
Privacy-Preserving Classification on
Deep Neural Network

Hervé Chabanne,Amaury de Wargny and Jonathan Milgram
and Constance Morel and Emmanuel Prouff

Safran Identity & Security
Email: {firstname.lastname}@safrangroup.com

Abstract—Neural Networks (NN) are today
increasingly used in Machine Learning where
they have become deeper and deeper to accu-
rately model or classify high-level abstractions
of data. Their development however also gives
rise to important data privacy risks. This obser-
vation motives Microsoft researchers to propose
a framework, called Cryptonets. The core idea is
to combine simplifications of the NN with Fully
Homomorphic Encryptions (FHE) techniques
to get both confidentiality of the manipulated
data and efficiency of the processing. While
efficiency and accuracy are demonstrated when
the number of non-linear layers is small (eg 2),
Cryptonets unfortunately becomes ineffective for
deeper NNs which let the problem of privacy
preserving matching open in these contexts.
This work successfully addresses this problem
by combining the original ideas of Cryptonets’
solution with the batch normalization principle
introduced at ICML 2015 by Ioffe and Szegedy.
We experimentally validate the soundness of
our approach with a neural network with 6
non-linear layers. When applied to the MNIST
database, it competes the accuracy of the best
non-secure versions, thus significantly improving
Cryptonets.

I. INTRODUCTION

Neural networks aim to solve a so-called
classification problem which consists in cor-
rectly assigning a label to a new observation,
on the basis of a training set of data containing
observations (or instances) whose labelling is
known [31]. It may also be viewed as the
problem of approximating unknown (complex)
functions that can depend on a huge number
of inputs and are generally unknown.1 The
main blocks of neural network models exist
since the early 1980’s but, for a long time,
other methods (e.g. Support Vector Machines
with Kernel [41]) have been preferred since

1A classical simple example (e.g. detailed in [34, Chap-
ter 1]) is the recognition of handwritten digits.

they are not impacted by the overfitting issue
(when the dimension of the inputs is high
and the isze of the training database is small)
and lead to unique solutions. The situation
has recently changed with the increasing of
both the size of the training database (e.g.
available in the clouds) and the computing
performances, and also thanks to technical
improvements (e.g. the introduction of the
dropout regularization technique [27] and the
introduction of the REctified Linear Unit acti-
vation function [24]). They have brought out
the neural networks, putting them forward in
the 21st century. They, for instance, play a
central role in face recognition [40], image
classification [30] or speech recognition [23]
and are thus widely deployed.

Machine learning algorithms are often ap-
plied on sensitive information such as medical
data. The privacy protection of these sensitive
data has been the subject of several articles
during the last five years. They may be clas-
sified according to the learning algorithms
which are involved: linear regression training
or prediction [35], [47], linear classifiers [7],
[8], [22], decision trees [8] or neural networks
[2], [20], [36], [50], [52].

All the previously mentioned Machine
learning algorithms are composed of two
stages: the training phase from a labelled
database and the classification of new data.
The training phase essentially aims at infer-
ring the algorithm parameters from a labelled
(or classified) database by optimizing some
training objective (recognize/classify digits,
faces, objects, etc). The classification of a
new datum then simply consists in applying
the trained algorithm to it (see Appendix B
for more details). Like in [48], [20], where
Cryptonets’ solution is introduced, our article



deals with the privacy-preserving problem for
the classification (aka matching) processing in
the context of deep Neural Networks. More
precisely, we focus on the popular Convolu-
tional Neural Network (CNN) which belongs
to the family of multilayer perceptron (MLP)
networks that themselves extend the basic
concept of perceptron2 to address problems
where the classification does not reduce to a
simple linear separation. Readers not familiar
with the basic concepts of MLP may refer to
Appendix A where some basics are recalled.
We additionally give in Appendix C some
references about the study of the privacy of
the training phase.

A. Problematic

The problem addressed in this work is for-
malized hereafter.

Problem 1 (Privacy Preserving Classifica-
tion): A client has his data X . A server has
a trained (deep) neural network. The client
obtains the classification (aka label) of his data
X from the server, and this classification must
not reveal information about the trained neural
network. The server obtains nothing (no infor-
mation about the client input or labelling).

To provide practical solutions to Problem 1,
two main requirements have been added:
• Efficiency: the running time to obtain the

classification needs to be low in order to
be applicable for real world applications

• Accuracy: the classification performance
needs to be close to the classification
performance without privacy

B. Related Work

The problem of privacy-preserving neural
networks has been widely studied since the
beginning of the century. All existing methods
are based on secure multi-party computation
(SMC) or homomorphic encryption (HE) or a
combination of those methods. The efficiency
of these solutions strongly depends on the
complexity of the neural network (complexity
of the activation function, number of layers of

2A perceptron is a binary classifier that first applies an
inner product between real-valued input vectors and a fix
trained/learned vector and then associates the label 0 or
1 to the output depending on a learned threshold.

each type, number of neurons per layer) seen
as a classification function.

In 2006, Barni et al [2] proposed a pri-
vacy preserving neural network classification
algorithm based on secure multi-party com-
putation and homomorphic encryption. Their
neural networks are composed of a succession
of scalar products which are secured on the
basis of homomorphic encryption and activa-
tion functions (threshold or sigmoid) secured
with protocols based on secure multi-party
computation. More precisely, to evaluate the
scalar product between ~x and ~y both in RN

and owned respectively by the client and the
server, the client encrypts each component
of the vector ~x with Paillier’s homomorphic
encryption [37] and sends them to the server,
then the server evaluates homomorphically the
encryption of the scalar product and sends
back the encrypted result to the client who
finally decrypts it in the plaintext domain.
Thanks to the homomorphic encryption, the
server learns nothing about the client’s vector
~x and the client learns nothing about the
server’s vector ~y except what he can infer from
the product scalar result. The communication
complexity of the scalar product evaluation is
O(Nn2) where N is the number of compo-
nents per vector and n is the RSA-modulus
for the Paillier cryptosystem. Its computation
complexity is O(N) exponentiations modulo
n2. To securely evaluate each threshold activa-
tion function processing, Yao’s solution to the
millionaire’s problem [49] is suggested. The
communication complexity of this protocol is
O((log2 n)

2) where the two integers to com-
pare belongs to Zn. To securely evaluate the
sigmoid activation function, firstly the sigmoid
is approximated by a low degree polynomial
and then the polynomial is evaluated with
private polynomial evaluation [33]. Finally, the
values of all intermediate neurons (outputs of
scalar products and activation functions) are
revealed to the client. The authors noted this
issue and keep it for future works. To sum
up, this protocol suffers from two major draw-
backs: it does not fulfill neither the privacy
requirement nor the efficiency requirements of
our Problem 1.

Orlandi et al [36] enhanced the protocol [2]:
intermediate results are no longer revealed to
the client. To evaluate scalar products, they



use the same protocol as Barni et al. with two
improvements. Firstly they replace Paillier’s
cryptosystem by its extension by Damgård
and Jurik [13]. Secondly, the scalar product
results are masked before delegating the eval-
uation of the activation functions to the client.
For instance, if the activation function is the
threshold function, the server computes ho-
momorphically Enc(a(< ~x, ~y > −δ)) where
δ is the threshold of the activation function
and a is a non zero value randomly chosen
by the server. Then the client decrypts it and
sends Enc(−1) if a(< ~x, ~y > −δ) < 0
and Enc(1) otherwise. The client cannot infer
information about < ~x, ~y > thanks to the
random value a. If a is negative, the server
has to multiply the encrypted result by (−1)
to obtain the correct encrypted result. Unfor-
tunately, this protocol has a similar computa-
tion/communication complexity than the Barni
et al solution and thus it does not respect the
efficiency requirement.

To overcome this drawback, Gilad-
Bachrach et al [48], [20] proposed a
new privacy preserving neural network
classification without interaction between the
client and the server. Their approach, which
applies the principles of Fully Homomorphic
Encryption (HFE), is composed of the
following steps: the client encrypts his data
as specified by the the chosen HFE scheme
and sends it to the server, then the server
processes a version of the classification
algorithm which has been adapted to operate
on encrypted data without decrypting them,
and the encrypted result is eventually sent
back to the client who can decrypt it. The
privacy is obviously ensured thanks to the data
encryption and the communication complexity
is very low. These two assets may however
come at the cost of an important increase
of the processing complexity. The latter
one depends on the algebraic nature of the
classification algorithm, and more precisely
on its multiplicative depth3. The main issue is
therefore to adapt the classification algorithm
to render it compatible with homomorphic
encryption while maintaining good accuracy.
To achieve this result, Gilad-Bachrach et

3We recall that the multiplicative depth of a processing
is the maximum number of consecutive multiplications
that must be computed during to get the output.

al [48], [20] simply propose to replace
the activation function by the squared
function which has multiplicative depth 1.
To maintain good accuracy, the same neural
network architecture is used for the training
and the classification. Thanks to the low
degree polynomial activation function, the
multiplicative depth of the neural network is
reasonable during the secure classification,
and thus the homomorphic classification with
YASHE encryption scheme [6] is efficient.
Unfortunately as acknowledged by the authors
themselves, the fact that the squared function
has an unbounded derivate induces a strange
behaviour during the training phase. Therefore
this protocol is only adapted to small neural
networks and its accuracy is very low for
neural networks with more than 2 non-linear
layers (which are yet the most common in
nowadays applications).

C. Contributions

In this paper, we design and evaluate the
first privacy preserving classification for neu-
ral networks whith depth greater than 2. Like
the best state-of-the-art solutions discussed in
the previous section, our goal is to end up with
a construction being FHE friendly while keep-
ing accuracy at high level. This requires in
particular that the multiplicative depth of the
neural network is maintained reasonably low.
To address this issue, the literature suggests to
replace the activation function by a low degree
non-linear polynomial both on the learning
and classification phases. To stay as close as
possible to the state of the art neural net-
works, and to therefore respect our accuracy
requirement, we followed a different approach
and we chose to keep a classical deep neural
network (with the ReLU activation function)
for the training phase; we afterwards only
made the modifications on the network when
it is used for classification. As in [20], the
first modification consists in approximating
the ReLU by a low degree polynomial. This
modification, if applied solely, does not work
because the polynomial approximation of the
ReLU function is only good on a restricted
distribution whereas the activation function
applies on inputs with unstable distributions.
To circumvent this issue, which leads to clas-
sification errors and dramatically degrades the



accuracy, our key technical innovation is to
combine the latter polynomial approximation
with a batch normalization [28]. The batch
normalization concept has been introduced in
2015 by Sergey Ioffe and Christian Szegedy in
order to greatly accelerate the training in deep
neural network. This idea consists in adding a
normalize layer before each activation layer in
order to have a stable and normal distribution
at the level of the activation function inputs.
When such a normalization is involved, the
polynomial approximation just needs to be
accurate on a small and fix interval.

To validate the soundness of our approach
we launched several experiments. In order to
both increase our chance to achieve a good
accuracy on the MNIST database [32] and to
test the robustness of our methods for NNs
with striclty more than 2 non-linear layers, we
started by training a deep neural network with
6 activation layers (see Figure 1). We tested
that, without any modification, this trained
neural network achieves 99.59% accuracy. For
the privacy-preserving classification step, the
ReLU layers have been replaced by degree-2
polynomial approximations. To the best of our
knowledge, the BGV encryption scheme [9]
with the Smart-Vercauteren ciphertext pack-
ing techniques [43] and the Gentry-Halevi-
Smart optimizations [18] is today the most
efficient encryption scheme to evaluate poly-
nomial functions. It is why we chose to use it
for our experiments4. Finally, we observed that
our privacy-preserving CNN achieves 99.30%
accuracy, which improves that of Cryptonets
(98.95%). To conclude, our solution respects
the three requirements: privacy (our solution
is FHE friendly), efficiency (our solution has
a low multiplicative depth of 6) and accuracy
(the recognition performance with and without
privacy are close). Last but not least, our
approach is scalable and can be applied to
neural networks with an important number of
non-linear layers without too much decreasing
the accuracy performances (which was not the
case with Cryptonets).

4In addition, HElib [26], a software library that imple-
ments this homomorphic encryption scheme, is available
on GitHub [25]. As in [20], all real values will be mapped
to fixed point representations because the BGV encryption
scheme can only be applied on finite field.

D. Paper Organization

We present the required preliminaries in
Section II. Our privacy preserving deep neural
network classification protocols can be found
in Section III. This solution requires the ap-
proximation of the ReLU function by a low
degree polynomial. The section IV presents
this polynomial approximation. Finally, we
tested our solution firstly on a light CNN (see
Section V) and then on a deeper CNN (see
Section VI). Section VII concludes this paper.

II. PRELIMINARIES

In this section, the convolutional neural net-
work concept and the homomorphic encryp-
tion are presented.

A. Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) are
particularly tailored for image recognition. For
that purpose, the classical principle of MLP
is completed with a new type of layer, called
convolutional layer based on convolutional
filtering. Like a perceptron, this convolutional
layer is a scalar product between some input
neurons and some weights which have been
priorly trained/learned.

A convolutional neural network is a stack of
layers that transforms an input layer, holding
data to classify, into an output layer, holding
the label scores. Each neuron of one layer (ex-
cept the input layer) is the output of a function
applied on the neurons of the previous layer.
A few distinct kinds of layers are commonly
used such as the fully connected layer, the
convolutional layer, the activation layer and
the pooling layer.

a) Fully connected layer: each neuron of
this layer is connected to each neuron of the
previous layer. The weight on the connection
between the j-th neuron of the (`−1)-th layer
and the k-th neuron of the `-th layer noted is
denoted by ω`

kj . The bias of the k-th neuron of
the `-th layer is denoted by β`

k and its ouptut
x`k equals β`

k+
∑

j ω
`
kjx

`−1
j , which is a simple

inner product.
b) Convolutional layer: The issue with

the fully connected layer is the number of
parameters to learn. In fact, the number of
weights in one fully connected layer is equal
to the number of neurons in the previous layer
multiplied by the number of neurons in the



Fig. 1: Our deep neural network

(`− 1)-th
layer

`-th
layer

x`−1
1

x`−1
2

x`−1
3

x`
1

x`
2

x`
3

x`
4

ω`
1,1

ω`
4,3

Fig. 2: Fully connected layer

current layer. For instance, if a layer and its
previous layer contain respectively 100 and
10, 000 neurons, then the current layer con-
tains 106 weights and 100 biases to learn. To
overcome this issue, convolutional layers are
used. These layers are especially tailored for
image inputs because they are based on convo-
lutional filtering used in image processing. In
image processing, a filter studies successively
each pixel of an image. For each pixel, a
convolution is performed by multiplying the
pixel and its neighbouring pixels values by
the filter corresponding weights and then by
adding all the results. The new pixel is set to
this final result value. The same filter is used
on each pixel of the image. Figure 3 shows a
convolutional filtering.

Convolutional layers are based on convolu-
tional filtering. The weights within the filter
are the weights to learn during the training
step. In addition, several filters are performed
on the same layer in order to extract different
kinds of characteristics. Hence, each layer

Convolutional
filter

40
43 41

30 28

41
40 35

27 25

30
38 30

20 19

35
31 25

18 17

30
32 27

15 10

Filtered image

-3

0

1

0

1

-4

1

0

1

0

Initial image

Fig. 3: Convolutional filtering

is a three-dimension layer: a two-dimension
matrix is obtained from each filter and then the
result of each filter is put into a stack to obtain
a three-dimension result. In addition, the filter
is also in three dimensions in order to take into
account the three dimensions of the previous
layer. For instance, if n filters are applied on
a layer containing w × h × d neurons, then
each filter contains s× s× d weights where s
is the filter size and the output layer contains
w × h× n neurons.

More specifically, the convolutional layer
of the `-th layer contains w` × h` × d`

neurons noted x`i,j,k,∀(i, j, k) ∈
[0..w` − 1] × [0..h` − 1] × [0..d` − 1].
The parameters to learn are arranged into
filters. Each filter contains s` × s` × d`

weights and one bias and is used to obtain a
matrix of w` × h` neurons. Mathematically,
the (i0, j0, k0)-th neuron of the `-th layer
noted x`i0,j0,k0

is computed with the k0-th
filter and some neurons of the previous layer
with the following formula: x`i0,j0,k0

= β`
k0

+∑s`−1
i=0

∑s`−1
j=0

∑d`−1
k=0 ω`,k0

i,j,kx
`−1
i0+i−bs/2c,j0+j−bs/2c,k.

Figure 4 represents the application of one
filter into a convolutional layer.

c) Activation layer: A neural network
containing only fully connected and convolu-



(`− 1)-th
layer

`-th
layer

Fig. 4: Application of one filter into a convo-
lutional layer

tional layers can only classify data linearly.
To solve more complex classification problem,
the activation layer has been introduced. The
same non-linear function called the activation
function is applied to each neuron of the
previous layer to obtain one neuron of the
current layer: x`i,j,k = f(x`−1i,j,k) where f is the
activation function. Therefore, an activation
layer contains the same number of neurons
than its previous layer. The two most common
activation functions are the ReLU function
f(x) = max(0, x) and the sigmoid function
f(x) = (1 + e−x)−1. Activation layers are
usually used immediately after convolutional
or fully connected layers. Figure 5 represents
an activation layer.

(`− 1)-th
layer

`-th
layer

x`−1
1

x`−1
2

x`−1
3

x`
1

x`
2

x`
3

f

f

f

Fig. 5: Activation layer

d) Pooling layer: As activation layers,
they are non-linear layers. This layer reduces
the spatial size in order to reduce the amount
of neurons. This layer partitions the neurons of
the previous layer into a set of non overlapping
rectangles and performs a function on each
sub-area in order to obtain the value of one
neuron of the current layer. The most com-
mon pooling functions are the max-pooling
which outputs the maximum values within
the sub-area and the average-pooling which

outputs the average of the values of the sub-
area. In addition, the pooling layer operates
independently on every depth slice of the
previous layer. Pooling layers are usually used
immediately after activation layers. Figure 6
represents a pooling layer.

5

29

50

0

32

11

0

16

23

45

3

8

20

50

45

16
15

20

3

16

(`− 1)-th
layer

`-th
layer

Fig. 6: Max-pooling layer

e) Common architectures: The main
block of a convolutional neural network is
a convolutional layer (CONV ) directly fol-
lowed by an activation layer (ACT ), noted
CONV → ACT . The convolutional layer
extracts locally information from the previous
layer thanks to filters and the activation layer
increases the complexity of the learned clas-
sification function thanks to its non-linearity.
After some CONV → ACT blocks, a pool-
ing layer (POOL) is usually added to re-
duce the number of neurons: [CONV →
ACT ]p → POOL. This new block is re-
peated in the neural network until obtaining
a layer of reasonable size. Then some fully
connected layers (FC) are introduced in order
to obtain a global result which depends of the
entire input. A common convolutional network
can be summarised in the following formula:
[[CONV → ACT ]p → POOL]q → [FC]r.

A neural network can be viewed as a func-
tion taking as inputs some parameters (weights
and biases) and one data and which outputs
the probability of each label for this data. For
instance, if the neural network learns how to
recognize handwritten digits. Its input layer
will have as many neurons than pixels in
image to classify and its output layer will
contain ten neurons, one per possible digits.
During the training step, the weights and bi-
ases will be learned in order to recognize as
well as possible handwritten digits. During the
training step, the ten neurons in the output
layer will contains the probability for each
digit. The position of the highest neuron of



the output layer indicates the digit of the input
image.

B. Homomorphic Encryption

a) Partially homomorphic cryptosystem:
Homomorphic encryption is an encryption
which allows computations over encrypted
data without knowing the encryption secret
key and learning the raw data. For instance,
additive homomorphic encryption allows to
compute additions on encrypted data: given
encryptions Enc(m1), Enc(m2) of the mes-
sages m1 and m2, one can efficiently compute
a ciphertext that encrypts m1 + m2 without
knowing m1,m2 or the secret key. Homo-
morphic encryptions allowing only one type
of operations (additions or multiplications) are
called partially homomorphic encryptions and
have existed for many years with, for in-
stance, Paillier cryptosystem [37] for additive
homomorphic encryption and RSA cryptosys-
tem [38] or El Gamal cryptosystem [16] for
multiplicative homomorphic encryption. These
encryptions have been widely used in various
applications such as electronic voting [14],
[15] or simple statistics (e.g. mean, variance)
in data mining.

b) Fully Homomorphic Encryption
(FHE): Partially homomorphic encryption
are limited to only one type of operations
but in many applications (including ours),
we would like to homomorphically perform
additions and multiplications. The first
scheme addressing this issue has been
introduced by Craig Gentry in 2009 [17].
This scheme called fully homomorphic
encryption (FHE) is based on ideal lattices
and its construction contains two steps.
It starts with a somewhat homomorphic
encryption (SWHE) scheme which allows a
fixed number of operations (additions and
multiplications) on the encrypted domain.
A bootstrapping operation is added to the
SWHE. This operation refreshes ciphertexts
by homomorphically evaluating the decryption
circuit. The combination of a SWHE with
a bootstrapping operation results to a fully
homomorphic encryption: the number of
operations is now unlimited. Unfortunately,
this scheme is inefficient for practical
applications due to its high computation and
memory cost.

From the Gentry’s breakthrough work, nu-
merous FHE schemes have been introduced in
order to make it practical. These schemes can
be organised in three categories:

• Schemes based on ideal lattices such as
the Gentry’s original work [17] and its
optimizations [44], [19]. These schemes
have worse performances than the latter
systems and so are no longer considered

• Schemes based on learning with er-
ror (LWE) or ring learning with er-
ror (RLWE) problems such as Brakerski
and Vaikuntanathans schemes [10], [11]
and their famous optimization Brakerski-
Gentry-Vaikuntanathan (BGV) [9]

• Schemes which operate over integers in-
stead of ideal lattices such as the van
Dijk, Gentry, Halevi and Vaikuntanathans
(DGHV) scheme [46]

Despite the significant progress in the FHE
area, no efficient FHE scheme for all generic
functions exist. But for some specific applica-
tions, very efficient solutions based on FHE
can be designed. In our work, we designed an
efficient solution for privacy preserving classi-
fication on deep neural network. Our solution
is based on the BGV encryption scheme [9]
with the Smart-Vercauteren ciphertext packing
techniques [43] and the Gentry-Halevi-Smart
optimizations [18]. To the best of our knowl-
edge, this scheme is today the most efficient
FHE scheme for polynomial evaluations. In
addition, HElib [25] is an efficient implemen-
tation of this scheme.

c) Complexity of FHE and multiplicative
depth: Like many FHE schemes, the BGV
encryption scheme consists in hiding the plain-
text message with noise in order to create the
ciphertext message. The decryption consists
in removing the noise from the ciphertext
message. The noise level increases with each
homomorphic operation. If the noise level
exceeds a certain threshold, it is no longer
possible to correctly decrypt the message. The
noise growth is much more important with
multiplications as opposed to additions. It is
why only the multiplicative depth (maximum
number of multiplications in series) is taken
into account when the computational complex-
ity is evaluated.



III. OUR PRIVACY-PRESERVING DEEP
NEURAL NETWORK CLASSIFICATION

SOLUTION

This section presents our new proposal for
a privacy preserving classification on deep
neural network. This proposal respects our
three requirements: privacy (achieved thanks
to FHE), efficiency (reasonably low multi-
plicative depth) and accuracy (close to the
state of the art CNN). We recall that the main
issue with the current literature is that CNN
architectures usually contain ReLU activation
functions and max pooling functions which
have a high multiplicative depth and thus are
incompatible with our efficiency requirement.

Since our proposal is based on an idea origi-
nally introduced in [20] and may be viewed as
an extension of this work, we start by recalling
the Cryptonets solution hereafter.

A. Cryptonets solution [20]

Cryptonets solution consists in replacing
the high multiplicative depth layers (ReLU
and max pooling) by low multiplicative depth
polynomial layers into the CNN, without too
much degrading the accuracy of the clas-
sification. To achieve this goal, the authors
suggest to replace the ReLU function by the
square function x 7→ x2 and to replace the
max-pooling by the sum-pooling which has
a null multiplicative depth. The proposal is
tested in a small CNN (9 layers with only
2 activation layers) which is applied on the
MNIST database. They obtained an accuracy
of 98.95% (the state of the art accuracy for
this database is 99.77% according to http://
yann.lecun.com/exdb/mnist/). The multiplica-
tive depth of the CNN is equal to 2 and
thus the classification with FHE (ie privacy
preserving) is efficient. However, this design
respects only two requirements among our
three ones: efficiency and privacy. The non-
compliance with the accuracy requirement can
be explained by the low depth of the CNN
(only 9 layers).

A simple and natural idea to improve the
accuracy could be to increase the CNN depth.
Unfortunately, as actually acknowledged by
the authors themselves, the squaring activation
function has a derivative which is unbounded,
which leads to unstable training, and hence
important accuracy loss, when the CNN is

deep. This observation about the incompati-
bility of the approach with deep CNN seems
to strongly limit the practical interest of Cryp-
tonets. At least it shows that more investiga-
tions are needed to make it practical for deep
learning.

In view of the unsuccess of the CryptoNets,
we chose to consider separately the CNN used
for the training phase and the CNN used for
the matching:
• for the training phase the activation func-

tion has to be a non linear function with
a bounded derivation in order to have a
stable training (especially for deep CNN)
and its multiplicative depth is not an issue
since we don’t want to make it privacy
preserving (and hence don’t need to apply
FHE)

• for the classification, the activation func-
tion has to be a low degree polynomial
in order to respect the efficiency require-
ment (FHE friendly solution)

B. Our solution

To respect the accuracy requirement, we
make minor modifications in the CNN for
the training step compared to state of the art
CNNs. Namely, we keep the ReLU activation
function which seems to be a key function in
the current CNN performances and we replace
the max-pooling by the average-pooling (this
has only a small impact on the accuracy and
has the advantage to replace a step which is
not FHE-friendly by a step with null mul-
tiplicative depth). For the CNN used in the
matching, we propose to start with the trained
CNN and to replace the ReLU functions by
low degree approximations (hence reapplying
the same basic idea as in CryptoNets). To
deal with the fact that the ReLU function
is a high degree polynomial and thus cannot
have a good low degree polynomial approx-
imation on the entire R, our key innovation
is to combine the polynomial approximation
of the ReLU with a batch normalization layer
[28]. Namely, before each ReLU layer, we
add a batch normalization layer in order to
have a restricted stable distribution at the
entry of the ReLU, thus limiting our need
of an accurate polynomial approximation to
a small part of R around the point 0. To
avoid high accuracy degradation between the



training and the classification phases due to
too many modifications into the CNN, the
batch normalization layers will be added to
the CNN for the training and the classification
phases.

As a reminder a common convolutional
network can be summarized in the formula
[[CONV → ACT ]p → POOL]q → [FC]r

(see Section II-A). In our solution, convo-
lutional networks have the following archi-
tecture [[CONV → BN → ACT ]p →
POOL]q → [FC]r where BN represents
a batch normalization layer and POOL is
the average-pooling. In addition, the activation
layer ACT is the ReLU function for the train-
ing phase and a polynomial approximation for
the classification phase.

IV. APPROXIMATION OF RELU BY
POLYNOMIALS

The accuracy of our solution is strongly
linked to the quality of the polynomial approx-
imation of the ReLU function on the output
distribution of the batch normalization layer
(see Figure 9). This latter layer is right after
a convolutional layer. Thus, according to the
central limit theorem, the input distribution of
the batch normalization layer is normal, and
hence the output distribution is the standard
normal one.

Fig. 7: Batch normalization [28, Algorithm 1]

To compute the polynomial approximation
of the ReLU on this standard normal distribu-
tion, we used the polynomial regression func-
tion polyfit from the Python package numpy.
This function inputs a set X = (X1, ..., XN ),
a set Y = (Y1, ..., YN ) and a polynomial de-
gree n and outputs the coefficients of the poly-

nomial P (X) = c0 + c1X + c2X
2 + ...cnX

n

such that the square error ε =
∑N

i=1(P (Xi)−
Yi)

2 is minimized. We applied this function on
the set {(Xi, ReLU(Xi))} where the Xi are
randomly picked up from a standard normal
distribution (see Table I and Figure 8).

Degree Polynomials
2 0.1992 + 0.5002X + 0.1997X2

3 0.1995 + 0.5002X + 0.1994X2 − 0.0164X3

4 0.1500 + 0.5012X + 0.2981X2

−0.0004X3 − 0.0388X4

5 0.1488 + 0.4993X + 0.3007X2

+0.0003X3 − 0.0168X4

6 0.1249 + 0.5000X + 0.3729X2

−0.0410X4 + 0.0016X6

TABLE I: Approximation of the ReLU func-
tion by polynomials on the standard normal
distribution

Fig. 8: Approximation of the ReLU function
by polynomials on the standard normal distri-
bution

We can observe that, for our method, the
polynomials of odd degree 2n+1 approximate
similarly as the polynomial of even degree
2n. The same trend can be mathematically
observed from a Taylor series around the point
0 of a smooth approximation of the ReLU
function called softplus ln(1 + ex) (see Fig-
ure 9): ln(1+ex) = ln(2)+ x

2− x4

192− 17x8

645120+
31x10

14515200 + O(x12). Thus we only used the
even degree polynomial approximations in our
solution.

With the standard normal distribution,
99.73% of the values belong to [−3, 3]. When
the degree of the polynomial approxima-
tion increases, our polynomial approximation



Fig. 9: ReLU and softplus

brightens on [−3, 3] but deteriorates outside
[−3, 3].

V. EXPERIMENTATION ON A LIGHT CNN

To begin, we tested our solution on a light
CNN (see Figure 10) with the following char-
acteristics:

1) The convolutional layers (Conv1 and
Conv2) have respectively 20 and 50
feature maps and their filter sizes are
respectively (1×5×5) and (20×5×5).

2) Average pooling layers have (2 × 2)
window size.

3) The fully connected layers (FC1 and
FC2) have respectively 500 and 10 out-
puts.

4) A batch normalization layer (BN) is
present just before the ReLU layer.

This light CNN contains 9 layers and only one
ReLU activation layer.

Firstly, we trained this light CNN with the
Caffe framework [29] on the MNIST database
with the following parameters:
• base learning rate: b lr = 0.01
• learning rate policy: b lr ∗ (1 + 10−4 ∗
iter)−0.75

• momentum: 0.9
• weight decay: 0.0005
• max iter: 104

• solver type: SGD
We obtained an accuracy of 97.95% which
is far from the state of the art for the digit
recognition problem (99.77%). That is due to
the small size of our light CNN. The goal of
this light CNN is to validate our solution by
proving that our solution respects the accuracy
requirement. Thus we would like to prove

that the replacement of the ReLU layer by a
low degree polynomial layer leads to a low
accuracy degradation. To limit the accuracy
degradation due to this activation layer mod-
ification, the polynomial has to approximate
very well the ReLU function on the output
distribution of the batch normalization layer.
To do that, we firstly analyzed the output
distribution of the batch normalization layer
(see Figure 11).

As expected, this distribution is close to
a standard normal distribution. Then we re-
placed the ReLU functions by our polynomial
approximations and obtained the accuracy of
the Table II.

Degree Accuracy
2 97.55%
4 97.84%
6 97.91%

TABLE II: Classification accuracy on the light
CNN

As expected, the performances obtained
with the private classification (FHE friendly
classification with polynomial activation layer)
are similar to the accuracy of 97.95% ob-
tained with the non-private classification (with
the ReLU activation layer). Thus, our solu-
tion on this light CNN respects the accuracy
requirements. In addition, the multiplicative
depth with this light CNN is equal to log2 deg
where deg is the degree of the polynomial
approximation. Thus our solution applied on
this light CNN respects the three requirements:
privacy (thanks to FHE), efficiency (with a
multiplicative depth of 1, 2 or 3 according
to the polynomial approximation degree) and
accuracy (thanks to the batch normalization
and the proficient polynomial approximation
on a standard normal distribution).

VI. EXPERIMENTATION ON A DEEPER CNN
In this section, we tested our solution on a

deeper CNN (see Figure 12) with more hidden
layers and more activation layers in order to
be closer to state of the art CNN. This CNN
has the following characteristics:

1) In each convolutional layer, the filter
size is (n × 3 × 3) with n the number
of feature maps of the input layer.

2) Conv1 and Conv2 have 32 feature maps,
Conv3 and Conv4 have 64 feature maps,



Fig. 10: Our light CNN

Fig. 11: Output distribution of the batch nor-
malization layer

Conv5 and Conv6 have 128 feature
maps.

3) Average pooling layers have (2 × 2)
window size.

4) The fully connected layers (FC1 and
FC2) have respectively 256 and 10 out-
puts.

5) A batch normalization layer (BN) is
present just before each ReLU layer.

6) A dropout is used during the training
phase only to select 50% of the neurons

This CNN contains 24 layers and six ReLU
activation layers.

Firstly, we trained this CNN with the Caffe
framework [29] on the MNIST database with
the following parameters:

• base learning rate: b lr = 0.02
• learning rate policy: b lr ∗ (1 + 10−4 ∗

iter)−0.75

• momentum: 0.9
• weight decay: 0.0005
• max iter: 105

• solver type: SGD

We obtained an accuracy of 99.59% which is
similar to state of the art accuracy (99.77%).
Then we replaced the ReLU functions by our
polynomial approximations and evaluated the
accuracy of these FHE friendly classifications
(see Table III).

Degree Accuracy
2 59.14%
4 97.91%
6 36.94%

TABLE III: Classification accuracy on our
CNN

The accuracy degradation is higher than
on our light CNN. This degradation can be
explained by the number of activations layers
in our CNN. During the private classification,
some errors appear after the first activation
layer due to the replacement of the ReLU
functions by our polynomial approximations.
These errors lead to a low distortion of the out-
put distribution of the next batch normalization
layer. Our polynomial approximations are not
perfectly suited for this new distribution and
thus more and bigger errors appear after the
second activation layer. The errors spread and
strengthen from one layer to the next layer.
To visualize the distribution distortion, we
plotted the output distribution of the 6-th batch
normalization layer with the degree 2 or 4



Fig. 12: Our CNN

polynomial approximations (see Figure 13).

Fig. 13: Output distribution of BN6 with the
degree 2 and 4 polynomial approximations

The distribution with the degree 4 polyno-
mial approximation is closer to the standard
normal distribution than the distribution with
the degree 2 polynomial approximation. That
explains the accuracy difference between this
two approximations. These two distributions
are closed to a normal distribution with a
standard deviation slightly greater than 1. To
improve our accuracy, we suggest to build
new polynomial approximations learned from
a distribution closer to the output distribution
of the batch normalization (for instance on
a normal distribution with a standard devia-
tion slightly higher than 1). Table IV sums
up our results with these new polynomial
approximations. We limited our polynomial
approximations to degree 2 and 4 to respect
the efficiency requirement. Our solution has
a multiplicative depth of 6 with degree 2
polynomial approximation and a multiplicative
depth of 12 with degree 4 polynomial approx-

imation. These both multiplicative depth are
reasonable.

Degree Normal distribution Accuracy
2 µ = 0, σ = 1.1 87.12%
2 µ = 0, σ = 1.2 90.70%
2 µ = 0, σ = 1.3 82.61%
4 µ = 0, σ = 1.1 98.18%
4 µ = 0, σ = 1.2 97.75%

TABLE IV: Classification accuracy with our
new polynomial approximations

To be closer to the non secure accuracy
99.59%, we adapted the CNN weights to our
polynomial activation function. To do that,
we started with the CNN trained with the
ReLU activation function. We replaced the
ReLU functions by our degree 2 polynomial
approximations learned on a normal distri-
bution with µ = 0 and σ = 1.2. Finally
we continued the CNN learning with a low
learning rate (10−5). With these new learning
weights, we obtained an accuracy of 99.28%.
Unfortunately this method does not work with
degree 4 polynomial approximations because
the last training with degree 2 polynomial
activation layer is unstable.

As the distribution after each batch nor-
malization layer depends of the polynomial
approximations used, it is difficult to build a
polynomial approximation which perfectly fits
this distribution. Thus we decided to consider
the polynomial approximation coefficients as
learning weights in the last training step. In
more details, as previously, we started with
the CNN trained with the ReLU activation
function. Then we continued the learning af-
ter the replacement of the ReLU functions
by our degree 2 polynomial approximation



(learned from a normal distribution with µ = 0
and σ = 1.2) where its coefficients belong
to learning weights. With this solution, we
achieved an accuracy of 99.30% which is very
close to the accuracy from the non private
classification (99.59%).

These experiments prove that our solution
respects the accuracy requirement. In addition,
our last private classification employs only
degree 2 polynomial approximations. Thus it
respects the efficiency requirement (with a
multiplicative depth of 6). Hence, our solution
respects the three requirements.

VII. CONCLUSION

Today, convolutional neural networks (espe-
cially deep neural network) provide the best
classification methods in areas such that com-
puter vision and speech recognition. These
algorithms are often applied on sensitive in-
formation and thus require a private imple-
mentation. In this area, two challenges have
to be solved: privacy preserving learning and
privacy preserving classification on CNN. In
this article, we focus on the privacy preserving
classification challenge. The main difficulty is
to simultaneously respect the following three
requirements: privacy, efficiency and accuracy.

To achieve the privacy requirement, our
solution is based on FHE. The main difficulty
is to obtain a low multiplicative depth classifi-
cation (to achieve the efficiency requirement)
without degrading to much the accuracy. To
respect the accuracy requirement, our CNN
in the training phase is similar to the state
of the art CNN (with the ReLU activation
layer). This training CNN can have a high
multiplicative depth because we do not apply
FHE on it. For the CNN used in the classifica-
tion phase, we replace the ReLU functions by
low degree polynomial approximations. Our
private classification accuracy relies on the ap-
proximation. Unfortunately the ReLU function
has a high degree, and hence it is not possible
to have a good approximation of the ReLU
function by a low degree polynomial on the
entire R. Our key innovation is to combine the
polynomial approximation of the ReLU with a
batch normalization layer. Thanks to this latter
layer, we have a restricted stable distribution
at the entry of each activation layer, and thus
it is now possible to build a good low degree

polynomial approximation of the ReLU on this
distribution.

We firstly tested our solution on a slight
CNN in order to prove the low accuracy
degradation between the non private classifi-
cation (97.95%) and the private classification
(97.91%). Then we tested our solution on a
deeper CNN with 24 layers. To respect the
accuracy requirement, some tricks have been
used: a second training to adapt the CNN
weights to the polynomial layers and a polyno-
mial approximation learned from a normal dis-
tribution slightly higher than 1. We achieved
a private classification accuracy of 99.30%
which is better than Cryptonets (98.95%) and
close to the non private accuracy on the same
CNN 99.59%. As the best of our knowledge,
our solution is the first privacy preserving
classification method compatible with deep
CNN.

ACKNOWLEDGMENT

This work has been supported in part by
the CRYPTOCOMP FUI17 project. It was
also supported by the European Commission
through the SECURITY programme under
FP7-SEC-2013-1-607049 EKSISTENZ.

REFERENCES

[1] A. Bansal, T. Chen, and S. Zhong. Privacy preserv-
ing back-propagation neural network learning over
arbitrarily partitioned data. Neural Computing and
Applications, 20(1):143–150, 2011.

[2] M. Barni, C. Orlandi, and A. Piva. A privacy-
preserving protocol for neural-network-based com-
putation. In Proceedings of the 8th workshop on
Multimedia & Security, MM&Sec 2006, Geneva,
Switzerland, September 26-27, 2006, pages 146–
151, 2006.

[3] Y. Bengio. Practical recommendations for gradient-
based training of deep architectures. In Neural
Networks: Tricks of the Trade - Second Edition,
pages 437–478. 2012.

[4] J. Bergstra and Y. Bengio. Random search for
hyper-parameter optimization. Journal of Machine
Learning Research, 13:281–305, 2012.

[5] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf
formulas on ciphertexts. In Theory of Cryptography,
Second Theory of Cryptography Conference, TCC
2005, Cambridge, MA, USA, February 10-12, 2005,
Proceedings, pages 325–341, 2005.

[6] J. W. Bos, K. E. Lauter, J. Loftus, and M. Naehrig.
Improved security for a ring-based fully homomor-
phic encryption scheme. In Cryptography and Cod-
ing - 14th IMA International Conference, IMACC
2013, Oxford, UK, December 17-19, 2013. Proceed-
ings, pages 45–64, 2013.

[7] J. W. Bos, K. E. Lauter, and M. Naehrig. Private
predictive analysis on encrypted medical data. Jour-
nal of Biomedical Informatics, 50:234–243, 2014.



[8] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser.
Machine learning classification over encrypted data.
IACR Cryptology ePrint Archive, 2014:331, 2014.

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan.
(leveled) fully homomorphic encryption without
bootstrapping. In Innovations in Theoretical Com-
puter Science 2012, Cambridge, MA, USA, January
8-10, 2012, pages 309–325, 2012.

[10] Zvika Brakerski and Vinod Vaikuntanathan. Effi-
cient fully homomorphic encryption from (standard)
LWE. In IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2011, Palm
Springs, CA, USA, October 22-25, 2011, 2011.

[11] Zvika Brakerski and Vinod Vaikuntanathan. Fully
homomorphic encryption from ring-lwe and security
for key dependent messages. In Advances in Cryp-
tology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-
18, 2011. Proceedings, 2011.

[12] T. Chen and S. Zhong. Privacy-preserving back-
propagation neural network learning. IEEE Trans.
Neural Networks, 20(10):1554–1564, 2009.

[13] I. Damgård and M. Jurik. A generalisation, a
simplification and some applications of paillier’s
probabilistic public-key system. In Public Key
Cryptography, 4th International Workshop on Prac-
tice and Theory in Public Key Cryptography, PKC
2001, Cheju Island, Korea, February 13-15, 2001,
Proceedings, pages 119–136, 2001.

[14] Ivan Damgård, Jens Groth, and Gorm Salomonsen.
The theory and implementation of an electronic
voting system. In Secure Electronic Voting. 2003.

[15] Ivan Damgård, Mads Jurik, and Jesper Buus Nielsen.
A generalization of paillier’s public-key system with
applications to electronic voting. Int. J. Inf. Sec.,
9(6), 2010.

[16] Taher El Gamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In
Advances in Cryptology, Proceedings of CRYPTO
’84, Santa Barbara, California, USA, August 19-22,
1984, Proceedings, 1984.

[17] C. Gentry. A fully homomorphic encryption scheme.
PhD thesis, Stanford University, 2009. crypto.
stanford.edu/craig.

[18] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic
evaluation of the AES circuit. In Advances in Cryp-
tology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, pages 850–867, 2012.

[19] Craig Gentry and Shai Halevi. Implementing gen-
try’s fully-homomorphic encryption scheme. In
Advances in Cryptology - EUROCRYPT 2011 - 30th
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tallinn,
Estonia, May 15-19, 2011. Proceedings, 2011.

[20] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E.
Lauter, M. Naehrig, and J. Wernsing. Cryptonets:
Applying neural networks to encrypted data with
high throughput and accuracy. In Proceedings of the
33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-
24, 2016, pages 201–210, 2016.

[21] Pavel Golik, Patrick Doetsch, and Hermann Ney.
Cross-entropy vs. squared error training: a theo-
retical and experimental comparison. In INTER-
SPEECH 2013, 14th Annual Conference of the
International Speech Communication Association,
Lyon, France, August 25-29, 2013, pages 1756–
1760, 2013.

[22] T. Graepel, K. E. Lauter, and M. Naehrig. ML
confidential: Machine learning on encrypted data.
In Information Security and Cryptology - ICISC
2012 - 15th International Conference, Seoul, Korea,
November 28-30, 2012, Revised Selected Papers,
pages 1–21, 2012.

[23] A. Graves, A. Mohamed, and G. E. Hinton. Speech
recognition with deep recurrent neural networks. In
IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2013, Vancouver,
BC, Canada, May 26-31, 2013, pages 6645–6649,
2013.

[24] R Hahnloser, R. Sarpeshkar, M A Mahowald, R. J.
Douglas, and H.S. Seung. Digital selection and
analogue amplification coesist in a cortex-inspired
silicon circuit. Nature, 405:947–951, 2000.

[25] S. Halevi and V. Shoup. HElib - an implementation
of homomorphic encryption. https://github.com/
shaih/HElib/.

[26] S. Halevi and V. Shoup. Algorithms in HElib. In
Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part I, pages
554–571, 2014.

[27] Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Improving neural networks by prevent-
ing co-adaptation of feature detectors. CoRR,
abs/1207.0580, 2012.

[28] S. Ioffe and C. Szegedy. Batch normalization: Accel-
erating deep network training by reducing internal
covariate shift. In Proceedings of the 32nd Inter-
national Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pages 448–456,
2015.

[29] Yangqing Jia, Evan Shelhamer, Jeff Donahue,
Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Con-
volutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neu-
ral networks. In Advances in Neural Information
Processing Systems 25: 26th Annual Conference
on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012,
Lake Tahoe, Nevada, United States., pages 1106–
1114, 2012.

[31] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio.
Object recognition with gradient-based learning. In
Shape, Contour and Grouping in Computer Vision,
page 319, 1999.

[32] Yann LeCun and Corinna Cortes. MNIST handwrit-
ten digit database. 2010.

[33] M. Naor and B. Pinkas. Oblivious transfer and poly-
nomial evaluation. In Proceedings of the Thirty-First
Annual ACM Symposium on Theory of Computing,
May 1-4, 1999, Atlanta, Georgia, USA, pages 245–
254, 1999.

[34] M. A. Nielsen. Neural Networks and Deep Learn-
ing. Determination Press, 2015.

[35] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft. Privacy-preserving ridge
regression on hundreds of millions of records. In
2013 IEEE Symposium on Security and Privacy, SP
2013, Berkeley, CA, USA, May 19-22, 2013, pages
334–348, 2013.

[36] C. Orlandi, A. Piva, and M. Barni. Oblivious neural



network computing via homomorphic encryption.
EURASIP J. Information Security, 2007, 2007.

[37] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Advances
in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryp-
tographic Techniques, Prague, Czech Republic, May
2-6, 1999, Proceeding, pages 223–238, 1999.

[38] R L Rivest, L Adleman, and M L Dertouzos. On data
banks and privacy homomorphisms. Foundations of
Secure Computation, Academia Press, 1978.

[39] N. Schlitter. A protocol for privacy preserving
neural network learning on horizontally partitioned
data. In Privacy in Statistical Databases - UNESCO
Chair in Data Privacy, International Conference,
PSD 2008, Istanbul, Turkey, September 24-26, 208.
Proceedings, 2008.

[40] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet:
A unified embedding for face recognition and clus-
tering. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, pages 815–823, 2015.

[41] B. Schlkopf and A. J. Smola. Learning With
Kernels: Support Vector Machines, Regularization,
Optimization and Beyond. MIT Press, 2002.

[42] R. Shokri and V. Shmatikov. Privacy-preserving
deep learning. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, October 12-16,
2015, pages 1310–1321, 2015.

[43] N. P. Smart and F. Vercauteren. Fully homomorphic
SIMD operations. IACR Cryptology ePrint Archive,
2011:133, 2011.

[44] Nigel P. Smart and Frederik Vercauteren. Fully
homomorphic encryption with relatively small key
and ciphertext sizes. In Public Key Cryptography -
PKC 2010, 13th International Conference on Prac-
tice and Theory in Public Key Cryptography, Paris,
France, May 26-28, 2010. Proceedings, 2010.

[45] J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algo-
rithms. In Advances in Neural Information Process-
ing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings
of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States., 2012.

[46] Marten van Dijk, Craig Gentry, Shai Halevi, and
Vinod Vaikuntanathan. Fully homomorphic encryp-
tion over the integers. In Advances in Cryptology
- EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryp-
tographic Techniques, French Riviera, May 30 - June
3, 2010. Proceedings, 2010.

[47] D. Wu and J. Haven. Using homomorphic encryp-
tion for large scale statistical analysis. 2012.

[48] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach,
K. E. Lauter, and M. Naehrig. Crypto-nets:
Neural networks over encrypted data. CoRR,
abs/1412.6181, 2014.

[49] A. C. Yao. Protocols for secure computations
(extended abstract). In 23rd Annual Symposium on
Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982, pages 160–164, 1982.

[50] J. Yuan and S. Yu. Privacy preserving back-
propagation neural network learning made practical
with cloud computing. IEEE Trans. Parallel Distrib.
Syst., 25(1):212–221, 2014.

[51] M. D. Zeiler and R. Fergus. Visualizing and un-
derstanding convolutional networks. In Computer

Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part I, pages 818–833, 2014.

[52] Q. Zhang, L. T. Yang, and Z. Chen. Privacy
preserving deep computation model on cloud for
big data feature learning. IEEE Trans. Computers,
65(5):1351–1362, 2016.

APPENDIX A
FROM NEURAL NETWORKS TO

CONVOLUTIONAL NEURAL NETWORK

The simplest neural network is the per-
ceptron (see Figure 14) which takes some
binary inputs ~x and produces one binary out-
put (aka label). To each bit coordinate of ~x,
say xj , is attached a weight, say ωj ∈ R,
expressing the importance of the coordinate
for the output value. During the training phase,
the weights are learned, together with a bias
β ∈ R (e.g. thanks to linear regression or
gradient descent processing). The classifica-
tion of a new input ~x (i.e. the assignment
of a label h(~x)) is afterwards done by ap-
plying the following perceptron rule: h(~x) ={
0 if

∑
j ωjxj + β ≤ 0

1 if
∑

j ωjxj + β > 0
.

~x

x1

x2

x3

h(~x)

ω1

ω2

ω3

Fig. 14: Perceptron

The use of a single perceptron only serves
to classify data that are linearly separable.
The multilayer perceptron (MLP) aims to deal
with this limitation thanks to the combining
of several perceptrons and the adding of hid-
den/internal layers with non-linear activation
function such as the sigmoid f(x) = (1 +
e−x)−1 or, more recently, the rectified linear
unit (ReLU) f(x) = max(0, x). In a MLP,
the output of a perceptron is f(

∑
j ωjxj + β)

where f is the non-linear activation function.
To model high-level abstraction of data, the
MLP is composed of several successive layers
(one input layer, one output layer and one or
more internal – aka hidden – layers) where
each node in one layer is linked to every nodes



in the next layer (see Figure 15). The output
layer h(~x) contains as many neurons as labels
and these neurons represent scores for each
label. For instance, for the digit recognition,
the output layer contains 10 neurons (one for
each possible digits) and each output neuron
represents the score for one digit label. The
index of the largest output neuron indicates the
output label. In order to interpret the output
layer as probabilities, a softmax activation
layer is often added at the end of a MLP.
This layer transforms a layer containing n
neurons x1, ..., xn into a layer containing the
same number of neurons y1, ..., yn with the
following equations: ∀i ∈ [1..n], yi = h(xi)

.
=

exi∑
j∈[1..n] e

xj .

input

layer
1st hidden

layer
2nd hidden

layer
output
layer

h(~x)~x

x1

x2

x3

Fig. 15: Multilayer perceptron

APPENDIX B
TRAINING AND CLASSIFICATION PHASES

Like other classical neural networks, CNN
is composed of two stages: the training phase
from a labelled database and the classification
of new data. Before the training phase, the
data scientist has to choose the architecture of
the neural network (number of layers, number
of neurons per layer, activation function, etc)
and some parameters for the learning algo-
rithm called hyper-parameters (e.g. number of
epochs, batch size, learning rate, etc). Then,
the neural parameters (weights and biases)
are inferred during the training phase from
the labelled database and are adapted to the
training objective (recognize/classify digits,
faces, objects, etc). They are initialized with
random values and are afterwards updated
by applying several times the same process.
For each epoch (one iteration into the en-
tire training database), the training database
is randomly partitioned into small sets of
data called batches. Each batch has the same
number of data called batch size. For each

batch, its data go through the neural net-
work to obtain their output scores with the
current neural network. This step is called
feed-forward. Then an error score is com-
puted to measure the mismatch between the
output scores and the expected ones on this
batch. We will denote the expected scores of
one training datum by a n-dimensional vector
where n is the number of possible labels. This
expected vector contains a 1 in the position
corresponding to its label and zeros on the
remaining positions. For instance, in the digit
recognition, the expected vector for the digit
0 is y = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) and the one
for the digit 6 is y = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0).
The mean-squared error is widely used which
is equal to MSE = 1

m

∑m
i=1

∑n
j=1(h(~xi)j −

yi,j)
2 where m denotes the batch size, n

the number of possible labels, yi,j is the
j-th value of the expected labels vector of
the i-th training datum and h(~xi)j is the
score contained in the j-th output neuron
of the CNN for the i-th input vector ~xi.
Today, the cross-entropy cost function, com-
bined with the softmax activation function,
is sometimes preferred to the MSE (see e.g.
[21]). The cross-entropy cost is equal to
CE = − 1

m

∑m
i=1

∑n
j=1 yi,j log h(~xi)j . Fi-

nally the error is reduced by modifying some
parameters according to the gradient descent
[34, Chapter 2]. The learning rate controls
the degree of modifications of the parameters.
This parameter updating is the well-known
back propagation step. Then the feed-forward
and back propagation steps are applied on the
next batch. Once the pre-defined number of
epochs is achieved, the training is finished
and the last updates of the weights and of
the biases are stored; the neural network is
ready to assign labels to never seen data. The
classification of a new datum ~x now simply
consists in applying the feed-forward step.

The main difficulty for a data scientist is
to choose, during the training phase, all the
parameters discussed previously (in particular
the neural network architecture and the hyper-
parameters) in order to achieve a satisfying
accuracy. Many heuristics exist but they are
rarely sufficient alone and the data scientist
know-how is often crucial. About the hyper-
parameters, some heuristics [3], [4], [45] to
improve them from one learning to another



learning have been suggested. They are how-
ever rarely sufficient and the data scientist
know-how is often crucial: as mentioned in
[34, Chapter 3], ” [the] difficulty of choosing
hyper-parameters is exacerbated by the fact
that the lore about how to choose hyper-
parameters is widely spread, across many
research papers and software programs, and
often is only available inside the heads of
individual practitioners”. About the neural
network architecture, the authors try in [51]
to understand the influence of each layer on
the neural network accuracy in order to build
new neural networks that outperform current
ones. To do that they introduce a visualiza-
tion technique that gives insight to understand
the influence of intermediate layers. They
apply their visualization techniques on the
Krizhevsky et al.s architecture [30] and they
deduce from this analysis some small modi-
fications in the neural network architecture in
order to improve its accuracy. These visual-
izations techniques may permit to improve a
bit a neural network architecture but does not
permit outstanding improvements and does not
deliver information to build a neural network
architecture from scratch.

APPENDIX C
PRIVACY-PRESERVING PROCESSING OF THE

TRANING PHASE

The two main security problematics in the
area of deep neural networks are the privacy
preserving training and the privacy preserving
classification. The training step (without secu-
rity) is not easy for a data scientist due to all
the factors he has to choose: the architecture of
the neural network (number of layers, number
of neurons for each layer, activation functions,
etc), the initialization of the weights and biases
and the hyper-parameters (parameters for the
learning algorithm). Due to all these factors, it
is almost impossible to obtain a trained neural
network with sufficient accuracy at the first
try (with the first trained neural network). The
data scientist has to analyse, during the train-
ing phase, the progress of his neural network
in order to understand why he fails, and then
he has to modify the factors to obtain better
accuracy in his next try. This analysis needs
to be made on plaintext observations (without
encryption) which makes privacy preserving

training almost impossible for complex clas-
sification problems. Several articles [1], [12],
[39], [50], [52] suggest some methods to se-
cure the first try of the data scientist but they
only apply to simple classification problems
and become ineffective when the first try is not
sufficient (which is often the case in practice).

Articles on the Privacy-reserving Learning
subject can be split according to the database
fragmentation (decomposition of the database
into multiple smaller units called fragments).
In a relational database, data are structured
under the form of a matrix: each row corre-
sponds to a subject (e.g. a patient) and each
column to an attribute (e.g. age, race, blood
type). There exist three types of database
fragmentation: horizontal, vertical or arbitrary
fragmentation. A database is horizontally par-
titioned, if the database is split into rows. That
means that if a fragment contains one attribute
of one subject, he has also all the attributes
of this subject (the entire row). On the con-
trary, a database is vertically partitioned, if
the database is split into columns. That means
that if a fragment contains one attribute of
one subject, he has also the values of this
attribute for all subjects (the entire column).
Finally a database is arbitrary partitioned,
if it is a mixed of vertical and horizontal
fragmentations.

In 2008, Schlitter [39] introduced a privacy
preserving neural network learning protocol
for horizontally partitioned database. This pro-
tocol, based on additive secret sharing, en-
ables several parties to jointly process a neural
network learning without leaking information
about their respective data. In this protocol,
each party performs almost all the compu-
tations (excluding weight updating) on their
own data in the plaintext domain and they put
together their results to update the weights
thanks to the secret sharing properties. This
protocol suffers from one major drawback. At
each iteration, all the updating weights are
revealed to all the participants which may
leak information about the training data. To
overcome this, Shokri and Shmatikov [42]
enhanced the scheme by proposing a privacy
preserving neural network learning protocol
for horizontally partitioned database with re-
duced information leakage. In their protocol,
each party obtains some parameters by per-



forming computations on their own database
but instead of sharing all parameters to other
parties, they only share a small fraction of
them. Then the weights are updated from these
shared parameters. This method has a trade-off
between classification accuracy and privacy.
Higher is the number of shared parameters,
better is the classification accuracy but lower
is the privacy.

In vertically partitioned databases, the ele-
ments of one row belongs to different parties.
It is therefore no longer possible to process the
feed-forward step in the plaintext domain be-
cause it inputs a full row. Chen and Zhong [12]
proposed a scheme that provides a privacy pre-
serving neural network learning protocol for
vertically partitioned database. This scheme
protects training data and intermediate results,
and supports only two parties. This protocol
is also based on additive secret sharing. All
data and parameters are additively shared be-
tween the two parties and the computations
are performed thanks to the secret sharing
properties. Only the sigmoid activation func-
tion cannot be efficiently evaluated with the
secret sharing properties due to its high non
linearity. To overcome this issue, the sigmoid
activation function is replaced by a piece-
wise linear approximation. Bansal et al [1]
enhanced this scheme by proposing a privacy
preserving neural network learning protocol
for arbitrary partitioned database between two
parties. Like the work of Chen and Zhong,
this protocol only supports two-party scenario.
Unfortunately directly extending them to the
multi-party scenario drastically increases the
communication and computation complexity.

To overcome this limitation, Yuan and Yu
[50] proposed to securely outsource the com-
putation to a cloud thanks to homomorphic
encryption. Each party encrypts his data be-
fore sending them to the cloud. Then the
cloud performs most of the learning operations
over the ciphertexts and returns the encrypted
results to the parties. To be efficiently evalu-
ated over the ciphertexts, the sigmoid function
is approximated by a low degree polynomial
obtained through Maclaurin series. In addi-
tion, Yuan and Yu suggest to use the BGN
homomorphic encryption [5] which supports
one multiplication and unlimited number of
additions. Thus the participants have to de-

crypt and re-encrypt intermediate values after
each multiplication. For privacy preservation,
parties decrypt only random shares of the
intermediate values thanks to secret sharing
method. This protocol is not really efficient for
deep neural network because of the multitude
of decryptions and re-encryptions. Zhang et al
[52] enhanced this protocol by using a more
efficient homomorphic encryption scheme: the
BGV scheme [9] which enables unlimited
number of multiplications and additions over
ciphertexts. But the efficiency of the homo-
morphic computations depends on the mul-
tiplicative depth. To avoid a multiplicative
depth too big, after each iteration the updated
weights are sent to the parties to be decrypted
and re-encrypted. Thus the communication
complexity of the solution is very high.

In this article, we will not study the privacy
preserving learning problem but we will focus
on the privacy preserving classification prob-
lem.


