authenticator (HPRA) for class
F of functions is a tuple of PPT algorithms (Gen,SGen,VGen,Sign,Verify,SRGen,
VRGen,Agg,AVerify), where Verify is optional. They are defined as follows:

Gen(1κ, `) : Takes security parameter κ and vector length ` and outputs param-
eters pp.

SGen(pp) : Takes parameters pp as input, and outputs a signer key (id, sk, pk).
VGen(pp) : Takes parameters pp, and outputs a MAC key mk and auxiliary in-

formation aux.
Sign(sk, ~m, τ) : Takes a signer secret key sk, a message vector ~m, and a tag τ as

input, and outputs a signature σ.
Verify(pk, ~m, τ, σ) : Takes a signer public key pk, a message vector ~m, a tag τ ,

and a signature σ as input, and outputs a bit b.
SRGen(ski, aux) : Takes a signer secret key ski, some auxiliary information aux,

and outputs a re-encryption key rki.
VRGen(pki,mk, rki) : Takes a signer public key pki and a MAC key mk, as well

as a re-encryption key rki as input, and outputs an aggregation key aki.
Agg((aki)i∈[n], (σi)i∈[n], τ, f) : Takes n aggregation keys (aki)i∈[n], n signatures

(σi)i∈[n], a tag τ , and a function f ∈ F as input, and outputs an aggregate
authenticated message vector Λ.

AVerify(mk, Λ, ID, f) : Takes a MAC key mk, an aggregate authenticated message
vector Λ, n identifiers ID = (idi)i∈[n], and a function f ∈ F . It outputs a
message vector and a tag (~m, τ) on success and (⊥,⊥) otherwise.

Security Properties. Below we define the oracles, where the public param-
eters and the keys generated in the security games are implicitly available to
the oracles. While most oracle definitions are fairly easy to comprehend and
therefore not explicitly explained, we note that the RoS oracle is used to model
the requirement that signatures do not leak the signed data in a real-or-random
style. The environment maintains the initially empty sets HU and CU of hon-
est and corrupted users (CU is only set in the output privacy game). Further,
it maintains the initially empty sets S, RK and AK of signer, re-encryption and
aggregation keys, and an initially empty set SIG of message-identity pairs.

SG(i) : If S[i] 6= ⊥ return ⊥. Otherwise run (idi, ski, pki)← SGen(pp), set S[i]←
(idi, ski, pki), and, if i /∈ CU set HU← HU ∪ {i}. Return (idi, pki).

SKey(i) : If i /∈ HU return ⊥. Otherwise return S[i].
Sig((ji)i∈[n], (~mi)i∈[n]) : If S[ji] = ⊥ for any i ∈ [n], or there exists u, v ∈ [n], u 6=

v so that ju = jv, return ⊥. Otherwise sample a random tag τ and compute
(σji ← Sign(S[ji][2], ~mi, τ))i∈[n], set SIG[τ] ← SIG[τ] ∪ {(~mi, S[ji][1])} for
i ∈ [n], and return (σji)i∈[n] and τ .

RoS((ji)i∈[n], (~mi)i∈[n], b) : If S[ji] = ⊥ or ji ∈ CU for any i ∈ [n] return ⊥.
Otherwise sample τ uniformly at random and if b = 0 compute (σji ← Sign(
S[ji][2], ~mi, τ))i∈[n]. Else choose (~ri)i∈[n]←R (M`)n where M is the message
space and compute (σji ← Sign(S[ji][2], ~ri, τ))i∈[n]. Finally, return (σji)i∈[n].

SR(i) : If S[i] = ⊥ ∨ RK[i] 6= ⊥ return ⊥. Else, set RK[i] ← SRGen(S[i][2], aux)
and return RK[i].

8

VR(i) : If S[i] = ⊥ ∨ RK[i] = ⊥ ∨ AK[i] 6= ⊥ return ⊥. Else, set AK[i]← VRGen(
S[i][3],mk, RK[i]).

VRKey(i) : Return AK[i].
A((σji)i∈[n], (ji)i∈[n], τ, f) : Check validity of all σji , whether f ∈ F , whether

SIG[τ] = ⊥, and return ⊥ if any check fails. Further, check whether there
exists u, v ∈ [n], u 6= v so that ju = jv and return ⊥ if so. Obtain (akji)i∈[n]
from AK and return ⊥ if AK[ji] = ⊥ for any i ∈ [n]. Set SIG[τ]←

⋃
i∈[n]{(~mji ,

S[ji][1])} and return Λ← Agg((akji)i∈[n], (σji)i∈[n], τ, f).

We require a HPRA to be correct, signer unforgeable, aggregator unforgeable,
and input private. While we omit the obvious correctness definition, we introduce
the remaining notions below. Signer unforgeability requires that, as long as the
aggregator remains honest, no coalition of dishonest signers can produce a valid
aggregate authenticated message vector Λ with respect to function f ∈ F so that
Λ is outside of the range of f evaluated on arbitrary combinations of actually
signed vectors. Aggregator unforgeability is the natural counterpart of signer
unforgeability, where the aggregator is dishonest while the signers are honest.2

Definition 5 (T-Unforgeability). Let T ∈ {Signer,Aggregator}. A HPRA for
class F is T-unforgeable, if for all PPT adversaries A there is a negligible func-
tion ε(·) such that

Pr

pp← Gen(1κ, `),
(mk, aux)← VGen(pp),
(Λ?, ID?, f?)← AOT(pp, aux),
(~m, τ)← AVerify(mk, Λ?, ID?, f?)

:

~m 6= ⊥ ∧ f? ∈ F ∧
0 < n, ` ≤ poly(κ) ∧(

@ (~mj)j∈[n] : (∀ j ∈ [n] :
(~mj , id

?

j) ∈ SIG[τ]) ∧
f?((~mj)j∈[n]) = ~m

)

 ≤ ε(κ),

where OT := {SG(·),SKey(·),SR(·),VR(·),A(·, ·, ·)} for T = Signer and OT :=
{SG(·),Sig(·, ·),SR(·),VR(·),VRKey(·)} for T = Aggregator.

Input privacy captures the requirement that an aggregate authenticated message
vector does not leak more about the inputs to f as the evaluation result and the
description of f would leak on their own.

Definition 6 (Input Privacy). A HPRA for class F is input private if for
all κ ∈ N, for all f ∈ F implicitly defining n, for all tags τ , and for all
(~m11, . . . , ~mn1) and (~m12, . . . , ~mn2) where f(~m11, . . . , ~mn1) = f(~m12, . . . , ~mn2),
for all pp ← Gen(1κ, `), for all (mk, aux) ← VGen(pp), for all ((ski, pki) ←
SGen(pp))i∈[n], (aki ← SRGen(ski, aux,VRGen(pki,mk)))i∈[n], the following dis-
tributions are identical:

{Agg((aki)i∈[n], (Sign(ski, ~mi1, τ))i∈[n], τ, f)},
{Agg((aki)i∈[n], (Sign(ski, ~mi2, τ))i∈[n], τ, f)}.

2 It is impossible to consider both, signers and aggregators, to be dishonest at the
same time, as such a coalition could essentially authenticate everything. This is in
contrast to the setting of proxy re-encryption, where it makes sense to model security
in the face of receivers colluding with the proxy.

9

Additionally, a HPRA may provide output privacy. It models that the aggregator
neither learns the inputs nor the result of the evaluation of f .

Definition 7 (Output Privacy). A HPRA for class F is output private, if for
all PPT adversaries A there is a negligible function ε(·) such that:

Pr

pp← Gen(1κ, `), (CU, st)← A(pp), b←R {0, 1},
(mk, aux)← VGen(pp),O ← {SG(·),SKey(·),
RoS(·, ·, b),SR(·),VR(·),VRKey(·)},
b∗ ← AO(aux, st)

: b = b∗

 ≤ 1/2 + ε(κ).

4 An Input Private Scheme for Linear Functions

Now we present our first HPRA for the class Flin of linear functions. The main
challenge we face is to construct a signature scheme with an associated HOM-

MAC scheme, where the translation of the signatures under one key to a MAC
under some other key works out. Since we believe that our HOM-MAC may as well
be useful in other settings we present it as a standalone building block and then
proceed with our full construction, where HOM-MAC is used as a submodule.
Both build upon the ideas used in the signature scheme presented in [BFKW09].

A Suitable Linearly Homomorphic MAC. We present our HOM-MAC in
Scheme 1. We can not recycle the security arguments from [BFKW09] as we
require the ability to submit arbitrary tags τ to the Sig oracle (cf. Definition 14
in Appendix A.2). Thus we directly prove unforgeability.

P(κ, `) : Run BG ← BGGen(1κ), fix H : Zq → G, choose (gi)i∈[`]←
R

(G∗)`, and return
pp← (BG, H, (gi)i∈[`], `).

G(pp) : Choose α←R Zp and return sk← (pp, α).

S(sk, ~v, id, τ) : Parse sk as (pp, α) and return µ← e(H(τ ||id) ·
∏
j∈[`] g

vj
j , g

α).

C(f, (µi)i∈[n]) : Parse f as (ωi)i∈[n] and return µ←
∏
i∈[n] µ

ωi
i .

V(sk, ~v, µ, τ, (idi)i∈[n], f) : Parse sk as (pp, α), f as (ωi)i∈[n], and output 1 if the fol-

lowing holds, and 0 otherwise: µ = e(
∏
i∈[n]H(τ ||idi)ωi

∏
j∈[`] g

vj
j , g

α)

Scheme 1: Linearly homomorphic MAC based on [BFKW09].

Lemma 1 (proven in Appendix B.1). If the bilinear DDH (BDDH) assump-
tion holds, then Scheme 1 is an unforgeable HOM-MAC in the ROM.

Our Input Private Construction. In Scheme 2 we present our HPRA con-
struction for the class Flin. It allows to authenticate vectors of length `, so

10

that the same function can be evaluated per vector component. In our appli-
cation scenario we have ` = 1. We allow one to parametrize our construc-
tion with an algorithm Eval(·, ·), which defines how to compute f ∈ Flin on
the message vector. When directly instantiating Scheme 2, Eval is defined as
Eval(f, (~mi)i∈[n]) := f((~mi)i∈[n]).

Gen(1κ, `) : Run BG ← BGGen(1κ), fix H : Zq → G, choose (gi)i∈[`]←
R G`, and return

pp← (BG, H, (gi)i∈[`], `).

SGen(pp) : Choose β←R Zq, set id ← gβ , pk ← (pp, gβ , g1/β), sk ← (pk, β), and return
(id, sk, pk).

VGen(pp) : Choose α←R Zq, set aux← ∅, mk← (pp, α) and return (mk, aux).

Sign(sk, ~m, τ) : Parse sk as (((BG, H, (gi)i∈[`], `), g
β , ·), β), compute and return σ ←

(σ′, ~m), where

σ′ ←
(
H(τ ||gβ) ·

∏`
i=1 g

mi
i

)β
.

Verify(pk, ~m, τ, σ) : Parse pk as ((BG, H, (gi)i∈[`], `), g
β , ·), and σ as (σ′, ~m′), and return

1 if the following holds and 0 otherwise:

e(H(τ ||gβ) ·
∏`
i=1 g

mi
i , gβ) = e(σ, g) ∧ ~m = ~m′.

SRGen(ski, aux) : Return rki ← ∅.

VRGen(pki,mk, rki) : Parse pki as (·, ·, g1/βi), mk as (·, α), and return aki ← (g
1/βi)α.

Agg((aki)i∈[n], (σi)i∈[n], τ, f) : Parse f as (ωi)i∈[n], and for i ∈ [n] parse σi as (σ′i, ~mi)

and return Λ← (Eval(f, (~mi)i∈[n]), µ, τ), where

µ←
∏
i∈[n] e(σ

′ωi
i , aki).

AVerify(mk, Λ, ID, f) : Parse mk as (pp, α), Λ as (~m, µ, τ), ID as (gβi)i∈[n] and f as
(ωi)i∈[n] and return (~m, τ) if the following holds, and (⊥,⊥) otherwise:

µ′ =
(∏n

i=1 e(g
ωi , H(τ ||gβi)) · e(

∏`
i=1 g

mi
i , g)

)α
Scheme 2: HPRA scheme for Flin parametrized by Eval.

Theorem 1 (proven in Appendix B.3). If HOM-MAC in Scheme 1 is un-
forgeable and the eBCDH assumption holds, then Scheme 2 represents a signer
unforgeable, aggregator unforgeable and input private HPRA for class Flin in the
ROM.

11

5 Adding Output Privacy

An additional goal is that the aggregator neither learns the input nor the output
(output privacy). On our way to achieve this, we formally define the notion of
homomorphic proxy-re encryption (HPRE) and develop an instantiation for Flin.
Based on this, we extend Scheme 2 to additionally provide output privacy.

5.1 Homomorphic Proxy Re-Encryption

A homomorphic proxy re-encryption scheme (HPRE) is a PRE which addition-
ally allows the homomorphic evaluation of functions on the ciphertexts. This
functionality firstly allows to aggregate messages encrypted under the same pub-
lic key, and, secondly, to transform the ciphertext holding the evaluation of a
function to a ciphertext for another entity, when given the respective proxy re-
encryption key. We stress that if the initial ciphertexts are with respect to differ-
ent public keys, then one can use the respective re-encryption keys to transform
them to a common public key before evaluating the function. More formally:

Definition 8 (HPRE). A HPRE for the class F of functions is a PRE with an
additional evaluation algorithm EV.

EV(f,~c) : This algorithm takes a function f ∈ F , and a vector of ciphertexts
~c = (ci)i∈[n] to messages (mi)i∈[n] all under public key pk, and outputs a
ciphertext c to message f((mi)i∈[n]) under pk.

Additionally, we require the following compactness notion (analogous to [CF15]).

Definition 9 (Compactness). A HPRE for class F is called compact if for all

f ∈ F the running time of the algorithms ~D is bounded by a fixed polynomial in
the security parameter κ.

Besides the straightforward adoption of correctness, IND-CPA− remains identical
(EV is a public algorithm). However, we require an IND-CPA− variant, where the
adversary may adaptively choose the targeted user. To the best of our knowledge,
such a notion does not exist for PRE. We introduce such a notion (termed mt-
IND-CPA−) and show that it is implied by the conventional IND-CPA notions.

Definition 10 (mt-IND-CPA−). A (H)PRE is mt-IND-CPA− secure, if for all
PPT adversaries A there is a negligible function ε(·) such that

Pr

pp← P(1κ), b←R {0, 1},
(skh, pkh)← G(pp),O ← {G(·),RG(·)},
(m0,m1, i

?, st)← AO(pp, pkh),
c← E2(mb, pki?), b? ← A(st, c)

: b = b?

 ≤ 1/2 + ε(κ),

where the environment holds an initially empty list HU. G and RG are defined as:

12

G(i) : If HU[i] 6= ⊥ return ⊥. Otherwise, run (ski, pki) ← G(pp), set HU[i] ←
(ski, pki), and return pki.

RG(i) : If HU[i] = ⊥ return ⊥. Otherwise, set rki→h ← RG(HU[i][1], pkh) and
return rki→j.

Lemma 2 (proven in Appendix B.2). Every IND-CPA− (and thus every
IND-CPA) secure PRE also satisfies mt-IND-CPA− security.

HPRE Construction for Linear Functions (HPRElin). We state our construc-
tion in Scheme 3. Essentially, we build upon the PRE scheme in [AFGH06, third
attempt] and turn it into a HPRElin. For the desired homomorphism we use a
standard trick in the context of ElGamal-like encryption schemes: we encode
messages m ∈ Zq into the exponent and encrypt gm. Decryption then yields
m′ = gm and one additionally needs to compute m = loggm

′ to obtain m.
Thus, for the schemes to remain efficient, the size of the message space needs to
be polynomial in the security parameter. While this might sound quite restric-
tive, we stress that in practical settings one deals with numerical values where
messages in the order of millions to billions are by far sufficient. Thus, this type
of decryption is not a limitation and entirely practical.

P(1κ) : Run BG← BGGen(1κ), and return pp← BG.

G(pp) : Choose (a1, a2)←R Z2
q, and return (rskA, rpkA)← ((a1, a2), (ga1 , ga2)).

RG(rskA, rpkB) : Parse rskA as (a1A, ·) and rpkB as (·, ga2B) and return rkA→B ←
(ga2B)a1A .

E1(rpk,m) : Parse rpk as (ga1 , ·), choose k←R Zq, and return c← (gk,gm · (ga1)k, 1)

E2(rpk,m) : Parse rpk as (ga1 , ·), choose k←R Zq, and return c← (gk,gm · (ga1)k, 2)

RE(rkA→B , cA) : Parse cA as (c1, c2, 2) and return c← (e(c1, rkA→B), c2, R)

D1(rsk, c) : Parse c as (c1, c2, c3) and rsk as (a1, a2), and return gm ← c2 ·c−a11 if c3 = 1

and gm ← c2 · c−
1/a2

1 if c3 = R.

D2(rsk, c) : Parse c as (c1, c2, 2) and rsk as (a1, a2), and return gm ← c2 · e(g, c−a11).

EV(f,~c) : Parse f as (ω1, . . . , ωn) and ~c as (ci)i∈[n], and return c←
∏
i∈[n] c

ωi
i , where

multiplication and exponentiation is component-wise.

Scheme 3: HPRElin based on [AFGH06, third attempt].

As EV is a public algorithm it does not influence IND-CPA security. Thus, our
argumentation is identical to [AFGH06] and we can use the following theorem.

Theorem 2 (cf. [AFGH06]). If the eDBDH assumption holds in (G,GT) then
Scheme 3 is an IND-CPA secure HPRElin.

13

We note that compactness of Scheme 3 (Definition 9) is easy to verify.

HPRElin for Vectors. We extend HPRElin to vectors over Zq, while preserving
the support for re-encryption and the homomorphic properties. It turns out that
we can employ a communication efficient solution. That is, borrowing the idea of
randomness re-use from [BBKS07] and applying it to HPRElin, we can reduce the
size of the ciphertexts as long as no re-encryption is performed. Upon setup, we
have to fix a maximal length ` of the message vectors. The secret and the public
keys are then of the form rsk ← (rski)i∈[`] = ((a1i, a2i))i∈[`], rpk ← (rpki)i∈[`] =

((ga1i , ga2i))i∈[`], where (a1i, a2i)i∈[`]←R (Z2
q)
`. First and second level encryption

are defined as

E1` (rpk, ~m) := (gk, (gmi · rpki[1]k)i∈[`], 1), and

E2` (rpk, ~m) := (gk, (gmi · rpki[1]k)i∈[`], 2), respectively.

Decryption Dj`(·, ·) of a ciphertext (c[1], (c[i+1])i∈[`], j) is defined as D1
` (rsk,~c) :=

(c[i + 1] · c[1]−rski[1])i∈[`], and D2
` (rsk,~c) := (c[i + 1] · e(c[1], g−rski[1]))i∈[`]. Re-

encryption key generation is RG`(rskA, rpkB) := (((rpkB)i[2])(rskA)i[1])i∈[`]. From
a second level ciphertext ~cA for A and a re-encryption key rkA→B , one can
compute a ciphertext ~cB for B as ~cB ← RE(rkA→B ,~cA) := ((e(cA[1], rkA→B [i]),
cA[i + 1]))i∈[`]. Note that re-encrypted ciphertexts have a different form. Thus
we do not need to add the level as suffix. Decryption D1

` (·, ·) for re-encrypted
ciphertexts is D1

` (rsk, (ci)i∈[`]) := (ci[2] · ci[1]−1/rski[2])i∈[`].

Theorem 3. If the eDBDH assumption holds, then the extension of HPRElin as
described above, yields an IND-CPA secure HPRElin for vectors.

Proof (sketch). IND-CPA security of the original scheme implies Theorem 3 un-
der a polynomial loss: using ` hybrids, where in hybrid i (1 ≤ i ≤ `) the i-
th ciphertext component is exchanged by random under the original strategy
in [AFGH06].

Combining the theorem above with Lemma 2 yields:

Corollary 1. The extension of HPRElin as described above yields an mt-IND-
CPA− secure HPRElin for vectors.

5.2 Putting the Pieces Together: Output Privacy

Our idea is to combine Scheme 2 with the HPRElin presented above. In doing so,
we face some obstacles. First, a näıve combination of those primitives does not
suit our needs: one can still verify guesses for signed messages using solely the
signatures, since signatures are publicly verifiable. Second, switching to a MAC
for the data sources is also no option, as this would require an interactive re-
key generation. This is excluded by our model as we explicitly want to avoid it.
Thus, we pursue a different direction and turn the signatures used in Scheme 2
into a MAC-like primitive by blinding a signature with a random element gr. An

14

aggregated MAC holding an evaluation of f is then blinded by gf(...,r,...), i.e.,
the receiver needs to evaluate the function f on the all blinding values from the
single sources. Now the question arises as how to transmit the blinding values to
the receiver. Using our HPRElin for vectors yields an arguably elegant solution:
by treating the randomness as an additional vector component, we can use the
re-encryption features of the HPRElin. More importantly, by executing the EV
algorithm the aggregator simultaneously evaluates the function f on the data
and on the randomness so that the receiver can directly obtain the blinding value
f(. . . , r, . . .) upon decryption.

Gen(1κ, `) : Fix a homomorphic PRE = (P,G, ~E , ~D,RG,RE , EV) for class Flin

and the HPRA(EV) = (Gen,SGen,VGen,Sign,Verify,SRGen,VRGen,Agg,
AVerify) from Scheme 2 such that MPRA ⊆ MPRE, run pps ← Gen(1κ, `),
ppe ← P(1κ, `+ 1), and return pp← (pps, ppe).

SGen(pp) : Run (id, sk,pk) ← SGen(pps), (rsk, rpk) ← G(ppe), and return (id, sk,
pk)← (id, (sk, rsk, rpk),pk).

VGen(pp) : Run (mk,aux) ← VGen(pps), (rsk, rpk) ← G(ppe), and return (mk,
aux)← ((mk, rsk), (aux, rpk)).

Sign(sk, ~m, τ) : Parse sk as (sk, ·, rpk), choose r←R Zq, and return σ ← (σ′ ·gr,~c), where

(σ′, ·)← Sign(sk, ~m, τ) and ~c← E2`+1(rpk, ~m||r).

SRGen(ski, aux) : Parse ski as (ski, rski, rpki) and aux as (aux, rpk). Obtain rki ←
SRGen(ski,aux) and prki ←RG(rski, rpk), and return rki ← (rki, prki).

VRGen(pki,mk, rki) : Parse pki as pki and mk as (mk, ·), obtain aki ← VRGen(pki,
mk) and return aki ← (aki, rki).

Agg((aki)i∈[n], (σi)i∈[n], τ, f) : For i ∈ [n] parse aki as (aki, (rki, prki)), σi as (σ′i,~ci).

Output Λ← (~c′, µ, τ), where

(~c′i ←RE(prki,~ci))i∈[n], (~c′, µ, τ)← Agg((aki)i∈[n], (σ
′
i,~c
′
i)i∈[n], f).

AVerify(mk, Λ, ID, f) : Parse mk as (mk, rsk) and Λ as (~c, µ, τ), obtain ~m′||r ←
D1
`+1(rsk,~c) and return (~m, τ) if the following holds, and (⊥,⊥) otherwise:

AVerify(mk, (~m, µ · (gr)−1, τ), ID, f) = 1

Scheme 4: Output private HPRA scheme for Flin with Eval := EV

Note on the Instantiation. Augmenting Scheme 2 to obtain Scheme 4 us-
ing HPRElin requires an alternative decryption strategy for the vector component
containing r, as r is uniformly random in Zq and can thus not be efficiently recov-

15

ered. Fortunately, obtaining r ∈ Zq is not required, as gr (resp. gr) is sufficient
to unblind the signature (resp. MAC). Those values are efficiently recoverable.

Theorem 4 (proven in Appendix B.4). If Scheme 2 is signer and aggregator
unforgeable, and HPRElin for vectors is mt-IND-CPA− secure, then Scheme 4 is a
signer and aggregator unforgeable, input and output private HPRA for class Flin.

6 Conclusion

In this paper we introduce the notion of homomorphic proxy re-authenticators.
This concept covers various important issues in the multi-user data aggregation
setting not considered by previous works. We present two provably secure and
practically efficient instantiations of our novel concept, which differ regarding
the strength of the privacy guarantees. Our schemes are modular in the sense
that they are constructed from building blocks which may as well be useful in
other settings. One important building block is the concept of homomorphic
proxy re-encryption, which we also introduce and construct in this paper.

Acknowledgements. We thank David Nuñez for his valuable comments on a
draft of this paper.

References

[AB09] Shweta Agrawal and Dan Boneh. Homomorphic macs: Mac-based integrity
for network coding. In ACNS, 2009.

[AFGH06] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Im-
proved proxy re-encryption schemes with applications to secure distributed
storage. ACM Trans. Inf. Syst. Secur., 9(1), 2006.

[AGH15] Joseph A. Akinyele, Christina Garman, and Susan Hohenberger. Automat-
ing fast and secure translations from type-i to type-iii pairing schemes. In
CCS, 2015.

[AH05] Giuseppe Ateniese and Susan Hohenberger. Proxy re-signatures: new defi-
nitions, algorithms, and applications. In CCS, 2005.

[AHO16] Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo. Design in type-
i, run in type-iii: Fast and scalable bilinear-type conversion using integer
programming. In CRYPTO, 2016.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with poly-
nomial error. In CRYPTO, 2014.

[ARHR13] Erman Ayday, Jean Louis Raisaro, Jean-Pierre Hubaux, and Jacques
Rougemont. Protecting and evaluating genomic privacy in medical tests
and personalized medicine. In WPES, 2013.

[BBKS07] Mihir Bellare, Alexandra Boldyreva, K. Kurosawa, and Jessica Staddon.
Multirecipient encryption schemes: How to save on bandwidth and com-
putation without sacrificing security. IEEE Trans. Information Theory,
53(11), 2007.

[BBL16] Olivier Blazy, Xavier Bultel, and Pascal Lafourcade. Two secure anonymous
proxy-based data storages. In SECRYPT, pages 251–258, 2016.

16

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and
atomic proxy cryptography. In EUROCRYPT, 1998.

[BFKW09] Dan Boneh, David Mandell Freeman, Jonathan Katz, and Brent Waters.
Signing a linear subspace: Signature schemes for network coding. In PKC,
2009.

[BFR13] Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delega-
tion of computation on outsourced data. In CCS, 2013.

[BGP+16] Cristian Borceaa, Arnab ”Bobby“ Deb Guptaa, Yuriy Polyakova, Kurt
Rohloffa, and Gerard Ryana. Picador: End-to-end encrypted publish-
subscribe information distribution with proxy re-encryption. Future Gen-
eration Comp. Syst., 62:119–127, 2016.

[BJL16] Fabrice Benhamouda, Marc Joye, and Benôıt Libert. A new framework for
privacy-preserving aggregation of time-series data. ACM Trans. Inf. Syst.
Secur., 18(3), 2016.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-
nathan. Key homomorphic prfs and their applications. In CRYPTO, pages
410–428, 2013.

[Boy08] Xavier Boyen. The uber-assumption family. In Pairing, 2008.
[Cat14] Dario Catalano. Homomorphic signatures and message authentication

codes. In SCN, 2014.
[CCMT09] Claude Castelluccia, Aldar C.-F. Chan, Einar Mykletun, and Gene Tsudik.

Efficient and provably secure aggregation of encrypted data in wireless sen-
sor networks. ACM Trans. Sen. Netw., 5(3), 2009.

[CD16] Sébastien Canard and Julien Devigne. Highly privacy-protecting data shar-
ing in a tree structure. Future Generation Comp. Syst., 62:119–127, 2016.

[CF15] Dario Catalano and Dario Fiore. Using linearly-homomorphic encryption
to evaluate degree-2 functions on encrypted data. In CCS, 2015.

[CFW14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic sig-
natures with efficient verification for polynomial functions. In CRYPTO,
2014.

[CH07] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-
encryption. In CCS, pages 185–194, 2007.

[CMP14] Dario Catalano, Antonio Marcedone, and Orazio Puglisi. Authenticating
computation on groups: New homomorphic primitives and applications. In
ASIACRYPT, 2014.

[CSS12] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Privacy-preserving stream
aggregation with fault tolerance. In Financial Crypto, 2012.

[DL11] George Danezis and Benjamin Livshits. Towards ensuring client-side com-
putational integrity. In CCSW, 2011.

[DS16] David Derler and Daniel Slamanig. Key-homomorphic signatures and ap-
plications to multiparty signatures. Cryptology ePrint Archive, 2016:792,
2016.

[FMNP16] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin.
Multi-key homomorphic authenticators. In ASIACRYPT, pages 499–530,
2016.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
2009.

[GMP14] Felix Günther, Mark Manulis, and Andreas Peter. Privacy-enhanced par-
ticipatory sensing with collusion resistance and data aggregation. In CANS,
2014.

17

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In CRYPTO, pages 75–92, 2013.

[ID03] Anca-Andreea Ivan and Yevgeniy Dodis. Proxy cryptography revisited. In
NDSS, 2003.

[JL13] Marc Joye and Benôıt Libert. A scalable scheme for privacy-preserving
aggregation of time-series data. In Financial Crypto, 2013.

[LC13] Qinghua Li and Guohong Cao. Efficient privacy-preserving stream aggre-
gation in mobile sensing with low aggregation error. In PETS, 2013.

[LCP14] Qinghua Li, Guohong Cao, and Thomas F. La Porta. Efficient and privacy-
aware data aggregation in mobile sensing. IEEE Trans. Dep. Sec. Comput.,
11(2), 2014.

[LDPW14] Junzuo Lai, Robert H. Deng, HweeHwa Pang, and Jian Weng. Verifiable
computation on outsourced encrypted data. In ESORICS, 2014.

[LEM14] Iraklis Leontiadis, Kaoutar Elkhiyaoui, and Refik Molva. Private and dy-
namic time-series data aggregation with trust relaxation. In CANS, 2014.

[LEÖM15] Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva.
PUDA - privacy and unforgeability for data aggregation. In CANS, 2015.

[LTWC16] Russell W. F. Lai, Raymond K. H. Tai, Harry W. H. Wong, and Sher-
man S. M. Chow. A zoo of homomorphic signatures: Multi-key and key-
homomorphism. Cryptology ePrint Archive, Report 2016/834, 2016.

[LV08] Benôıt Libert and Damien Vergnaud. Multi-use unidirectional proxy re-
signatures. In CCS, 2008.

[LV11] Benôıt Libert and Damien Vergnaud. Unidirectional chosen-ciphertext se-
cure proxy re-encryption. IEEE Trans. Information Theory, 57(3), 2011.

[MLO16] Chunguang Ma, Juyan Li, and Weiping Ouyang. A homomorphic proxy
re-encryption from lattices. In ProvSec 2016, Nov. 2016.

[NA14] David Nuñez and Isaac Agudo. Blindidm: A privacy-preserving approach
for identity management as a service. Int. J. Inf. Sec., 13(2):199–215, 2014.

[NAL12] David Nuñez, Isaac Agudo, and Javier Lopez. Integrating openid with
proxy re-encryption to enhance privacy in cloud-based identity services. In
CloudCom, pages 241–248, 2012.

[NAL15] David Nuñez, Isaac Agudo, and Javier Lopez. A parametric family of attack
models for proxy re-encryption. In CSF, pages 290–301, 2015.

[NAL16] David Nuñez, Isaac Agudo, and Javier Lopez. On the application of generic
cca-secure transformations to proxy re-encryption. Security and Commu-
nication Networks, 9(12):1769–1785, 2016.

[RN10] Vibhor Rastogi and Suman Nath. Differentially private aggregation of
distributed time-series with transformation and encryption. In SIGMOD,
2010.

[SCR+11] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and
Dawn Song. Privacy-preserving aggregation of time-series data. In NDSS,
2011.

[SSZ14] Daniel Slamanig, Klaus Stranacher, and Bernd Zwattendorfer. User-centric
identity as a service-architecture for eids with selective attribute disclosure.
In SACMAT, pages 153–164, 2014.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without
reexecuting them. Commun. ACM, 58(2), 2015.

[XXW+16] Peng Xu, Jun Xu, Wei Wang, Hai Jin, Willy Susilo, and Deqing Zou.
Generally hybrid proxy re-encryption: A secure data sharing among cryp-
tographic clouds. In AsiaCCS, pages 913–918, 2016.

18

[ZSSH14] Bernd Zwattendorfer, Daniel Slamanig, Klaus Stranacher, and Felix
Hörandner. A federated cloud identity broker-model for enhanced privacy
via proxy re-encryption. In CMS, pages 92–103, 2014.

A Additional Background Material

A.1 Cryptographic Assumptions

First, we formally definite a bilinear group generation.

Definition 11. A bilinear-group generation algorithm BGGen is a PPT algo-
rithm that takes a security parameter κ and outputs a bilinear group description
BG = (q,G,GT , e, g,g) with G = 〈g〉 and GT = 〈g〉, both of order q being a
prime of bitlength κ and a pairing e : G×G→ GT .

Subsequently, we recall the bilinear decisional Diffie-Hellman assumption, a stan-
dard assumption in the bilinear setting.

Definition 12 (BDDH). The bilinear decisional Diffie-Hellman assumption holds
relative to BG ← BGGen(1κ), if for all PPT adversaries A there is a negligible
function ε(·) such that

Pr

[
r, s, t, u←R Zq, b←R {0, 1},
b? ← A

(
BG, gr, gs, gt,gb·rst+(1−b)u) : b = b?

]
≤ 1/2 + ε(κ).

In addition, we introduce a plausible assumption which follows from the Uber-
assumption [Boy08] with R = S = 〈1, 1/U, U, V,W 〉, T = 〈1〉, f = 〈UVW 〉.
Definition 13 (eBCDH). The extended bilinear computational Diffie-Hellman
assumption holds relative to BG ← BGGen(1κ), if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr

[
u, v, w←R Zq
h← A(BG, g1/u, gu, gv, gw)

: h = e(g, g)uvw
]
≤ ε(κ).

A.2 Security Definitions for Linearly Homomorphic MACS

While we omit the obvious correctness definition, we recall the unforgeability
definition. The environment maintains a list SIG which is initially empty and
the sign oracle Sig is defined as:

Sig((~vi)i∈[n], (idi)i∈[n], τ) : If SIG[τ] 6= ⊥ or there exists u, v ∈ [n], u 6= v so that
idu = idv return ⊥. Otherwise, compute µi ← S(sk, ~vi, idi, τ) for i ∈ [n], set
SIG[τ]← {(~vi, idi)}i∈[n] and return (µi)i∈[n].

Definition 14. A HOM-MAC is unforgeable if for all PPT adversaries A there
exists a negligible function ε(·) such that:

Pr

pp← P(1κ, `), sk← G(pp),
(~y?, µ?, τ?, (id?i)i∈[n],
f?)← ASig(·,·,·)(pp)

:

V(sk, ~y?, µ?, τ?, (id?i)i∈[n], f
?) = 1 ∧

f? ∈ Flin ∧ (@(~vj)j∈[n] :
(∀j ∈ [n] : (~vj , id

?

j) ∈ S[τ?]) ∧
f∗((~vj)j∈[n]) = ~y?)

 ≤ ε(κ).

19

B Security Proofs

B.1 Proof of Lemma 1

We weaken BDDH to BDDH′, where the adversary is given (BG, ga,gb,gc) ∈
G1 ×GT 2 with a, b←R Zq and needs to decide whether c = ab, or c is random in
Zq. Clearly, BDDH′ is weaker than BDDH: given a BDDH instance (BG, ga, gb, gc,
gd) one can use the BDDH′ distinguisher on (BG, ga, e(gb, gc),gd).

Proof. We prove Lemma 1 under BDDH′ (and, therefore, BDDH) and let qR ≤
poly(κ) be the number of random oracle queries (also including the calls we use
internally in the reduction). We obtain a BDDH′ instance (BG, ga,gb,gc), choose
((xi, yi)←R Zq2)i∈[qR], set ((gai ,gb,gci)← ((ga)xigyi),gb, (gc)xi(gb)yj)i∈[qR], cho-

ose (ui)i∈[`]←R Z`q, and set (gi ← gui)i∈[`]. Finally, set pp ← (BG, H, (gi)i∈[`]),
start A on pp and simulate the oracles as follows. We use a counter j initialized
to 1 and an initially empty list H.

H(x) : If x /∈ H set H[x]← (gaj ,gcj) and j ← j + 1. Return H[x][1].
Sig((~vi)i∈[n], (idi)i∈[n], τ) : As the original oracle, except that the values (µi)i∈[n]

are computed as follows. For i ∈ [n] call H(τ ||idi), set µi ← H[τ ||idi][2] ·∏
j∈[`](g

b)vij ·uj and return (µi)i∈[n].

Now, if the BDDH′ instance is valid the simulation is perfect. If the BDDH′

instance is invalid the responses of the Sig oracle are uniformly random and
independent values from GT and therefore do not reveal anything about the
MAC key b. In this case the adversary can only guess a forgery with probability
1/q. Both cases are computationally indistinguishable. ut

B.2 Proof of Lemma 2

We directly start with IND-CPA− as IND-CPA straight-forwardly implies IND-
CPA−.

Proof. We prove the lemma by bounding the success probability in the mt-IND-
CPA− game relative to the IND-CPA− bound. Therefore, we let qG be the number
of queries to the G oracle.

Game 0: The mt-IND-CPA− game.
Game 1: As Game 0, but we guess the index i? beforehand. If our guess is

wrong we abort.
Transition0→1 : We have that Pr[S0] = qG · Pr[S1].
Game 2: As Game 1, but we engage with an IND-CPA′ challenger, obtain

(pp, pkt, pkh, rkt→h), set HU[i?] ← (⊥, pkt, rkt→h) and start A on (pp, pkh).
Furthermore, we simulate the oracles when queried for user i? as follows:
G(i?) : Return HU[i?][2] (i.e., pkt).
RG(i?) : Return HU[i?][3] (i.e., rkt→h).
The oracle calls for the remaining indexes are simulated honestly.

Transition1→2 : This change is conceptual.

20

Whenever an adversary in Game 2 outputs its guess b?, we can forward b? to the
IND-CPA− challenger and win whenever the adversary wins Game 2. As we have
that Pr[S1] = Pr[S2] ≤ εcpa−(κ), and, thus, Pr[S0] ≤ qG · εcpa−(κ), this concludes
the proof. ut

B.3 Proof of Theorem 1

We prove Theorem 1 by proving Lemmata 3-5.

Lemma 3. If Scheme 1 is unforgeable, then Scheme 2 is signer unforgeable.

Proof. We show that an efficient adversaryA against signer unforgeability can ef-
ficiently be turned into an efficient adversary B against unforgeability of Scheme 1
by presenting a reduction R, which interacts with the unforgeability challenger
of Scheme 1 and simulates the environment for A, i.e., so that B = (A,R).
R obtains pp from C, starts A on pp and aux = ∅ and simulates the environ-

ment for A as follows.

VR(i) : If S[i] = ⊥ ∨ RK[i] = ⊥ return ⊥, otherwise set AK[i]← >.
A((σji)i∈[n], (ji)i∈[n], τ, f) : Check whether any (Verify(pkji , ~mji , τ, σji) = 0)i∈[n],

whether there is any duplicate index j in (ji)i∈[n], whether SIG[τ] 6= ⊥, or
whether AK[ji] = ⊥ for any i ∈ [n], and return ⊥ if so. Otherwise, set
SIG[τ]←

⋃
i∈[n]{(~mji , idji)} compute (µi)i∈[n] ← C.Sig((~mji)i∈[n], (idji)i∈[n],

τ) and return Λ← (Eval(f, (mji)i∈[n]), µ, τ), where µ←
∏
i∈[n] µ

ωi
i .

The oracles SG, SKey, and SR are simulated honestly. If A eventually out-
puts a forgery (Λ?, ID?, f?) the reduction R can parse Λ? as (~m, µ, τ), forward
(~m, µ, τ, ID?, f?) to C and wins the unforgeability game with the same probabil-
ity as A breaks HPRA unforgeability. ut

Lemma 4. If the eBCDH assumption holds, then Scheme 2 is aggregator un-
forgeable in the ROM.

Our proof is along the lines of [BFKW09], but we require a slightly different
assumption (for eBCDH, see Appendix A.1).

Proof (Aggregator Unforgeability). We construct an efficient algorithm R which
turns an efficient algorithm A breaking aggregator unforgeability into an effi-
cient eBCDH solver. R internally maintains the lists Rnd and H, which are ini-
tially empty. R obtains an extended bilinear CDH instance eBCDHκ ← (BG, g1/β,
gβ , gα/β, gγ) relative to the security parameter κ and runs the following modified
Gen algorithm Gen′ to obtain pp.

Gen′(eBCDHκ, `) : For i ∈ [`], choose Rnd[i]← (si, ti)←R Z2
q and set gi ← (gγ)sigti .

Fix H : Zq → G and return pp← (BG, H, (gi)i∈[`], `)

Then, R starts A on pp and aux = ∅, where the oracles are simulated as follows
and we assume that all oracles have implicit access to the state ofR (in particular
to Rnd and H):

21

H(x) : If x ∈ H return H[x][1]. Otherwise choose (ρ, ν)←R Z2
q, set H[x]← ((gγ)ρgν ,

ρ, ν) and return H[x][1].
SG(i) : Choose ξ←R Z∗q , and set S[i] ← (ξ, (gβ)ξ, (g1/β)1/ξ). Then, return ((gβ)ξ,

(g1/β)1/ξ).
Sig((ji)i∈[n], (~mji)i∈[n]) : As the original oracle, except: choose τ ←R Zq and for

all i ∈ [n] choose νi←R Zq. If τ ||S[ji][2] ∈ H for any i ∈ [n] abort. Other-
wise, for all i ∈ [n], set ρi ← −

∑
k∈[`] Rnd[k][1] ·mji [k], and H[τ ||S[ji][2]] ←

((gγ)ρigνi , ρi, νi), compute δ ← νi +
∑
k∈[`]mji [k] · Rnd[k][2] and return

(σji ← S[ji][2]δ)i∈[n] and τ .
VR(i) : If S[i] = ⊥ ∨ RK[i] = ⊥ ∨ AK[i] 6= ⊥ return ⊥. Otherwise, set AK[i] ←

(gα/β)1/S[i][1].

The oracles SR and VRKey are simulated honestly. If A eventually outputs a
valid forgery (Λ?, ID?, f?) = ((~m?, µ?, τ?), ID?, f?) with f? = (ω?i)i∈[n], we know
that it is of the form

µ? =
(
e(
∏
i∈[`] g

m?i
i , g) ·

∏
i∈[n] e(g

ω?i , H(τ?||id?i))
)α

=

(gαγ)
∑
i∈[`]m

?
i ·Rnd[i][1](gα)

∑
i∈[`]m

?
i ·Rnd[i][2]·

(gαγ)
∑
i∈[n] ω

?
i ·H[τ

?||pk?i][2](gα)
∑
i∈[n] ω

?
i ·H[τ

?||pk?i][3].

Then we let

ψ =
∑
i∈[`]m

?
i · Rnd[i][1] +

∑
i∈[n] ω

?
i · H[τ?||pk?i][2],

υ =
∑
i∈[`]m

?
i · Rnd[i][2] +

∑
i∈[n] ω

?
i · H[τ?||pk?i][3],

and output gαγ ← (µ? · e(gβ , gα/β)−υ)1/ψ as eBCDH solution. The simulation is
negligibly close to the original game: all values are identically distributed; the
signature is uniquely determined by the responses of the random oracle and
the key, and, thus, also identically distributed as a real signature. Collisions in
the answers of the random oracle only occur with negligible probability. Con-
sequently, also an abort happens with negligible probability. What remains is
to analyze the probability that the forgery output by A is of the form that we
actually extract gαγ , i.e., we have that ψ 6= 0 which we define as event E. By the
same argumentation as [BFKW09] we obtain that Pr[¬E] = 1/q which concludes
the proof (cf. [BFKW09, Proof of Theorem 6] for a more detailed probability
analysis). ut

Lemma 5. Scheme 2 is input private.

Proof. Both input privacy ensembles are identical. ut

B.4 Proof of Theorem 4

We prove Theorem 4 by proving Lemma 6-8.

Lemma 6. If Scheme 2 is signer and aggregator unforgeable, then Scheme 4 is
so as well.

22

Proof. Additional encryption does not influence unforgeability. ut

Lemma 7. Scheme 4 is input private.

Proof. Both input privacy ensembles are identical. ut

Lemma 8. If HPRElin for vectors is mt-IND-CPA− secure, then Scheme 4 is
output private.

Proof. We prove output privacy using a sequence of games, and let qRoS be the
cumulative number of signing calls within the RoS queries.

Game 0: The original privacy game with bit b = 0.

Game 1i(1 ≤ i < qRoS): As Game 0, but we modify i-th Sign run within RoS as
follows:

Sign(sk, ~m, τ) : Parse sk as (sk, rsk, rpk), choose r←R Zq, choose ~ρ←R Z`+1
q , and

return σ ← (σ′ ·gr,~c), where (σ′, ·)← Sign(sk, ~m, τ) and ~c← E2`+1(rpk, ~ρ′).

Transition1i→1i+1 : We show that the success probability of a distinguisher
D1i→1i+1 is bounded by εmu-cpa-(κ). To do so, we present a hybrid game, which,
based on the bits chosen by the challengers, interpolates between Game 0 and
Game 11 (resp. Game 1i and Game 1i+1). Thereby, we use Cκ to denote an mt-
IND-CPA− challenger for HPRElin for vectors. Firstly, we run the modified Gen
algorithm Gen′:

Gen′(1κ, `) : Run pps ← Gen(1κ, `), obtain (ppe, pkh) ← Cκ , store pkh and
return pp← (pps, ppe).

Secondly, we run the modified VGen algorithm VGen′:

VGen′(pp) : Run (mk,aux) ← VGen(pps), rpk← pkh , set rsk← ⊥ . Return
(mk, aux)← ((mk, rsk), (aux, rpk)).

Thirdly, we modify the oracles SG as well as SR.

SG(i) : If S[i] 6= ⊥ return ⊥. Otherwise, run (idi, ski, pki)← SGen′(pp, i, CU), set
S[i]← (idi, ski, pki) and return (idi, pki), where SGen′ is defined as follows:

SGen′(pp, i, CU) : Run (id, sk,pk) ← SGen(pps). If i ∈ CU, run (rsk, rpk) ←
G(ppe). Otherwise, obtain rpk ← Cκ.G(i), set rsk ← ⊥. In any case set
(id, sk, pk)← (id, (sk, rsk, rpk),pk).

SR(i) : If S[i] = ⊥ ∨ RK[i] 6= ⊥ return ⊥. Otherwise, if i ∈ CU set RK[i]← SRGen(
S[i][2], aux) and return RK[i]. If i /∈ CU simulate the oracle as for i ∈ CU, but
with the following modified SRGen algorithm SRGen′:

SRGen′(ski, aux) : Parse ski as (ski,⊥, rpki) and aux as (aux, rpk). Return
rki ← (rki, prki), where rki ← SRGen(ski,aux), and prki ← Cκ.RG(i).

Finally, we modify the i-th Sign run within RoS as follows:

23

Sign(ski, ~m, τ) : Parse ski as (ski,⊥, rpki), choose r←R Zq, choose ~ρ←R Z`+1
q , and

return σ ← (σ′ · gr,~c), where (σ′, ·)← Sign(ski, ~m, τ), and ~c← Cκ(~m||r, ~ρ,
i).

Here, ~c ← Cκ(~m||r, ~ρ, i) denotes that a challenge ciphertext with respect to
messages ~m||r and ~ρ, and signer i is obtained from the challenger. The oracles
SKey, VR, and VRKey, are simulated honestly. Now, the bit b chosen by Cκ
switches between the distributions in Game i and Game i+ 1.

In Game 1qRoS all ciphertexts are encryptions of random values and the gr’s
unconditionally hide the signed messages in the signatures (signatures can be
viewed as Pedersen commitments under randomness r), i.e., signatures are dis-
tributed as signatures on random vectors, and we are in the game where b = 1;
the distinguishing probability between the original Game 0 and Game 1qRoS is
negligible. ut

24

	Homomorphic Proxy Re-Authenticators and Applications to Verifiable Multi-User Data Aggregation

