
Faster Bootstrapping of FHE over the Integers

Jung Hee Cheon, Kyoohyung Han, and Duhyeong Kim

Seoul National University, Republic of Korea
jhcheon@snu.ac.kr, satanigh@snu.ac.kr, doodoo1204@snu.ac.kr

Abstract. Bootstrapping in fully homomorphic encryption (FHE) over the integers is a ho-
momorphic evaluation of the squashed decryption function suggested by van Dijk et al. The
typical approach for the bootstrapping is representing the decryption function as a binary cir-
cuit with a fixed message space. All bootstrapping methods in FHEs over the integers use this
approach; however, these methods require too many homomorphic multiplications, slowing down
the whole procedure. In this paper, we propose an efficient bootstrapping method using various
message spaces. Our bootstrapping method requires only O(log2 λ) number of homomorphic
multiplications, which is significantly lower than Õ(λ4) of the previous methods. We implement
our bootstrapping method on the scale-invariant FHE over the integers; the CLT scheme in-
troduced by Coron, Lepoint and Tibouchi. It takes 6 seconds for a 500-bit message space and
a 72-bit security in PC. This is the fastest result among the bootstrapping methods on FHEs
over the integers. We also apply our bootstrapping method to evaluate an AES-128 circuit ho-
momorphically. As a result, it takes about 8 seconds per 128-bit block and is faster than the
previous result of homomorphic evaluation of AES circuit using FHEs over the integers without
bootstrapping.

1 Introduction

Following Gentry’s blueprint [9], the essential step from Homomorphic Encryption (HE) to
Fully Homomorphic Encryption (FHE) is a homomorphic evaluation of decryption function,
which is called bootstrapping. The first FHE over the integers was proposed by van Dijk
et al. [14], and it was extended to the batch version [4] and the non-binary message space
version [13]. Furthermore, following the scale-invariant technique of a lattice-based FHE [2],
so called the modulus switching technique, Coron et al. [6] succeeded to construct a scale-
invariant FHE over the integers.

In FHEs over the integers with the secret integer p ∈ Z+, the message m ∈ Zt is encrypted
into an integer c = pq + te+m, pq + bp/tem+ e or p2q + bp/te(m+ tr) + e according to the
schemes [5, 6, 14], where q, r, e are uniform randomly chosen integers from some prescribed
intervals. Hence the bootstrapping procedure is to homomorphically evaluate the decryption
function

m =

⌊
t

p
· c
⌉

mod t or c− p ·
⌊
c

p

⌉
mod t.

The complicated division by p can be relaxed by using the hardness assumption of the sparse
subset sum problem (SSSP): 1/p ≈

∑Θ
i=1 siyi mod t for secret bit si ∈ {0, 1}, public rational

number yi ∈ [0, t) of κ-bit precision with κ > log |c| + λ and Θ = Õ(λ4). In that case, the
decryption function is reduced to

m =

⌊
Θ∑
i=1

si
wi
tn−1

⌉
mod t or c− p ·

⌊
Θ∑
i=1

si
wi
tn

⌉
mod t,

where n = O(logt λ) and wi = bc · yi · tne mod tn+1.
In the previous methods [13,14], each si is encrypted under a HE with message space Zt,

so we need to expand each wi t-adically and each digits of siwi are encrypted separately. As
a result, each of digits of siwi are encrypted as different ciphertexts, so the homomorphic
evaluation of the additions in the decryption circuit should be done digit-wisely. In that case,
a large number of carry computations are required, which results in Õ(λ4) homomorphic mul-
tiplication in the bootstrapping. One possible approach to avoid this massive homomorphic
multiplication is to encrypt si with a HE with plaintext space as large as wi. However, in
that case, log t-bit should be homomorphically extracted and this is regarded as a problem
as hard as bootstrapping.

1.1 Overview of our Bootstrapping method

The idea of our new bootstrapping method is to use a homomorphic encryption scheme
with various message spaces. Let us denote EncM(m) := a ciphertext of message m un-
der an encryption with plaintext space M. For a given bootstrapping key (bki)1≤i≤Θ =

1

(EncZtn+1 (si))1≤i≤Θ, the output of the homomorphic additions for bootstrapping is the ci-

phertext ĉ of the form ĉ =
∑Θ

i=1wi · bki = EncZtn+1 (m · tn +
∑n−1

j=0 zj · tj) for some integers
zj ∈ [0, t). To complete the bootstrapping process, it is required to compute the ciphertext
c = EncZt(m) from the ciphertext ĉ.

For this, we first suggest plaintext space contraction and dilation functions over the ci-
phertexts of HEs over the integers.

PSConi : EncZ
tk

(m · ti) 7→ EncZ
tk−i

(m) for 1 ≤ i < k,

PSDili : EncZ
tk−i

(m) 7→ EncZ
tk

(m · ti) for 1 ≤ i < k,

which do not affect error growth. In case of lattice-based FHEs, these techniques already
exist and bootstrapping can be done efficiently by exploiting them. In this paper, we sug-
gest PSCon and PSDil techniques for HEs over the integers. With these techniques, we can
homomorphically extract n-th digit of (m · tn +

∑n−1
i=0 zi · ti) in HEs over the integers using

a gap-increasing polynomial Ft,n(X) suggested by Halevi and Shoup [12], which satisfies the
following equation:

Ft,n(x · tk + a) = y · tk+1 + a for a ∈ [0, t) ∩ Z, x, y ∈ Z.

The overview of homomorphic digit extraction with the functions PSCon and PSDil in
HE schemes over the integers are follows. For digit extraction, we need to compute ci =
EncZtn−i+1 (txi + zi) for 0 ≤ i ≤ n and xi ∈ Z. Assume that following ciphertexts are given:

c0 = EncZtn+1 (tx0 + z0)

c1 = EncZtn (tx1 + z1)

...

ci−1 = EncZtn−i+2 (txi−1 + zi−1).

By (i − j) time evaluating Ft,n(X) for each cj and using PSDil technique, we can get c′j =

EncZtn+1 (yjt
i+1+zjt

j) for each j ∈ {0, 1, · · · , i−1}. By subtraction and PSCon technique, we
get ci = EncZtn−i+1 (txi + zi). Now we can get ci from cj for 1 ≤ j ≤ i− 1, so we can compute
cn = EncZt(m) recursively. The figure below is our bootstrapping process with simple case of
n = 2 and t = 2.

Fig. 1: Our bootstrapping process for simple case. Note that F2,n(X) = X2 for all n ∈ N. Here star shape
denotes some integer of which we do not need to consider the exact value.

As you can see in Figure 1, our bootstrapping process is simpler than previous works
which are very hard to describe. In our implementations for the security parameter λ = 72,
we set parameters n = 5 and t = 2, which are very small.

2

1.2 Our Result

Faster bootstrapping method. We propose a faster bootstrapping method for FHEs over
the integers than previous methods [13, 14]. Since the complexity of long integers addition
depends on both the length and the number of the integers, the number of multiplications in
previous works relies on the large parameter Θ = Õ(λ4). Contrary to that, the complexity
of homomorphic digit extraction only depends on the small parameter n = O(log λ), and
this difference makes our method efficient. A table below is a comparison with the previous
method [13].

[NK15] Our Method

Degree O(λ) O(λ1+ε)

#.Hommult O(λ4 log6 λ) O(log2 λ)

Table 1: Comparison with [NK15] method.

Note that the small constant ε is consequence of using the large message space Ztn+1 .

An implementation on the CLT scheme. The CLT scheme has the fastest homomorphic
multiplication algorithm among the HEs over the integers, and the ciphertext form of the
scheme is appropriate to apply our method. Therefore, we apply our method on the CLT
scheme, and provide a precise noise analysis of the bootstrapping procedure. Our implemen-
tation on the CLT scheme takes about 6 seconds for a 500-bit message space with a 80-bit
security. This result is far superior comparing to the previous result in [4], 13 minutes for a
500-bit message space.

Homomorphic evaluation of AES circuit. Due to the inefficiency of bootstrapping, ho-
momorphic evaluations of AES circuit with leveled or scale-invariant FHEs so far have been
implemented without bootstrapping. Contrary to the previous works, we implement a ho-
momorphic evaluation of an AES-128 circuit using our bootstrapping method on the CLT
scheme with low depth parameters. In our implementation, the evaluation takes about 8 sec-
onds per block, and this result is faster than the result in [6] without bootstrapping (with
large depth parameters), 26 seconds per block. Furthermore, this is the first time that ho-
momorphic evaluation of AES circuit with bootstrapping is more efficient than homomorphic
evaluation of AES circuit without bootstrapping.

1.3 Notation

• [n] = {0, 1, · · · , n− 1}, and Zn is treated as [n] in this paper.

• a mod p for a ∈ R is a unique number ∈ [0, p) such that a − (a mod p) is an integer
multiple of p.

• bae is the nearest integer of a, and [a]p is a unique integer in (−p/2, p/2] such that a− [a]p
is a multiple of p.

• a(t)〈r〉 := ak for a non-negative integer a =
∑
ait

i and ai ∈ [t]. When t = 2, we omit the
subscript t.

2 Preliminaries

In this section, we introduce a squashing technique of FHEs over the integers and a digit
extraction technique in detail, which are used for our bootstrapping method.

2.1 Squashed Decryption Function

In the FHEs over the integers with secret integer p, a ciphertext of message m ∈ [t] is of the
form c = pq + te+m or pq + p

tm+ e for q, e ∈ Z. Each form of ciphertext is decrypted by(
c− p ·

⌊
c

p

⌉)
mod t or

(⌊
t

p
· c
⌉)

mod t.

The decryption function involves the computation of bc/pe and this should be evaluated ho-
momorphically for bootstrapping. Since division is very complicated for homomorphic evalu-
ation, decryption functions of FHEs over the integers are squashed for efficient bootstrapping.

3

The Squashing is a procedure of expressing secret value 1/p as a subset sum of public numbers
within very small error, which enable to bootstrap efficiently.

The squashing technique was first introduced in [14], and generalized in [13]. Let κ′, Θ′,
and θ′ be additional parameters satisfying κ′ > (γ+λ)/ log t. The concrete parameter settings
of Θ′ and θ′ are discussed in Section 4.5. The method of squashing is identical to that in [13].

• KeyGen. Generate sk∗ = p and pk as before. Set xp = btκ′+1/pe, choose a random Θ′-bit
vector s with Hamming weight θ′, and let S = {i : si = 1}. Choose random integers
ui ∈ [0, tκ

′+1) such that
∑

i∈S ui = xp. Output secret key sk = s and pk = (pk∗,u).

• Encrypt. c∗ is a ciphertext of a given FHE over the integers. For 1 ≤ i ≤ Θ′, let wi given
by an integer nearest to the value of c∗ · ui/tκ

′−n where n = dlogt θ
′e+ 3. Output both c∗

and w.

• Decrypt. Output m′ ← b
∑
siwi/t

ne mod t.

The squashing technique can be applied not only to the original scheme in [6], but also to
the batch version of the scheme by squashing for each pj as in [13].

2.2 Digit Extraction Technique

Let F k(X) be a k-time evaluation of the function F . In general, F (X) = Xt does not satisfy
the following property when t > 2:

F k(x) mod tk+1 = x mod t ∀k ∈ N, x ∈ [0, t) ∩ Z.

In [12], for the prime t and the positive integer e, they constructed the polynomial Ft,e(X)
satisfying the above equation for any k ≤ e. With this polynomial, we can extract a〈e′〉t
for 1 ≤ e′ ≤ e using similar method in [10]. Following lemmas are about existence and
construction of the polynomial Ft,e(X), which are introduced in [12].

Digit Extraction Algorithm:

Input: non-negative integers x and r

Compute xi for 1 ≤ i ≤ r as following :

x0 = x

x1 =
[x− Ft,r(x)]tr+1

t

x2 =
[x− F 2

t,r(x)− tFt,r(x1)]tr+1

t2

x3 =
[x− F 3

t,r(x)− tF 2
t,r(x1)− t2Ft,r(x2)]tr+1

t3

...

xr =
[x− F rt,r(x)−

∑r−1
i=1 t

iF r−it,r (xi)]tr+1

tr

Output: xr = x(t)〈r〉

Fig. 2: Digit Extraction Algorithm

Lemma 1. (Corollary 5.4 in [12]) For every prime t, there exists a sequence of integer
polynomial f1, f2, · · · , all of degree ≤ t − 1, such that for every exponent e ≥ 1 and every
integer z = z0 + tez1 (z0 ∈ [t], z1 ∈ Z), we have

zt ≡ z0 +

e∑
i=1

fi(z0)t
i (mod te+1).

Lemma 2. (Corollary 5.5 in [12]) For every prime t and every e ≥ 1, there exists a polyno-
mial Ft,e of degree p such that the equality Ft,e(z0 + te

′
z1) ≡ z0 (mod te

′+1) holds for every
integer z0, z1 with z0 ∈ [t] and every 1 ≤ e′ ≤ e .

Using a special polynomial Ft,r, we can extract x(t)〈r〉 from x, through a polynomial for
any non-negative integers x and r, by digit extraction algorithm in Figure 2. Note that the
equality in Lemma 2 implies that recursively defined xis are integers.

4

3 Our Bootstrapping Method

3.1 Plaintext Space Contraction and Dilation

Let Ek(m) is a set of ciphertexts which encrypt m with message space M = Ztk . For all HE
schemes over the integers, we can construct following two plaintext space switching functions
for 1 ≤ i < k :

PSConi : Ek(tim)→ Ek−i(m),

PSDili : Ek−i(m)→ Ek(tim).

The definitions of these functions are somewhat different depending on the form of a cipher-
text.

c = pq+ tr+m In the schemes of [14] and [13], with public exact multiplication x0 = pq0,
plaintext space switching functions are described as follows:

• PSConi(c) = [t−i]x0 · c mod x0,

• PSDili(c) = tic mod x0.

Well-definedness of these functions can be checked easily by following equations:

PSConi(c) = [t−i]x0pq + [t−i]x0t
kr + [t−i]x0t

im mod x0

= pq′ + tk−ir +m,

PSDili(c) = tipq + ti+1r + tim mod x0

= pq′ + ti+1r + tim.

c = pq + bp/te ·m+ r In the schemes of [5] and [6], the functions PSConi and PSDili are
identity functions since ⌊ p

tk

⌉
(tm+ tkr∗) =

⌊ p

tk−1

⌉
(m+ tk−1r∗) + ε,

⌊ p
tk

⌉
· tm =

⌊ p

tk−1

⌉
·m+ ε.

3.2 Homomorphic digit extraction

The rounding function in the squashed decryption function can be expressed as follows:

b
∑

siwi/t
ne mod t = b

∑
siwi/t

n + 0.5c mod t

= (
∑

siwi + btn/2c)(t)〈n〉.

Thus, the squashed decryption could be expressed as additions and a digit-extraction. The
problem is how to homomorphically evaluate the function (

∑
siwi+ btn/2c)(t)〈n〉 where each

wi is defined in Section 2.

Let t be a prime integer, n be a positive integer less than log λ, and M be a message
space. We follow notations in section 2.1 about squashing. In this Section, we suggest a
new bootstrapping method. It works on any HE over the integers which satisfies following
conditions:

1. The form of a decryption function is b
∑
siwi/t

ne mod t or c− b
∑
siwi/t

ne mod t where
wi can be computed by public values c and ui.

2. It supports homomorphic operations with M = Zti for 1 ≤ i ≤ n+ 1.

3. There exists a polynomial time algorithm HomExt, a function from En+1(m) to E1(m〈n〉t),
which is a homomorphic evaluation of digit-extraction algorithm in Figure 2.

Given a HE over the integers satisfying the conditions above, our bootstrapping method
works as diagram below. New parameters s0 = 1 and w0 = btn/2c are included in the
summation.

5

c EncZ
tn+1 (

∑
siwi)

EncZt(m)

EncZ
tn+1 (si), ui

HomExt
Bootstrap

Actually, all HEs over the integers satisfy the above conditions, which means our method
can be applied to all integers-based HEs. In the diagram, our bootstrapping method consists
of two steps: addition and extraction. Since wi can be computed by public values and the set
{EncZtn+1 (si)} is given as bootstrapping key, the addition step in this diagram is composed of
homomorphic additions onM = Ztn+1 and modulus operation. Note that modulus operation
mod tn+1 is automatically done since the message space is given by M = Ztn+1 .

As a result, the extraction step HomExt is the most important part and this part takes the
most of running time in bootstrapping procedure. HomExt is a homomorphic evaluation of
digit-extraction algorithm in the Figure 2. The algorithm consists of operations on Zti , mul-
tiplication and division by t, and modulus operation mod ti for 1 ≤ i ≤ n. In the (j + 1)−th
stage of Compute in digit extraction algorithm (in Figure 2), operations on Ztk become
operations on Ztk−j after divided by tj since the numerator is multiple of tj . Furthermore,
operations on Ztk can be regarded as operations on Ztk+j after multiplied by tj . Therefore, we
can absolutely evaluate digit-extraction with the plaintext space contraction function PSCon
and the plaintext space dilation function PSDil.

As mentioned in section 2.2, the digit extraction algorithm can be seen as a polynomial
of degree tn with n(n+ 1)/2 times evaluation of Fn,t. Since n is an integer less than logt λ,
the number of homomorphic multiplications in HomExt is O(log2λ). Actually the degree of
the algorithm is tn ≈ λ; however, we use the large message space Ztn+1 in the procedure.
Therefore, we write the degree as O(λ1+ε) and ε depends on which scheme is used for our
bootstrapping method. We will minutely analyze the degree and error growth of our method
applying to scale-invariant homomorphic encryption scheme over the integers, CLT scheme
[6], in the next section.

4 Our Method on scale-invariant homomorphic encryption scheme

We apply our method on scale-invariant homomorphic encryption scheme in [6], the CLT
scheme, since error growth during homomorphic evaluation is linear so that it is suitable to
choose low depth parameter for implementation. Furthermore, as mentioned in remark 1,
since PSCon and PSDil are trivial mapping, the description of HomExt is very simple.

As mentioned above, we need three conditions: squashed decryption function with M =
Zt, homomorphic operations on message spaces Zta , and homomorphic digit extraction tech-
nique. The scheme below is almost same with scale-invariant homomorphic encryption scheme
in [6], and we just extend it to the message space Zt for the prime t.

4.1 Scale-invariant homomorphic encryption scheme with M = Zt

Scheme Description In this section, we follow the notation in [6], and describe the scheme
with the message space Zt for the prime t. For an η-bit odd integer p and an integer q0 in
[0, 2γ/p2), we define the set

Dρp,q0 = {p2 · q + r : Choose q ← [0, q0), r ← (−2ρ, 2ρ)}.

• KeyGent(1
λ). Generate an odd η-bit integer p and a γ-bit integer x0 = q0 · p2 + r0 with

r0 ← (−2ρ, 2ρ) ∩ Z and q0 ← [0, 2γ/p2) ∩ Z. Let xi ← Dρp,q0 for 1 ≤ i ≤ τ , y′ ← Dρp,q0 , and
y = y′+bp/tc, which is the encryption of 1. Let z be a vector of length Θ, the components

6

of which have κ = 2γ+2 bits of precision following the binary point. Let s ∈ {0, 1}Θ such
that

t · 2η

p2
= 〈s, z〉+ ε mod (t · 2η),

with |ε| ≤ 2−κ. Now define

σ = q · p2 + r +
⌊
PowersofTwoη(s) ·

p

2η+1

⌉
,

where the components of q are randomly chosen from [0, q0) ∩ Z and those of r from
(−2ρ, 2ρ)∩Z. The secret key is sk = {p} and the public key is pk = {x0, x1, · · · , xτ , y,σ, z}.

• Encryptt(pk,m ∈ [t]). Choose a random subset S ⊂ {1, · · · , τ} and output

c← [m · y +
∑
i∈S

xi]x0 .

• Decryptt(sk, c). Output m←
⌊
t · c
p

⌉
mod t.

• Addt(pk, c1, c2). Output c′ ← c1 + c2 mod x0.

• Convertt(pk, c). Output c′ ← 2 · 〈σ,BitDecompη(c)〉 where c = (bc · zie mod 2η)1≤i≤Θ.

• Multt(pk, c1, c2). Output c′ ← [Convert(pk, c1 · c2)]x0 .

Semantic Security Security for this scheme is from same problem introduced in [6]. The
only difference is change of message space from Z2 to Zt, so we omit this part.

Conditions on the Parameters The parameters must satisfy the following conditions for
security parameter λ and message space Zt:

• ρ = Ω(λ) to avoid brute force attacks on noise [3, 8],

• η ≥ ρ + O(L(log λ + log t)), where L is the depth of multiplication of the circuits to be
evaluated,

• γ ≥ ω((2η − ρ)2 · log λ) to avoid lattice-based attacks [7, 14],

• Θ2 ≥ γ · ω(log λ) to avoid lattice attacks on the subset sum problem [7],

• τ ≥ γ + 2λ to apply the leftover hash lemma.

4.2 Homomorphic Operations with M = Zta

During bootstrapping, we use homomorphic addition and multiplication between ciphertexts
on the message spaceM = Zta for 1 ≤ a ≤ logt λ. Homomorphic addition and multiplication
are described below. Note that x0 is defined in the same manner as in the previous section,
and the definition of Eval is non-deterministic since the method of the evaluation depends on
the formation of a given polynomial.

• Addat (pk, c1, c2). Output c1 + c2 mod x0.

• Multat (pk, c1, c2). Output Convertt(pk, t
a−1 · c1 · c2)

• Evalat (pk, f, c). Output the homomorphic evaluation of the ciphertext c with the polyno-
mial f by operations defined above.

A ciphertext c = q · p2 + (tar∗ + m) · bp/tac+ r has two kinds of errors, r and r∗. We call c
a ciphertext with noise (ρ, ρ∗) if |r| < 2ρ and |r∗| < 2ρ

∗
. Lemma 3 shows the correctness of

Addat and Multat as well as analysis on noise growth during the homomorphic operations. We
notice that the proof of Lemma 3 is definitely not new one compared to the proof in [6]; we
only generalize it from the case of t = 2 to the case of arbitrary prime t.

Lemma 3. (Noise growth analysis) Let c1 and c2 be ciphertexts with noise (ρ1, ρ
∗
1) and

(ρ2, ρ
∗
2), respectively. Let ρ = max(ρ1, ρ2) and ρ∗ = max(ρ∗1, ρ

∗
2). Then,

- Addat (pk, c1, c2) is a ciphertext with noise (ρ+ 2, ρ∗ + 1)

- Multat (pk, c1, c2) is a ciphertext with noise (ρ+ ρ∗ + a log t+ 8, logΘ)

7

Proof. Let c1, c2 as below.

c1 = q1 · p2 + bp/tac · (m1 + tar∗1) + r1,

c2 = q2 · p2 + bp/tac · (m2 + tar∗2) + r2.

Then addtion of c1 and c2 is

c1 + c2 = (q1 + q2) · p2 + bp/tac · ([m1 +m2]ta

+ta(r∗1 + r∗2 + 1/0)) + r1 + r2

= q3 · p2 + bp/tac · (m3 + tar∗3) + r3

for r∗3 < 2ρ
∗
1 + 2ρ

∗
2 + 1 and r3 < 2ρ1 + 2ρ2 . The ciphertext of [m1 +m2]2a is c3 = [c1 + c2]x0 =

c1 + c2−k ·x0 for k ∈ {0, 1} since c1, c2 < x0. Therefore, c3 ← Addat (pk, c1, c2) is a ciphertext
c3 = q · p2 + bp/tac (m+ tar∗) + r satisfying r∗ < 2ρ

∗
1 + 2ρ

∗
2 + 1 and r < 2ρ1 + 2ρ2 + 2ρ0 .

Let c1, c2 as defined above, and k, l be integers such that bp/tac = (p− k)/ta and
⌊
p2/ta

⌋
=

(p2 − l)/ta. Then the following equation holds,

c3 = q3 · p2 + ((p− k)2/ta)(m1 + tar∗1)(m2 + tar∗2) +R

= q3 · p2 + ((p2 − l)/ta) · (m1m2 mod ta) +R+R′

= q3 · p2 +
⌊
p2/ta

⌋
· (m1m2 mod ta) + r3

where |R| < 3 · 2η · ta · 2ρ∗+ρ and |R′| < 2 · 2η · t2a · 22ρ∗ + t2a · 22ρ∗ < 3 · 2η · t2a · 22ρ∗ .
Therefore, the inequality |r3| < 6 · 2η+a log t+ρ+ρ∗ holds when assuming a log t+ ρ∗ < ρ.
Now we will analyze the error of ciphertext after processing Convert procedure. We fol-

lowed the proof of lemma 1 in [6].
Let dlog r3e = ρ3 < η+2a log t+ρ+ρ∗+3 and c← Convert(c3/t), then from the equation

σ = p2 · q + r + bs′ · p

2η+1
e

Let c′ = BitDecompη(c), then we have:

c = 2〈σ, c′〉 = 2p2 · 〈q, c′〉+ 2〈r, c′〉+ 2〈bs′ · p

2η+1
e, c′〉.

since the components of c′ are bits,

2〈bs′ · p

2η+1
e, c′〉 = 〈 p

2η
· s′, c′〉+ ν2 =

p

2η
〈s′, c′〉+ ν2,

where |ν2| < Θ · η. From the definition of BitDecomp and PowersofTwo, we have 〈s′, c′〉 =
〈s, c〉 mod 2η = 〈s, c〉+ q2 · 2η. Moreover

〈s, c〉 =
∑

si

⌊c3
t
· zi
⌉

+∆ · 2η =
∑ si · c3 · zi

t
+ δ1 +∆ · 2η

=
c3
t
· 〈s, z〉+ δ1 +∆ · 2η,

for some ∆ ∈ Z and |δ1| ≤ Θ/2. Using 〈s, z〉 = 2η · t/p2 − ε − µ · 2η · t for some µ ∈ Z, and
c3 = r3 +

⌊
p2/ta

⌋
·m+ q3 · p2, this gives

〈s, c〉 = q3 · 2η +
2η

ta
m− ` · 2η

p2 · ta
m+

2η

p2
r3 −

c3
t
ε+ δ1 + (∆− c3 · µ) · 2η.

Therefore we can write

〈s, c〉 = q1 · 2η +m · 2η

ta
+ r∗

for some r∗ ∈ Z, with |r∗| ≤ 2ρ3−η+3. Now we get an equation below:

2
〈⌊ p

2η+1
· s′
⌉
, c′
〉

= q4 · p+m · p
ta

+ r∗ · p
2η

+ ν2

with |q4| ≤ Θ; namely the components of (p/2η+1) · s′ are smaller than p and c′ is a binary
vector. This gives

2
〈⌊ p

2η+1
· s′
⌉
, c′
〉

= (taq4 +m) ·
⌊ p
ta

⌋
+ r∗2

8

with |r∗2| ≤ 2ρ3−η+4. Then we obtain

c = 2p2 · 〈q, c′〉+ 2〈r, c′〉+ (taq4 +m) ·
⌊ p
ta

⌋
+ r∗2

= 2q′′ · p2 + (taq4 +m) ·
⌊ p
ta

⌋
+ r′

where |r′| ≤ |r∗2| + ηΘ2ρ+1 ≤ 2ρ3−η+4 + ηΘ2ρ+1 < 2a log t+ρ+ρ
∗+7 + ηΘ2λ+1. Therefore, c is

ciphertext with noise (ρ+ ρ∗ + a log t+ 8, logΘ) if a log t+ ρ+ ρ∗ + 5 > log η + logΘ + λ.

4.3 Homomorphic Digit Extraction for Scale-invariant HE over the Integers

During homomorphic digit extraction, we use various message spaces from Zt to Ztn+1 . Let
EncZ

tk
(m) be a ciphertext of m with message space Ztk in the form of q ·p2 +

⌊
p/tk

⌋
· (m+ tk ·

r∗) + r. The following algorithm represents homomorphic digit extraction with CLT scheme.
Note that the polynomial Ft,n is explained in the section 2.2.

HomExt Algorithm (Homomorphic digit extraction):

Input: A ciphertext c of message space Ztn+1

Compute ci,j for 0 ≤ i ≤ n, 0 ≤ j ≤ n− i :
c0,0 ← c
For 0 ≤ i ≤ n− 1,

For 0 ≤ j ≤ n− i− 1,
ci,j+1 ← Evaln−i+1

t (pk, Ft,n, ci,j)
ci+1,0 ← c0,0 − c0,i+1 − c1,i − · · · − ci,1

Output: cn,0

Fig. 3: HomExt Algorithm

To understand the above algorithm, we need to check when we can change the message
space for a fixed ciphertext. In the scale invariant HE over the integer, since PSDil and PSCon
are trivial mapping, EncZ

tk
(m) can be treated as EncZ

t`
(t`−km) for k < `. Conversely, if m

is a multiple of t`−k, EncZ
t`

(m) can be treated as EncZ
tk

(m/t`−k).
The following lemma shows the correctness of the proposed homomorphic digit extraction

algorithm.

Lemma 4. (Correctness of HomExt) For given m = b0,0, define bi,j:

bi,0 = (b0,0 −
i−1∑
j=0

tj · bj,i−j mod tn+1)/ti for 1 ≤ i ≤ n,

bi,j+1 = Ft,n(bi,j) for 0 ≤ i < n, 0 ≤ j ≤ n− i.
When we set c0 = EncZtn+1 (b0,0) and define (ci,j) following the HomExt algorithm, then

ci,0 = EncZtn−i+1 (bi,0) for 0 ≤ i ≤ n so that the equality cn,0 = EncZt(m
(t)〈n〉) holds.

Proof. We use induction on i. The statement is clear when i = 0. Suppose the proposition is
true for i < m. Then we have

cm,0 = c0,0 −
m−1∑
j=0

cj,m−j

= c0 −
m−1∑
j=0

EncZ
tn−j+1

(
Fm−jt,n (bj,0)

)

= c0 −
m−1∑
j=0

EncZtn+1

(
tjFm−jt,n (bj,0)

)

= EncZtn+1

b0,0 − m−1∑
j=0

tjFm−jt,n (bj,0)


= EncZtn+1

b0,0 − m−1∑
j=0

tjbj,m−j mod tn+1


= EncZtn+1 (tmbm,0) = EncZtn+1−m (bm,0).

9

Therefore, this lemma holds for any positive i ≤ n, and this means cn,0 = EncZt(bn,0) =
EncZt(m

(t)〈n〉), so this lemma shows the correctness of our bootstrapping procedure.

To sum up, we can homomorphically evaluate digit-extraction, so CLT scheme satisfies all
conditions in section 3; namely, our method can be applied to CLT scheme. Now we introduce
the explicit explanation of the application of our method on the scheme.

4.4 Our Method on the CLT scheme

For an η-bit odd integer p and integer q0 in [0, 2γ/p2), we define the set

Dρp,q0 = {q ← [0, q0), r ← (−2ρ, 2ρ) : Output p2q + r}.

• KeyGen∗t (1
λ). Generate pk = {x0, x1, · · · , xτ ,σ, z} as in Section 4.1. Choose a random a

Θ′-bit vector s′ with Hamming weight θ′, and let S′ = {i : s′i = 1}. Choose a random
integer ui ∈ [0, tκ+1) such that

∑
i∈S′ ui = btκ+1/pe. For n = dlogt θ

′e+ 3, generate

vi = qi · p2 +
⌊ p

tn+1

⌋
· s′i + ri

and v0 = q · p2 +
⌊ p

tn+1

⌋
· t
n

2
+ r, where q, qi ∈ [0, q0) and r, ri ∈ (−2ρ, 2ρ) for 1 ≤ i ≤ Θ′.

The secret key is sk = {p} and the public key is pk∗ = {pk,u,v}.

• HomSumt(c,u,v). Generate w0 = 1, wi = bc ·ui/tκ−ne mod tn+1 for n = dlogt θ
′e+3, and

output

c′ ←
Θ′∑
i=0

vi · wi mod x0.

• Bootstrapt(c,u,v). For c′ ← HomSumt(c,u,v), output the new ciphertext HomExt(c′).

4.5 Conditions on the Parameters

The security of the squashed scheme has been studied in [7, 8, 14]. Here, λ is a security
parameter, and γ is as in the previous section.

• n = dlogt θe+ 3 for the correctness of squashed decryption function,

• κ′ > (γ + λ)/ log t for the correctness of squashed decryption function,

• Θ′2 ≥ γ · ω(log λ) to avoid a lattice-based attack on the subset sum problem [7,8],

•
(
Θ′

θ′/2

)
≥ 2λ to avoid an attack on the sparse subset sum problem [1].

5 Analysis of Proposed Bootstrapping Method

Our analysis can be more tight for binary message space, since the evaluation of the poly-
nomial Ft,n(X) for t > 2 is relatively hard due to its complicated form. In this section, we
first check the correctness of our bootstrapping method and analyze the noise growth during
bootstrapping procedure. Also, we compute the number of homomorphic multiplications in
our method, which directly implies the efficiency of our method.

Theorem 1. For c∗ ← Bootstrap(c,u,v), c∗ is ciphertext with noise

(ρ2, ρ
∗
2) = (ρ+ δ + n log t(log t+ logΘ + 8)(1 + ε), logΘ + n) ,

and ciphertexts c and c∗ have same message if ρ∗ and ρ∗2 is smaller than p. Here ε =(
n+1
2 · log t+ t+ n+2

log t

)
/(log t+ logΘ + 8) and δ = (n+ 1) log t+ log(Θ′ + 1).

Proof.

1. HomSum
Note that vi = qi · p2 +

⌊
p/tn+1

⌋
· si + ri and v0 = q · p2 +

⌊
p/tn+1

⌋
· btn/2c + r with

q, qi ∈ [0, q0) and r, ri ∈ (−2ρ, 2ρ) for 1 ≤ i ≤ Θ′. So if c0,0 ← HomSum(c,u,v), then

c0,0 = q′ ·p2+
⌊
p/tn+1

⌋
·
(
(
∑
siwi + btn/2c) mod tn+1 + r∗tn+1

)
+r′ for |r′| = |

∑Θ′

i=1wiri+

r| < (Θ′+1)2ρ+(n+1) log t and |r∗| ≤ Θ′. Therefore, c0,0 is a ciphertext with noise (ρ1, ρ
∗
1) =

(ρ+ (n+ 1) log t+ log(Θ′ + 1), logΘ′) whose message space is Ztn+1.

10

2. HomExt
Let ci,j is a ciphertext with noise (ρi,j , ρ

∗
i,j), then the equations ρ0,0 = ρ + (n + 1) log t +

log(Θ′ + 1) and ρ∗0,0 = logΘ′ holds by above HomSum procedure. By applying Lemma 3,
we can set

ρi,0 = max{ρ0,i, · · · , ρi−1,1}+ 2i, ρ∗i,0 = logΘ + i log t

for 1 ≤ i ≤ n.
First, we will show the equality

max{ρ0,i+1, · · · , ρi,1} = ρi,1

holds for 0 ≤ i ≤ n − 1. Since cj,i−j+1 = Evaln−j+1
t (pk, Ft,n, cj,i−j) for 0 ≤ j ≤ i, it is

sufficient to compare noise increase of cj,i−j after Multat . For 1 ≤ j ≤ i− 1, the increase
of first noise of cj,i−j is less than or equal to logΘ+ (n+ 1) log t+ 8, and the increase of
noise of ci,0 is ρ∗i,0 + (n− i+ 1) log t+ 8 = logΘ+ (n+ 1) log t+ 8. Therefore, the equality
max{ρ0,i+1, · · · , ρi,1} = ρi,1 holds and we can get

ρi,0 = ρi−1,1 + 2i.

Second, we will analyze the noise increase in while evaluating Ft,n. Note that the poly-
nomial Ft,n is of degree t and its coefficients are bounded by tn+1. Then, we can re-
gard each term of Ft,n is contained by at most t times of multiplications, so we get
ρi−1,1 = ρi−1,0 + dlog te · (log t · (n − i + 2) + logΘ + 8) + tdlog te. Now, we obtain a
recursion formula:

ρi,0 = ρi−1,0 + dlog te · (log t · (n− i+ 2) + logΘ + 8)

+tdlog te+ 2i.

The consequence of the recursion formula is

ρn,0 = ρ0,0 + log2 t · n
2 + 3n

2
+ n log t(logΘ + 8)

+nt log t+ n2 + 2n

= ρ0,0 + n log t(log t+ logΘ + 8)(1 + ε)

for ε =
(
n+1
2 · log t+ t+ n+2

log t

)
/(log t+ logΘ + 8).

3. Correctness
Let Encρ,ρ

∗

Z
tk

(m) be a set of ciphertext with message m ∈M = Ztk and error (ρ, ρ∗). Then

our bootstrapping process can be described as below diagram.

Encρ,logΘZt (m)

Bootstrap
��

HomSum // Enc
ρ1,ρ∗1
Ztn+1

(
∑
siwi + btn/2c mod tn+1)

HomExt
��

Enc
ρ2,ρ∗2
Zt (m) Enc

ρ2,ρ∗2
Zt ((

∑
siwi + btn/2c mod tn+1)(t)〈n〉)

Top side of the diagram was proved in 1. HomSum. Also, Lemma 4 and 2. HomExt exactly
signify the right side of the diagram, and the discussion in Section 4.3 shows the equality
m = (

∑
siwi + btn/2c mod tn+1)(t)〈n〉 holds so that bottom side of the diagram is proved.

Since the first noise grows approximately (log t+ logΘ + 8) per each multiplication, we can
think of the degree of Bootstrap function is

2n log t(1+ε)+ε1 = O(λ
1+ε+

ε1
n log t) = O(λ1+ε2)

where ε1 = {(n+ 1) log t+ log(Θ′ + 1)}/(log t+ logΘ + 8).

Theorem 2. The number of multiplication operations in our bootstrapping algorithm is O(n(n+
1)/2) = O(log2 λ).

Proof. We will treat t as a constant, so the number of multiplication while evaluating poly-
nomial Ft,n is constant. The number of evaluation k is equal to 1 + 2 + · · ·+ n = n(n+ 1)/2;
thus, the number of multiplication operations is O(n(n+ 1)/2).

As a result, in our bootstrapping method, the number of homomorphic multiplications is
O(log2 λ) and multiplicative degree is O(λ1+ε). Comparing to the previous methods including
the result in [13], Õ(λ4) multiplications, our method shows significantly improved result
within the framework of efficiency. In addition to theoretical analysis, we will explain the
implementation result of our bootstrapping method applying to the CLT scheme in next
section.

11

6 Implementation

While implementing our bootstrapping method, we use word decomposition and the powers
of word instead of BitDecomp and PowersofTwo with word size w = 32. Moreover, in order
to use a public key of reasonable size, we compress the ciphertext using the same method
as in [7]. We implement our bootstrapping method and check the running time of Bootstrap.
Furthermore, for precise comparison with other FHEs, we implement the homomorphic evalu-
ation of the AES-128 circuit, which has emerged lately as a standard homomorphic evaluation
circuit. We encrypt messages bit-wisely while AES evaultion as in [6].

1. Parameters (` = 500, λ = 72).

- AGCD parameters: η = 192, γ = 3.8× 105, ρ = 52
- Convert parameters: Θ = 1500, θ = 100
- Bootstrap parameters: Θ′ = 8000, θ′ = 15

2. Efficiency.

- The number of Add: 8000 + 10
- The number of Mult: 8
- Error size after bootstrapping: 122 bit

3. AES evaluation.

- Bootstrap Time : 6.7 × 128 sec (128 ciphertexts)
- SubByte Time : 128 sec
- Total AES Time : 4020 sec
- Relative Time (Total AES Time / `): 8 sec

Remark 1. Implementations of our bootstrapping method and homomorphic evaluation of
AES circuit were progressed on a desktop with eight core Intel(R) Core(TM) i7-2600 CPU
@ 3.40GHz processors and 16GB RAM using C++ and GMP 6.0.0 [11].

This result shows that bootstrapping process can be done with only 8 number of homomorphic
multiplications. Our bootstrapping procedure for one ciphertext takes about 6 seconds. This
result is faster than previous results in FHE over the integers [4, 7, 14], and also compatable
with the result in [12], 320 seconds for 16000-bit message space. Comparing to the results
of homomorphic evaluation of AES circuit in [4, 6], 13 minutes and 23 seconds per block at
security level λ = 72, homomorphic evaluation of AES circuit applying our bootstrapping
method takes 8 seconds per block on a 8-core machine at 3.4 GHz for the same security
level. This implementation of homomorphic evaluation of AES circuit is the first case that
using small depth parameter with bootstrapping can be faster than using large depth without
bootstrapping.

References

1. Arnab Bhattacharyya, Piotr Indyk, David P Woodruff, and Ning Xie. The complexity of linear dependence
problems in vector spaces. In ICS, pages 496–508, 2011.

2. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption with-
out bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pages 309–325. ACM, 2012.

3. Yuanmi Chen and Phong Q Nguyen. Faster algorithms for approximate common divisors: Breaking fully-
homomorphic-encryption challenges over the integers. In Advances in Cryptology–EUROCRYPT 2012,
pages 502–519. Springer, 2012.

4. Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint, Mehdi Tibouchi,
and Aaram Yun. Batch fully homomorphic encryption over the integers. In Advances in Cryptology–
EUROCRYPT 2013, pages 315–335. Springer, 2013.

5. Jung Hee Cheon and Damien Stehlé. Fully homomophic encryption over the integers revisited. In Advances
in Cryptology–EUROCRYPT 2015, pages 513–536. Springer, 2015.

6. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant fully homomorphic en-
cryption over the integers. In Public-Key Cryptography–PKC 2014, pages 311–328. Springer, 2014.

7. Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully homomorphic en-
cryption over the integers with shorter public keys. In Advances in Cryptology–CRYPTO 2011, pages
487–504. Springer, 2011.

8. Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and modulus switch-
ing for fully homomorphic encryption over the integers. In Advances in Cryptology–EUROCRYPT 2012,
pages 446–464. Springer, 2012.

9. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, volume 9, pages 169–178,
2009.

10. Craig Gentry, Shai Halevi, and Nigel P Smart. Better bootstrapping in fully homomorphic encryption.
In Public Key Cryptography–PKC 2012, pages 1–16. Springer, 2012.

12

11. Torbjörn Granlund et al. The gnu multiple precision arithmetic library. TMG Datakonsult, Boston, MA,
USA, 2(2), 1996.

12. Shai Halevi and Victor Shoup. Bootstrapping for helib. In Advances in Cryptology–EUROCRYPT 2015,
pages 641–670. Springer, 2015.

13. Koji Nuida and Kaoru Kurosawa. (batch) fully homomorphic encryption over integers for non-binary
message spaces. In Advances in Cryptology–EUROCRYPT 2015, pages 537–555. Springer, 2015.

14. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption
over the integers. In Advances in cryptology–EUROCRYPT 2010, pages 24–43. Springer, 2010.

13

