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Abstract. Many modern block ciphers are constructed based on the
paradigm of substitution-permutation networks (SPNs). But, somewhat
surprisingly—especially in comparison with Feistel networks, which have
been analyzed by dozens of papers going back to the seminal work
of Luby and Rackoff—there are essentially no provable-security results
about SPNs. In this work, we initiate a comprehensive study of the se-
curity of SPNs as strong pseudorandom permutations when the under-
lying “S-box” is modeled as a public random permutation. We show
that 3 rounds of S-boxes are necessary and sufficient for secure linear
SPNs, but that even 1-round SPNs can be secure when non-linearity
is allowed. Additionally, our results imply security in settings where an
SPN structure is used for domain extension of a block cipher, even when
the attacker has direct access to the small-domain block cipher.

1 Introduction

Modern block ciphers are generally constructed using two main paradigms [22]:
Feistel networks [15] or substitution-permutation networks (SPNs) [15, 38]. These
two approaches share the same goal: namely, to extend a “pseudorandom object”
on a small domain to a (keyed) pseudorandom permutation on a larger domain
by repeating a few, relatively simple operations several times across multiple
rounds. Simplifying somewhat, Feistel networks begin with a keyed pseudoran-
dom function on n-bit inputs and extend this to give a keyed pseudorandom
permutation on 2n-bit inputs; SPNs start with one or more public “random
permutations” on n-bit inputs and extend them to give a keyed pseudorandom
permutation on wn-bit inputs for some w. Examples of block ciphers based on
Feistel networks include DES, FEAL, MISTY and KASUMI; block ciphers based
on SPNs include AES, Serpent, and PRESENT.
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Although proving security unconditionally for any concrete block cipher is
beyond current techniques, we can still hope to prove that particular approaches
to constructing block ciphers are sound in an appropriate theoretical framework.
Starting with the seminal paper by Luby and Rackoff [25] in the 1980s, there
are by now dozens of papers that use this approach to prove security of Feistel
networks (of sufficiently many rounds), i.e., showing that if the underlying build-
ing block is an n-bit pseudorandom function then the resulting construction is
a 2n-bit pseudorandom permutation. In contrast, it is somewhat surprising that
there are almost no results about provable security of SPNs. (We discuss rele-
vant prior work below.) Here, we address this gap and explore conditions under
which SPNs can be proven secure.

1.1 Our Model and Results

An SPN on wn-bit inputs is computed via repeated invocation of two basic steps:
a substitution step in which a public (unkeyed) “cryptographic” permutation
S : {0, 1}n → {0, 1}n, called an S-box, is computed in a blockwise fashion over
the wn-bit intermediate state, and a permutation step in which a keyed but
“non-cryptographic” permutation on {0, 1}wn is applied. An r-round SPN uses
r rounds of S-boxes (plus an additional permutation step at the beginning). We
consider both linear and non-linear SPNs; in a linear SPN, the keyed permutation
in each round is linear (or, more generally, affine) in both the key and the
intermediate state.

The only “cryptographic hardness” comes from the S-box, and we capture
this by modeling S as a public, random permutation available to all parties as an
oracle. This is a key difference between our work and most prior work analyzing
security of SPNs (see Section 1.3), which treated the S-box as a key-dependent,
random permutation inaccessible to the adversary. In practical constructions of
block ciphers, however, the S-box is typically unkeyed.

We analyze SPNs in the standard sense of security against adaptive chosen-
plaintext and chosen-ciphertext attacks; that is, we analyze the SPN as a strong
pseudorandom permutation [25]. We first characterize the security of linear SPNs
in Section 3. Extending and generalizing an attack by Halevi and Rogaway [18]
(credited there to [21]), we show that no 2-round linear SPN with w ≥ 2 can be
secure in Section 3.1. (Even a 1-round linear SPN can be secure when w = 1;
see remark below for the significance of this result.) Complementing this, and
giving a tight characterization, in Section 3.2, we show that 3-round linear SPNs
are secure, for any w, if the keyed permutations satisfy some mild technical
requirements. Moreover, a simple variant of our 3-round linear SPN construction
can be used to reduce the key-length to n bits.

In an effort to reduce the number of rounds, we then turn our attention to
non-linear SPNs in Section 4. Here we show that even a 1-round SPN can be
secure if appropriate keyed permutations are used. In Section 4.1, we identify a
combinatorial property on the permutations that suffices for security in this case,
called blockwise universality. Informally, a keyed permutation πk is blockwise
universal if, for any distinct inputs x, x′ and any constant c, the probability
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(taken over uniform k) of each of the following events is low: (1) a block of
π(k, x) is equal to a block of π(k, x′), (2) two different blocks of π(k, x) are
equal, (3) a block of π(k, x) is equal to c. Then, in Section 4.2, we study the
efficiency of constructing permutations satisfying this property. Specifically, we
show a construction of a satisfactory permutation with n-bit keys (but having
high degree), and another construction with longer keys but having degree 3.

Remarks. Although an SPN with w = 1 (i.e., no domain extension) may seem
uninteresting, it captures the well-known Even-Mansour construction [14] of a
keyed pseudorandom permutation from a public random permutation. Our pos-
itive results imply security of the Even-Mansour construction (with similar con-
crete security bounds) as a special case, even in the setting where the pre- and
post-whitening keys are identical [13, 23].

1.2 Implications

We view our results as providing support for the SPN approach to constructing
block ciphers, but we caution that they say little about any concrete SPN-based
block cipher. This is especially true since our positive results (inherently) achieve
security only for q < 2n queries, yet practical constructions tend to use S-boxes
with a very small domain (e.g., n ≤ 32).

We notice that conceptually similar limitations — such as getting exact se-
curity which is too low for current settings of parameters, or assuming some
building block to satisfy some clean security property not satisfied in practice —
applies to most of the provable security work in the area of symmetric-key cryp-
tography. For example, at the time of the original Luby-Rackoff paper [25] the
main Feistel candidate DES had n = 32. Instead of discounting such “practice-
oriented” provable security results as unimportant, it was an understanding of
the community that such results should be interpreted in several constructive
ways: (1) future work might be able to improve the exact security, possibly by
increasing number of rounds and/or analysis; (2) a provable security result rules
out certain generic, structural attacks on the construction. Hence, we believe
such structural results on SPNs are useful and serve as valid sanity checks, de-
spite the fact that they do not technically apply to existing constructions.

An SPN structure can also be used for domain extension of a block cipher,
i.e., for building a block cipher F ′ with wn-bit block length from a block cipher
F having n-bit block length. Our results imply security in that setting as well.
(The above-mentioned limitation of n being too low in practice no longer applies
in that setting.) Although several prior papers have considered this problem (see
below), unlike most prior work, we analyze it in the case where the attacker is
given access to the internal function F , which would correspond in practice to
publicly fixing the key to F (thus potentially improving the efficiency of F ′).
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1.3 Related Work

There are only a few prior papers looking at provable security of SPNs. The vast
majority of such work analyzes the case of secret, key-dependent S-boxes (rather
than public S-boxes as we consider here), and so we survey that work first.

SPNs with secret S-boxes. Naor and Reingold [30] prove security for what can
be viewed as a non-linear, 1-round SPN. Their ideas were further developed, in
the context of domain extension for block ciphers (see further discussion below),
by Chakraborty and Sarkar [6] and Halevi [16].

Iwata and Kurosawa [20] analyze SPNs in which the linear permutation step
is based on the specific permutations used in the block cipher Serpent. They
show an attack against 2-round SPNs of this form, and prove security for 3-round
SPNs against non-adaptive adversaries. In addition to the fact that we consider
public S-boxes, our linear SPN model considers generic linear permutations and
we prove security against adaptive attackers.

Miles and Viola [29] study SPNs from a complexity-theoretic viewpoint. Two
of their results are relevant here. First, they analyze the security of linear SPNs
using S-boxes that are not necessarily injective (so the resulting keyed functions
are not, in general, invertible). They show that r-round SPNs of this type (for
r ≥ 2) are secure against chosen-plaintext attacks. (In contrast, our results
show that 2-round, linear SPNs are not secure against a combination of chosen-
plaintext and chosen-ciphertext attacks when w ≥ 2.) They also analyze SPNs
based on a concrete set of S-boxes, but in this case they only show security
against linear/differential attacks (a form of chosen-plaintext attack), rather
than all possible attacks, and only when the number of rounds is r = Θ(log n).

SPNs with public S-boxes. A difference between our work and all the work
discussed above is that we treat the S-boxes as public. We are aware of only
one prior work analyzing the provable security of SPNs in this setting. Dodis
et al. [12] recently studied the indifferentiability [27] of confusion-diffusion net-
works, which can be viewed as unkeyed SPNs. One could translate their results to
the keyed setting, but that would require using multiple, key-dependent S-boxes
(rather than a fixed, public S-box) and so would not imply our results. We
remark further that they show positive results only for 5 rounds and above.

As observed earlier, the Even-Mansour construction [14] of a (keyed) pseu-
dorandom permutation from a public random permutation can be viewed as a
1-round, linear SPN in the degenerate case where w = 1 (i.e., no domain ex-
tension) and all round permutations are instantiated using simple key mixing.
Security of the 1-round Even-Mansour construction against adaptive chosen-
plaintext/ciphertext attacks, using independent keys for the initial and final
key mixing, was shown in the original paper [14]. Kilian and Rogaway [23] and
Dunkelman, Keller, and Shamir [13] showed that security holds even if the keys
used are the same. Our positive results imply security of the 1-round Even-
Mansour construction (with similar concrete security bounds) as a special case.

Cryptanalysis of SPNs. Researchers have also explored cryptanalytic attacks
on generic SPNs [1–3, 11]. These works generally consider a model of SPNs in
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which round permutations are secret, random (invertible) linear transformations,
and S-boxes may be secret as well; this makes the attacks stronger but positive
results weaker. In many cases the complexities of the attacks are exponential
in n (though still faster than a brute-force search for the key), and hence do
not rule out asymptotic security results. On the positive side, Biryukov et al. [1]
show that 2-round SPNs (of the stronger form just mentioned) are secure against
some specific types of attacks, but other attacks on such schemes have recently
been identified [11].

Domain extension of block ciphers. It is worth noting that our results also
address the problem of domain extension for block ciphers. That is, we may
view a block cipher F having an n-bit block length as an n-bit S-box (either
viewing F as an ideal cipher, fixing its key, and thus viewing it as a public S-box,
or viewing F as a pseudorandom permutation, keeping the key secret, and so
viewing it as a secret S-box), and then use it in a SPN construction to obtain
a block cipher on wn-bit inputs for w > 1. As mentioned earlier, non-linear,
1-round SPNs with secret S-boxes have been used for domain extension of block
ciphers before [6, 16]. Other approaches for domain extension, not relying on
(pure) SPNs, have also been considered [4, 9, 17, 18, 28]. Most prior work differ
from ours as, to the best of our knowledge, they do not consider a stronger setting
where the attacker has access to the underlying n-bit permutation. Exceptions
that we are aware of are works that achieve domain extension by using Feistel
networks [9, 37]. However, these only achieve a “native” domain extension of
two, and are not as efficient for larger domains (see Coron et al. [9] for some
discussion). Our main motivation, however, is not to beat prior approaches to
domain extension, but rather to study the security of SPNs as used in practice
to construct block ciphers.

2 Preliminaries

For i ∈ N, we let [i] denote the set {1, . . . , i}. We write Perm(m) for the set of
permutations of {0, 1}m. We view n as a cryptographic security parameter and

let F def
= GF(2n), which is identified with {0, 1}n. If x ∈ Fw = {0, 1}wn, then we

denote the jth entry of x (for j ∈ [w]) by x[j].

2.1 Substitution-Permutation Networks

A substitution-permutation network (SPN) defines a keyed permutation via re-
peated invocation of two transformations: blockwise computation of a pub-
lic, cryptographic permutation called an “S-box,” and application of a keyed,
non-cryptographic permutation. Formally, an r-round SPN taking inputs of
length wn where w ∈ N is the width of the network, is defined by r + 1
keyed permutations {πi : Ki × {0, 1}wn → {0, 1}wn}ri=0, a distribution K over1

1 In practice, the round keys are derived from a single, master key using a prescribed
key schedule, but for our purposes we leave this process implicit in the distribution K.
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K0 × · · · × Kr, and a permutation S : {0, 1}n → {0, 1}n. Given round keys
(k0, . . . , kr) ∈ K0 × · · · ×Kr and an input x ∈ {0, 1}wn, the output of the SPN
is computed as follows (cf. Fig. 1):

– Let2 x1 := π0(k0, x).
– For i = 1 to r do:

1. yi := S(xi), where S (x[1] ‖ · · · ‖x[w])
def
= S(x[1]) ‖ · · · ‖S(x[w]).

2. xi+1 := πi(ki, yi).
– The output is xr+1.

If S is efficiently invertible and each πi is efficiently invertible (given the appro-
priate key), then the above process is reversible given the round keys k0, . . . , kr.

In our definition of an SPN, we apply a fixed permutation S to all w blocks of
the intermediate state in each round. More generally, one could consider using w
different functions S1, . . . , Sw in each round, or even different S-boxes in different
rounds. Our positive results hold even when a single permutation S is used, and
our negative result holds even if multiple permutations are used.

Linear SPNs. We are interested in understanding the security of both linear
and non-linear SPNs. We now define what we mean by these terms.

Definition 1. A keyed permutation π : Fw × Fw → Fw is linear3 if

π(k, x) = (Tk · k) + (Tx · x) +∆,

where Tk, Tx ∈ Fw×w are linear transformations, Tx is invertible, and ∆ ∈ Fw.
An SPN is linear if all its round permutations {πi}ri=0 are linear.

If π(k, x) = (Tk · k) + (T · x) +∆ is linear, then we may write

π(k, x) = T · (T−1Tk · k) + (T−1 ·∆) + x);

thus, by setting k′ = (T−1Tk · k) + T−1∆ we can express π as

π(k′, x) = T · (k′ + x). (1)

In other words, if an SPN is linear, then we may assume (by redefining the
distribution K on keys appropriately) that each of its permutations πi takes the
form (1). This matches what is often done in practice (e.g., in AES, Serpent,
PRESENT, etc.), where round permutations are computed by first performing
a key-mixing step followed by an invertible linear transformation [22]. Since the
linear transformation and key mixing commute, and the adversary can compute
T and T−1 on its own (as T is public), we may further assume without loss of
generality that the first and last permutations involve only a key-mixing step.
In other words, we may set πi(ki, x) = ki + x for i ∈ {0, r}.
2 Initial application of a keyed permutation is necessary, since otherwise the attacker

could compute S in round 1 on its own, making that round ineffective.
3 We could also call it affine, but we show shortly that ∆ = 0 without loss of generality.
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wn-bit input x

k0
n-bit S-box input

S · · · · · · · · · · · · · · · · · · S

π1k1

S · · · · · · · · · · · · · · · · · · S

k2

Fig. 1. A 2-round, linear SPN.
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Security of an SPN. Our goal is to prove that certain SPNs are strong pseu-
dorandom permutations. We cannot hope to prove such a result uncondition-
ally; instead, we look at SPN constructions that are defined by permutations
{πi : Ki × {0, 1}wn → {0, 1}wn}ri=0 and a distribution K, and that take oracle
access to a public, random permutation S : {0, 1}n → {0, 1}n; we write this
as CS . We then analyze security of the construction against unbounded-time
attackers making a bounded number of queries to the construction and to S.
Formally, we consider the ability of an adversary D to distinguish two worlds:
the “real world,” in which it is given oracle access to S and CSk0,...,kr (for unknown
keys k0, . . . , kr sampled according to K), and an “ideal world” in which it has
access to S and an independent, random permutation P : {0, 1}wn → {0, 1}wn.
By default, we always allow D to make forward and inverse queries to both its
oracles (though we do not write this explicitly). We have:

Definition 2. The strong-PRP advantage of a distinguisher D against SPN con-
struction C is:

AdvC(D)
def
=
∣∣∣Pr
[
(k0, . . . , kr)← K : DC

S
k0,...,kr

,S = 1
]
− Pr

[
DP,S = 1

]∣∣∣ ,
where P and S are independent, uniform permutations on {0, 1}wn and {0, 1}n,
respectively. The strong-PRP security of C is

AdvC(qC , qS)
def
= maxD{AdvC(D)},

where the maximum is taken over all distinguishers that make at most qC queries
to their left oracle and qS queries to their right oracle.

2.2 The H-coefficient Technique

We use the H-coefficient technique [31, 32, 34] to prove various indistinguisha-
bility results. We provide a quick overview of its main ingredients here. Our
presentation is essentially that of Chen and Steinberger [8]; for further details,
refer there or to the tutorial by Patarin [36].

Fix a distinguisher D that makes at most q queries to its oracles. As in
the security definition presented above, D’s aim is to distinguish between two
worlds: a “real world” and an “ideal world”. Assume without loss of generality
that D is deterministic. The execution of D defines a transcript that includes
the sequence of queries and answers received from its oracles; D’s output is a
deterministic function of its transcript. Thus if X, Y denote the probability
distributions on transcripts induced by the real and ideal worlds, respectively,
then D’s distinguishing advantage is upper bounded by the statistical distance

∆(X,Y ) :=
1

2

∑
τ |Pr[X = τ ]− Pr[Y = τ ]|,

where the sum is taken over all possible transcripts τ .
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Let T denote the set of all transcripts that can be generated by D in either
world. We look for a partition of T into two sets T1 and T2 of “good” and “bad”
transcripts, respectively, along with a constant ε1 ∈ [0, 1) such that

τ ∈ T1 =⇒ Pr[X = τ ]/Pr[Y = τ ] ≥ 1− ε1. (2)

It is then possible to show (see [8] for details) that

∆(X,Y ) ≤ ε1 + Pr[Y ∈ T2] (3)

where the right hand side of the inequality thus becomes an upper bound on
the distinguisher’s advantage. One should think of ε1 and Pr[Y ∈ T2] as small,
so “good” transcripts have nearly the same probability of appearing in the real
world and the ideal world, whereas “bad” transcripts have low probability of
occurring in the ideal world.

3 Linear SPNs

We begin by exploring the security of linear SPNs. We first show that 2-round lin-
ear SPNs cannot be secure against adaptive chosen-plaintext/ciphertext attacks
when w ≥ 2. Complementing this result, and giving a tight characterization, we
then prove that 3-round linear SPNs can be secure when the round permutations
and keys are chosen appropriately.

3.1 Insecurity of 2-Round, Linear SPNs

We present an attack showing that 2-round, linear SPNs (cf. Figure 1) cannot
be secure for w ≥ 2. The attack is based on one shown by Halevi and Rog-
away [18] in a different context (and is a simple application of the boomerang
technique [39]); our contribution here is to observe that the attack is applicable to
any 2-round, linear SPN. The attack relies on the fact that the field F = GF(2n)
is of characteristic 2.4 In Appendix A, we present an attack that works for fields
of arbitrary characteristic.

Recall from the previous section that any 2-round, linear SPN can be ex-
pressed in the following form. On input x0 ∈ Fw and keys k0, k1, k2 ∈ Fw do:

1. Compute x1 := x0 ⊕ k0 followed by y1 := S(x1).

2. Compute x2 := π1(k1, y1) = T · (y1 ⊕ k1) for some invertible linear transfor-
mation T .

3. Compute y2 := S(x2) followed by x3 := y2 ⊕ k2, and return x3.

4 In a field of characteristic 2, any two field elements x and y can be swapped by
adding the same nonzero constant c to both, i.e., {x, y} = {x⊕c, y⊕c} for c = x⊕y.
This property, which has no analogue in fields of higher characteristic, is the central
“trick” used at the heart of the Halevi-Rogaway attack.
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We show an attacker D, given access to an oracle O : {0, 1}wn → {0, 1}wn
(with w ≥ 2), that distinguishes whether O is an instance of the above construc-
tion (using uniform keys k0, k1, k2) or a random permutation on {0, 1}wn. The
attacker D proceeds as follows:

1. Choose inputs x0, x
′
0 that are equal on all blocks except the first. with x0[1] 6=

x′0[1].
2. Query O(x0) and O(x′0) to obtain x3 and x′3 respectively.
3. Set x̂3 := x′3[1] ‖x3[2] ‖ · · · ‖x3[w] and x̂′3 := x3[1] ‖x′3[2] ‖ · · · ‖x′3[w]. Then

query O−1(x̂3) and O−1(x̂′3) to obtain x̂0 and x̂′0 respectively.
4. If x̂0[2] ‖ · · · ‖ x̂0[w] = x̂′0[2] ‖ · · · ‖ x̂′0[w], then output 1; otherwise, output 0.

It is not hard to see that if O is a random permutation on {0, 1}wn then D
outputs 1 with negligible probability. On the other hand, we claim that when O
is an instance of the above construction then D always outputs 1. To see this,
let y1, x2 be the intermediate values during evaluation of O(x0); let y′1, x

′
2 be the

intermediate values during evaluation of O(x′0); let ŷ1, x̂2 be the intermediate
values during evaluation of O−1(x̂3); and let ŷ′1, x̂

′
2 be the intermediate values

during evaluation of O−1(x̂′3). Observe first that x̂2⊕ x̂′2 = x2⊕x′2. From this it
follows that

ŷ1 ⊕ ŷ′1 =
(
T−1x̂2 ⊕ k1

)
⊕
(
T−1x̂′2 ⊕ k1

)
= T−1 · (x̂2 ⊕ x̂′2)

= T−1 · (x2 ⊕ x′2)

= T−1 · (Ty1 ⊕ Ty′1)

= T−1 · (T · (y1 ⊕ y′1))

= y1 ⊕ y′1.

Since y1 and y′1 are equal on all but their first blocks (by construction of x0, x
′
0),

we conclude that ŷ1 and ŷ′1 also agree everywhere but in their first blocks. But
this implies that x̂0 and x̂′0 are equal everywhere except in their first blocks, and
so D outputs 1.

We remark that D makes only four queries to the construction—two in the
forward direction, and two in the inverse direction—and no queries to S. We
also note that the attack does not require linearity of T ; it suffices for the per-
mutation T to be additive, i.e., for T to satisfy

∀x, y ∈ {0, 1}wn : T (x+ y) = T (x) + T (y).

(Note that additivity of T implies additivity of T−1.) Since F has characteristic 2,
the “blockwise squaring” transformation T : Fw → Fw where T (x)[j] = x[j]2 for
all j ∈ [w] is an example of a transformation that is additive but nonlinear.

3.2 Security of 3-Round, Linear SPNs

We now explore conditions under which 3-round, linear SPNs are secure. Recall
from Section 2.1 that a 3-round SPN has four round permutations {πi}3i=0, and
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without loss of generality we may assume

πi(ki, x) =

{
x⊕ ki i ∈ {0, 3}
Ti · (x⊕ ki) i ∈ {1, 2}

, (4)

where T1, T2 ∈ Fw×w are invertible linear transformations. We prove that a 3-
round, linear SPN is secure so long as (i) T1 and T−12 contain no zero entries
(Miles and Viola [29] show that matrices with maximal branch number [10]
satisfy this property), and (ii) round keys k0 and k3 are (individually) uniform.

Theorem 1. Assume w > 1. Let C be a 3-round, linear SPN with round per-
mutations as in (4) and with distribution K over keys k0, k1, k2, k3. If k0 and k3
are uniformly distributed and the matrices T1, T−12 contain no zero entries, then

AdvC(qC , qS) ≤ 5w2q2C + 4wqCqS
2n − qS − 2w

+
q2C
2wn

.

Proof. Fix a deterministic distinguisher D. Without loss of generality, we assume
D makes exactly qC (non-redundant) forward/inverse queries to its left oracle
that is either CSk or the ideal permutation P , and exactly qS (non-redundant)
forward/inverse queries to its right oracle that is the S-box. We call a query
from D to its left oracle a construction query (even though in the ideal world
the oracle is P ), and a query from D to its right oracle an S-box query.

The interaction between D and its oracles can be recorded in the form of
two sets of pairs QC ⊆ {0, 1}wn × {0, 1}wn and QS ⊆ {0, 1}n × {0, 1}n, where
QC contains every pair (x, y) for which D made a construction query x that was
answered by y or an inverse query y that was answered by x, and QS is defined
similarly with respect to S-box queries. Note that D’s interaction with its oracles
can be unambiguously reconstructed from these sets since D is deterministic.

Following [8], we augment the transcript (QC , QS) with a key value k =
(k0, k1, k2, k3). In the real world, k is the actual key used by the construction. In
the ideal world, k is a dummy key sampled independently from all other values
according to the prescribed key distribution K. Thus, a transcript τ has the final
form τ = (QC , QS , k0, k1, k2, k3).

Let T be set of all transcripts that can be generated with nonzero proba-
bility in the ideal world. (This includes all transcripts that can be generated
with nonzero probability in the real world.) As in Section 2.2, let X, Y be the
distributions over transcripts in the real and ideal worlds, respectively.

We define a set T2 ⊆ T of bad transcripts as follows: a transcript τ =
(QC , QS , k0, k1, k2, k3) is bad if and only if one of these events occurs:

1. There exist a pair (x, y) ∈ QC , a pair (a, b) ∈ QS , and an index j ∈ [w] such
that (x⊕ k0)[j] = a or (y ⊕ k3)[j] = b.

2. There exist a pair (x, y) ∈ QC and distinct indices j, j′ ∈ [w] such that
(x⊕ k0)[j] = (x⊕ k0)[j′] or (y ⊕ k3)[j] = (y ⊕ k3)[j′].

3. There exist distinct pairs (x, y), (x′, y′) ∈ QC and distinct indices j, j′ ∈ [w]
such that (x⊕ k0)[j] = (x′ ⊕ k0)[j′] or (y ⊕ k3)[j] = (y′ ⊕ k3)[j′].
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As in Section 2.2, T1 := T \T2 denotes the set of good transcripts.
Since, in the ideal world, the values k0, k3 are independent of QC , QS and

(individually) uniform in {0, 1}wn, a simple union bound shows that

Pr[Y ∈ T2] < 2wqCqS/2
n + w(w − 1)qC/2

n + w(w − 1)qC(qC − 1)/2n

where the three terms account for the three events above, in that order. Thus

Pr[Y ∈ T2] ≤ 2wqCqS/2
n + w(w − 1)q2C/2

n. (5)

This gives us “one half” of (3).
In order to finish applying the H-coefficient technique, it remains to lower

bound the ratio
Pr[X = τ ]

Pr[Y = τ ]

for τ ∈ T1. Let ΩX = Perm(n)×K be the probability space underlying the real
world, whose measure is the product of the uniform measure on Perm(n) and
the measure induced by the distribution K on keys. (Thus, each element of ΩX
is a pair (S, k) with S ∈ Perm(n) and k = (k0, k1, k2, k3) ∈ K.) Also let

ΩY = Perm(wn)× Perm(n)×K

be the probability space underlying the ideal world, whose measure is the product
of the uniform measure on Perm(wn) with the measure on ΩX .

Let ν = (QνC , Q
ν
S , k

ν) be a transcript. An element ω = (S∗, k∗) ∈ ΩX is
compatible with ν if k∗ = kν , if S∗(a) = b for all (a, b) ∈ QνS , and if CS∗k∗ (x) = y
for all (x, y) ∈ QνC . An element ω = (P ∗, S∗, k∗) ∈ ΩY is compatible with ν if
k∗ = kν , if S∗(a) = b for all (a, b) ∈ QνS , and if P ∗(x) = y for all (x, y) ∈ QνC .
We write

ω ↓ ν
to indicate that an element ω ∈ ΩX ∪ΩY is compatible with ν.

For the rest of the proof we fix a transcript τ = (QC , QS , k) ∈ T1 so, in
particular, QC , QS , and k will be fixed for the rest of the proof. Since τ ∈ T , it
is easy to see (cf. [8]) that

Pr[X = τ ] = Prw←ΩX
[ω ↓ τ ] (6)

Pr[Y = τ ] = Prw←ΩY
[ω ↓ τ ], (7)

where the notation indicates that ω is sampled from the relevant probability
space according to that space’s probability measure. (In other words, the proba-
bility of obtaining τ in each world is just the probability that the random coins
of that world are “compatible” with τ in the sense outlined above.) We bound
Pr[X = τ ]/Pr[Y = τ ] by reasoning about the latter probabilities.

As additional notation/terminology:

– Say that S∗ ∈ Perm(n) is compatible with a transcript ν = (QνC , Q
ν
S , k

ν),
and write S∗ ↓ ν, if (S∗, k) ∈ ΩX is compatible with ν, where k is the key
value of the fixed transcript τ .
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– Likewise, say that (P ∗, S∗) ∈ Perm(wn) × Perm(n) is compatible with a
transcript ν = (QνC , Q

ν
S , k

ν), and write (P ∗, S∗) ↓ ν, if (P ∗, S∗, kν) ↓ ν.

Incorporating these notations, the product structure of ΩX , ΩY implies

Prω←ΩX
[ω ↓ τ ] = Pr[K = k] · PrS∗ [S

∗ ↓ τ ]

Prω←ΩY
[ω ↓ τ ] = Pr[K = k] · PrP∗,S∗ [(P

∗, S∗) ↓ τ ],

where S∗ and (P ∗, S∗) are sampled uniformly from Perm(n) and Perm(wn) ×
Perm(n), respectively. Thus,

Pr[X = τ ]

Pr[Y = τ ]
=

PrS∗ [S
∗ ↓ τ ]

PrP∗,S∗ [(P ∗, S∗) ↓ τ ]
. (8)

It is immediate that

Pr
P∗,S∗

[(P ∗, S∗) ↓ τ ] =
(2wn − qC)!

2wn!
· (2n − qS)!

2n!
(9)

since QC , QS have size exactly qC , qS , respectively.
To compute PrS∗ [S

∗ ↓ τ ] we start by writing

Pr
S∗

[S∗ ↓ τ ] = Pr
S∗

[S∗ ↓ (QC , QS , k)]

= Pr
S∗

[S∗ ↓ (∅, QS , k)] · Pr
S∗

[S∗ ↓ (QC , QS , k) | S∗ ↓ (∅, QS , k)]

=
(2n − qS)!

2n!
· Pr
S∗

[S∗ ↓ (QC , QS , k) | S∗ ↓ (∅, QS , k)] . (10)

Define

Dom(τ)
def
= {a ∈ {0, 1}n : (a, b) ∈ QS for some b ∈ {0, 1}n}

Range(τ)
def
= {b ∈ {0, 1}n : (a, b) ∈ QS for some a ∈ {0, 1}n}

ExtDom(τ)
def
= {(x⊕ k0)[j] : (x, y) ∈ QC , j ∈ [w]}

ExtRange(τ)
def
= {(y ⊕ k3)[j] : (x, y) ∈ QC , j ∈ [w]}.

Note that ExtDom(τ) (resp., ExtRange(τ)) contains all the first-round S-box
inputs (resp., third-round S-box outputs) corresponding to the construction
queries in QC . We let Good(S∗) be a predicate of S∗ that holds if and only

if all the following conditions are met (as usual, S
∗

denotes blockwise evaluation
of S∗ on a wn-bit string):

1. S∗ ↓ (∅, QS , k).

2. T1(S
∗
(x ⊕ k0) ⊕ k1)[j] /∈ Dom(τ) ∪ ExtDom(τ) for all (x, y) ∈ QC and all

j ∈ [w].

3. (T−12 S
∗−1

(y⊕k3)⊕k2)[j] /∈ Range(τ)∪ExtRange(τ) for all (x, y) ∈ QC and
all j ∈ [w].
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4. T1(S
∗
(x ⊕ k0) ⊕ k1)[j] 6= T1(S

∗
(x′ ⊕ k0) ⊕ k1)[j′] for all distinct tuples

(x, y, j), (x′, y′, j′) ∈ QC × [w].

5. (T−12 S
∗−1

(y⊕k3)⊕k2)[j] 6= (T−12 S
∗−1

(y′⊕k3)⊕k2)[j′] for all distinct tuples
(x, y, j), (x′, y′, j′) ∈ QC × [w].

The second condition requires that no second-round S-box inputs are in Dom(τ)∪
ExtDom(τ), and the fourth condition requires that all second-round S-box inputs
are distinct; the third and fifth conditions parallel these, but for second-round
S-box outputs.

We have

Pr
S∗

[S∗ ↓ (QC , QS , k) | S∗ ↓ (∅, QS , k)]

≥ Pr
S∗

[S∗ ↓ (QC , QS , k) ∧ Good(S∗) | S∗ ↓ (∅, QS , k)]

= Pr
S∗

[Good(S∗) | S∗ ↓ (∅, QS , k)] · Pr
S∗

[S∗ ↓ (QC , QS , k) | Good(S∗)], (11)

using the fact that Good(S∗) =⇒ S∗ ↓ (∅, QS , k) for the final equality. Thus,
all that remains is to lower bound the two terms in the product of (11).

Let Badi(S
∗) be the predicate that is true if and only if condition i in the

definition of Good(S∗) is violated. Note that

PrS∗
[
Good(S∗) | S∗ ↓ (∅, QS , k)

]
≤

5∑
i=2

PrS∗ [Badi(S
∗) | S∗ ↓ (∅, QS , k)],

since the first condition in the definition of Good(S∗) cannot be violated here.
We now upper bound PrS∗ [Badi(S

∗) | S∗ ↓ (∅, QS , k)] for i = 2, 3, 4, 5.

Lemma 1. PrS∗ [Bad2(S∗) | S∗ ↓ (∅, QS , k)] ≤ wqC(qS + wqC)/(2n − qS − w).

Proof. Fix some (x, y) ∈ QC and an index j ∈ [w]. Since τ is a good transcript,
(x ⊕ k0)[i] /∈ Dom(τ) for all i ∈ [w], and (x ⊕ k0)[i] 6= (x ⊕ k0)[i′] for i′ 6= i. So
after conditioning on S∗ ↓ (∅, QS , k) and the values of S∗((x⊕ k0)[i]) for i 6= 1,
the value S∗((x ⊕ k0)[1]) is uniform in a set of size 2n − qS − w + 1. Because
every entry in the first column of T1 is nonzero, we have

Pr
S∗

[T1(S
∗
(x⊕ k0)⊕ k1)[j] ∈ Dom(τ) ∪ ExtDom(τ) | S∗ ↓ (∅, QS , k)]

≤ |Dom(τ)|+ |ExtDom(τ)|
2n − qS − w + 1

≤ qS + wqC
2n − qS − w

.

The statement follows by a union bound over all (x, y) ∈ QC , j ∈ [w]. ut

Lemma 2. PrS∗ [Bad3(S∗) | S∗ ↓ (∅, QS , k)] ≤ wqC(qS + wqC)/(2n − qS − w).

Proof. (Symmetric to Lemma 1.) ut
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Lemma 3. PrS∗ [Bad4(S∗) | S∗ ↓ (∅, QS , k)] ≤ w2q2C/(2
n − qS − 2w).

Proof. Fix distinct (x, y, j), (x′, y′, j′) ∈ QC × [w]. Then either (x, y) 6= (x′, y′)
(which implies x 6= x′) or x = x′ but j 6= j′.

Assume first that x 6= x′. Then x[i0] 6= x′[i0] for some i0 ∈ [w]. By the
definition of a good transcript, (x ⊕ k0)[i0] 6= (x ⊕ k0)[i] for all i 6= i0 and
(x ⊕ k0)[i0] 6= (x′ ⊕ k0)[i] for all i. So after conditioning on S∗ ↓ (∅, QS , k) and
the values of S∗((x⊕ k0)[i]) for i 6= i0 and S∗((x′ ⊕ k0)[i]) for i ∈ [w], the value
of S∗((x⊕ k0)[i0]) is uniform in a set of size at least 2n − qS − 2w + 1. Because
every entry in the i0th column of T1 is nonzero, we have

Pr
S∗

[T1(S
∗
(x⊕ k0)⊕ k1)[j] = T1(S

∗
(x′ ⊕ k0)⊕ k1)[j′] | S∗ ↓ (∅, QS , k)]

≤ 1

2n − qS − 2w
.

Assume next that x = x′ and so j 6= j′. Since T1 is invertible, the jth and
j′th rows of T1 are linearly independent and, in particular, there exists an index
i0 ∈ [w] such that the (j, i0)th and (j′, i0)th entries of T1 are not equal. After
conditioning on S∗ ↓ (∅, QS , k) and the values of S∗((x ⊕ k0)[i]) for i 6= i0, the
value of S∗((x⊕k0)[i0]) is uniform in a set of size 2n−qS−w+1. It follows that

Pr
S∗

[T1(S
∗
(x⊕ k0)⊕ k1)[j] = T1(S

∗
(x⊕ k0)⊕ k1)[j′] | S∗ ↓ (∅, QS , k)]

≤ 1

2n − qS − w
.

The statement now follows by taking a union bound over all possible pairs
of distinct elements (x, y, j), (x′, y′, j′) ∈ QC × [w]. ut

Lemma 4. PrS∗ [Bad5(S∗) | S∗ ↓ (∅, QS , k)] ≤ w2q2C/(2
n − qS − 2w).

Proof. (Symmetric to Lemma 3.) ut

Combining the bounds of Lemmas 1–4, we find

Pr
S∗

[Good(S∗) | S∗ ↓ (∅, QS , k)] ≥ 1− 2w2q2C
2n − qS − 2w

− 2wqC(qS + wqC)

2n − qS − w

≥ 1− 4w2q2C + 2wqCqS
2n − qS − 2w

. (12)

Our next step is to lower bound the term PrS∗ [S
∗ ↓ (QC , QS , k) | Good(S∗)]

from (11). For any S⊥ ∈ Perm(n) such that Good(S⊥) is true, define

QExt(S⊥) = {(a, S⊥(a))}a∈ExtDom(τ) ∪ {(S−1⊥ (b), b)}b∈ExtRange(τ).

Let Perm⊥(n) ⊂ Perm(n) be maximal such that the predicate Good(S⊥) holds
for every S⊥ ∈ Perm⊥(n) and such that QExt(S⊥) 6= QExt(S′⊥) for distinct
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S⊥, S′⊥ ∈ Perm⊥(n). (I.e., Perm⊥(n) is a system of representatives, with one
representative per distinct value of QExt(S⊥).) Then the event

Good(S∗) ∧ (S∗ ↓ (QC , QS , k))

is the disjoint union of the events{
Good(S∗) ∧

(
S∗ ↓ (QC , QS ∪QExt(S⊥), k)

)}
S⊥∈Perm⊥(n)

,

and so

Pr
S∗

[S∗ ↓ (QC , QS , k) | Good(S∗)]

=
∑

S⊥∈Perm⊥(n)

Pr
S∗

[S∗ ↓ (QC , QS ∪QExt(S⊥), k) | Good(S∗)]

=
∑

S⊥∈Perm⊥(n)

(
Pr
S∗

[S∗ ↓ (∅, QS ∪QExt(S⊥), k) | Good(S∗)] ×

Pr
S∗

[S∗ ↓ (QC , QS ∪QExt(S⊥), k) | S∗ ↓ (∅, QS ∪QExt(S⊥), k)]
)
. (13)

Fixing an arbitrary S⊥ ∈ Perm⊥(n), parts 4 and 5 of the definition of Good(S⊥)
imply that the sets

A =
{
T1(S⊥(x⊕ k0)⊕ k1)[j] : (x, y) ∈ QC , j ∈ [w]

}
B =

{
(T−12 S

−1
⊥ (y ⊕ k3)⊕ k2)[j] : (x, y) ∈ QC , j ∈ [w]

}
each consist of wqC distinct elements, whereas parts 2 and 3 of the same defini-
tion imply that

A ∩ (Dom(τ) ∪ ExtDom(τ)) = ∅,
B ∩ (Range(τ) ∪ ExtRange(τ)) = ∅.

It follows that S∗ ↓ (QC , QS ∪ QExt(S⊥), k) iff S∗ ↓ (∅, QS ∪ QExt(S⊥), k) and
S∗(a) = b for all wqC “matching” pairs (a, b) in A × B (that is, we match the
element a ∈ A associated with (x, y) ∈ QC and j ∈ [w] with the element b ∈ B
associated to the same (x, y) and j). Thus,

Pr
S∗

[S∗ ↓ (QC , QS ∪QExt(S⊥), k) | S∗ ↓ (∅, QS ∪QExt(S⊥), k)]

=
(2n − qS − |QExt(S⊥)| − wqC)!

(2n − qS − |QExt(S⊥)|)!

≥ (2n − qS − wqC)!

(2n − qS)!
.

Then since ∑
S⊥∈Perm⊥(n)

Pr
S∗

[S∗ ↓ (∅, QS ∪QExt(S⊥), k) | Good(S∗)] = 1,
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(13) implies that

Pr
S∗

[S∗ ↓ (QC , QS , k) | Good(S∗)] ≥ (2n − qS − wqC)!

(2n − qS)!
. (14)

Combining (11), (12), and (14), we thus obtain

Pr
S∗

[S∗ ↓ (QC , QS , k) | S∗ ↓ (∅, QS , k)]

≥
(

1− 4w2q2C + 2wqCqS
2n − qS − 2w

)
(2n − qS − wqC)!

(2n − qS)!
.

By (10) we therefore have

Pr
S∗

[S∗ ↓ τ ] ≥ (2n − qS)!

2n!

(
1− 4w2q2C + 2wqCqS

2n − qS − 2w

)
(2n − qS − wqC)!

(2n − qS)!
,

and so (using (8) and (9))

Pr[X = τ ]

Pr[Y = τ ]
=

PrS∗ [S
∗ ↓ τ ]

PrP∗,S∗ [(P ∗, S∗) ↓ τ ]

≥
(

1− 4w2q2C + 2wqCqS
2n − qS − 2w

)
(2n − qS − wqC)!

(2n − qS)!

/
(2wn − qC)!

2wn!

≥
(

1− 4w2q2C + 2wqCqS
2n − qS − 2w

)(
1

2n − qS

)wqC /( 1

2wn − qC

)qC
≥
(

1− 4w2q2C + 2wqCqS
2n − qS − 2w

)(
1

2n

)wqC /( 1

2wn − qC

)qC
=

(
1− 4w2q2C + 2wqCqS

2n − qS − 2w

)(
1− qC

2wn

)qC
= 1− 4w2q2C + 2wqCqS

2n − qS − 2w
− q2C

2wn
.

Combining with (5), which gave an upper bound on the probability of ob-
taining a bad transcript in the ideal world, yields a final upper bound of

2wqCqS
2n

+
w(w − 1)q2C

2n
+

4w2q2C + 2wqCqS
2n − qS − 2w

+
q2C
2wn

≤ 5w2q2C + 4wqCqS
2n − qS − 2w

+
q2C
2wn

on the distinguisher’s advantage, as per (3). This completes the proof. ut

A minimal secure (linear) SPN. We proved that a 3-round, linear SPN is
secure if the keys k0 and k3 are individually uniform and T1, T

−1
2 contain no

0-entries. No assumptions were made about independence of k0, k3, nor were
any assumptions made about the distributions of k1, k2. So the theorem implies
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security for the following “minimal” 3-round, linear SPN: Let k0 = k3 = k,
where k is uniform, set k1 = k2 = 0wn, and let T1 = T2

−1 = T be invertible with
no 0-entries. Define keyed permutations

πi(k, x) =


x⊕ k i ∈ {0, 3}
Tx i = 1

T−1x i = 2.

(15)

We have:

Corollary 1. Assume w > 1. Let C be a 3-round, linear SPN with round per-
mutations as in (15) and K choosing uniform k0 = k3 and k1 = k2 = 0wn. Then

AdvC(qC , qS) ≤ 5w2q2C + 4wqCqS
2n − qS − 2w

+
q2C
2wn

.

Reducing key-length. An inspection of the proof of Theorem 1 reveals that it
is sufficient for the wn-bit key k (= k0 = k3) in Corollary 1 to satisfy the following
conditions: informally, for any n-bit constant c and distinct indices i, i′, (a) k[i]
equals c with negligible probability, and (b) the sum of k[i] and k[i′] equals c
with negligible probability. This can be achieved by choosing a uniform n-bit key
k′ and letting k[i] = ai · k′ where ai are distinct non-zero elements of F. Thus,
one can make do with a “master key” of only n bits, while preserving the same
security as in Corollary 1. We state this in the following corollary.

Corollary 2. Assume w > 1. Let C be a 3-round, linear SPN with round per-
mutations as in (15). Let ai for i = 1, . . . , w be distinct non-zero elements of F.
Then, the distribution over the keys K is defined by choosing a uniform n-bit key
k′ and setting k0[i] = k3[i] = ai · k′ and k1 = k2 = 0wn. Then

AdvC(qC , qS) ≤ 5w2q2C + 4wqCqS
2n − qS − 2w

+
q2C
2wn

.

4 Non-Linear SPNs

In the previous section we considered linear SPNs and showed that 3 rounds are
necessary for security to hold. In this section, we show that by allowing non-
linear permutations, the number of rounds (i.e., the number of applications of
the S-boxes) needed for constructing a secure SPN can be reduced to 1.

This section is organized as follows. We first define what it means for a keyed
permutation over {0, 1}wn to be blockwise universal.5 We then show how to
use blockwise-universal permutations to construct a 1-round SPN. Finally, we
explore various constructions of blockwise-universal permutations.

5 A similar notion was defined in [16, 17, 30] and even called blockwise universal in [16,
17]. The definition we give here is related, but different.
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Interestingly, for w = 1 we show that simple key addition gives a blockwise-
universal permutation; as a corollary of our work, we thus obtain a proof of
security for the classical Even-Mansour construction [14], even in the case where
the pre- and post-whitening keys are the same [13, 23]. For w ≥ 2 our results
from Section 3.1 imply that no linear function can be blockwise universal, but
we show that several non-linear constructions are possible.

4.1 Secure 1-Round SPNs via Blockwise-Universal Permutations

We begin by defining the notion of a blockwise-universal (keyed) permutation
over Fw. Let the blocks of y ∈ Fw be y[1], . . . , y[w] ∈ F. Informally, a keyed
permutation π : K × Fw → Fw is blockwise universal if, for any distinct x,
x′ ∈ Fw and any c ∈ F, the probability (taken over uniform k ∈ K) of each of
the following events is low: (1) a block of π(k, x) is equal to a block of π(k, x′),
(2) two different blocks of π(k, x) are equal, (3) a block of π(k, x) is equal to c.
Formally:

Definition 3. A keyed permutation {π : K × Fw → Fw} is (ε, ε′)-blockwise
universal if the following hold:

1. For all distinct (x, i), (x′, i′) ∈ Fw × [w], we have

Prk←K
[
π(k, x)[i] = π(k, x′)[i′]

]
≤ ε.

2. For all (x, i, c) ∈ Fw × [w]× F, we have Prk←K
[
π(k, x)[i] = c

]
≤ ε′.

If ε = ε′, we simply call the keyed permutation ε-blockwise universal.

Examples of (ε, ε′)-blockwise universal permutations with small ε, ε′ can be found
in Section 4.2.

We now show that if π is blockwise universal, then a 1-round SPN construc-
tion C using round permutations π0 = π and π1 = π−1 is secure. In fact, C is
secure even when π0, π1 share the same (uniform) key. I.e., we may define C as

CSk (x)
def
= π−1(k, S(π(k, x))).

Theorem 2. Let π : K × Fw → Fw be (ε, ε′)-blockwise universal. Then

AdvC(qC , qS) ≤ w2q2Cε+ 2w qC qS ε
′ ,

where C is the 1-round SPN construction in which π0 = π, π1 = π−1, and in
which K samples a uniform k ∈ K and sets k0 = k1 = k.

Proof. The proof is conceptually similar to the proof of Theorem 1, though the
technical details are simpler here. Fix a deterministic distinguisher D. Without
loss of generality, assume D makes exactly qC (non-redundant) forward/inverse
queries to its left oracle that is either Ck or P , and exactly qS (non-redundant)
forward/inverse queries to its right oracle that is the S-box. We call a query
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from D to its left oracle a construction query (even though in the ideal world
the oracle is P ), and a query from D to its right oracle an S-box query.

The interaction between D and its oracles is recorded in two sets of pairs
QC ⊆ {0, 1}wn × {0, 1}wn and QS ⊆ {0, 1}n × {0, 1}n, where QC contains every
pair (x, y) for which D made a construction query x that was answered by y
or an inverse query y that was answered by x, and QS is defined similarly with
respect to S-box queries. As in the proof of Theorem 1, we also append the key
value k to the transcript in the real world and append a (uniform) dummy key
value k ∈ K to the transcript in the ideal world; a transcript τ thus has the form
of a triple τ = (QC , QS , k).

Let T be the set of all possible transcripts that can be generated by D in the
ideal world. We say that a transcript τ = (QC , QS , k) is bad if either:

1. There exist a pair (x, y) ∈ QC , a pair (a, b) ∈ QS , and an index j ∈ [w] such
that π(k, x)[j] = a or π(k, y)[j] = b.

2. There exist distinct tuples (x, y, j), (x′, y′, j′) ∈ QC×[w] such that π(k, x)[j] =
π(k, x′)[j′] or π(k, y)[j] = π(k, y′)[j′].

We let T2 ⊆ T denote the set of bad transcripts. Transcripts in T1 = T \T2 are
called good transcripts.

Let X, Y be the distributions over transcripts in the real and ideal worlds,
respectively. Because the key value k is independent of QC , QS in the ideal
world, the definition of (ε, ε′)-blockwise universality and two applications of a
union bound give

Pr[Y ∈ T2] ≤ 2wqCqSε
′ + w2q2Cε.

We next lower bound the ratio

Pr[X = τ ]

Pr[Y = τ ]

for transcripts τ ∈ T1. Let ΩX , ΩY be the probability spaces underlying the real
and ideal worlds respectively. That is,

ΩX = {(S, k) : S ∈ Perm(n), k ∈ K}
ΩY = {(P, S, k) : P ∈ Perm(wn), S ∈ Perm(n), k ∈ K},

each with uniform measure.
For the rest of the proof, fix a transcript τ = (QC , QS , k) ∈ T1. We say an

element ω = (S∗, k∗) ∈ ΩX is compatible with τ if k∗ = k, if S∗(a) = b for
all (a, b) ∈ QS , and if CS∗k (x) = y for all (x, y) ∈ QC . Analogously, an element
ω = (P ∗, S∗, k∗) ∈ ΩY is compatible with τ if k∗ = k, if S∗(a) = b for all
(a, b) ∈ QS , and if P ∗(x) = y for all (x, y) ∈ QC . We write ω ↓ τ to denote
compatibility between ω ∈ ΩX ∪ΩY and τ .

Since

Pr[X = τ ] = |{ω ∈ ΩX : ω ↓ τ}|/|ΩX |
Pr[Y = τ ] = |{ω ∈ ΩY : ω ↓ τ}|/|ΩY |
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(compare with (6), (7)), we have

Pr[X = τ ]

Pr[Y = τ ]
=
|{ω ∈ ΩX : ω ↓ τ}|

|ΩX |
· |ΩY |
|{ω ∈ ΩY : ω ↓ τ}|

=
(2n − qS − wqC)!

2n! |K|
· 2wn! 2n! |K|

(2wn − qC)! (2n − qS)!

=
(2n − qS − wqC)! 2wn!

(2n − qS)! (2wn − qC)!
≥ 1,

where the fact that τ ∈ T1 is used in the second equality. Hence we may apply
the H-coefficient technique with ε1 = 0 (cf. Section 2.2), and D’s distinguishing
advantage is upper bounded by

ε1 + Pr[Y ∈ T2] ≤ 2wqCqSε
′ + w2q2Cε

as claimed. ut

4.2 Constructing Blockwise-Universal Permutations

We now show several constructions of blockwise-universal permutations.

Key mixing (w = 1). Let w = 1 and k ∈ {0, 1}n. Define π(k, x) = x ⊕ k. It
is trivial to see that this construction is (0, 2−n)-blockwise universal: if x 6= x′,
then x ⊕ k 6= x′ ⊕ k (meaning ε = 0); also, for any c we have x ⊕ k = c with
probability ε′ = 2−n when k is uniform.

Instantiating the construction analyzed in Theorem 2 with this permutation
yields the Even-Mansour construction [14] with the same key used for both pre-
and post-whitening. Our results thus imply that the Even-Mansour construction
in this case has a concrete security bound of 2qCqS/2

n, matching the security
bound given in prior works [13, 23].

A construction of degree 3. A consequence of our attack in Section 3.1 is
that blockwise-universal permutations with w > 1 must be non-linear. We now
show a construction of degree 3. This construction is inspired by (though distinct
from and considerably simpler than) a construction of a non-keyed permutation
given by Dodis et al. [12] that achieves (in their terminology) good “entry-wise
random collision resistance”.

Let w ≥ 2 and let T ∈ Fw×w be an invertible matrix of the form

T =


1
1
... *

1

 ,
i.e., the first column of T is all 1s. We define a polynomial p : Fw → F by

p(x) =

w⊕
j=2

x[j]
3
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and then define a transformation η : Fw → Fw by

η(x)[i] =

{
x[i]⊕ p(x) if i = 1,

x[i] otherwise.

It is easy to see that η is a permutation of Fw. (In fact, since F has character-
istic 2, the permutation η is an involution, i.e., it is its own inverse.) Finally,
define the keyed permutation π : Fw × Fw → Fw as

π(k, x) = T · η(x⊕ k). (16)

Note that π is the composition of three invertible transformations, where the first
transformation consists of the map x→ x⊕ k; hence, π is a keyed permutation.

Theorem 3. The keyed permutation π : Fw × Fw → Fw defined in (16) is
(2/2n, 1/2n)-blockwise universal.

Proof. We start by noting that

∀i : π(k, x)[i] = (Tx)[i]⊕ (Tk)[i]⊕ p(x⊕ k), (17)

by the structure of T . The term (Tk)[i] is a linear combination of the variables
k[1], . . . , k[w] in which k[1] has coefficient 1, whereas

p(x⊕ k) = (x[2]⊕ k[2])3 ⊕ · · · ⊕ (x[w]⊕ k[w])3

can be viewed as the sum of w − 1 degree-3 polynomials in the variables k[2],
. . . , k[w] whose coefficients depend on x. Since (Tk)[i] is the only term in (17)
that depends on k[1], it is easy to see that the second condition in the definition
of blockwise universality is satisfied with ε′ = 1/2n.

To verify the first condition of Definition 3, let (x, i), (x′, i′) ∈ Fw × [w] be
distinct. Then

π(k, x)[i]⊕ π(k, x′)[i′]

= (Tx)[i]⊕ (Tx′)[i]⊕ (Tk)[i]⊕ (Tk)[i′]⊕ p(x⊕ k)⊕ p(x′ ⊕ k).

If the last w−1 entries of x, x′ are equal, then p(x⊕k) = p(x′⊕k) and moreover
(Tx)[i]⊕ (Tx′)[i] = x[1]⊕ x′[1]; thus,

π(k, x)[i]⊕ π(k, x′)[i′] = x[1]⊕ x′[1]⊕ (Tk)[i]⊕ (Tk)[i′].

If i = i′ then x[1] ⊕ x′[1] 6= 0 (otherwise (x, i) would be equal to (x′, i′)), so
π(k, x)[i] 6= π(k, x′)[i′]. If i 6= i′ then (Tk)[i] ⊕ (Tk)[i′] is uniform (by linear
independence of the rows of T ), so π(k, x)[i] = π(k, x′)[i′] with probability 1/2n.
In any case,

Prk[π(k, x)[i] = π(k, x′)[i′]] ≤ 1/2n.

On the other hand, if the last w − 1 entries of x, x′ are not all equal then
there exists a j ∈ {2, . . . , w} such that x[j] 6= x′[j]. Then

(x[j]⊕ k[j])3 ⊕ (x′[j]⊕ k[j])3
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is a (nonzero) polynomial of degree 2 in k[j]. By extension, p(x, k)⊕p(x′, k) and
hence π(k, x)[i]⊕ π(k, x′)[i′] are nonzero polynomials of degree 2 in k[j] as well.
Fixing arbitrary values of k[j′] for j′ 6= j, the probability that this polynomial
evaluates to zero over uniform choice of k[j] is thus at most 2/2n; hence

Prk[π(k, x)[i] = π(k, x′)[i′]] ≤ 2/2n

in this case. This concludes the proof. ut

A construction with short keys. Let T ∈ Fw×w be an invertible matrix,
with entries Ti,j , such that (i) Ti,j 6= 0 for all i, j ∈ [w], (ii) ⊕wj=1Ti,j 6= 0 for all
i ∈ [w], and (iii) ⊕wj=1Ti,j 6= ⊕wj=1Ti′,j if i 6= i′. (A random matrix has all the
required properties with high probability.) Then we define the keyed permutation
π : F \ {0} × Fw → Fw by π(k, x) := Tz(k, x), where

z(k, x)[i] := x[i] · ki+1 ⊕ k

for i = 1, . . . , w. It is easy to verify that π is invertible when k is nonzero.
This construction can be viewed as individually applying a key-dependent

affine transformation to each block x[i], and then applying a linear transforma-
tion to the result (for a fixed k, the result is affine in x). Here we use a much
shorter key k as compared to the previous construction, but at the expense of
the non-linear transformation having degree w + 1.

Theorem 4. The keyed permutation π : F \ {0} × Fw → Fw defined above is
((w + 1)/(2n − 1))-blockwise universal.

Proof. We first verify property 1 of Definition 3. Let (x, i), (x′, i′) ∈ Fw × [w] be
distinct. By definition of π, we have π(k, x)[i] = π(k, x′)[i′] if and only if

w⊕
j=1

Ti,j(x[j] · kj+1 ⊕ k) =

w⊕
j=1

Ti′,j(x
′[j] · kj+1 ⊕ k).

Rewriting the equation, this is the same as w⊕
j=1

(Ti,j ⊕ Ti′,j)

 k ⊕
w⊕
j=1

(Ti,j x[j]⊕ Ti′,j x′[j]) kj+1 = 0. (18)

If i 6= i′ then, since
∑w
j=1 Ti,j 6=

∑w
j=1 Ti′,j , (18) is a polynomial equation in k

of degree at least 1 and at most w + 1. If i = i′ then x 6= x′ and so there exists
i0 ∈ [w] such that x[i0] 6= x′[i0]. Again, this means (18) is a polynomial equation
in k of degree at least i0 + 1 and at most w + 1. In either case, the probability
over uniform choice of k that the equation holds is at most (w + 1)/(2n − 1).

To see property 2, observe that π(k, x)[i] = c for some c ∈ F if and only if⊕w
j=1 Ti,j(x[j] · kj+1 ⊕ k) = c. This is a polynomial equation in k of degree at

least 1 (since
⊕w

j=1 ai,j 6= 0) and at most w+ 1. So the probability this equation
holds for uniform k is at most (w + 1)/(2n − 1). This concludes the proof. ut
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A second construction with short keys. We give another instantiation with
n-bit keys that achieves the same parameters as above, but is (arguably) more
direct and intuitive. Let k ∈ F \ {0}. Let C1, . . . , Cw ∈ F be any w distinct
nonzero elements. Then, we define

π(k, x)[i] :=

w⊕
j=1

(k · Ci)j+1x[j]⊕ k · Ci, (19)

for i = 1, . . . , w. It is easy to verify that π is invertible when k is nonzero.

Theorem 5. The keyed permutation π : F \ {0} × Fw → Fw as in (19) is
((w + 1)/(2n − 1))-blockwise universal.

Proof. The proof is quite similar to that of Theorem 4. We first show that π
satisfies property 1 of Definition 3. By definition of π, we have π(k, x)[i] =
π(k, x′)[i′] if and only if

w⊕
j=1

(k · Ci)j+1x[j]⊕ k · Ci =

w⊕
j=1

(k · Ci′)j+1x′[j]⊕ k · Ci′ .

This is equivalent to

(Ci − Ci′)k ⊕
w⊕
j=1

(Ci
j+1x[j]⊕ Ci′ j+1x′[j])kj+1 = 0. (20)

Fix distinct (x, i) 6= (x′, i′) ∈ Fw × [w]. If i 6= i′ then Ci 6= Ci′ and so (20) is a
polynomial equation in k of degree at least 1 and at most w + 1. If i = i′ then
x 6= x′, and so there exists i0 ∈ [w] such that x[i0] 6= x′[i0]. Again, this implies
that (20) is a polynomial equation in k of degree at least t+1 and at most w+1.
In either case, the probability over uniform choice of k that the equation holds
is at most (w + 1)/(2n − 1).

To see property 2, observe that π(k, x)[i] = c for some c ∈ F if and only if⊕w
j=1(k ·Ci)j+1x[j]⊕ k ·Ci = c. This is a polynomial equation in k of degree at

least 1 (since Ci is nonzero by assumption) and at most w + 1. The probability
with which this equation holds for uniform k is at most (w + 1)/(2n − 1). This
concludes the proof. ut

Relation to our 3-round, linear SPN construction. We conclude with the
following informal observation relating the result of Theorem 2 to our 3-round,
linear SPN construction from Section 3.2: The initial round of the “minimal”
linear SPN discussed there (i.e., key mixing, followed by evaluation of S, and
then finally a linear transformation) can be shown to be a blockwise-universal
permutation if the S-box is viewed as part of the key of the permutation. To see
this, consider any (x, i) 6= (x′, i′). If x = x′ but i 6= i′, then key mixing with a
uniform wn-bit key ensures that the output is uniform, so two different blocks
collide with probability 1/2n. On the other hand, if x 6= x′ then x[j] 6= x′[j] for
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some j. After the key mixing, the S-boxes will be applied to two unequal values
x[j] ⊕ k[j] and x′[j] ⊕ k[j], which means the resulting values y[j] and y′[j] will
be uniform and (essentially) independent. Subsequent application of the linear
transformation T ensures that any blocks i and i′ of the outputs will also be
uniform and uncorrelated, hence unlikely to collide.

Thus, the 3-round, linear SPN construction can be viewed almost as a “spe-
cial case” of our 1-round, non-linear SPN, in which the blockwise-universal per-
mutations are implemented via a linear SPN round. We stress that this is only
intuition, and formally we cannot derive Theorem 1 as a corollary of Theorem 2
because (i) the same S-boxes are shared in the permutations and the middle
layer, and (ii) the S-boxes are public, which is not taken into account in the
definition of blockwise universality.

5 Conclusion and Open Problems

We study the security of SPNs as strong pseudorandom permutations when the
S-box is modeled as a public random permutation. This model captures the
design approach of most block ciphers following the SPN paradigm. Within this
model, we give an exact characterization of the properties required to achieve
security in both the linear and non-linear settings.

A number of interesting open questions remain. For instance, while generic
information-theoretic attacks show that constructions with at most 1 round can-
not surpass birthday security (presuming a key of O(wn) bits) we are not aware
of matching birthday attacks at 3 rounds. Hence the question of determining the
exact security of linear 3-round SPNs (and in particular, whether the security
goes beyond birthday or not) remains open. Moreover, proving beyond-birthday
security at any number of rounds remains open as well. This question has been
analyzed extensively for Feistel networks [26, 33–35] and iterated Even-Mansour
constructions [5, 7, 8, 19, 24].

Another, more technical question concerns SPNs with a limited number of
nonlinear rounds. Specifically, if we limit consideration to SPNs using exactly
one nonlinear keyed permutation, then we do not know if 2 rounds suffice for
security. (Note that a 1-round network with this structure is easily attacked. On
the other hand, 3 rounds suffice by the results of this paper.)
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A A General Attack on 2-Round Linear SPNs

We present an attack showing that 2-round, linear SPNs are insecure for w ≥ 2,
regardless of the characteristic of F. (In particular, this means that we do not
define F to be GF(2n) in this section as was the convention in the main body
of the paper.) As will be seen, the ideas for this attack are fairly different than
that of the attack presented in Section 3.1.

Let F be a finite field such that log(|F|) = O(n). We use “+” to denote field
addition. The definitions in Section 2.1 can be modified in a straightforward
manner to be defined over a field F as defined above (instead of by setting
F = GF(2n) as in that section). Then, any 2-round, linear SPN can be expressed
in the following form. On input x ∈ Fw and for subkeys k0, k1, k2 ∈ Fw, do:

1. Compute x1 := x+ k0 followed by y1 := S(x1).
2. Compute x2 := π1(k1, y1) = T · (y1 + k1) for some invertible linear transfor-

mation T .
3. Compute y2 := S(x2) followed by y := y2 + k2, and return y.

In fact, we will describe our attack for the following slightly more general scheme
that replaces the inner key addition and linear map T with an arbitrary key-
dependent affine map U : Fw → Fw. The more general scheme is as follows:

1. Compute x1 := x+ k0 followed by y1 := S(x1).
2. Compute x2 := U(y1) for some invertible F-affine map U : Fw → Fw (possi-

bly depending on k0, k1, k2).
3. Compute y2 := S(x2) followed by y := y2 + k2, and return y.

Obviously, the original scheme is recovered as a special case of the second scheme
by setting U(y1) = T · (y1 + k1). We will write the above scheme as 2rndSk0,k1,k2 .
Thus

2rndSk0,k1,k2(x) = S(U(S(x+ k0))) + k2

for all x ∈ Fw. The inverse map (2rndSk0,k1,k2)−1 is obtained by replacing U with

U−1, S with S
−1

, and by reversing the order of the subkey additions.
To further simplify the description of our attack we will assume w = 2. (The

general attack for w ≥ 2 can be easily recovered from this description.) The
pseudocode of our distinguisher D, that distinguishes O = 2rndSk0,k1,k2 with w =
2 from a uniform random permutation O of F2 (indeed, our distinguisher makes
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no use of S-box queries), is given in Algorithm 1. However, some preliminary
description of high-level ideas is necessary to understand how the attack works.

We start by establishing some terminology. Removing ourselves a moment
from the distinguisher D described in Algorithm 1, consider a generic distin-
guisher D with access to a permutation oracle O : F2 → F2 and its inverse O−1.
We say that D makes a forward query when it calls O(·) and that it makes a
backward query when it calls O−1(·). For the purpose of the discussion we as-
sume that D never makes a redundant query to O. The latter includes calling
O−1(y) where y is some value previously obtained by a forward query O(x), or
calling O(x) where x is some value previously returned by a backward query
O−1(y).

The queries made by D, and answers obtained, can be kept in a query history
of the form (σi, xi, yi)qi=1 where q is the number of queries made by D and where
σi ∈ {+,−} records the direction of the i-th query. In more detail, if σi = +
then D’s i-th query was O(xi) and it was answered by yi, while if σi = − then
D’s i-th query was O−1(yi) and it was answered by xi.

To keep the following discussion formal we introduce the notion of a token.
This is an element of the set F×{TL,BL,TR,BR} where TL, BL, TR and BR are
formal symbols that stand for “top left”, “bottom left” “top right” and “bottom
right” respectively. We will be using tokens of the type (xi[1],TL), (xi[2],BL),
(yi[1],TR) and (yi[2],BR) for elements (σi, xi, yi) of the query history. We refer
to the first coordinate of a token as its value and to the second coordinate of a
token as its position. For the sake of expediency we will often describe a token
by its value when the position can be inferred from the notation. (Such as,
specifically, by writing “xi[1]” instead of “(xi[1],TL)”.)

The tokens induced by a query history (σi, xi, yi)qi=1 have a natural topolog-
ical structure that we will encode in terms of certain binary trees. The building
blocks for these binary trees will be bipods, that we define next.

A bipod is a three-node graph with a middle node (the “child”) connected to
two outer nodes (the “parents”). We write a bipod with child v and parents u,
w as “u—v—w”. The nodes of a bipod will be labeled with tokens. Specifically,
each forward query (+, xi, yi) in the query history gives rise to two bipods,
xi[1]—yi[1]—xi[2] and xi[1]—yi[2]—xi[2] (or

(xi[1],TL)—(yi[1],TR)—(xi[2],BL)

and
(xi[1],TL)—(yi[2],BR)—(xi[2],BL)

if we write out the tokens fully). Likewise, each backward query (−, xi, yi) gives
rise to the two opposite bipods, namely yi[1]—xi[1]—yi[2] and yi[1]—xi[2]—
yi[2].

One can observe that the parent/child terminology is chosen to make parents
come chronologically before children. That is, when the adversary makes (say) a
forward query O(xi), and obtains answers yi, the “parents” xi[1] and xi[2] were
known to the adversary before the “children” yi[1] and yi[2]. (Referring to the
two bipods created by the resulting query (+, xi, yi).)

29



We say that a bipod α is earlier than a bipod β if the query associated to α
is earlier in the query history than the query associated to β.

A bipod tree is a rooted binary tree, recursively defined as follows: (i) every
bipod is a bipod tree rooted at the child, (ii) if T is a bipod tree, ` is a leaf of T ,
and B is a bipod that is earlier than the bipod containing ` in T such that the
child of B is labeled by the same token as `, attaching B to T by identifying `
with the child (root) of B yields another bipod tree.

For example, if (+, xi, yi) and (−, xj , yj) are two query history elements such
that i < j and such that yi[1] = yj [1], then we may identify the child of the
bipod xi[1]—yi[1]—xi[2] (coming from (+, xi, yi)) with the first parent of, say,
yj [1]—xj [1]—yj [2] (coming from (−, xj , yj)) such as to form a binary tree with
5 nodes rooted at xj [1].

If a bipod tree has been maximally extended6 (i.e., nothing can be further
attached to the leaves) then one may think of the tree as being some kind of
“genealogical certificate” of the root (i.e., it shows a query that gave rise to the
token at the root, it shows queries that gave rise to its parents within that query if
such exist, and so on). Intuitively, two distinct maximally extended trees should
have distinct values at the root. (At least, this is intuitively the case if the oracle
O(·) is a random permutation of F2, and the number of queries is polynomial.)
Our attack essentially boils down to showing that if O = 2rndSk0,k1,k2 , then there
is a way to build two different bipod trees of depth 4 (comprising a total of
q = 14 queries to O) whose roots are labeled by the same token.

Assume that O = 2rndSk0,k1,k2 . Given a token t = (u,Pos) where u ∈ F and
Pos ∈ {TL,BL,TR,BR}, we define the inner value I(t) ∈ F of t by:

I(t) :=


S(u+ k0[1]) if Pos = TL

S(u+ k0[2]) if Pos = BL

S−1(u+ k2[1]) if Pos = TR

S−1(u+ k2[2]) if Pos = BR

In other words the inner value is the value on the wire adjacent to the affine
transformation U , as reached from the token’s value by key addition and by
application of S or S−1.

Since U : F2 → F2 is an F-affine function, there exists six (in fact, unique)
values a, b, c, d, e, f ∈ F such that

U(r, s) = (ar + bs+ c, dr + es+ f)

for all (r, s) ∈ F2; likewise, since U is invertible, there exist (unique) values A,
B, C, D, E, F ∈ F such that

U−1(r, s) = (Ar +Bs+ C,Dr + Es+ F )

6 We do not make any implicit claim that such a maximal extension is unique for a
given root. Indeed, our attack actually hinges on the non-uniqueness of the maximal
bipod tree having a given token as the root, when O = 2rndSk0,k1,k2 .
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for all (r, s) ∈ F2. By definition of inner values, and because O = 2rndSk0,k1,k2 ,
we have

I(yi[1]) = aI(xi[1]) + bI(xi[2]) + c

I(yi[2]) = dI(xi[1]) + eI(xi[2]) + f

(where yi[1] represents the token (yi[1],TR), etc.) for all forward7 queries (+, xi, yi)
in the query history, and

I(xi[1]) = AI(yi[1]) +BI(yi[2]) + C

I(xi[2]) = DI(yi[1]) + EI(yi[2]) + F

for all backward queries (−, xi, yi) in the query history. Thanks to these relations,
the inner values of leaf tokens in a bipod tree can be used to determine the inner
values of all remaining tokens in the tree—in fact, the inner values of non-leaf
tokens are affine combinations of the inner values at the leaves, since an affine
combination of affine combinations is an affine combination. Essentially, our
attack succeeds in constructing two distinct bipod trees that share the same set
of tokens at the leaves, albeit arranged in a different order along the leaves, such
that the affine combinations at the two roots coincide, and such that the two
roots are both in position TL. Since two tokens in the same position have the
same value if and only if their inner value is the same, it suffices for the adversary
to construct these two trees and to check equality at the roots.

Algorithm 1 “Bipod Tree” Attack for Linear 2-Round SPNs

1: Uniformly and independently sample w1, w2, z1, z2, z3, z4, z5 and z6 ∈ F;
2: for i = 1 to 2 do
3: s1 ← O(wi, z1)[2];
4: s2 ← O−1(z2, s1)[1];
5: s3 ← O(s2, z3)[1];
6: s4 ← O(w3−i, z4)[1];
7: s5 ← O−1(s4, z5)[1];
8: s6 ← O(s5, z6)[2];
9: ri ← O−1(s3, s6)[1];

10: end for
11: if r1 = r2 then
12: return 1
13: else
14: return 0
15: end if

One of the two bipod trees used by our attack is shown in Fig. 2. In that
figure, w1, w2, z1, z2, z3, z4, z5 and z6 are independent random elements of F,

7 Of course the same equations also hold for backward queries, but they in particular
hold for forward queries.
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w1,TL z1,BL

BRz2,TR

TL z3,BL

TR

TL

w2,TL z4,BL

TR z5,BR

TL z6,BL

BR

Fig. 2. The first bipod tree used by the Algorithm 1 attack. Non-leaf nodes are labeled
by position only.

sampled at the beginning of the attack. (One could in fact choose these elements
arbitrarily subject to the condition that w1 6= w2, but sampling them at random
seems conceptually simplest.) Each leaf is labeled by a “full” token including
value and position, while non-leaf nodes only show a position value (necessary
to correctly parse the tree).

As explained above, the inner value of the root of the Fig. 2 tree is a fixed
affine combination of the inner values of the tokens at the leaves; explicitly, we
have

AaAI(z2,TR) + dBaAI(w1,TL)

+ eBaAI(z1,BL) + bAI(z3,BL)

+ aAdBI(w2,TL) + bAdBI(z4,BL)

+ BdBI(z5,BR) + eBI(z6,BL)

as can be checked with not too much effort. The details of this affine combination
are unimportant, except that I(w1,TL) and I(w2,TL) have the same coefficient,
given that dBaA = aAdB by the commutativity of field multiplication. Hence,
swapping the positions of w1 and w2 results in the same affine combination at
the root. In other words, as long as O = 2rndSk0,k1,k2 , the inner value of the root
is left unchanged by a swap of w1 and w2 and, hence, the (non-inner) value of
the root is left unchanged as well. Thus our attack consists in evaluating both
versions of the tree (with w1 and w2 swapped and unswapped), and in comparing
whether the two roots have the same value.

As the two roots will have the same value with probability 1 ifO = 2rndSk0,k1,k2 ,
all that remains to check is that the two roots are the same with negligible prob-
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ability if O is a random permutation of F2. This can be checked in a number
of ways. For example, the event that w1 = w2 (which can, indeed, entirely be
avoided by slightly modifying the attack) happens with probability 1/|F|. As-
suming this event doesn’t occur, the 14 queries made by the attacker to O are
distinct unless some query returns an answer u ∈ F2 such that either u[1] or u[2]
is equal to a “previously seen” element of F, i.e., is equal to one of xj [1], xj [2],
yj [1], yj [2] for some earlier element (σj , xj , yj) of the query history. As long as
this bad event has not happened for queries number 1, ..., i − 1, however, then
query i is fresh and the probability that this event occurs at query i, i ≤ 13, is at
most 2 ·4 ·12 · |F|/(|F|2−12) ≤ 100/|F| (assuming |F| ≥ 100), which is negligible.
Finally, if the 14-th (i.e., last) query is fresh, the probability of it returning the
same first half as the 7-th query is at most |F|/(|F|2− 13), which is negligible as
well. This concludes the analysis of the attack.
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