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Abstract

The problems of Byzantine Broadcast (BB) and Byzantine Agreement (BA) are of interest
to both distributed computing and cryptography community. Extension protocols for these
primitives have been introduced to handle long messages efficiently at the cost of small number
of single-bit broadcasts, referred to as seed broadcasts. While the communication optimality has
remained the most sought-after property of an extension protocol in the literature, we prioritize
both communication and round optimality in this work.

In a setting with n parties and an adversary controlling at most t parties in Byzantine fash-
ion, we present BB and BA extension protocols with t < n, t < n/2 and t < n/3 that are
simultaneously optimal in terms of communication and round complexity. The best commu-
nication that an extension protocol can achieve in any setting is O(`n) bits for a message of
length ` bits. The best achievable round complexity is O(n) for the setting t < n and O(1) in
the other two settings t < n/2 and t < n/3. The existing constructions are either optimal only
in terms of communication complexity, or require more rounds than our protocols, or achieve
optimal round complexity at the cost of sub-optimal communication. Specifically, we construct
communication-optimal protocols in the three corruption scenarios with the following round
complexities:

– t < n/3: 3 rounds, improving over O(
√
`+ n2)

– t < n/2: 5 rounds, improving over 6

– t < n: O(n) rounds, improving over O(n2)

A concrete protocol from an extension protocol is obtained by replacing the seed broadcasts
with a BB protocol for a single bit. Our extension protocols minimize the seed-round complexity
and seed-communication complexity. The former refers to the number of rounds in an extension
protocol in which seed broadcasts are invoked and impacts the round complexity of a concrete
protocol due to a number of sequential calls to bit broadcast. The latter refers to the number
of bits communicated through the seed broadcasts and impacts the round and communication
complexity due to parallel instances of single-bit broadcast. In the settings of t < n/3, t < n/2
and t < n, our protocols improve the seed-round complexity from O(

√
`+ n2) to 1, from 3 to 2

and from O(n2) to O(n) respectively. Our protocols keep the seed-communication complexity
independent of the message length ` and, either improve or keep the complexity almost in the
same order compared to the existing protocols.
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1 Introduction

In the Byzantine Broadcast (BB) problem, a designated party (called the sender) holds an input
message m, and the goal is for all parties to learn m and agree on it. In the related Byzantine
Agreement (BA) problem, every party Pi holds a message mi, and the goal is for all parties to
agree on a common message. BB and BA are important primitives used widely in Multi-Party
Computation (MPC) and distributed computing protocols in order to reach agreement on some
messages. Two important parameters of BB and BA protocols are: communication complexity and
round complexity. The communication complexity of a protocol [Yao79] is defined to be the total
number of bits sent/received by the honest parties during the protocol execution. Note that, only
the bits that should be received according to the protocol specification are counted. The round
complexity refers to the number of rounds taken by the protocol to terminate.

BB and BA have been studied in two settings: with or without a trusted set-up assumption.
In the model where no set-up is assumed, error-free (deterministic) and information-theoretic BA
as well as BB is achievable if and only if the number of corrupt parties t is at most t < n/3 where
n is the total number of parties [PSL80,CW92,BGP92]. The bound cannot be improved with the
help of cryptography or randomization [KY86]. In the model where there is a set-up among the
parties, BA is achievable for t < n/2 and BB is achievable for t < n both cryptographically [DS83]
and information theoretically [PW96]. The most popular set-up assumption is a public-key infras-
tructure (PKI) set-up among n parties. By a PKI set-up among n parties, we mean the following:
All parties hold a set of n public keys for a signature scheme where the ith key corresponds to
the ith party. Every honest party holds the honestly-generated secret key associated with its own
public key. The corrupted parties may generate their keys arbitrarily. The PKI set-up has been
considered in two variants- (i) information-theoretic: a PKI set-up for an information-theoretically
secure pseudo-signature scheme [PW96], and (ii) cryptographic or computational: a PKI set-up for
a cryptographically secure unforgeable digital signature scheme [DS83].

In many distributed computing applications, like reaching agreement on a large file in fault-
tolerant distributed storage system, distributed voting where ballots containing gigabytes of data
are to be handled [CGS97], MPC [GMW87] where many broadcasts and agreements are invoked,
there is an inherent need for dealing with long messages for BB and BA protocols. One could,
of course, broadcast (or reach agreement on) a long message by just broadcasting the message
bit-by-bit using a single-bit broadcast protocol. This approach leads to huge communication over-
head due to the following known bounds. Irrespective of corruption threshold, the seminal result
of [DR85] shows that any deterministic BB or BA protocol must communicate Ω(n2) bits (all-to-all
communication). Since the message is at least a single bit, the lower bound on the communication
complexity for single bit is Ω(n2) bits. The same work shows an upper bound that works for t < n
and has a correctness error that is negligible in the security parameter of the underlying digital
signature scheme. A line of work [KSSV06, KS09, KS11, KLST11, BSGH13] requiring t < n/3 or
even stricter bound on t demonstrate how to break the Ω(n2) barrier leveraging randomization to
induce a partial communication graph (potentially a dynamic one), where the parties choose to
initiate communication with one another based on their private randomness. This circumvention
is possible necessarily at the cost of achieving correctness with error probability in the number of
parties. As a result, these works yield scalable solution for large size networks where the number
of involved parties is huge. For protocols that allow no error or negligible error in the security
parameter (and not in the number of parties), the lower bound of Ω(n2) holds and therefore the
trivial approach of reaching consensus bit-by-bit would lead to solutions resulting in Ω(`n2) bits of
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communication.
BB and BA extension protocols1 are introduced specially to handle long messages and use

amortization to beat the communication complexity of the trivial approach. Extension protocols
achieve agreement for long messages relying on point-to-point communication and a small number
of oracle access to a single-bit broadcast. Thus in any specific round of an extension protocol, both
point-to-point communication as well as seed broadcasts may be invoked. This is conceptually
similar to Oblivious Transfer (OT) extension [IKNP03] where a large number of OTs are obtained
at the cost of a small number of seed OTs and cheap symmetric key operations. We recall that
OT [EGL85] is a fundamental building block of MPC – it is a protocol between a sender and a
receiver where the sender with two inputs (x0, x1) can transmit xσ to the receiver without knowing
σ, where σ is the choice bit of the receiver. Following OT extension literature, we denote the
single-bit broadcasts used in the BB and BA extension protocols as seed broadcasts. Below, we
summarize the results on extension protocols.

1.1 Extension Protocols

Extension protocols for BB and BA are constructions for long messages, built from single-bit
seed broadcasts and point-to-point communications. Historically, gaining communication efficiency
motivated the study of such protocols with communication O(`n) for message of length `. In any
BB extension protocol, since each honest party must learn the message, a correct protocol will incur
a communication complexity of at least O(`n) where ` is the message length. The same lower bound
on the communication complexity holds for BA extension [FH06]. The communication complexity
of extension protocols may have a term that depends on ` (for large ` this term dominates the
overall communication complexity) and terms that are independent of ` and is only polynomial in
parameters such as n and/or security parameter. These terms dictates the lower bound on ` for
which the optimal communication of O(`n) bits is attained.

It is well-known how to achieve communication optimality in the setting of t < n/3 [LV11],
t < n/2 [FH06] and t < n [HR14]. In fact, except for the first extension protocol of [TC84], the
remaining protocols in the literature [FH06,LV11,PR11,PR,HR14,CO18] achieve communication
optimality.

With the historical goal of communication efficiency and optimality, the extension protocols
often do not prioritise round complexity. In certain scenarios the latency associated with the
communication rounds can be a huge bottleneck. While maintaining communication optimality,
the proven lower bound on the round complexity of an extension protocol is Ω(n) for the setting
t < n [HR14] and constant when t < n/2 [FH06]. The communication-optimal extension protocol
of [HR14] for t < n has a round complexity of O(n2) which is non-optimal. The round complexity
of the communication optimal extension protocol of [LV11] for t < n/3 is far from optimal. Namely,
the round complexity of [LV11] is O(

√
`+ n2). In this work, we study and propose protocols that

are optimal in both complexity measures of round and communication.
A concrete protocol from an extension protocol is obtained by replacing the seed broadcasts

with a BB protocol for a single bit. The number of sequential and parallel instances of single-bit
BB protocol inherently dictate the complexities of such a concrete protocol. To control the inflation
in round and communication complexity due to composition issues in the concrete protocols, we
consider two more complexity measures for extension protocols, namely seed-round complexity and

1In the literature, they are known as multi-valued protocols.
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seed-communication complexity. They refer to the number of rounds in which a seed broadcast is
invoked, and to the number of bits sent via seed broadcasts. We minimize both these measures and
keep the latter independent of message length `. Below, we discuss the known relevant composition
results for BB and BA.

1.2 On the composition of BB and BA protocols

The seed-round complexity of an extension protocol directly impacts the round efficiency of its
derived concrete protocols via sequential composition. Prior works [KKK08, GGOR13, KK07] on
primitives such as variable secret sharing (VSS), multi-party computation (MPC) that use ora-
cle calls to broadcasts, acknowledge this issue, treat broadcast rounds as more expensive than
rounds where only point-to-point communications are invoked and seek to minimize what they
term broadcast complexity. Indeed, the impact is huge given the state-of-the-art of the round
complexity of BB and BA protocols and the impact of sequential composition on round complex-
ity. Any deterministic BB (and BA) protocol necessarily requires (t + 1) rounds [LF82, DR85]
and invoking such a protocol sequentially explodes the round complexity by a linear blowup fac-
tor. When randomization is introduced, BB and BA protocols achieve a constant round com-
plexity in expected terms [FM97, KK06], yet suffer from non-simultaneous termination leading
to substantial increase in expected round complexity due to subtle sequential compositional is-
sues [LLR02, BOEY03, KK06, LLR06, CCGZ16, CCGZ17]. For instance, the expected round com-
plexity of the BB protocols of [KK06] in the t < n/3 setting is 23. If there are multiple sequential
calls to the BB protocol, then, except the first call which takes expected 23 rounds, each additional
call will cost expected 49 rounds. The corresponding figures in the honest majority setting of t < n/2
are 56 and 89. Recent work by Micali [Mic17] improves the round complexity for the t < n/3 case
to an expected 9 rounds, albeit in the computational setting and under the assumption of PKI. The
use of randomization does not help much in taming the round complexity in the dishonest majority
setting which is considered to be the most practical setting. The proven lower bound on the round
complexity for a BB protocol for bit is Ω( n

n−t) [GKKO07]. The best known upper bound presented

in [GKKO07] achieves expected O(k2) round complexity when t ≤ n/2+k. In summary, minimizing
seed-round complexity irrespective of the corruption threshold remains an important design goal
of any protocol that invokes single-bit broadcasts [KKK08,GGOR13,KK07,CCGZ16,CCGZ17].

The existing extension protocols have more than one seed round. The protocol of [HR14] for
t < n has a seed round complexity of O(n2). The protocol of [FH06] for the t < n/2 case has a seed-
round complexity of 3. The protocol of [LV11] for the t < n/3 case has a seed-round complexity of
O(
√
`+n2). Our extension protocols improve seed-round complexity in all the settings, in addition

to improving the round complexity.
The multiple calls to single-bit broadcasts invoked in a seed round result in parallel instances

leading to parallel composition issues in concrete extension protocols. The number of parallel
instances is impacted by the seed-communication complexity of the extension protocol. The seed-
communication complexity impacts the round as well as communication complexity, yet fortunately
restricted to logarithmic in the number of instances in either case [BOEY03, LLR06]. While the
result of [BOEY03] begins with a rather pessimistic note that the round complexity of a näıve
parallel composition of a expected constant-round BA protocol is (expected) logarithmic in the
number of instances, they show a mechanism that preserves constant round complexity in expec-
tation. The above results of [BOEY03] are in the setting of t < n/3. In the work of [LLR06], the
authors propose a way to preserve (expected) round complexity under parallel composition with
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the use of unique identifiers, resulting in a logarithmic blowup in the communication complexity
for the setting of t < n/2. More recent works [CCGZ16,CCGZ17] deal with composition issues in
the t < n/3 and t < n/2 settings with formal treatment on security definition and composition for
randomized BA and BB protocols with non-simultaneous termination. To minimize the effect of
parallel composition, our protocols keep seed-communication complexity (which upper bounds the
number of parallel calls in any seed round) independent of message length ` and further improve,
or preserve the same asymptotic order in n and security parameter as the previous protocols.

With the note that the effect of sequential and/or parallel composition issues discussed above
are are not unique to this work, but come up in all extension protocols, we proceed to state our
results.

1.3 Our Results

We study BA and BB extension protocols with t < n, t < n/2 and t < n/3, and present protocols
that are simultaneously communication and round optimal. The existing constructions are either
optimal only in terms of communication complexity, or require more rounds as well as seed rounds
than our protocols, or achieve optimal round complexity by giving up on optimal communication.
All our constructions achieve O(`n) bits of communication for sufficiently large message size, and
are thus communication optimal (for different bounds on `). Along the way, we also minimize their
seed-round and seed-communication complexity.

Table 1: BB and BA Extension Protocols.

Threshold Security Communication Round Seed-Round Seed-Communication Reference
Complexity Complexity Complexity Complexity

t < n/3
i.t (error-free) O

(
`n+ (n2

√
`+ n4)B(1)

)
O(
√
`+ n2) O(

√
`+ n2) n2

√
`+ n4 [LV11]

i.t (error-free) O
(
`n+ n2B(1)

)
3 1 n2 This paper

t < n/2
i.t O

(
`n+ n3κ+ (n2 + nκ)B(1)

)
6 3 n2 + nκ [FH06]

crypto O
(
`n+ n3κ+ nκB(1)

)
5 2 nκ This paper

t < n

i.t O
(
`n+ (n4 + n3κ)B(1)

)
O(n3) O(n3) n4 + n3κ [HR14]

i.t O
(
`n+ (n3κ+ n4 log n)B(1)

)
O(n2) O(n2) n3κ+ n4 log n [CO18]

crypto O
(
`n+ (n2 + nκ)B(1)

)
O(n2) O(n2) n2 + nκ [HR14]

crypto O
(
`n+ (nκ+ n3 log n)B(1)

)
O(n) O(n) nκ+ n3 log n This paper

– t < n/3: Our protocol provides a round complexity of 3 and seed-round complexity of 1. Both
the round and seed-round complexity of the best known communication-optimal extension
protocol in this setting [LV11] is O(

√
`+n2). Since ` = Ω(n6) in their protocol, the complexity

translates to Ω(n3). The seed-communication complexity of our protocol is n2 in contrast to
n2
√
`+ n4 of [LV11].

– t < n/2: Our protocol provides a round complexity of 5 and seed-round complexity of 2. The
best known extension protocol that is communication-optimal [FH06], has a round complexity
of 6 and a seed-round complexity of 3. We improve the seed-communication complexity from
n2 + nκ to nκ compared to the same construction.

– t < n: Our protocol has a round complexity and a seed-round complexity of O(n). Our protocol
beats the communication-optimal extension protocol of [HR14] by a factor of Ω(n) in terms
of both round as well as seed-round complexities. Our seed-communication complexity is
nκ + n3 log n compared to n2 + nκ of the cryptographic protocol of [HR14]. Given that
the effect of parallel composition is logarithmic in the worst case in the number of parallel
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instances on the round or communication complexity [BOEY03,LLR06], our protocol does not
suffer from much of a loss in terms of either parameter compared the existing constructions
when expanded to a concrete protocol.

The construction with t < n/3 is deterministic, error-free and information-theoretically secure.
The latter implies that the protocol guarantees hold even in the face of a computationally un-
bounded adversary. The protocols in the other two settings are cryptographic and their correctness
reduces to the security of a collision-resistant hash function. The protocol guarantees, therefore
hold against a polynomially bounded adversary. Our contributions put in context of other results
are summarized in Table 1. We use κ to denote the cryptographic (statistical, respectively) secu-
rity parameter for the cryptographic (information-theoretic, respectively) primitives. ‘i.t’ denotes
information-theoretic and ‘crypto’ denotes cryptographic security. Let B(l) denote the communi-
cation complexity of broadcasting an l-bit message.

Our protocol in t < n/3 setting can lead to the first instantiation without set-up assumption
that provides optimal communication complexity and constant round complexity after replacing
the seed broadcasts with the single-bit broadcast protocol of [KK06] via the parallel composition
result of [BOEY03] that preserves constant expected round complexity. In the t < n setting, our
protocol leads to the first instantiation in dishonest majority setting with optimal communication
complexity and round complexity of O(n) after replacing the seed broadcasts with the protocol
of [GKKO07] for some values of k (e.g. when t ≤ n/2 + k and k is a constant).

Our protocol for t < n could only attain a seed-round complexity of O(n). Designing protocols
for t < n that achieve a seed-round complexity of one while preserving communication and round
optimality is left as an interesting open question.

1.4 Organization

In Section 2, we discuss the model and definitions of BB and BA protocols. Our results for t < n/3,
t < n/2 and t < n appear in Section 3, Section 4 and Section 5 respectively. We summarize and
conclude with questions for further work in Section 6.

2 Models and Definitions

We work in the standard point-to-point network where the set of parties P = {P1, . . . , Pn} are con-
nected by pairwise authenticated channels and communicate in synchronous rounds. The faultiness
of the parties is modeled in terms of a monolithic adversary A corrupting t out of the n parties
in Byzantine fasion. A can make the corrupted parties deviate from the protocol in any desired
manner. The parties who are not under the control of A are referred to as honest. We distinguish
between cryptographic security and information-theoretic security. Information-theoretic security
guarantees that the security properties of the protocol hold even in the presence of a computation-
ally unbounded adversary. When the adversary is bounded, we write PPT to denote a probabilistic
polynomial-time algorithm. We use κ to denote the security parameter. A function is negligible if
for all large enough values of the input, it is smaller than the inverse of any polynomial. We use
negl to denote a negligible function. We now recall some definitions.

Definition 2.1 (Byzantine Broadcast). A protocol for a set of parties P = {P1, · · · , Pn}, where
a distinguished party called the sender, Ps ∈ P holds an initial input m, |m| = `, is a broadcast
protocol tolerating A, if the following properties hold except with negligible probability in κ:
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– Agreement. All the honest parties output the same value.
– Validity. If the sender is honest, all honest parties output the value m.

Definition 2.2 (Byzantine Agreement). A protocol for a set of parties P = {P1, · · · , Pn}, where
each party Pi ∈ P holds an initial input mi (|mi| = `) is a Byzantine Agreement protocol tolerating
A, if the following properties hold except with negligible probability in κ:

– Agreement. All the honest parties output the same value.
– Validity. If every honest party Pi hold the same message mi = m, then all honest parties output

the value m.

In t < n setting, only BB is possible and so we design a BB extension protocol. In the honest
majority settings (that includes t < n/2 and t < n/3), a BB protocol can be obtained by making
one call to a BA protocol plus O(`n) bits of communication over point-to-point channels, where `
is the length of the message. Therefore, we design a BA extension protocol with various optimal
complexity measures. This implies a BB protocol with the optimal complexities in the honest
majority settings.

Our protocols in settings t < n and t < n/2 (where set-up assumption is required) are crypto-
graphically secure tolerating any polynomially bounded adversary A. Cryptographic or computa-
tional security guarantees that the protocol is secure based on some computational assumptions.
Our protocols rely on a cryptographic collision-resistant hash function Hash. The collision-resistance
property guarantees that it is hard for a polynomially bounded adversary to come up with two pre-
images of Hash that hash to the same value. A formal definition of collision-resistant hash functions
is provided below.

Definition 2.3 (Collision Resistant Hash Functions). A family of functions {Hashs}s∈I is a colli-
sion resistant hash function family if the following conditions hold:

1. Efficient Sampling. There exists a PPT algorithm Gen that outputs an index s from the index
set I given a security parameter κ, s← Gen(1κ).

2. Compression. The function Hashs maps inputs of length n to outputs of length m such that
m < n.

3. Easy to compute. There exists a PPT algorithm that takes an index s, an input x ∈ {0, 1}n
and computes y = Hashs(x).

4. Collision resistance. For every PPT algorithm B,
Pr[Hashs(x) = Hashs(x

′), x 6= x′|x, x′ ← B(s), s← Gen(1κ)] = negl(κ).

A set-up assumption is needed in the setting t ≥ n/3 for instantiating the seed broadcasts.
Hence, our concrete extension protocols (after instantiation of the oracle) are secure assuming PKI
and a collision-resistant hash function. In settings t < n and t < n/2, we relax the standard
requirements in the definitions of BB and BA above, in that we allow a protocol to fail with
probability that is negligible in the security parameter κ of the underlying cryptographic tool. On
the other hand, our protocol in the t < n/3 setting is error-free and is information-theoretically
secure. The security analysis of our protocols is for a static adversary that corrupts parties at the
beginning of the protocol.
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3 Extension Protocols for t < n/3

In this section, we present an error-free and information-theoretic BA and BB extension protocol for
the t < n/3 setting with: (i) communication complexity: O(`n) bits, (ii) round complexity: 3, (iii)
seed-round complexity: 1 and (iv) seed-communication complexity: n2. We describe an extension
protocol for BA. A BB extension protocol with the same complexity as that of the BA protocol
can be achieved by letting the sender send the message to all the parties and then running a BA to
reach agreement. This is the standard reduction in synchronous settings from BA to BB [Lyn96].

Our protocol relies on techniques from coding theory and graph theory. Specifically, as tech-
nical tools, the protocol uses linear error correcting codes (e.g. Reed-Solomon Code) and a graph
theoretic algorithm for finding some special structure ((n, t)-star) in an undirected graph. Our
approach differs from all existing constructions in this setting which are constructed in player-
elimination [HMP00] or dispute-control [BH06] framework. We start with a brief presentation of
the tools that we use: (a) An algorithm for finding a graphical structure called (n, t)-star in an
undirected graph; (b) Linear Error Correcting Code.

3.1 Building Blocks

Finding (n, t)-star in an Undirected Graph. We now describe an existing solution for a
graph theoretic problem, called finding (n, t)-star in an undirected graph G = (V,E). Let G be an
undirected graph with the n parties in P as its vertex set. A pair (C,D) of sets with C ⊆ D ⊆ P is
an (n, t)-star [Can96,BOCG93] in G, if: (i) |C| ≥ n− 2t; (ii) |D| ≥ n− t; (iii) for every Pj ∈ C and
every Pk ∈ D the edge (Pj , Pk) exists in G.

Following the idea of [GJ79], in [BOCG93], the authors presented an elegant and efficient
algorithm for finding an (n, t)-star in a graph of n nodes, provided that the graph contains a clique
of size n − t. The algorithm, called STAR takes the complementary graph G of G as input and
tries to find (n, t)-star in G, where (n, t)-star is a pair (C,D) of sets with C ⊆ D ⊆ P, satisfying the
following conditions: (a) |C| ≥ n− 2t; (b) |D| ≥ n− t; (c) There are no edges between the nodes in
C and nodes in C ∪D in G. Clearly, a pair (C,D) representing an (n, t)-star in G, is an (n, t)-star in
G. STAR outputs either an (n, t)-star, or a message noSTAR. Whenever the input graph G contains
an independent set of size n− t, STAR always outputs an (n, t)-star. For simplicity of notation, we
denote G by H. The algorithm uses matching which is defined below.

Let G = (V,E) be an undirected graph consisting of a set V of vertices and a set E of edges. A
matching M ⊆ E is a collection of edges such that every vertex of V is incident to at most one edge
in M . A maximal matching is a matching M with the property that if any edge not in M is added
to M , it is no longer a matching. A maximum matching is a matching that contains the largest
possible number of edges; M is a maximum matching, if for any other matching M ′, |M | ≥ |M ′|.

The algorithm STAR is now presented in Figure 1.
We instantiate the algorithm for finding maximum matching in a general graph with a deter-

ministic algorithm (like [Blu90]) and obtain a deterministic algorithm for finding star.

Linear Error Correcting Code. We use Reed-Solomon (RS) codes [RS60] in our protocols.
We consider an (n, t + 1) RS code in Galois Field F = GF (2c), where n ≤ 2c. Each element of
F is represented by c bits. An (n, t + 1) RS code encodes t + 1 elements of F into a codeword
consisting of n elements from F. We denote the encoding function as ENC() and the corresponding
decoding function as DEC(). Let m0,m1, . . . ,mt be the input to ENC. Then ENC computes a
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Algorithm STAR

– Input: An undirected graph H = (P, E).

– Algorithm Required: An algorithm for the maximum matching problem on general
graphs.

1. Find a maximum matching M in H. Let N be the set of matched nodes (namely, the
endpoints of the edges in M), and let N = P \N .

2. Compute output as follows:

(a) Let T = {Pi ∈ N | ∃Pj , Pk s.t (Pj , Pk) ∈ M and (Pi, Pj), (Pi, Pk) ∈ E}. T is called
the set of triangle-heads. Let C = N \ T .

(b) Let B be the set of matched nodes that have neighbors in C. So B = {Pj ∈ N | ∃Pi ∈
C s. t. (Pi, Pj) ∈ E}. Let D = P \B.

(c) If |C| ≥ n− 2t and |D| ≥ n− t, output (C,D). Otherwise, output noSTAR.

Figure 1: Algorithm for Finding (n, t)-star.

codeword of length n, (s1, . . . , sn) as follows. It first constructs a polynomial of degree-t, f(x) =
m0 + m1x + . . . + mtx

t and then computes si = f(i). We use the following syntax for ENC:
(s1, s2, . . . , sn) = ENC(m0,m1, . . . ,mt). Each element of the codeword is computed as a linear
combination of the t + 1 input message elements, such that every subset of (t + 1) elements from
the codeword uniquely determine the input message elements. Similarly, knowledge of any t + 1
elements from the codeword suffices to determine the remaining elements of the codeword.

The decoding function DEC can be applied as long as t + 1 elements from a codeword are
available. A RS code is capable of error correction and detection. The task of error correction
is to find the error locations and error values in a received vector. On the other hand, error
detection means an indication that errors have occurred, without attempting to correct them. We
will be concerned with Byzantine errors which are errors that are adversarial in nature. That is, c
Byzantine errors means c elements of the codeword are arbitrarily changed. We recall the following
well known result from coding theory [MS78]. DEC can correct up to u Byzantine errors and
simultaneously detect up to additional v Byzantine errors in a vector of length N (where N ≤ n) if
and only if N − t− 1 ≥ 2u+ v. In our protocols, we invoke DEC on a vector of length N ≤ n with
specific values of u and v. If u, v and N satisfy the above relation, then DEC returns the correct
data elements corresponding to the vector. Otherwise, DEC returns ‘failure’.

3.2 The BA Protocol

With the above tools, we are ready to present our BA extension protocol. Each party Pi with
message mi containing ` bits distributes the codeword of its message among the parties. Each party
verifies the part of the codeword received from other parties against its codeword and announces
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the outcome in public. The public responses are turned into a consistency graph. Then a special
structure in the graph that implies existence of an honest majority set holding the same message is
looked for. Namely, the special structure is a quadruple (C,D,F , E) such that (C,D) is an (n, t)-star,
|F| ≥ 2t+ 1 and every party in F has at least t+ 1 neighbors in C, |E| ≥ 2t+ 1 and every party in
E has at least 2t+ 1 neighbors in F . The novelty then lies in proving that the honest parties in E
hold the same message. The parties then rely on the error correction and detection of the RS code
to compute and agree on the common message of the parties in E . If such a set E does not exist,
all honest parties agree on some pre-determined message. The extension protocol is presented in
Figure 2. The sm in our notation Psm stands for ‘same message’.

Protocol (n
3 )-BA

– Input of every Pi: An `-bit message mi.

– Oracle: Broadcast oracle for bits.

Every party Pi does the following:

1. Divide the `-bit message mi into t + 1 blocks, mi0, . . . ,mit, each containing `
t+1 bits.

Compute (si1, . . . , sin) = ENC(mi0, . . . ,mit). Send sii to every party. Send sij to Pj for
j = [1, n].

2. Construct a binary vector vi of length n. Assign vi[j] = 1, if sij = sjj and sii = sji where
sjj and sji are received from Pj . Otherwise assign vi[j] = 0. Broadcast vi.

3. Construct graph G using parties in P as the vertices. Add edge (Pj , Pk) if vj [k] = 1 and
vk[j] = 1. Invoke STAR (G) and continue as follows.

(a) If (C,D) is returned by STAR, then find F as the set of parties who have at least
t + 1 neighbours in C in graph G. Find E as the set of parties who have at least
2t + 1 neighbours in F in graph G. If |E| ≥ 2t + 1, then set Psm = E . Otherwise,
agree on some predefined message m? of length ` and abort.

(b) If noSTAR is returned, then agree on some predefined message m? of length ` and
abort.

4. Assign si to be the value sji received from the majority of the parties in Psm. Send si to
every party.

5. Let (s1, . . . , sn) be the vector where sj is received from Pj . Apply DEC on (s1, . . . , sn)
with c = t and d = 0. Let m0,m1, . . . ,mt be the data returned by DEC. Output
m = m0| . . . |mt.

Figure 2: Error-free BA extension protocol in t < n/3 setting.

Lemma 3.1. The honest parties in Psm hold the same message of length `.
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Proof. The set Psm is the E component of a quadruple (C,D,F , E). We start with proving that the
honest parties in C hold the same message of length `. We recall that D contains at least t+1 honest
parties and every Pi ∈ C is neighbor of every party in D. Let {Pi1 , . . . , Piα} be the set of α honest
parties in D, where α ≥ t + 1. Then for every Pi in C, siik is same as sikik of all k ∈ {1, . . . , α}.
Therefore the codewords corresponding to the messages of the honest parties in C are same at least
at t + 1 locations corresponding to the identities of the honest parties in D. Since the codewords
belong to (n, t + 1) RS code, the messages of the honest parties in C are same. Let the common
message be m, |m| = `. Let (s1, . . . , sn) = ENC(m0,m1, . . . ,mt), where m = m0|m1| . . . , |mt. Now
we show that every honest party Pi ∈ F holds si. Recall that Pi has at least t+ 1 neighbors in C
in which at least one is honest, say Pj . This implies that sii of Pi is same as sji of Pj . However,
sji = si, since Pj holds m. Hence sii = si. Therefore every honest Pi in F holds si which is same as
sii. Finally, we show that every honest Pi ∈ E holds m. Recall that Pi has at least 2t+ 1 neighbors
in F in which at least t + 1 are honest. Let {Pi1 , . . . , Piα} be the set of α honest parties in F ,
where α ≥ t+ 1. Then siik of Pi is same as sikik of every honest Pik for k ∈ {1, . . . , α}. Now sikik
of Pik is same as sik . Therefore the codeword corresponding to the message of Pi ∈ E matches with
(s1, . . . , sn) at least at t + 1 locations corresponding to the identities of the honest parties in F .
This implies the codeword of Pi is identical to (s1, . . . , sn), since they belong to (n, t+ 1) RS code.
Hence Pi ∈ E holds m.

Lemma 3.2. If all honest parties start with same input m, then all the parties will agree on Psm

where |Psm| ≥ 2t+ 1.

Proof. All honest parties start with the same input m. Therefore, all honest parties generate
the same codeword, (s1, . . . , sn) = ENC(m0, . . . ,mt), such that m = m0|m1| . . . |mt. This means
that there will be an edge between every pair of honest parties. In other words, the edges in the
complementary graph will be either (a) between an honest and a corrupted party OR (b) between
two corrupted parties.

This implies that there will be a clique of size at least 2t+ 1. This guarantees the existence of
(n, t)-star in G for an honest Pi, and the C component of an (n, t)-star will contain at least t + 1
honest parties. Subsequently, the F and E components will be of size at least 2t + 1. In this case
it is guaranteed that all honest parties find the same quadruple (C,D,F , E) (here we rely on the
determinism of STAR algorithm), and will never agree on predefined m?. From the same quadruple,
all honest parties will reach agreement on Psm.

Lemma 3.3. If Psm is agreed on, all honest parties output the common message of the parties in
Psm.

Proof. By Lemma 3.1, all honest parties in Psm hold the same message, say m. This means they
hold the same codeword (s1, . . . , sn) = ENC(m0,m1, . . . ,mt), where m = m0|m1| . . . , |mt. Then
every honest Pi in Psm already holds si, the ith element in the codeword. Now every party Pi will
receive si correctly as majority of the parties in Psm are honest and they will send si to Pi. Once
every honest Pi holds correct si, he sends that to everybody. Therefore a party will receive n values
from n parties in which at most t can be wrong (sent by Byzantine corrupted party). However,
DEC of (n, t + 1) RS code with n = 3t + 1 allows to correct t errors. Therefore DEC will return
m0, . . . ,mt such that m = m0| . . . |mt.
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Theorem 3.1. The protocol (n
3 )-BA satisfies:

Agreement: Every honest party will output the same message.
Validity: If every honest party Pi holds the same message mi = m, then all honest parties output

m.
Complexity: The protocol has a round complexity of 3, seed-round complexity of 1, communication

complexity of O
(
`n+ n2B(1)

)
bits and a seed-communication complexity of O(n2) bits.

Proof.
Agreement: If Psm is agreed, then all honest parties output the common message of the parties

in Psm (by Lemma 3.3). If Psm is not agreed, then all honest parties agree on predefined m?.
Hence, agreement is achieved.

Validity: If all the honest parties start with same m, then by Lemma 3.2, they agree on Psm and
output m (by Lemma 3.3).

Complexity: Every Pi sends two values sii and sij to every other party Pj . The values are `
t+1 bits

long each. Therefore in total there are `
t+1O(n2) = O(n`) bits of communication. Every party

Pi broadcasts n-length binary vector vi. This leads to total O(n2) instances of broadcast for
single bit. So the communication complexity is O(`n+ n2B(1)) and the seed-communication
complexity is O(n2).
The communication takes place in steps 1, 2 and 4 of (n

3 )-BA with step 2 invoking bit broadcast
protocol. So the round and the seed-round complexity of (n

3 )-BA are 3 and 1 respectively.

4 Byzantine Agreement Extension for t < n/2

We present a BA extension protocol for ` bit message in the honest majority setting with: (i)
communication complexity: O(`n) bits, (ii) round complexity: 5, (iii) seed-round complexity: 2
and (iv) seed-communication complexity: nκ. Given a protocol for BA, a BB protocol can be
constructed using the same folklore transformation mentioned in the previous section [Lyn96].

At a high level, our BA protocol closely follows the protocol of [FH06] (will be referred as FH pro-
tocol from now onwards) with the main difference being the seed-round complexity. While [FH06]
requires three seed rounds, our protocol requires just one round of seed broadcast. A closer look
will reveal that it is non-trivial to reduce the number of seed rounds in [FH06]. The FH protocol
proceeds in three phases, where each phase brings the parties “closer” to agreement. The protocol
may be aborted in the first two phases when some inconsistency is detected. In that case, the
parties will output ⊥. However, if the parties reach the third phase, agreement will be reached
without any abort. In each of the first two phases, the parties must agree on whether to abort or
to continue to the next phase. Otherwise the BA protocol will have no agreement property. This
calls for at least two seed rounds (one in each of the first two phases). The FH protocol requires
three seed rounds, one in the first phase and the other two in the second phase. Thus far, there
is no known information-theoretic BA extension with optimal communication complexity and one
seed round in the honest majority setting. In this paper, we propose a cryptographically secure
protocol and leave open the design of an information-theoretic protocol with the same complexity.

Our protocol proceeds in two phases. The first phase denoted as the checking phase is similar
to the first phase of the FH protocol. The parties check if there are at least n − t parties who
hold the same message, denoted as Psm (sm stands for ‘same message’). If such a set does not
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exist, the parties output ⊥ and terminate the protocol. This phase consists of a single round
and uses broadcast to reach agreement on Psm if it exists or on ⊥ when no such set exists. The
communication involves broadcasting the hashes of the individual party’s messages and so the
communication complexity remains independent of the message size. The second phase denoted
as the agreement phase is initiated when the parties have agreed on Psm. Here, the parties who
are not in Psm will obtain the common message held by the honest parties in Psm. The idea is to
come up with a set Phmsm where the messages held by the honest parties in Phmsm and Psm are
the same. Furthermore, Phmsm is guaranteed to have honest majority (hmsm stands for ‘honest
majority same message’). Now the honest parties in Phmsm can together transfer their common
message to a party with just O(`) communication complexity using a simple yet clever technique
suggested in [FH06]. Lastly, since this phase does not use any broadcast, the honest parties outside
Psm may have different Phmsm sets. But for each such set, the honest majority will be guaranteed
and thus the technique will work without any problem. The complete details of the protocol are
presented in Figure 3.

We now proceed to the proofs.

Lemma 4.1. The checking phase satisfies the following properties:
(a) If all the honest parties Pi start with the same message mi = m, then the honest parties do

not abort and output the same set Psm. Moreover, every honest Pi will belong to Psm.
(b) All honest parties in Psm hold the same input message mi = m with very high probability.

Proof.
(a) If all the honest parties hold the same message m, then all honest parties broadcast h =

Hash(m). Since there are n− t honest parties and all of them will broadcast a common hash
value h, there will be a set of size at least n− t parties whose broadcasted hash values will be
the same. So the set Psm will exist and the honest parties will not abort the checking phase.
Since the hash values are broadcasted, all the honest parties will output the same and unique
Psm. The uniqueness of the agreed set Psm is argued as follows. There cannot be two sets of
size n− t parties such that one set broadcasts h and the other set broadcast h′ with h 6= h′.
If two such sets exist, it implies that one party has broadcasted both h and h′. But since
every party broadcasts one hash value, the set Psm is unique and includes all the parties who
broadcast h. Clearly the set Psm will include all the honest parties.

(b) If two honest parties Pi and Pj in Psm hold two different messages mi 6= mj , then by the
collision resistance of the hash function, Hash(mi) 6= Hash(mj) with high probability and
therefore both Pi and Pj cannot belong to Psm. Hence all honest parties in Psm hold the
same message.

Lemma 4.2. The agreement phase satisfies the following properties:
(a) The majority of the parties in Phmsm are honest.
(b) The output messages of the honest parties in Psm and Phmsm are the same.
(c) Every honest party holds the same output message m.

Proof.
(a) Now we show that Phmsm has honest majority. Consider the set Pconflict = P \ Phmsm. This

set consists of pairs of parties (Pj , φ(Pj)). It is not possible that both the parties (Pj , φ(Pj))
are honest. If φ(Pj) is honest, by Lemma 4.1, she holds a message m that matches with h
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and he will send m to Pj . If Pj was honest too, its check Hash(m) = h will verify and it will
send happyj = 1. Since the pair (Pj , φ(Pj)) is included in P iconflict, Pj had sent happyj = 0
to Pi. This implies either Pj is corrupt and sent happyj = 0, or φ(Pj) is corrupt and sent a
message not matching h to Pj . Therefore, at least half of Pconflict are corrupted parties. Since
we have honest majority in P, we have that the majority of the parties in Phmsm are honest.

(b) By Lemma 4.1, all the honest parties in Psm hold the same input message, say m. So oi
for every honest party Pi in Psm is equal to m. Now consider an arbitrary honest party
Pj ∈ Phmsm. If Pj ∈ Psm, then oi = mi = m. If Pj 6∈ Psm but in Phmsm, then Pj must
have broadcasted happyj = 1. This implies that Pj had received some message, say m′ from
φ(Pj) ∈ Psm and h = Hash(m′) where h is the hash of the common output message m held by
the honest parties in Psm. This implies m = m′ with high probability by collision resistance
of the hash function. Since Pj sets oi = m′, the output messages of all the honest parties in
P ism and P ihmsm are the same message.

(c) We will show that every honest party Pj outputs oj = m, where m is the common input
message of the honest parties in Psm. Consider an arbitrary honest party Pj . We have
already proved that if Pj ∈ Psm or Pj ∈ Phmsm, then oj = m. If Pj belongs neither to Psm

nor to Phmsm, then it implies that happyj must be 0 and Pj has received a message that is
not equal to m from φ(Pj). We now show that Pj will retrieve m from the parties in Phmsm.

Recall that Pjhmsm has honest majority and all the honest parties in it have oi = m. This
implies that every honest party Pi’s transformed polynomial fi are identical and correspond
to m. We refer to the polynomial as f . If Pj receives d correct yi values on f , then it can
reconstruct f that is a d− 1 degree polynomial. There are at least d honest parties in Phmsm

whose hash vectors will be the hash values of f(1), . . . , f(n). So a piece yi that is same as
f(i) will be accepted by Pj . Whereas y′i that is not f(i) will be rejected by Pj with high
probability. Since there are at least d honest parties in Phmsm, Pj will always receive d yi
pieces and will reconstruct f and m.

Theorem 4.1. The protocol (n
2 )-BA satisfies the following properties (except with negligible prob-

ability in κ):
Agreement: All honest parties output the same value.
Validity: If every honest party Pi hold the same message mi = m, then all the honest parties

output m.
Complexity: The protocol has a round complexity of 5, seed-round complexity of 2, a communica-

tion complexity of O
(
`n+ n3κ+ nκB(1)

)
bits and seed-communication complexity of O(nκ)

bits.

Proof.
Agreement: If the protocol aborts in the checking phase, then all the parties output ⊥. Otherwise,

all the parties output the same message at the end of agreement phase (Lemma 4.2(c)).
Validity: By Lemma 4.1(a), if all honest parties hold the same message, then all honest parties

are in Psm and output the same message m.
Complexity: The checking phase communicates nB(κ) bits. In the agreement phase, at most t

parties who are outside Psm receive messages from the parties in Psm as per the mapping
φ. This requires O(`n) bits of communication. After this step, every party in P \ Psm

broadcasts a bit happyi. This requires nB(1) bits of communication. Finally, for a party
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Pi, the set of parties in Phmsm makes O(` + n2κ) bits of communication. Since there can
be at most t parties in P \ Psm, the total communication required is O(`n + n3κ) bits. The
total communication complexity of (n

2 )-BA protocol is O
(
`n+ n3κ+ nκB(1)

)
bits. The seed-

communication complexity is O(nκ).
The checking phase requires one round which is also a seed round. The agreement phase
requires four rounds of communication, in which one round is a seed round. Therefore, the
round complexity and the seed-round complexity of (n

2 )-BA are 5 and 2 respectively.

5 Byzantine Broadcast Extension for t < n

We present a BB extension protocol for ` bit message in the dishonest majority setting with: (i)
communication complexity: O(`n) bits, (ii) round complexity: O(n). The protocol has a seed-
round complexity of O(n). In the same setting, the first communication-optimal BB extension
protocol was given by [HR14] (will be referred as HR protocol henceforth). Both the round com-
plexity and seed-round complexity of the HR protocol are O(n2). More recently, [CO18] presents an
information-theoretic BB extension protocol with the same round and seed-round complexity, ex-
tending the works of [GP16,HR14]. Our protocol is the first protocol that optimizes two significant
parameters of a BB extension protocol simultaneously.

Like the HR protocol, our construction broadcasts the long message block by block sequentially
using dispute control framework [BH06]. While overall communication complexity is guaranteed to
be optimal, broadcasting each block may not be done with optimal communication complexity. Our
dispute control framework ensures that a corrupted party gets a single chance to misbehave with
an honest party. Once it is detected for wrong behaviour by an honest party in some execution
of block broadcast, the corrupted party will be ignored by the honest party for the rest of the
protocol. By maintaining a history of deviating behaviours across block broadcasts, the dispute
control framework help save expensive block communications between parties in dispute. At the
heart of dispute control framework lies the art of maintaining history and using it carefully. Such a
paradigm calls for sequential execution, and hence, often, the framework trades round complexity for
communication complexity. When both the round and the communication overheads are of concern,
the framework may not seem to be a wise choice. However, we hit the optimal communication and
round complexity at the same time by implementing dispute control framework with overlapped
sequential execution. At this point, we note a clear difference between our construction and the HR
construction. While the HR block broadcasts run sequentially without any overlap, our construction
intertwines the block broadcasts cleverly, yet maintaining the optimal communication complexity.
The result is our construction runs just for O(n) rounds beating the non-optimal O(n2) round
complexity of the HR protocol.

Specifically, we divide the input message into n blocks. A seed broadcast round is then used to
broadcast the hash values of the n blocks. The usage of broadcast ensures all the honest parties hold
the same copies for the hash values. In an honest block broadcast protocol where everyone behaves
honestly, it just requires n− 1 point-to-point communication of the block in order to propagate it
from the sender to the rest of the parties given that the hash value of the message block is already
agreed upon and the underlying hash function is collision resistant. But the corrupted parties
may behave arbitrarily. Although it may result in requiring more than n− 1 point-to-point block
communications, the honest parties will identify the corrupted parties who misbehaved and will
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ignore them for the rest of the protocol. Our protocol (n)-BB is given in Figure 4 which constitutes
of two phases: (i) Hash Agreement Phase: It consists of just one round where Ps broadcasts the
hashes h(1), . . . , h(n) of the n message blocks using oracle access to broadcast bits so that the parties
agree on the hash values of the blocks.; (ii) Block Agreement Phase: In this phase, the parties try
to obtain the blocks from parties who already received it using only point-to-point communication
such that the blocks verify against the agreed hash values.

We now concentrate on the block agreement phase where the agreement of blocks are done
sequentially yet in an overlapped fashion. Specifically, a party Pi starts requesting for kth message
block only when it has received the (k − 1)th one. This reflects the sequential nature. The
overlapping comes from the fact that the kth block agreement for Pi may run in parallel with the
(k − 1)th block agreement for Pj . This stems from the fact that a party Pi proceeds to kth block
agreement once it receives the (k − 1)th block and without waiting for others to receive the same.
The protocol runs for t+ n rounds, where the earliest round to start asking for kth message block
and the latest round to reach agreement on kth block are set to k and t + k respectively. If no
block matching the kth hash is received by the end of round (t + k) round, then an honest party
exits the while loop and outputs ⊥. Our protocol guarantees that either all or none of the honest
parties will get the message.

Every party maintains three kinds of sets. A local corrupt set Ci is used by party Pi to log the
corrupted parties discovered across the blocks. For the kth block, every party Pi locally maintains

a set of happy parties H(k)
i and a set of unhappy parties H(k)

i . From Pi’s point of view, a party
is happy if it declares to hold/receive a message block matching with the hash value h(k) and it
broadcasts certain ‘proof’ along with the declaration. A party Pi promotes Pj to its happy set only
when ‘the proof verifies correctly’. Only Ps is considered to be happy initially for all the blocks.

Now let us understand how a particular block agreement is done. Consider the kth block. A
party Pi who has received (k− 1)th block and is still unhappy for the kth block checks if there is a

party in its kth happy set H(k)
i who it can ask for the kth message block. An unhappy (and honest)

party Pi never requests a party for the message block more than once. Similarly, a happy (and
honest) Pj does not entertain anyone more than once. To prevent the corrupted parties from making
block request from multiple honest parties in a round, every party is made to broadcast the identity
of its chosen party. A happy (and honest) Pj sends its message block to Pi over the point-to-point
channel if and only if it receives a request from Pi via broadcast for the first time for a block. A
matrix T(k) is maintained by each party to detect repeated message send requests. A party who
asks for the message block more than once from the same party is identified as corrupted. Next Pi,
on receiving a message block from Pj can check if it matches with h(k). As h(k) is generated from
a collision-resistant hash function, a corrupted Pj cannot trick an honest Pi by sending a wrong
message block and yet pass the consistency check with h(k). Once Pi is happy, it prepares its proof
and broadcasts the same. Intuitively, when Ps is corrupted, the proof enables to reach agreement
on a block within the round limit fixed for the block. Namely, for the kth round, it is k + t. It
ensures that the more the adversary delays the receipt of the block by the honest parties, the more
it needs to expose the identities of the corrupted parties. We show that an honest party that moves
to the kth happy set in round r will know at least r−k corrupted parties. The proof further ensures
that the delay cannot be beyond a limit. For the kth block, the first honest party must be allowed
to be happy before round k + t. Otherwise all the honest parties will remain unhappy and would
output a ⊥ at the end of round k + t. More details follow.

Specifically, the proof of Pi for kth block in rth round is a happy set and corrupt set such that
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|H(k)
i ∪Ci| ≥ r− k+ 1 (excluding itself). If Ps is honest, then every honest party will get promoted

to the kth happy sets of all the honest parties in the kth round itself as each one of them can
prepare a proof where the happy sets consists of Ps. For a corrupted Ps, the proof ensures that
the first entry of an honest party in the kth happy sets of the honest parties cannot be in (k+ t)th
round. It must be in one of the previous rounds, because the proof in (k+ t)th round requires t+ 1
distinct parties in the union of happy set and the corrupt set. Since an honest party will not belong
to the corrupt set of another honest party, apart from self, the first honest entrant must include
another honest party in its kth happy set. Therefore, there must be some other honest party who
has become happy before (k+ t)th round. We then show that if an honest party becomes happy in
round r for the kth block such that k ≤ r < k + t, then all the honest parties will be happy after
running round (k + t).

Lastly, to ensure that a corrupted party does not fake its proof by including parties that are
not happy or corrupt, the proof is verified by checking if it is a subset of the union of the happy set
and corrupt set of the verifier. An honest party’s proof will always get verified by another honest

party. We show that there is a one-to-one correspondence between the sets H(k)
i ∪ Ci and H(k)

j ∪ Cj
of two honest parties Pi and Pj .

We now proceed to the proofs.

Lemma 5.1 (Complexity). Protocol (n)-BB has:
(i) a round complexity of O(n),
(ii) a seed-round complexity of O(n),
(iii) a communication complexity of O

(
`n+ (nκ+ n3 log n)B(1)

)
bits and

(iv) a seed-communication complexity of O(nκ+ n3 log n) bits.
for a message of `-bit length.

Proof. It is easy to verify the round complexity and the seed-round complexity of the protocol.
We now compute the communication complexity by considering the communication received by

each party. First, let us consider the communication received by an honest party. For every block of
message, if an honest party eventually moves to the happy set, then it receives `

n bits of message in
order to move from the unhappy set to happy set. Across all the message blocks, it may in addition
receive `

n bits of wrong message block from each of the t corrupted parties. However, each such
receipt will reveal the identity of one corrupted party. Thus, in total, the amount of communication
received by an honest party in the protocol is O(`) bits. Now consider the communication received
by a corrupted party. We need to focus on the communication made by the honest parties since a
corrupted party can communicate as many bits as it wants to another corrupted party. A corrupted
party cannot make an honest party to communicate any message block twice. Every honest party
Pi keeps track of the list of parties it sends a message block to in the array T. Once it sends the
kth message block to Px, it sets T(k)[i, x] to 0. Thus, a corrupted party either moves to the happy
set or creates a conflict with the honest party Pi. Irrespective of the case, the honest party Pi will
not communicate the same message block to the same corrupted party for the second time. Thus,
across all message blocks, a corrupted party can receive `

n bits of message from each honest party
to create conflicts with them. To move from unhappy set to happy set for each message block, it
may receive `

n bits of message from some honest party. Overall it counts to receipt of O(`) bits.
Now counting over all parties, we get that the overall received message complexity is O(`n) bits.
Since the communication complexity is same as the received bit complexity, we conclude that the
communication complexity is O(`n) bits.
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We now count the part of the communication complexity that is independent of ` and is
broadcasted. In the Hash Agreement phase, Ps broadcasts n hash values corresponding to n
message blocks. This requires a communication of B(n|h|) bits. Next, we consider the commu-
nication involved in the Block Agreement phase. For kth block, every party Pi will broadcast

(happy,H(k)
i , Ci, k) only in the round when it moves from its unhappy set to happy set. In the

worst case, it may broadcast (send, j, ci) and (unhappy, ci) in every round. We may assume the

size of H(k)
i and Ci to be O(t). This results in a communication of B(n log n) bits per party per

message block. Summing over all the blocks and all the parties, we get that a communication
of B(n3 log n) bits is required. Assuming |h(k)| = κ, the communication that is independent of
` turns out to be B(nκ + n3 log n) bits. Thus the ` independent communication complexity is
O((nκ+ n3 log n)B(1)) bits.

The communication complexity of protocol (n)-BB is, thus, O
(
`n + (nκ + n3 log n)B(1)

)
bits

and the seed-communication complexity is O(nκ+ n3 log n) bits.

Lemma 5.2 (Validity). Assume that Hash is a collision-resistant hash function. In protocol (n)-BB,
if Ps is honest then every honest party will output sender’s message.

Proof. The validity follows from the fact that all the honest parties ask for and receive the kth
message block from Ps in the kth round of the while loop and move to the kth happy set H(k)

of all the honest parties. Formally, the proof goes as follows. Before the start of the while loop,

H(k)
i is set to Ps for all k ∈ {1, . . . , n}. Consider the kth message block. In the kth round of the

while loop, the condition |H(k)
i | ≥ r− k+ 1 will hold for any honest party Pi, since both |H(k)

i | and
r − k + 1 are equal to 1. The latter is true because we are considering the kth round and hence
r = k. Every honest party Pi does the following in the given order (i) It asks for the kth message

block from Ps and will receive the same; (ii) It broadcasts (happy,H(k)
i , Ci, k) where, H(k)

i = {Ps},
sets o

(k)
i to m(k) and increments block count ci by one; (iii) At the end of kth round, it outputs o

(k)
i

which is the same as m(k), since Ps is honest. At the end of protocol (n)-BB, every honest Pi will
output m(1)| . . . |m(n) which is same as the sender’s message m.

We now prove the agreement property via a sequence of lemmas on the (n)-BB protocol.

Lemma 5.3. At any step during round r for 1 ≤ r ≤ n+ t, the condition H(k)
i ∪ Ci ⊆ H

(k)
j ∪ Cj is

true for any two honest parties Pi and Pj for any k ∈ {1, . . . , n}.

Proof. For any round r, we proceed step by step and show that in each step the sets H(k)
i ∪ Ci,

H(k)
j ∪ Cj grow together.

Step 2a: Step 2a does not update any of the sets.

Step 2b: In step 2b, only the corrupt sets may grow. If a party Pα enters the set Ci in step 2b,
then it enters set Cj too in the same step. Pα enters Ci for an honest Pi because of the
following reason. Pi has received Pα’s broadcast (send, x, y) such that one of the following is

true. Either T
(y)
i [x, α] is already set to 0 (i.e. Pα has asked for the kth message block from Px

earlier) or there is more than one broadcast request initiated by Pα in this round. In either
case, an honest Pj will also add Pα to its corrupt set Cj .
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Step 2c: In step 2c, only the corrupt sets may grow. Here an honest Pi includes Pα in its corrupt
set because of the following reason. Pi had requested Pα for the kth message block but did

not receive one matching h(k). Then it must be the case that Pα belongs to the set H(k)
i of

Pi in step 2d of one of the rounds {1, . . . , r − 1}, say r′. Below, we show that for party Pj ,
Pα is in set Hj ∪ Cj in step 2d of r′.

Step 2d: Here both the happy and corrupt sets may grow.

Consider any party Pα that enters H(k)
i in this step of any round r. We show that Pα will

belong to H(k)
j ∪ Cj in the same round r. Since Pα enters H(k)

i in round r, the following must

be true: (i) Pi has received Pα’s broadcast (send, x, y) such that T
(y)
i [x, α] = 1 and there

is only one broadcast initiated by Pα in this round; and (ii) Pi has received Pα’s broadcast

(happy,H(k)
α , Cα, k) such that the conditions H(k)

α ∪Cα ⊆ H(k)
i ∪Ci and |H(k)

α ∪Cα| ≥ r− k+ 1

hold. Pj will also receive Pα’s broadcast (send, x, y) such that T
(y)
i [x, α] = 1 and this will be

the only broadcast initiated by Pα in this round. Furthermore, Pj also receives Pα’s broadcast

(happy,H(k)
α , Cα, k). Now, if H(k)

α ∪ Cα ⊆ H(k)
j ∪ Cj , then Pj will move Pα to its happy set.

Otherwise, Pj will add Pα to Ci. It can never happen that Pα is moved to H(k)
i by Pi, but Pj

has neither moved it to H(k)
j nor added to Cj .

Now consider any party Pα that enters Ci of Pi in this step of any round r. This will happen

when Pi has received Pα’s broadcast (happy,H(k)
α , Cα, k) such that either of the conditions

H(k)
α ∪ Cα ⊆ H(k)

i ∪ Ci and |H(k)
α ∪ Cα| ≥ r − k + 1 are not true. Pj will also receive the same

broadcast. Based on whether the conditions are true for Pj or not, Pj will either add Pα to

Cj or move it to H(k)
j . But it cannot happen that Pj has not added Pα to either of the two

sets.

Definition 5.1 (Validity of Ci). We say that a set Ci is valid if for honest Pi, and for all honest
parties Pj, it holds that Pj /∈ Ci.

Below we prove that protocol (n)-BB ensures Ci remains valid throughout for an honest Pi.

Lemma 5.4. The set Ci is valid for an honest party Pi.

Proof. We note that an honest party adds a party Pj in corrupt set Ci when either of the following
are true: (i) it receives multiple broadcasts from Pj of the form (send, x, y) in different rounds
or in the same round or (ii) it receives multiple broadcasts from Pj of the form (send, x, y) and
(send, x′, y′) in the same round where x 6= x′ or (iii) it did not receive a message block from Pj

upon request that matches with the corresponding hash value or (iv) it receives (happy,H(k)
j , Cj , k)

for some k from Pj in round r such that either |H(k)
j ∪Cj | < r−k+ 1 or H(k)

j ∪Cj 6⊆ H
(k)
i ∪Ci. Pj is

clearly corrupted when any of the conditions stated in (i)-(iii) hold. Now, for the conditions in (iv),

if Pj was honest it would not broadcast (happy,H(k)
j , Cj , k) such that |H(k)

j ∪ Cj | < r − k + 1. By

Lemma 5.3, for any two honest parties Pi and Pj , H(k)
j ∪ Cj ⊆ H

(k)
i ∪ Ci is true at the end of step

2c or in the beginning of step 2d when (happy,H(k)
j , Cj , k) is broadcasted. If it is not true, then Pj

must be corrupt and has not broadcasted the correct set.
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The next lemma makes the following statements equivalent: For any k, in the kth block broad-
cast (i) an honest party moves from its kth unhappy set to kth happy set in round r (ii) an honest
party moves from the kth unhappy set to the kth happy set of every honest party in round r.

Lemma 5.5. For any k, if an honest party Pi moves from H(k)
α to H(k)

α for an honest party Pα in

the rth round, then it moves from H(k)
β to H(k)

β for every other honest party Pβ in the same round.

Proof. We note that the test done by Pα and Pβ for promoting Pi to their happy sets are identical:

Pα checks H(k)
i ∪ Ci ⊆ Hα ∪ Cα while Pβ checks H(k)

i ∪ Ci ⊆ H
(k)
β ∪ Cβ. It follows from Lemma 5.3

that both will hold.

We now prove the following lemma: For any k, if an honest and unhappy party moves a party
to its kth happy set in the rth round, then it will know at least r − k + 1 corrupted parties by the
end of the rth round where k ≤ r ≤ k + t.

Lemma 5.6. For any k, if an honest party Pi is in H(k−1)
i before rth round but in H(k)

i till the

end of rth round and moved a party from H(k)
i to H(k)

i in the rth round where k ≤ r ≤ k + t, then
|Ci| ≥ r − k + 1 in the end of rth round.

Proof. We prove the lemma using strong induction on r. We start with the following observation.

Let Pj be the party that moved from Hki to Hki in the rth round. As per the protocol steps, this

implies that the conditions H(k)
j ∪ Cj ⊆ H

(k)
i ∪ Ci and |H(k)

j ∪ Cj | ≥ r − k + 1 are true at Step 2d

of round r. From these two conditions, we can conclude that |H(k)
i ∪ Ci| ≥ r − k + 1 at Step 2d of

round r (excluding Pj).

Base Case. Assume r to be the first round when Pi moved at least one party from H(k)
i to H(k)

i

and Pi is in Hki till the end of rth round. We have k ≤ r ≤ k + t. Since before rth round no party

has moved to H(k)
i , H(k)

i consists of only Ps. Furthermore, Ps must be corrupted as Pi is still

unhappy. Therefore, all the parties in H(k)
i are corrupted. Since we have |H(k)

i ∪ Ci| ≥ r − k + 1 at
Step 2d of rth round, we can conclude that |Ci| ≥ r − k + 1 in round r.

Induction Step. Assume the lemma statement is true for all the rounds starting from k to r − 1.
We will prove the statement for round r.

Now, assume that r′ is the last round before r when Pi moved at least one party from H(k)
i to

H(k)
i . We have r′ < r. Since Pi must have been unhappy in round r′ too, we have |Ci| ≥ r′ − k + 1

by the end of round r′ via induction hypothesis. According to the protocol, the following condition

will be satisfied for Pi in the end of round r′: |H(k)
i ∪ Ci| ≥ r′ − k+ 2 after moving Pj to the happy

set. Now we have two cases to consider.

(i) First, if Pi asks for the kth message block from some party in its happy set H(k)
i in every round

starting from round r′ until round r, then Pi discovers r − (r′ − 1) + 1 = r − r′ additional
corrupt parties since it remains unhappy in the end of rth round. We therefore conclude that
|Ci| ≥ (r′ − k + 1) + (r − r′) = r − k + 1 in this case.

(ii) The other possibility is that Pi asks for the kth message block for some rounds starting from

round r′ + 1 but stops asking before round r. By assumption, the happy set H(k)
i of Pi did
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not grow between r′th and rth round. In this case, we can conclude that all the parties that

belong to H(k)
i until the beginning of round r are corrupted since none of them delivered Pi

a message block that is consistent with h(k). Since we have |H(k)
i ∪ Ci| ≥ r − k + 1 at Step

2d of rth round and all the parties in H(k)
i until the beginning of round r are corrupted, we

have |Ci| ≥ r − k + 1.

We now prove a lemma that captures the fact that, the more an honest party is delayed in
receiving a message block, the more the number of corrupted parties it discovers.

Lemma 5.7. For any k, if an honest party Pi moves to H(k)
i in rth round where k ≤ r ≤ k + t,

then |Ci| ≥ r − k in the end of rth round.

Proof. We first prove the lemma assuming that Pi has not moved any party to H(k)
i before round r.

This means H(k)
i contains Ps alone and Pi must have become happy on receiving the kth message

block from Ps. This implies two things: first, it must have received all the previous message blocks
from Ps too; second, r must be k. In this case, Pi knows zero corrupted parties. Since r = k, we
have |Ci| ≥ r − k at the end of round r. We now prove the lemma for the case when Pi does not

receive the message blocks from Ps and has moved some party to H(k)
i before rth round. We prove

the lemma using induction on k.

Base Case. Assume k = 1. That is, we are considering the first message block. Pi has moved some

party to H(1)
i before rth round. Let r′ be the last round when Pi does so. We have 1 ≤ r′ < r.

By Lemma 5.6, Pi knows at least r′ − k + 1 = r′ corrupted parties by the end of r′th round.

According to the protocol, by the end of round r′, |H(1)
i ∪ Ci| ≥ r′ − k + 2 = r′ + 1. By the

assumption of the statement Pi is honest and it has not added any party to its happy set after
round r′. Now, it has at least one party to ask for the message starting in round (r′ + 1) and

it moves to its happy set only in round r. Therefore, Pi will have parties in H(1)
i that are not

in Ci to ask for the message block. Since Pi has become happy in rth round, it must have been
asking distinct parties for the message block, starting from round (r′ + 1) and upto round r.
None of the parties that it asked for the message until round r − 1 delivered it a message block
matching h(1). This implies it discovers (r − 1) − (r′ + 1) + 1 = (r − r′ − 1) corrupted parties
starting from round (r′ + 1) and until round (r − 1). These identities are distinct from the r′

parties it knew by the end of round r′. In total, Pi knows at least r′ + (r − r′ − 1) = r − 1 cor-
rupted parties by the end of round r. Since k = 1, we have |Ci| ≥ r−1 = r−k at the end of round r.

Induction Step. Assume the lemma is true for all the message blocks upto k − 1. We now prove

the lemma for the kth message block. Say, Pi moves to H(k−1)
i in rk−1th round where (k − 1) ≤

rk−1 ≤ (k− 1 + t). By induction hypothesis, |Ci| ≥ rk−1− (k− 1) by the end of rk−1th round. Now

we consider two cases based on when Pi moves some party to H(k)
i before round r.

(i) The last time Pi moves some party to its happy set H(k)
i is in or before rk−1th round. We know

that Pi had been asking for kth message block in every round starting from round (rk−1 + 1)
to round r. We also know that Pi has become happy only in round r. Until round (r− 1), it
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discovers (r − 1) − (rk−1 + 1) + 1 = r − rk−1 − 1 corrupted parties which are different from
rk−1 − k + 1 corrupted parties it knew by the end of round rk−1. In total Pi now knows
(r − rk−1 − 1) + (rk−1 − k + 1) = r − k corrupted parties at the end of rth round.

(ii) The last time Pi moves some party to its happy set H(k)
i is after rk−1th round, say, in round r′

such that rk−1 < r′ < r. By Lemma 5.6, Pi knows at least r′− k+ 1 corrupted parties by the

end of r′th round. According to the protocol, by the end of round r′, |H(k)
i ∪ Ci| ≥ r′− k+ 2.

Hence, Pi will have parties in H(k)
i that are not in Ci to ask for the message block starting from

round (r′ + 1). Now, since Pi became happy in rth round, it must have been asking distinct
parties for the message block starting from round (r′ + 1) and upto round r. None of the
parties that it asked for the message until round r− 1 delivered it a message block matching
with h(k). This implies it discovers (r−1)−(r′+1)+1 = (r−r′−1) corrupted parties starting
from round (r′ + 1) and until round (r − 1). These identities are distinct from the r′ parties
it knew by the end of round r′. In total, Pi knows at least (r′ − k + 1) + (r − r′ − 1) = r − k
corrupted parties by the end of round r. We have |Ci| ≥ r − k at the end of round r.

The following lemma states that for any k, if one honest party moves to the kth happy sets of
the honest parties in rth round where k ≤ r < k + t, then every honest party will move to the kth
happy sets of the honest parties before round (k + t). This lemma will let us prove that either all
or none of the honest parties will be happy for the kth message block which in turn will lead us to
the proof of the agreement property of our protocol (n)-BB.

Lemma 5.8. For any k, if some honest party Pi moves from H(k)
j to H(k)

j for every honest party

Pj in round r such that k ≤ r < k + t, then every honest party will move from H(k)
j to H(k)

j before
(k + t)th round.

Proof. Let Pi be the first honest party that moves to the kth happy set H(k)
j of honest Pj . Also let

Pi move to the happy set H(k)
j of Pj in round r such that k ≤ r < k+ t. We now show that Pj will

move to the kth happy sets of all the parties in or before (k + t)th round. Let rk−1 be the round

number when Pj has moved to H(k−1)
j where (k − 1) ≤ rk−1 ≤ (k − 1) + t. Now we complete our

proof by considering the following two possible cases:

(i) rk−1 < r: By Lemma 5.6, Pj knows at least r − k + 1 corrupted parties by the end of rth

round. At the end of rth round, honest Pj will have |H(k)
j ∪ Ci| ≥ r − k + 2 after including

Pi. Therefore, Pj will have at least one party to ask for the message block in (r+ 1)th round.
Now, if Pj talks to Pi in some round in or before (k + t)th round, then it moves to its happy

set H(k)
j after receiving the message block. So let us assume that Pj does not ask for the

kth message block from Pi. This implies that Pj was requesting for the message block from
parties other than Pi in each of the rounds starting from the (r+1)th round. It is not possible
that Pj has not asked for the block from anyone in some round after the rth round. This is
because Pi will be in its happy set post rth round and by Lemma 5.4, Pi will not be in Cj
as both Pi and Pj are honest. We therefore conclude that Pj talks to some party in its kth
happy set in each of the rounds starting from the (r + 1)th round and until (k + t)th round.

22



Now Pj talks to (k+ t)− (r+1)+1 = k+ t−r parties in its happy set starting from (k+x)th
round to (k + t)th round. These k + t− r parties are different from the r − k + 1 corrupted
parties Pj had in its corrupt list Cj at the end of rth round. If all the k + t − r parties are
corrupted, then total number of corrupted parties will be x + t − x + 1 = t + 1. This is a
contradiction. One out of the k + t− r parties must, therefore, be honest and belong to Pj ’s

happy set H(k)
j . After getting the message block from the honest party in its happy set H(k)

j ,
Pj will move to its happy set too.

(ii) rk−1 ≥ r: By Lemma 5.7, Pj will know at least rk−1 − (k − 1) corrupt parties by the end of
round rk−1. At the start of round (rk−1 + 1), Pi has |Cj | ≥ rk−1 − (k − 1) and its happy set

H(k)
j contains honest Pi that cannot belong to Cj by Lemma 5.4. So clearly |H(k)

j ∪ Cj | ≥
rk−1−(k−1)+1 = (rk−1+1)−k+1 holds good in the beginning of round (rk−1+1). This implies
Pj will ask for kth message block starting from round (rk−1 + 1). Now if it asks for the kth

message block from Pi in some round before k+t, then it gets promoted to H(k)
j . If it does not

ask Pi, then it must be asking other parties in its kth happy set in every round starting from
round (rk−1+1) and until round (k+t). By the end of k+t rounds, if it has not got promoted
to the kth happy set, then it discovers (k+ t)− (rk−1 +1)+1 = k+ t−rk−1 corrupted parties.
These are different from rk−1 − (k − 1) corrupt parties Pj knew by the end of round rk−1.
Therefore, the total corrupted parties will have to be k+t−rk−1+rk−1−(k−1) = t+1. This
is a contradiction. Hence, we conclude Pj will talk to some honest party and get promoted

to H(k)
j by the end of round (k + t).

Recall that by Lemma 5.5, an honest party will be promoted to the kth happy set respectively
by all honest parties in the same round. Pj , will therefore, be promoted to the kth happy sets
of all the honest parties. Now every honest Pj will move to the kth happy sets of all the parties
since honest Pi will move to the kth happy set of every honest Pj in the same round (again due to
Lemma 5.5).

Lemma 5.9. For any k, either all or none of the honest parties will be in the kth happy sets of
the honest parties.

Proof. By Lemma 5.8, if one honest party moves to the kth happy sets of the honest parties in rth
round where k ≤ r < k + t, then every honest party will move to the kth happy sets of the honest
parties on or before (k + t)th round of the while loop. We now show that if at all an honest party
moves to the kth happy set of the honest parties, the first such move happens in round r where
k ≤ r < k+ t. Assume that Pi is the first honest party to enter to the kth happy sets of the honest
parties. Also assume that Pi is moved to the kth happy sets in the (k + t)th round. Then Pi must

have at least (k + t) − k + 1 = t + 1 parties in H(k)
i ∪ Ci excluding itself during the broadcast of

(happy,H(k)
i , Ci, k). Since there are at most t corrupted parties, there is already one honest party

included in H(k)
i ∪ Ci. By Lemma 5.4, the honest party cannot belong to Ci. So it must be in H(k)

i .
This contradicts our assumption that Pi is the first honest party to move to the kth happy set of
every honest party.

We conclude that if one honest party moves to the kth happy set of the honest parties before
(k + t)th round, then all the honest parties move to the kth happy sets by the end of (k + t)th
round. Otherwise, none of the honest parties enter the kth happy sets of the honest parties.
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Lemma 5.10. Assume that Hash is a collision-resistant hash function. For any k, all the honest

parties in H(k)
i for an honest Pi hold the same value.

Proof. This follows from the fact that Hash is a collision-resistant hash function and every honest
party has an identical copy of h(k) (since it is broadcasted). Even a corrupted party cannot find a
different image of h(k). Therefore, even if an honest party receives the kth message block from a
corrupted party, the message block must be the same as the kth message block possessed by the
honest parties in the happy set of an honest party (with very high probability).

We are now ready to prove the agreement property of (n)-BB protocol.

Lemma 5.11 (Agreement). In protocol (n)-BB, every honest party will output the same message.

Proof. By Lemma 5.9, either all or none of the honest parties are present in the kth happy sets of
all the honest parties for any k. If all of them are present, then by Lemma 5.10 they will hold the
same block. If none of them are present, then they will hold ⊥. Agreement, therefore, holds for
every block of message. Agreement over the entire message follows easily.

Theorem 5.1. Assume that Hash is a collision-resistant hash function. The protocol (n)-BB sat-
isfies (except with negligible probability in κ):

Agreement: Every honest party will output the same message.
Validity: If the sender is honest, all honest parties output the sender’s message m.
Complexity: A round complexity and seed-round complexity of O(n). A communication complexity

and a seed-communication complexity of O
(
`n + (nκ + n3 log n)B(1)

)
and O(nκ + n3 log n)

bits respectively.

Proof. The agreement, validity and complexity follow from Lemma 5.11, Lemma 5.2 and Lemma 5.1
respectively.

6 Conclusion

We studied extension protocols that are optimal in terms of communication and round complexity.
We introduce seed-round complexity as a measure of the number of rounds in which a single-bit
broadcast protocol is invoked, and seed-communication complexity as a measure of the number
of bits communicated through seed broadcasts. We presented a BA extension protocol in the
t < n/3 setting that is simultaneously communication and round optimal and requires a single
seed round. Our protocol does not require any set-up, is error-free and information-theoretically
secure. The existing protocols in this realm achieve only communication optimality and incur
Ω(n3) round as well as seed-round complexity. Then, in the setting with a set-up assumption, we
gave constructions of two extension protocols. Our extension protocol in the t < n/2 setting also
achieves optimal communication and improves the round complexity to 5 from 6 rounds of the
best known extension protocol in this setting. Finally, in the t < n setting, we presented a BB
extension protocol optimal in both communication and round complexity. Our t < n extension
protocol has a round and seed-round complexity of O(n) that improves the state-of-the-art in this
setting which is only communication optimal. We leave as open questions, designing protocols that
are optimal in communication and round complexity while minimizing the seed-round complexity
to 1 for the more interesting and challenging t < n setting.
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(n
2 )-BA

– Input of every Pi: An `-bit message mi.

– Oracle: Broadcast oracle for bits.

– Cryptographic Assumption: A collision resistant hash function Hash.

Checking Phase. Every party Pi does the following:

1. Compute a hash of the message mi as hi = Hash(mi) and broadcast hi.

2. Check if at least n− t broadcasted hashes are equal. If no n− t broadcasted hashes are
equal, output oi = ⊥ and terminate. Otherwise, let h denote the common hash value
broadcasted by at least n− t parties. Then form Psm as the set of parties broadcasting h.

Agreement Phase. Every party Pi does the following

1. If Pi ∈ Psm, set output message oi = mi.

2. Form an injective function from P \ Psm to Psm, by say, mapping the party with the
smallest index in P\Psm to the party with the smallest index in Psm i.e. φ : P\Psm → Psm.

3. If Pi ∈ Psm and Pi = φ(Pj), then send oi to Pj .

4. If Pi ∈ P \ Psm and received a value say, o′j from Pj ∈ Psm in the previous round such
that Pj = φ(Pi), then check if Hash(o′j) = h. If the test passes, set happyi = 1 and assign
output message oi = o′j , else set happyi = 0. Broadcast happyi.

5. Construct a set Pconflict consisting of the parties Pj , φ(Pj) such that happyj received
from Pj in the previous step is 0 and Pj belongs to P \ Psm. Set Phmsm = P \ Pconflict,
d = d(|Phmsm|+ 1)/2e.

6. Transform the message oi into a polynomial over GF (2c), for c = d(`+1)/de denoted by fi
with degree d−1. Compute the c-bit piece yi = fi(i), Hi = (Hash(fi(1)), · · · ,Hash(fi(n)))
and sends (yi, Hi) to Pj for every Pj ∈ P \ Psm that broadcasted happyj = 0.

7. If Pi ∈ P \ Psm and happyi = 0, check each piece yj received from each Pj ∈ Phmsm

against the jth entry of every hash value vector Hk received from Pk ∈ Phmsm. If at least
d of the hash values match a piece yj , then accept yj , otherwise reject it. Interpolate the
polynomial f from the d accepted pieces yj , and compute the message m corresponding
to the polynomial f . Set oi = m.

8. Output oi and terminate.

Figure 3: Honest Majority BA
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(n)-BB

– Input of Ps: An ` bit message m.

– Oracle: Broadcast oracle for bits.

– Cryptographic Assumption: A collision resistant hash function Hash.

Hash Agreement Phase: The sender Ps does the following:

1. Break the message m into n pieces by padding the end of the message if necessary so that
all pieces are of the same length. Denote the n messages by m(1), · · · ,m(n).

2. For k = 1, . . . , n, compute h(k) = Hash(m(k)) and broadcast h(k) to all parties.

Block Agreement Phase: Each party Pi does the following:

1. Initialize

– Ci to ∅, ci to 1 and r to 1.

– T
(k)
i [j, l] = 1 for j, l, k ∈ {1, . . . , n}

– H(k)
i ,H(k)

i to Ps and P \ Ps respectively for k ∈ {1, . . . , n}
– o

(k)
i to ⊥ if Pi 6= Ps, o

(k)
i = m

(k)
i otherwise for k ∈ {1, . . . , n}

2. While r ≤ (n+ t)

(a) If Pi ∈ H
(ci)
i , ∃ Pj ∈ H(ci)

i \Ci and |H(ci)
i ∪Ci| ≥ r−ci+1, then broadcast (send, j, ci).

(b) Let (send, x, y) be the output of the broadcast initiated by Pj 6∈ Ci.

i. if T
(y)
i [x, j] = 1 and there is only one broadcast initiated by Pj , then set

T
(y)
i [x, j] = 0. If x = i and Pi ∈ H(y)

i , then send o
(y)
i to Pj over point-to-point

channel.

ii. else add Pj to Ci.

(c) If Pi broadcasted (send, j, ci) in step 2a: let o
(ci)
j denote the message block received

from Pj over point-to-point channel.

i. if h(ci) = Hash(o
(ci)
j ), then increment ci by one, set o

(ci)
i = o

(ci)
j and finally

broadcast (happy,H(ci)
i , Ci, ci).

ii. otherwise broadcast (unhappy, ci), add Pj to Ci.
(d) Let v be the output of the broadcast done by Pj 6∈ Ci in step 2c who broadcasted

(send, ∗, x) in step 2a earlier this round:

i. if v = (happy,H(x)
j , Cj , x), H(x)

j ∪Cj ⊆ H
(x)
i ∪Ci and |H(x)

j ∪Cj | ≥ r−x+ 1, then

move Pj from H(x)
i to H(x)

i and set H(x)
i = H(x)

i ∪H
(x)
j .

ii. if v = (unhappy, x), then do nothing.

iii. else add Pj to Ci.

(e) If r = ci + t and Pi ∈ H
(ci)
i , then exit while loop.

(f) Set r = r + 1.

3. If o
(k)
i 6= ⊥ for all 1 ≤ k ≤ n, then output o

(1)
i | · · · |o

(n)
i . Else, output ⊥.

Figure 4: Broadcast Protocol in Dishonest Majority Setting
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