On Probabilistic Checking in Perfect Zero Knowledge

Eli Ben-Sasson
elf@cs.technion.ac.il
Technion

Alessandro Chiesa
alexch@berkeley.edu
UC Berkeley

Michael A. Forbes
miforbes@csail.mit.edu
Stanford University

Ariel Gabizon
arielga@cs.technion.ac.il
Technion

Michael Riabzev
mriabzev@cs.technion.ac.il
Technion

Nicholas Spooner
spooner@cs.toronto.edu
University of Toronto

October 12, 2016

Abstract

We present the first constructions of single-prover proof systems that achieve perfect zero knowledge (PZK) for languages beyond NP, under no intractability assumptions:

1. The complexity class \(\#P \) has PZK proofs in the model of Interactive PCPs (IPCPs) [KR08], where the verifier first receives from the prover a PCP and then engages with the prover in an Interactive Proof (IP).

2. The complexity class \(\text{NEXP} \) has PZK proofs in the model of Interactive Oracle Proofs (IOPs) [BCS16, RRR16], where the verifier, in every round of interaction, receives a PCP from the prover.

Unlike PZK multi-prover proof systems [BGKW88], PZK single-prover proof systems are elusive: PZK IPs are limited to \(\text{AM} \cap \text{coAM} \) [For87, AH91], while known PCPs and IPCPs achieve only statistical simulation [KPT97, GIMS10]. Recent work [BCGV16] has achieved PZK for IOPs but only for languages in NP, while our results go beyond it.

Our constructions rely on succinct simulators that enable us to “simulate beyond NP”, achieving exponential savings in efficiency over [BCGV16]. These simulators crucially rely on solving a problem that lies at the intersection of coding theory, linear algebra, and computational complexity, which we call the succinct constraint detection problem, and consists of detecting dual constraints with polynomial support size for codes of exponential block length. Our two results rely on solutions to this problem for fundamental classes of linear codes:

- An algorithm to detect constraints for Reed–Muller codes of exponential length.
- An algorithm to detect constraints for PCPs of Proximity of Reed–Solomon codes [BS08] of exponential degree.

The first algorithm exploits the Raz–Shpilka [RS05] deterministic polynomial identity testing algorithm, and shows, to our knowledge, a first connection of algebraic complexity theory with zero knowledge. Along the way, we give a perfect zero knowledge analogue of the celebrated sumcheck protocol [LFKN92], by leveraging both succinct constraint detection and low-degree testing. The second algorithm exploits the recursive structure of the PCPs of Proximity to show that small-support constraints are “locally” spanned by a small number of small-support constraints.

Keywords: probabilistically checkable proofs, interactive proofs, sumcheck, zero knowledge, polynomial identity testing
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Proof systems with unconditional zero knowledge</td>
<td>3</td>
</tr>
<tr>
<td>1.2 What about perfect zero knowledge for single-prover systems?</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Results</td>
<td>4</td>
</tr>
<tr>
<td>2 Techniques</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Detecting constraints for exponentially-large codes</td>
<td>6</td>
</tr>
<tr>
<td>2.2 From constraint detection to perfect zero knowledge via masking</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Achieving perfect zero knowledge beyond NP</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Roadmap</td>
<td>12</td>
</tr>
<tr>
<td>3 Definitions</td>
<td>13</td>
</tr>
<tr>
<td>3.1 Basic notations</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Single-prover proof systems</td>
<td>13</td>
</tr>
<tr>
<td>3.3 Zero knowledge</td>
<td>15</td>
</tr>
<tr>
<td>3.4 Codes</td>
<td>16</td>
</tr>
<tr>
<td>4 Succinct constraint detection</td>
<td>18</td>
</tr>
<tr>
<td>4.1 Definition of succinct constraint detection</td>
<td>18</td>
</tr>
<tr>
<td>4.2 Partial sums of low-degree polynomials</td>
<td>20</td>
</tr>
<tr>
<td>4.3 Univariate polynomials with BS proximity proofs</td>
<td>22</td>
</tr>
<tr>
<td>5 Sumcheck with perfect zero knowledge</td>
<td>28</td>
</tr>
<tr>
<td>5.1 Step 1</td>
<td>29</td>
</tr>
<tr>
<td>5.2 Step 2</td>
<td>32</td>
</tr>
<tr>
<td>6 Perfect zero knowledge for counting problems</td>
<td>34</td>
</tr>
<tr>
<td>7 Perfect zero knowledge from succinct constraint detection</td>
<td>35</td>
</tr>
<tr>
<td>7.1 A general transformation</td>
<td>35</td>
</tr>
<tr>
<td>7.2 Perfect zero knowledge IOPs of proximity for Reed–Solomon codes</td>
<td>38</td>
</tr>
<tr>
<td>8 Perfect zero knowledge for nondeterministic time</td>
<td>40</td>
</tr>
<tr>
<td>8.1 Perfect zero knowledge IOPs of proximity for LACSPs</td>
<td>41</td>
</tr>
<tr>
<td>8.2 Perfect zero knowledge IOPs of RLACSPs</td>
<td>42</td>
</tr>
<tr>
<td>8.3 Putting things together</td>
<td>44</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>45</td>
</tr>
<tr>
<td>A Prior work on single-prover unconditional zero knowledge</td>
<td>46</td>
</tr>
<tr>
<td>B Proof of Lemma 4.3</td>
<td>47</td>
</tr>
<tr>
<td>C Proof of Lemma 4.6</td>
<td>48</td>
</tr>
<tr>
<td>D Proof of Lemma 4.11</td>
<td>49</td>
</tr>
<tr>
<td>E Proof of Claim 4.23</td>
<td>50</td>
</tr>
<tr>
<td>F Definition of the linear code family BS-RS</td>
<td>51</td>
</tr>
<tr>
<td>G Proof of Lemma 4.27</td>
<td>53</td>
</tr>
<tr>
<td>G.1 The recursive cover and its combinatorial properties</td>
<td>53</td>
</tr>
<tr>
<td>G.2 Computing spanning sets of dual codes in the recursive cover</td>
<td>55</td>
</tr>
<tr>
<td>G.3 Putting things together</td>
<td>56</td>
</tr>
<tr>
<td>H Folklore claim on interpolating sets</td>
<td>57</td>
</tr>
<tr>
<td>References</td>
<td>58</td>
</tr>
</tbody>
</table>
1 Introduction

We study proof systems that unconditionally achieve soundness and zero knowledge, that is, without relying on intractability assumptions. We present two new constructions in single-prover models that combine aspects of probabilistic checking and interaction: (i) Interactive Probabilistically-Checkable Proofs [KR08], and (ii) Interactive Oracle Proofs (also called Probabilistically Checkable Interactive Proofs) [BCS16 RRR16].

1.1 Proof systems with unconditional zero knowledge

Zero knowledge is a central notion in cryptography. A fundamental question, first posed in [BGKW88], is the following: what types of proof systems achieve zero knowledge unconditionally? We study this question, and focus on the setting of single-prover proof systems, as we now explain.

IPs and MIPs. An interactive proof (IP) [BM88 GMR89] for a language \(L \) is a pair of interactive algorithms \((P, V)\), where \(P \) is known as the prover and \(V \) as the verifier, such that: (i) (completeness) for every instance \(x \in L \), \(P(x) \) makes \(V(x) \) accept with probability 1; (ii) (soundness) for every instance \(x \notin L \), every prover \(P' \) makes \(V(x) \) accept with at most a small probability \(\varepsilon \). A multi-prover interactive proof (MIP) [BGKW88] extends an IP to the case where the verifier interacts with multiple non-communicating provers.

Zero knowledge. An IP is zero knowledge [GMR89] if malicious verifiers cannot learn any information about an instance \(x \in L \), by interacting with the prover, besides the fact \(x \) is in \(L \): for any efficient verifier \(V \) there is an efficient simulator \(S \) such that \(S(x) \) is “indistinguishable” from \(V \)’s view when interacting with \(P(x) \). Depending on the notion of indistinguishability, one gets different types of zero knowledge: computational, statistical, or perfect zero knowledge (respectively CZK, SZK, or PZK), which require that the simulator’s output and the verifier’s view are computationally indistinguishable, statistically close, or equal. Zero knowledge for MIPs is similarly defined [BGKW88].

IPs vs. MIPs. The complexity classes captured by the above models are (conjecturally) different: all and only languages in PSPACE have IPs [Sha92]; while all and only languages in NEXP have MIPs [BFL91]. Yet, when requiring zero knowledge, the difference between the two models is even greater. Namely, the complexity class of SZK (and PZK) IPs is contained in AM \(\cap \) coAM [For87 AH91] and, thus, does not contain NP unless the polynomial hierarchy collapses [BHZ87]. In contrast, the complexity class of PZK MIPs equals NEXP [BGKW88 LS95 DFK+92].

Single-prover proof systems beyond IPs. The limitations of SZK IPs preclude many information-theoretic and cryptographic applications; at the same time, while capturing all of NEXP, PZK MIPs are difficult to leverage in applications because it is hard to exclude all communication between provers. Research has thus focused on obtaining zero knowledge by considering alternatives to the IP model for which there continues to be a single prover. E.g., an extension that does not involve multiple provers is to allow the verifier to probabilistically check the prover’s messages, instead of reading them in full, as in the following models. (1) In a probabilistically checkable proof (PCP) [FRS88 BFLS91 FGL+96 AS98 ALM+98], the verifier has oracle access to a single message sent by the prover; zero knowledge for this case was first studied by [KPT97]. (2) In an interactive probabilistically checkable proof (IPCP) [KR08], the verifier has oracle access to the first message sent by the prover, but must read in full all subsequent messages (i.e., it is a PCP followed by an IP); zero knowledge for this case was first studied by [GIMS10]. (3) In an interactive oracle proof (IOP) [BCS16 RRR16], the verifier has oracle access to all of the messages sent by the prover (i.e., it is a “multi-round PCP”); zero knowledge for this case was first studied by [BCGV16]. The above models are in order of increasing generality; their applications include unconditional cryptography [GIMS10], zero knowledge with black-box cryptography [IMS12 IMX15], and zero knowledge with random oracles [BCS16].

1.2 What about perfect zero knowledge for single-prover systems?

In the setting of multiple provers, one can achieve the best possible notion of zero knowledge: perfect zero knowledge for all NEXP languages, even with only two provers and one round of interaction [BGKW88 LS95 DFK+92].
contrast, in the setting of a single prover, all prior PCP and IPCP constructions achieve only statistical zero knowledge (see Appendix A for a summary of prior work). This intriguing state of affairs motivates the following question:

What are the powers and limitations of perfect zero knowledge for single-prover proof systems?

The above question is especially interesting when considering that prior PCP and IPCP constructions all follow the same paradigm: they achieve zero knowledge by using a “locking scheme” on an intermediate construction that is zero knowledge against (several independent copies of) the honest verifier. Perfect zero knowledge in this paradigm is not possible because a malicious verifier can always guess a lock’s key with positive probability. Also, besides precluding perfect zero knowledge, this paradigm introduces other limitations: (a) the prover incurs polynomial blowups to avoid collisions due to birthday paradox; and (b) the honest verifier is adaptive (first retrieve keys for the lock, then unlock).

Recent work explores alternative approaches but these constructions suffer from other limitations: (i) [IWY16] apply PCPs to leakage-resilient circuits, and obtain PCPs for NP with a non-adaptive verifier but they are only witness (statistically) indistinguishable; (ii) [BCGV16] exploit algebraic properties of PCPs and obtain 2-round IOPs that are perfect zero knowledge but only for NP.

In sum, prior work is limited to statistical zero knowledge (or weaker) or to languages in NP. Whether perfect zero knowledge is feasible for more languages has remained open. Beyond the fundamental nature of the question of understanding perfect zero knowledge for single-prover proof systems, recall that perfect zero knowledge, in the case of single-prover interactive proofs, is desirable because it implies general concurrent composability while statistical zero knowledge does not always imply it [KLR10], and one may hope to prove analogous results for IPCPs and IOPs.

1.3 Results

We present the first constructions of single-prover proof systems that achieve perfect zero knowledge for languages beyond NP; prior work is limited to languages in NP or statistical zero knowledge. We develop and apply linear-algebraic algorithms that enable us to “simulate beyond NP”, by exploiting new connections to algebraic complexity theory and local views of linear codes. In all of our constructions, we do not use locking schemes, the honest verifier is non-adaptive, and the simulator is straightline (i.e., does not rewind the verifier). We now summarize our results.

1.3.1 Perfect zero knowledge beyond NP

1. **PZK IPCPs for \#P.** We prove that the complexity class \#P has IPCPs that are perfect zero knowledge. We do so by constructing a suitable IPCP system for the counting problem associated to 3SAT, which is \#P-complete.

Theorem 1.1 (informal statement of Thm. 6.2). The complexity class \#P has Interactive PCPs that are perfect zero knowledge against unbounded queries (that is, a malicious verifier may ask an arbitrary polynomial number of queries to the PCP sent by the prover).

The above theorem gives new tradeoffs relative to prior work. First, [KPT97] construct PCPs for NEXP that are statistical zero knowledge against unbounded queries. Instead, we construct IPCPs (which generalize PCPs) for \#P, but we gain perfect zero knowledge. Second, [GIMS10] construct IPCPs for NP that (i) are statistical zero knowledge against unbounded queries, and (ii) have a polynomial-time computable oracle. Instead, we construct IPCPs that have an exponential-time computable oracle, but we gain perfect zero knowledge and all languages in \#P.

2. **PZK IOPs for NEXP.** We prove that NEXP has 2-round IOPs that are perfect zero knowledge against unbounded queries. We do so by constructing a suitable IOP system for NTIME(T) against query bound b, for each time function T and query bound function b; the result for NEXP follows by setting b to be super-polynomial.

Theorem 1.2 (informal statement of Thm. 8.1). For every time bound T and query bound b, the complexity class NTIME(T) has 2-round Interactive Oracle Proofs that are perfect zero knowledge against b queries, and where the proof length is \(O(T + b)\) and the (honest verifier’s) query complexity is polylog\((T + b)\).

The above theorem gives new tradeoffs relative to [KPT97]’s result, which gives PCPs for NEXP that have statistical zero knowledge, polynomial proof length, and an adaptive verifier. Instead, we construct IOPs (which generalize PCPs) for NEXP, but we gain perfect zero knowledge, quasilinear proof length, and a non-adaptive verifier. Moreover, our
We further discuss the problem of constraint detection in Section 2.1, and provide a formal treatment of it in Section 4.1. We prove that the family of linear codes comprised of evaluations of verifier query j is a subset of H.

Definition 1.4. We denote by ΣRM the linear code family that is indexed by tuples $\mathbf{n} = (F, m, d, H)$, where H is a subset of \mathbb{F}, and where the \mathbf{n}-th code consists of codewords (w_0, \ldots, w_m) such that there exists an m-variate

1.3.2 Succinct constraint detection for Reed–Muller and Reed–Solomon codes

Our theorems in the previous section crucially rely on solving a problem that lies at the intersection of coding theory, linear algebra, and computational complexity, which we call the constraint detection problem. We outline the role played by this problem in Section 2.2, while now we informally introduce it and state our results about it.

Defining constraints in codes. Constraint detection is the problem of determining which linear relations hold across all codewords of a linear code $C \subseteq \mathbb{F}^D$, when considering only a given subdomain $I \subseteq D$ of the code rather than all of the domain D. This problem can always be solved in time that is polynomial in $|D|$ (via Gaussian elimination); however, if there is an algorithm that solves this problem in time that is polynomial in the subdomain’s size $|I|$, rather than the domain’s size $|D|$, then we say that the code has succinct constraint detection; in particular, the domain could have exponential size and the algorithm would still run in polynomial time.

Definition 1.3 (informal). We say that a linear code $C \subseteq \mathbb{F}^D$ has succinct constraint detection if there exists an algorithm that, given a subset $I \subseteq D$, runs in time $\text{poly}(\log |F| + \log |D| + |I|)$ and outputs $z \in \mathbb{F}^I$ such that $\sum_{i \in I} z(i)w(i) = 0$ for all $w \in C$, or “no” if no such z exists. (In particular, $|D|$ may be exponential.)

We further discuss the problem of constraint detection in Section 2.1, and provide a formal treatment of it in Section 4.1. Beyond this introduction, we shall use (and achieve) a stronger definition of constraint detection: the algorithm is required to output a basis for the space of dual codewords in C^\perp whose support lies in the subdomain I, i.e., a basis for the space $\{z \in D^\perp : \forall w \in C, \sum_{i \in I} z(i)w(i) = 0\}$. Note that in our discussion of succinct constraint detection we do not leverage the distance property of the code C, but we do leverage it in our eventual applications.

Overall, our paper thus provides an application (namely, obtaining PZK simulators for classes beyond NP) where the problem of efficient implementation of huge random objects arises naturally, and also where perfect implementation (no probability of error in the simulated distribution) is a requirement of the application.

We now state our results about succinct constraint detection.

(1) Reed–Muller codes, and their partial sums. We prove that the family of linear codes comprised of evaluations of low-degree multivariate polynomials, along with their partial sums, has succinct constraint detection. This family is closely related to the sumcheck protocol [LFKN92], and indeed we use this result to obtain a PZK analogue of the sumcheck protocol (see Section 2.2.2 and Section 5), which yields Theorem 1.1 (see Section 2.3.1 and Section 6).

Recall that the family of Reed–Muller codes, denoted RM, is indexed by tuples $\mathbf{n} = (F, m, d)$, where F is a finite field and m, d are positive integers, and the \mathbf{n}-th code consists of codewords $w : F^m \to F$ that are the evaluation of an m-variate polynomial Q of individual degree less than d over F. We denote by ΣRM the family that extends RM with evaluations of all partial sums over certain subcubes of a hypercube:

Definition 1.4 (informal). We denote by ΣRM the linear code family that is indexed by tuples $\mathbf{n} = (F, m, d, H)$, where H is a subset of \mathbb{F}, and where the \mathbf{n}-th code consists of codewords (w_0, \ldots, w_m) such that there exists an m-variate

Theorem extends [BCGV16]’s result from NP to NEXP, positively answering an open question raised in that work. Namely, [BCGV16]’s result requires T, b to be polynomially-bounded because their simulator runs in $\text{poly}(T + b)$ time; in contrast, our result relies on a simulator that runs in time $\text{poly}(\tilde{q} + \log T + \log b)$, where \tilde{q} is the actual number of queries made by the malicious verifier; this is the exponential improvement that enables us to “go up to NEXP”.

Overall, we learn that “2 rounds of PCPs” are enough to obtain perfect zero knowledge (even with quasilinear proof length) for any language in NEXP.
We informally discuss intuition behind our algorithms for detecting constraints (Section 2.1), their connection to
We provide intuition for the theorem’s proof in Section 2.1.1 and provide the proof’s details in Section 4.2; the proof
C
constraint detection problem
As informally introduced in Section 1.3.2, the constraint detection problem
which handles the special case of parity queries to boolean functions on subcubes of the boolean hypercube.
(2) Reed–Solomon codes, and their PCPPs. Second, we prove that the family of linear codes comprised of evaluations of low-degree univariate polynomials concatenated with corresponding BS proximity proofs [BS08] has succinct constraint detection. This family is closely related to quasilinear-size PCPs for NEXP [BS08], and indeed we use this result to obtain PZK proximity proofs for this family (see Section 2.2.3 and Section 7), from which we derive Theorem 1.2 (see Section 2.3.2 and Section 8).

Definition 1.6 (informal). We denote by BS-RS the linear code family indexed by tuples \(n = (\mathbb{F}, L, d) \), where \(\mathbb{F} \) is an extension field of \(\mathbb{F}_2 \), \(L \) is a linear subspace in \(\mathbb{F} \), and \(d \) is a positive integer; the \(n \)-th code consists of evaluations on \(L \) of univariate polynomials \(Q \) of degree less than \(d \), concatenated with corresponding [BS08] proximity proofs.

The domain size for codes in BS-RS is \(\Omega(|L|) \), but our detector’s running time is exponentially smaller.

Theorem 1.5 (informal statement of Thm. 4.9). The family \(\Sigma_{RM} \) has succinct constraint detection:
there is a detector algorithm for \(\Sigma_{RM} \) that runs in time \(\text{poly}(|\mathbb{F}| + m + d + |H| + |I|) \).

We provide intuition for the theorem’s proof in Section 2.1.1 and provide the proof’s details in Section 4.2; the proof leverages tools from algebraic complexity theory. (Our proof also shows that the family RM, which is a restriction of \(\Sigma_{RM} \), has succinct constraint detection.) We note that our theorem implies perfect and stateful implementation of a random low-degree multivariate polynomial and its partial sums over any hypercube; this extends [BW04]’s result, which handles the special case of parity queries to boolean functions on subcubes of the boolean hypercube.

2 Techniques

We informally discuss intuition behind our algorithms for detecting constraints (Section 2.1), their connection to perfect zero knowledge (Section 2.2), and how we ultimately derive our results about \#P and NEXP (Section 2.3). Throughout, we provide pointers to the technical sections that contain further details.

2.1 Detecting constraints for exponentially-large codes

As informally introduced in Section 1.3.2, the constraint detection problem corresponding to a linear code family
\(\mathcal{C} = \{ C_n \} \) with domain \(D(\cdot) \) and alphabet \(\mathbb{F}(\cdot) \) is the following: given an index \(n \in \{0, 1\}^* \) and subset \(I \subseteq D(n) \), output a basis for the space \(\{ z \in D(n)^I : \forall w \in C_n : \sum_{i \in I} z(i)w(i) = 0 \} \). In other words, for a given subdomain \(I \), we wish to determine all linear relations which hold for codewords in \(C_n \) restricted to the subdomain \(I \).

If a generating matrix for \(C_n \) can be found in polynomial time, this problem can be solved in \(\text{poly}(|n| + |D(n)|) \) time via Gaussian elimination (such an approach was implicitly taken by [BCGV16] to construct a perfect zero knowledge simulator for an IOP for NP). However, in our setting \(|D(n)| \) is exponential in \(|n| \), so the straightforward solution is inefficient. With this in mind, we say that \(\mathcal{C} \) has succinct constraint detection if there exists an algorithm that solves its constraint detection problem in \(\text{poly}(|n| + |I|) \) time, even if \(|D(n)| \) is exponential in \(|n| \).

The formal definition of succinct constraint detection is in Section 4.1. In the rest of this section we provide intuition for two of our theorems: succinct constraint detection for the family \(\Sigma_{RM} \) and for the family BS-RS. As will become evident, the techniques that we use to prove the two theorems differ significantly. Perhaps this is because the two codes are quite different: \(\Sigma_{RM} \) has a simple and well-understood algebraic structure, whereas BS-RS is constructed recursively using proof composition.
2.1.1 From algebraic complexity to detecting constraints for Reed–Muller codes and their partial sums

The purpose of this section is to provide intuition about the proof of Theorem 1.5, which states that the family \(\Sigma_{RM} \) has succinct constraint detection. (Formal definitions, statements, and proofs are in Section 4.2.) We thus outline how to construct an algorithm that detects constraints for the family of linear codes comprised of evaluations of low-degree multivariate polynomials, along with their partial sums. Our construction generalizes the proof of [BW04], which solves the special case of parity queries to boolean functions on subcubes of the boolean hypercube by reducing this problem to a probabilistic identity testing problem that is solvable via an algorithm of [RS05].

Below, we temporarily ignore the partial sums, and focus on constructing an algorithm that detects constraints for the family of Reed–Muller codes \(RM \), and at the end of the section we indicate how we can also handle partial sums.

Step 1: phrase as linear algebra problem. Consider a codeword \(w : \mathbb{F}^m \rightarrow \mathbb{F} \) that is the evaluation of an \(m \)-variate polynomial \(Q \) of individual degree less than \(d \) over \(\mathbb{F} \). Note that, for every \(\vec{a} \in \mathbb{F}^m \), \(w(\vec{a}) \) equals the inner product of \(Q \)'s coefficients with the vector \(\phi_\vec{a} \) that consists of the evaluation of all \(d^m \) monomials at \(\vec{a} \). One can then argue that constraint detection for \(RM \) is equivalent to finding the nullspace of \(\{ \phi_\vec{a} \}_{\vec{a} \in D} \). However, “writing out” this \(|I| \times d^m \) matrix and performing Gaussian elimination is too expensive, so we must solve this linear algebra problem succinctly.

Step 2: encode vectors as coefficients of polynomials. While each vector \(\phi_\vec{a} \) is long, it has a succinct description; in fact, we can construct an \(m \)-variate polynomial \(\Phi_\vec{a} \) whose coefficients (after expansion) are the entries of \(\phi_\vec{a} \), but has an arithmetic circuit of only size \(O(md) \): namely, \(\Phi_\vec{a}(\vec{X}) := \prod_{i=1}^m (1 + \alpha_i X_i + \alpha_i^2 X_i^2 + \cdots + \alpha_i^{d-1} X_i^{d-1}) \). Computing the nullspace of \(\{ \Phi_\vec{a} \}_{\vec{a} \in I} \) is thus equivalent to computing the nullspace of \(\{ \phi_\vec{a} \}_{\vec{a} \in I} \).

Step 3: computing the nullspace. Computing the nullspace of a set of polynomials is a problem in algebraic complexity theory, and is essentially equivalent to the Polynomial Identity Testing (PIT) problem, and so we leverage tools from that area. While there are simple randomized algorithms to solve this problem (see for example [Kay10, Lemma 8]), these algorithms, due to a nonzero probability of error, suffice to achieve statistical zero knowledge but do not suffice to achieve perfect zero knowledge. To obtain perfect zero knowledge, we need a solution that has no probability of error. Derandomizing PIT for arbitrary algebraic circuits seems to be beyond current techniques (as it implies circuit lower bounds [KI04]), but derandomizations are currently known for some restricted circuit classes. The polynomials that we consider are special: they fall in the well-studied class of “sum of products of univariates”, and for this case we can invoke the deterministic algorithm of [RS05] (see also [Kay10]). (It is interesting that derandomization techniques are ultimately used to obtain a qualitative improvement for an inherently probabilistic task, i.e., perfect sampling of verifier views.)

The above provides an outline for how to detect constraints for \(RM \). The extension to \(\Sigma_{RM} \), which also includes partial sums, is achieved by considering a more general form of vectors \(\phi_\vec{a} \) as well as corresponding polynomials \(\Phi_\vec{a} \). These polynomials also have the special form required for our derandomization. See Section 4.2 for details.

2.1.2 From recursive code covers to detecting constraints for Reed–Solomon codes and their PCPPs

The purpose of this section is to provide intuition about the proof of Theorem 1.7, which states that the family BS-RS has succinct constraint detection. (Formal definitions, statements, and proofs are in Section 4.3.) We thus outline how to construct an algorithm that detects constraints for the family of linear codes comprised of evaluations of low-degree univariate polynomials concatenated with corresponding BS proximity proofs [BS08].

Our construction leverages the recursive structure of BS proximity proofs: we identify key combinatorial properties of the recursion that enable “local” constraint detection. To define and argue these properties, we introduce two notions that play a central role throughout the proof:

A (local) view of a linear code \(C \subseteq \mathbb{F}^D \) is a pair \((\hat{D}, \hat{C})\) such that \(\hat{D} \subseteq D \) and \(\hat{C} = C|_{\hat{D}} \subseteq \mathbb{F}^{\hat{D}} \).

A cover of \(C \) is a set of local views \(S = \{ (\hat{D}_j, \hat{C}_j) \}_j \) of \(C \) such that \(D = \bigcup_j \hat{D}_j \).

\(^2 \)PIT is the following problem: given a polynomial \(f \) expressed as an algebraic circuit, is \(f \) identically zero? This problem has well-known randomized algorithms [Zip79, Sch80], but deterministic algorithms for all circuits seem to be beyond current techniques [KI04]. PIT is a central problem in algebraic complexity theory, and suffices for solving a number of other algebraic problems. We refer the reader to [SY10] for a survey.
Combinatorial properties of the recursive step. Given a finite field \mathbb{F}, domain $D \subseteq \mathbb{F}$, and degree d, let $C := \text{RS}[\mathbb{F}, D, d]$ be the Reed–Solomon code consisting of evaluations on D of univariate polynomials of degree less than d over \mathbb{F}; for concreteness, say that the domain size is $|D| = 2^n$ and the degree is $d = |D|/2 = 2^{n-1}$.

The first level of [BS08]'s recursion appends to each codeword $f \in C$ an auxiliary function $\pi_1(f) : D' \to \mathbb{F}$ with domain D' disjoint from D. Moreover, the mapping from f to $\pi_1(f)$ is linear over \mathbb{F}, so the set $C^1 := \{f \parallel \pi_1(f)\}_f \subseteq C$, where $f \parallel \pi_1(f) : D \cup D' \to \mathbb{F}$ is the function that agrees with f on D and with $\pi_1(f)$ on D', is a linear code over \mathbb{F}. The code C^1 is the “first-level” code of a BS proximity proof for f.

The code C^1 has a naturally defined cover $S^1 = \{(\tilde{D}_j, C_j)\}_j$ such that each \tilde{C}_j is a Reed–Solomon code $\text{RS}[\mathbb{F}, \tilde{D}_j, d_j]$ with $2d_j \leq |\tilde{D}_j| = O(\sqrt{d})$, that is, with rate $1/2$ and block length $O(\sqrt{d})$. We prove several combinatorial properties of this cover:

- S^1 is 1-intersecting. For all distinct j, j' in J, $|\tilde{D}_j \cap \tilde{D}_{j'}| \leq 1$ (namely, the subdomains are almost disjoint).
- S^1 is $O(\sqrt{d})$-local. Every partial assignment to $O(\sqrt{d})$ domains \tilde{D}_j in the cover that is locally consistent with the cover can be extended to a globally consistent assignment, i.e., to a codeword of C^1. That is, there exists $\kappa = O(\sqrt{d})$ such that every partial assignment $h \cdot \bigcup_{\ell=1}^{\kappa} \tilde{D}_{j_{\ell}} \to \mathbb{F}$ with $h|_{\tilde{D}_{j_{\ell}}} \in \tilde{C}_{j_{\ell}}$ (for each ℓ) equals the restriction to the subdomain $\bigcup_{\ell=1}^{\kappa} \tilde{D}_{j_{\ell}}$ of some codeword $f \parallel \pi_1(f)$ in C^1.
- S^1 is $O(\sqrt{d})$-independent. The ability to extend locally-consistent assignments to “globally-consistent” codewords of C^1 holds in a stronger sense: even when the aforementioned partial assignment h is extended arbitrarily to κ additional point-value pairs, this new partial assignment still equals the restriction of some codeword $f \parallel \pi_1(f)$ in C^1.

The locality property alone already suffices to imply that given a subdomain $I \subseteq D \cup D'$ of size $|I| < \sqrt{d}$, we can solve the constraint detection problem on I by including only those constraints that appear in views that intersect I (see Lemma 4.22). But C has exponential block length so a “quadratic speedup” does not yet imply succinct constraint detection. To obtain it, we also leverage the intersection and independence properties to reduce “locality” as follows.

Further recursive steps. So far we have only considered the first recursive step of a BS proximity proof; we show how to obtain covers with smaller locality (and thereby detect constraints with more efficiency) by considering additional recursive steps. Each code \tilde{C}_j in the cover S^1 of C^1 is a Reed–Solomon code $\text{RS}[\mathbb{F}, \tilde{D}_j, d_j]$ with $|\tilde{D}_j| = O(\sqrt{d})$, and the next recursive step appends to each codeword in \tilde{C}_j a corresponding auxiliary function, yielding a new code C^2. In turn, C^2 has a cover S^2, and another recursive step yields a new code C^3, which has its own cover S^3, and so on. The crucial technical observation (Lemma 4.20) is that the intersection and independence properties, which hold recursively, enable us to deduce that C^r is 1-intersecting, $O(\sqrt[4]{d})$-local, and $O(\sqrt[4]{d})$-independent; in particular, for $r = \log \log d + O(1)$, S^r is 1-intersecting, $O(1)$-local, $O(1)$-independent.

Then, recalling that detecting constraints for local codes requires only the views in the cover that intersect I (Lemma 4.22), our constraint detector works by choosing $i \in \{1, \ldots, r\}$ such that the cover S^i is poly$(|I|)$-local, finding in this cover a poly$(|I|)$-size set of poly$(|I|)$-size views that intersect I, and computing in poly$(|I|)$ time a basis for the dual of each of these views — thereby proving Theorem 1.7.

Remark 2.1. For the sake of those familiar with BS-RS we remark that the domain D' is the carefully chosen subset of $\mathbb{F} \times \mathbb{F}$ designated by that construction, the code C^1 is the code that evaluates bivariate polynomials of degree $O(\sqrt{d})$ on $D \cup D'$ (along the way mapping $D \subseteq \mathbb{F}$ to a subset of $\mathbb{F} \times \mathbb{F}$), the subdomains \tilde{D}_j are the axis-parallel “rows” and “columns” used in that recursive construction, and the codes \tilde{C}_j are Reed–Solomon codes of block length $O(\sqrt{d})$. The $O(\sqrt{d})$-locality and independence follow from basic properties of bivariate Reed–Muller codes; see Example 4.14.

Remark 2.2. It is interesting to compare the above result with linear lower bounds on query complexity for testing proximity to random low density parity check (LDPC) codes [BHR05, BGK+10]. Those results are proved by obtaining a basis for the dual code such that every small-support constraint is spanned by a small subset of that basis. The same can be observed to hold for BS-RS, even though this latter code is locally testable with polylogarithmic query complexity [BS08, Thm. 2.13]. The difference between the two cases is due to the fact that, for a random LDPC code, an assignment that satisfies all but a single basis-constraint is (with high probability) far from the code, whereas the recursive and 1-intersecting structure of BS-RS implies the existence of words that satisfy all but a single basis constraint, yet are negligibly close to being a codeword.
2.2 From constraint detection to perfect zero knowledge via masking

We provide intuition about the connection between constraint detection and perfect zero knowledge (Section 2.2.1), and how we leverage this connection to achieve two intermediate results: (i) a sumcheck protocol that is perfect zero knowledge in the Interactive PCP model (Section 2.2.2); and (ii) proximity proofs for Reed–Solomon codes that are perfect zero knowledge in the Interactive Oracle Proof model (Section 2.2.3).

2.2.1 Local simulation of random codewords

Suppose that the prover and verifier both have oracle access to a codeword \(w \in C \), for some linear code \(C \subseteq \mathbb{F}^D \) with exponential-size domain \(D \), and that they need to engage in some protocol that involves \(w \). During the protocol, the prover may leak information about \(w \) that is hard to compute (e.g., requires exponentially-many queries to \(w \)), and so would violate zero knowledge (as we see below, this is the case for protocols such as sumcheck).

Rather than directly invoking the protocol, the prover first sends to the verifier a random codeword \(r \in C \) (as an oracle since \(r \) has exponential size) and the verifier replies with a random field element \(\rho \in \mathbb{F} \); then the prover and verifier invoke the protocol on the new codeword \(w' := \rho w + r \in C \) rather than \(w \). Intuitively, running the protocol on \(w' \) now does not leak information about \(w \), because \(w' \) is random in \(C \) (up to resolvable technicalities). This random self-reducibility makes sense for only some protocols, e.g., those where completeness is preserved for any choice of \(\rho \) and soundness is broken for only a small fraction of \(\rho \); but this will indeed be the case for the settings described below.

The aforementioned masking technique was used by [BCGV16] for codes with polynomial-size domains, but we use it for codes with exponential-size domains, which requires exponentially more efficient simulation techniques. Indeed, to prove perfect zero knowledge, a simulator must be able to reproduce, exactly, the view obtained by any malicious verifier that queries entries of \(w \), a uniformly random codeword in \(C \); however, it is too expensive for the simulator to explicitly sample a random codeword and answer the verifier’s queries according to it. Instead, the simulator must sample the “local view” that the verifier sees while querying \(w' \) at a small number of locations \(I \subseteq D \).

But simulating local views of the form \(w'|_I \) is reducible to detecting constraints, i.e., codewords in the dual code \(C^\perp \) whose support is contained in \(I \). Indeed, if no word in \(C^\perp \) has support contained in \(I \) then \(w'|_I \) is uniformly random; otherwise, each additional linearly independent constraint of \(C^\perp \) with support contained in \(I \) further reduces the entropy of \(w'|_I \) in a well-understood manner. (See Lemma 4.3 for a formal statement.) In sum, succinct constraint detection enables us to “implement” [GGN10, BW04] random codewords of \(C \) despite \(C \) having exponential size.

We now discuss two concrete protocols for which the aforementioned random self-reducibility applies, and for which we also have constructed suitably-efficient constraint detectors.

2.2.2 Perfect zero knowledge sumchecks

The celebrated sumcheck protocol [LFKN92] is not zero knowledge. In the sumcheck protocol, the prover and verifier have oracle access to a low-degree \(m \)-variate polynomial \(F \) over a field \(\mathbb{F} \), and the prover wants to convince the verifier that \(\sum_{\tilde{a} \in H^m} F(\tilde{a}) = 0 \) for a given subset \(H \) of \(\mathbb{F} \). During the protocol, the prover communicates partial sums of \(F \), which are \(\#P \)-hard to compute and, as such, violate zero knowledge.

We now explain how to use random self-reducibility to make the sumcheck protocol perfect zero knowledge, at the cost of moving from the Interactive Proof model to the Interactive PCP model.

IPCP sumcheck. Consider the following tweaks to the classical sumcheck protocol: rather than invoking sumcheck on \(F \) directly, the prover first sends to the verifier a random low-degree polynomial \(R \) that sums to zero on \(H^m \) (as an oracle), the verifier replies with a random field element \(\rho \), and then the two invoke sumcheck on \(Q := \rho F + R \) instead.

Completeness is clear because if \(\sum_{\tilde{a} \in H^m} F(\tilde{a}) = 0 \) and \(\sum_{\tilde{a} \in H^m} R(\tilde{a}) = 0 \) then \(\sum_{\tilde{a} \in H^m}(\rho F + R)(\tilde{a}) = 0 \); soundness is also clear because if \(\sum_{\tilde{a} \in H^m} F(\tilde{a}) \neq 0 \) then \(\sum_{\tilde{a} \in H^m}(\rho F + R)(\tilde{a}) \neq 0 \) with high probability over \(\rho \), regardless of the choice of \(R \). (For simplicity, we ignore the fact that the verifier also needs to test that \(R \) has low degree.) We are thus left to show perfect zero knowledge, which turns out to be a much less straightforward argument.

The simulator. Before we explain how to argue perfect zero knowledge, we first clarify what we mean by it: since the verifier has oracle access to \(F \) we cannot hope to ‘hide’ it; nevertheless, we can hope to argue that the verifier, by participating in the protocol, does not learn anything about \(F \) beyond what the verifier can directly learn by querying
F (and the fact that F sums to zero on H^m). What we shall achieve is the following: an algorithm that simulates the verifier’s view by making as many queries to F as the total number of verifier queries to either F or R.

On the surface, perfect zero knowledge seems easy to argue, because $\rho F + R$ seems random among low-degree m-variate polynomials that sum to zero on H^m. More precisely, consider the simulator that samples a random low-degree polynomial Q that sums to zero on H^m and uses it instead of $\rho F + R$ and answers the verifier queries as follows:

(a) whenever the verifier queries $F(\vec{\alpha})$, respond by querying $F(\vec{\alpha})$ and returning the true value; (b) whenever the verifier queries $R(\vec{\alpha})$, respond by querying $F(\vec{\alpha})$ and returning $Q(\vec{\alpha}) - \rho F(\vec{\alpha})$. Observe that the number of queries to F made by the simulator equals the number of (mutually) distinct queries to F and R made by the verifier, as desired.

However, the above reasoning, while compelling, is insufficient. First, $\rho F + R$ is not random because a malicious verifier can choose ρ depending on queries to R. Second, even if $\rho F + R$ were random (e.g., the verifier does not query R before choosing ρ), the simulator must run in polynomial time, both producing correctly-distributed ‘partial sums’ of $\rho F + R$ and answering queries to R, but sampling Q alone requires exponential time. In this high level discussion we ignore the first problem (which nonetheless has to be tackled), and focus on the second.

At this point it should be clear from the discussion in Section 2.2.1 that the simulator does not have to sample Q explicitly, but only has to perfectly simulate local views of it by leveraging the fact that it can keep state across queries. And doing so requires solving the succinct constraint detection problem for a suitable code C. In this case, it suffices to consider the code $C = \Sigma RM$, and our Theorem 1.5 guarantees the required constraint detector.

The above discussion omits several details, so we refer the reader to Section 5 for further details.

2.2.3 Perfect zero knowledge proximity proofs for Reed–Solomon

Testing proximity of a codeword w to a given linear code C can be aided by a proximity proof [DR04, BGH+06], which is an auxiliary oracle π that facilitates testing (e.g., C is not locally testable). For example, testing proximity to the Reed–Solomon code, a crucial step towards achieving short PCPs, is aided via suitable proximity proofs [BS08].

From the perspective of zero knowledge, however, a proximity proof can be ‘dangerous’: a few locations of π can in principle leak a lot of information about the codeword w, and a malicious verifier could potentially learn a lot about w with only a few queries to w and π. The notion of zero knowledge for proximity proofs requires that this cannot happen: it requires the existence of an algorithm that simulates the verifier’s view by making as many queries to w as the total number of verifier queries to either w or π [IW14]; intuitively, this means that any bit of the proximity proof π reveals no more information than one bit of w.

We demonstrate again the use of random self-reducibility and show a general transformation that, under certain conditions, maps a PCP of proximity (P, V) for a code C to a corresponding 2-round Interactive Oracle Proof of Proximity (IOPP) for C that is perfect zero knowledge.

IOP of proximity for C. Consider the following IOP of Proximity: the prover and verifier have oracle access to a codeword w, and the prover wants to convince the verifier that w is close to C; the prover first sends to the verifier a random codeword r in C, and the verifier replies with a random field element ρ; the prover then sends the proximity proof $\pi' := P(w')$ that attests that $w' := \rho w + r$ is close to C. Note that this is a 2-round IOP of Proximity for C, because completeness follows from the fact that C is linear, while soundness follows because if w is far from C, then so is $\rho w + r$ for every r with high probability over ρ. But is the perfect zero knowledge property satisfied?

The simulator. Without going into details, analogously to Section 2.2.2 a simulator must be able to sample local views for random codewords from the code $L := \{ w||P(w) \}_{w \in C}$, so the simulator’s efficiency reduces to the efficiency of constraint detection for L. We indeed prove that if L has succinct constraint detection then the simulator works out. See Section 7.1 for further details.

The case of Reed–Solomon. The above machinery allows us to derive a perfect zero knowledge IOP of Proximity for Reed–Solomon codes, thanks to our Theorem 1.7, which states that the family of linear codes comprised of evaluations of low-degree univariate polynomials concatenated with corresponding BS proximity proofs [BS08] has succinct constraint detection; see Section 7.2 for details. This is one of the building blocks of our construction of perfect zero knowledge IOPs for NEXP, as described below in Section 2.3.2.
2.3 Achieving perfect zero knowledge beyond \(\text{NP} \)

We outline how to derive our results about perfect zero knowledge for \(\text{#P} \) and \(\text{NEXP} \).

2.3.1 Perfect zero knowledge for counting problems

We provide intuition for the proof of Theorem 1.1, which states that the complexity class \(\text{#P} \) has Interactive PCPs that are perfect zero knowledge.

We first recall the classical (non zero knowledge) Interactive Proof for \(\text{#P} \) [LFKN92]. The language \(\mathcal{L} \text{\#3SAT} \), which consists of pairs \((\phi, N)\) where \(\phi\) is a 3-CNF boolean formula and \(N\) is the number of satisfying assignments of \(\phi\), is \(\text{#P} \)-complete, and thus it suffices to construct an IP for it. The IP for \(\mathcal{L} \text{\#3SAT} \) works as follows: the prover and verifier both arithmetize \(\phi\) to obtain a low-degree multivariate polynomial \(p_{\phi}\) and invoke the (non zero knowledge) sumcheck protocol on the claim \(\sum_{\tilde{\alpha} \in \{0,1\}^n} p_{\phi}(\tilde{\alpha}) = N\), where arithmetic is over a large-enough prime field.

Returning to our goal, we obtain a perfect zero knowledge Interactive PCP by simply replacing the (non zero knowledge) IP sumcheck mentioned above with our perfect zero knowledge IPCP sumcheck, described in Section 2.2.2.

In Section 6 we provide further details, including proving that the zero knowledge guarantees of our sumcheck protocol suffice for this case.

2.3.2 Perfect zero knowledge for nondeterministic time

We provide intuition for the proof of Theorem 1.2, which implies that the complexity class \(\text{NEXP} \) has Interactive Oracle Proofs that are perfect zero knowledge. Very informally, the proof consists of combining two building blocks: (i) \([BCGV16]\)’s reduction from \(\text{NEXP} \) to \text{randomizable} linear algebraic constraint satisfaction problems, and (ii) our construction of perfect zero knowledge IOPs of Proximity for Reed–Solomon codes, described in Section 2.2.3.

Besides extending \([BCGV16]\)’s result from \(\text{NP} \) to \(\text{NEXP} \), our proof provides a conceptual simplification over \([BCGV16]\) by clarifying how the above two building blocks work together towards the final result. We now discuss this.

Starting point: \([BS08]\). Many PCP constructions consist of two steps: (1) arithmetize the statement at hand (in our case, membership of an instance in some \(\text{NEXP} \)-complete language) by reducing it to a “PCP-friendly” problem that looks like a linear-algebraic constraint satisfaction problem (LACSP); (2) design a tester that probabilistically checks witnesses for this LACSP. In this paper, as in \([BCGV16]\), we take \([BS08]\)’s PCPs for \(\text{NEXP} \) as a starting point, where the first step reduces \(\text{NEXP} \) to a “univariate” LACSP whose witnesses are codewords in a Reed–Solomon code of exponential degree that satisfy certain properties, and whose second step relies on suitable proximity proofs \([DR04, BGH+06]\) for that code. Thus, overall, the PCP consists of two oracles, one being the LACSP witness and the other being the corresponding BS proximity proof, and it is not hard to see that such a PCP is not zero knowledge, because both the LACSP witness and its proximity proof reveal hard-to-compute information.

Step 1: sanitize the proximity proof. We first address the problem that the BS proximity proof “leaks”, by simply replacing it with our own perfect zero knowledge analogue. Namely, we replace it with our perfect zero knowledge 2-round IOP of Proximity for Reed–Solomon codes, described in Section 2.2.3. This modification ensures that there exists an algorithm that perfectly simulates the verifier’s view by making as many queries to the LACSP witness as the total number of verifier queries to either the LACSP witness or other oracles used to facilitate proximity testing. At this point we have obtained a perfect zero knowledge 2-round IOP of Proximity for \(\text{NEXP} \) (analogous to the notion of a zero knowledge PCP of Proximity \([IW14]\)); this part is where, previously, \([BCGV16]\) were restricted to \(\text{NP} \) because their simulator only handled Reed–Solomon codes with polynomial degree while our simulator is efficient even for such codes with exponential degree. But we are not done yet: to obtain our goal, we also need to address the problem that the LACSP witness itself “leaks” when the verifier queries it, which we discuss next.

Step 2: sanitize the witness. Intuitively, we need to inject randomness in the reduction from \(\text{NEXP} \) to LACSP because the prover ultimately sends an LACSP witness to the verifier as an oracle, which the verifier can query. This is precisely what \([BCGV16]\)’s reduction from \(\text{NEXP} \) to \text{randomizable} LACSPs enables, and we thus use their reduction to complete our proof. Informally, given a a-priori query bound \(b\) on the verifier’s queries, the reduction outputs a witness \(w\) with the property that one can efficiently sample another witness \(w'\) whose entries are \(b\)-wise independent. We can then simply use the IOP of Proximity from the previous step on this randomized witness. Moreover, since the
efficiency of the verifier is polylogarithmic in b, we can set b to be super-polynomial (e.g., exponential) to preserve zero knowledge against any polynomial number of verifier queries.

The above discussion is only a sketch and we refer the reader to Section 8 for further details. One aspect that we did not discuss is that an LACSP witness actually consists of two sub-witnesses, where one is a “local” deterministic function of the other, which makes arguing zero knowledge somewhat more delicate.

2.4 Roadmap

After providing formal definitions in Section 3.1, the rest of the paper is organized as summarized by the table below.

$$
\begin{array}{c|c|c}
\text{§4.2} & \text{Theorem 1.5/4.9} & \text{detecting constraints for } \Sigma \text{RM} \\
\downarrow & \downarrow & \downarrow \\
\text{§5} & \text{Theorem 5.3} & \text{PZK IPCP for sumcheck} \\
\downarrow & \downarrow & \downarrow \\
\text{§6} & \text{Theorem 1.1/6.2} & \text{PZK IPCP for } \#P \\
\downarrow & \downarrow & \downarrow \\
\text{§4.3} & \text{Theorem 1.7/4.12} & \text{detecting constraints for BS-RS} \\
\downarrow & \downarrow & \downarrow \\
\text{§7} & \text{Theorem 7.3} & \text{PZK IOP of Proximity for RS codes} \\
\downarrow & \downarrow & \downarrow \\
\text{§8} & \text{Theorem 1.2/8.1} & \text{PZK IOP for NEXP}
\end{array}
$$
3 Definitions

3.1 Basic notations

Functions, distributions, fields. We use $f : D \rightarrow R$ to denote a function with domain D and range R; given a subset \tilde{D} of D, we use $f|_{\tilde{D}}$ to denote the restriction of f to \tilde{D}. Given a distribution D, we write $x \leftarrow D$ to denote that x is sampled according to D. We denote by \mathbb{F} a finite field and by \mathbb{F}_q the field of size q; we say \mathbb{F} is a binary field if its characteristic is 2. Arithmetic operations over \mathbb{F}_q cost polylog q but we shall consider these to have unit cost (and inspection shows that accounting for their actual polylogarithmic cost does not change any of the stated results).

Distances. A distance measure is a function $\Delta : \Sigma^n \times \Sigma^n \rightarrow [0,1]$ such that for all $x, y, z \in \Sigma^n$: (i) $\Delta(x, x) = 0$, (ii) $\Delta(x, y) = \Delta(y, x)$, and (iii) $\Delta(x, y) \leq \Delta(x, z) + \Delta(z, y)$. We extend Δ to distances to sets: given $x \in \Sigma^n$ and $S \subseteq \Sigma^n$, we define $\Delta(x, S) := \min_{y \in S} \Delta(x, y)$ (or 0 if S is empty). We say that a string x is ϵ-close to another string y if $\Delta(x, y) \leq \epsilon$, and ϵ-far from y if $\Delta(x, y) > \epsilon$; similar terminology applies for a string x and a set S. Unless noted otherwise, we use the relative Hamming distance over alphabet Σ (typically implicit): $\Delta(x, y) := ||\{i : x_i \neq y_i\}||/n$.

Languages and relations. We denote by \mathcal{R} a (binary ordered) relation consisting of pairs (x, w), where x is the instance and w is the witness. We denote by $\text{Lan}(\mathcal{R})$ the language corresponding to \mathcal{R}, and by $\mathcal{R}[x]$ the set of witnesses in \mathcal{R} for x (if $x \notin \text{Lan}(\mathcal{R})$ then $\mathcal{R}[x] := \emptyset$). As always, we assume that $|w|$ is bounded by some computable function of $n := |x|$; in fact, we are mainly interested in relations arising from nondeterministic languages: $\mathcal{R} \in \text{NTIME}(T)$ if there exists a $T(n)$-time machine M such that $M(x, w)$ outputs 1 if and only if $(x, w) \in \mathcal{R}$. Throughout, we assume that $T(n) \geq n$. We say that \mathcal{R} has relative distance $\delta_{\mathcal{R}} : \mathbb{N} \rightarrow [0,1]$ if $\delta_{\mathcal{R}}(n)$ is the minimum relative distance among witnesses in $\mathcal{R}[x]$ for all x of size n. Throughout, we assume that $\delta_{\mathcal{R}}$ is a constant.

Polynomials. We denote by $\mathbb{F}[X_1, \ldots, X_m]$ the ring of polynomials in m variables over \mathbb{F}. Given a polynomial P in $\mathbb{F}[X_1, \ldots, X_m]$, $\deg_{X_i}(P)$ is the degree of P in the variable X_i. We denote by $\mathbb{F}^{<d}[X_1, \ldots, X_m]$ the subspace consisting of $P \in \mathbb{F}[X_1, \ldots, X_m]$ with $\deg_{X_i}(P) < d$ for every $i \in \{1, \ldots, m\}$.

Random shifts. We later use a folklore claim about distance preservation for random shifts in linear spaces.

Claim 3.1. Let n be in \mathbb{N}, \mathbb{F} a finite field, S an \mathbb{F}-linear space in \mathbb{F}^n, and $x, y \in \mathbb{F}^n$. If x is ϵ-far from S, then $\alpha x + y$ is $\epsilon/2$-far from S, with probability $1 - |\mathbb{F}|^{-1}$ over a random $\alpha \in \mathbb{F}$. (Distances are relative Hamming distances.)

3.2 Single-prover proof systems

We use two types of proof systems that combine aspects of interactive proofs [Bab85, GMR89] and probabilistically checkable proofs [BFLS91, AS98, ALM+98]: interactive PCPs (IPCPs) [KR08] and interactive oracle proofs (IOPs) [BCS16, RRR16]. We first describe IPCPs (Section 3.2.1) and then IOPs (Section 3.2.2), which generalize the former.

3.2.1 Interactive probabilistically checkable proofs

An IPCP [KR08] is a PCP followed by an IP. Namely, the prover P and verifier V interact as follows: P sends to V a probabilistically checkable proof π; afterwards, P and V^π engage in an interactive proof. Thus, V may read a few bits of π but must read subsequent messages from P in full. An IPCP system for a relation \mathcal{R} is thus a pair (P, V), where P, V are probabilistic interactive algorithms working as described, that satisfies naturally-defined notions of perfect completeness and soundness with a given error $\varepsilon(\cdot)$; see [KR08] for details.

We say that an IPCP has k rounds if this “PCP round” is followed by a $(k-1)$-round interactive proof. (That is, we count the PCP round towards round complexity, unlike [KR08].) Beyond round complexity, we also measure how many bits the prover sends and how many the verifier reads: the proof length $|\pi|$ is the length of π in bits plus the number of bits in all subsequent prover messages; the query complexity q is the number of bits of π read by the verifier plus the number of bits in all subsequent prover messages (since the verifier must read all of those bits).

In this work, we do not count the number of bits in the verifier messages, nor the number of random bits used by the verifier; both are bounded from above by the verifier’s running time, which we do consider. Overall, we say that a relation \mathcal{R} belongs to the complexity class $\text{IPCP}[k, l, q, \varepsilon, tp, tv]$ if there is an IOP system for \mathcal{R} in which: (1) the number of rounds is at most $k(n)$; (2) the proof length is at most $l(n)$; (3) the query complexity is at most $q(n)$; (4) the soundness error is $\varepsilon(n)$; (5) the prover algorithm runs in time $tp(n)$; (6) the verifier algorithm runs in time $tv(n)$.

13
3.2.2 Interactive oracle proofs

An IOP [BCS16, RRR16] is a “multi-round PCP”. That is, an IOP generalizes an interactive proof as follows: whenever the prover sends to the verifier a message, the verifier does not have to read the message in full but may probabilistically query it. In more detail, a k-round IOP comprises k rounds of interaction. In the i-th round of interaction: the verifier sends a message \(m_i \) to the prover; then the prover replies with a message \(\pi_i \) to the verifier, which the verifier can query in this and later rounds (via oracle queries). After the k rounds of interaction, the verifier either accepts or rejects.

An IOP system for a relation \(\mathcal{R} \) with soundness error \(\varepsilon \) is thus a pair \((P, V)\), where \(P, V \) are probabilistic interactive algorithms working as described, that satisfies the following properties. (See [BCS16] for more details.)

Completeness: For every instance-witness pair \((x, w)\) in the relation \(\mathcal{R} \), \(\Pr[(P(x, w), V(x)) = 1] = 1 \).

Soundness: For every instance \(z \) not in \(\mathcal{R} \)’s language and unbounded malicious prover \(\hat{P} \), \(\Pr[(\hat{P}, V(z)) = 1] \leq \varepsilon(n) \).

Beyond round complexity, we also measure how many bits the prover sends and how many the verifier reads: the **proof length** \(l \) is the total number of bits in all of the prover’s messages, and the **query complexity** \(q \) is the total number of bits read by the verifier across all of the prover’s messages. Considering all of these parameters, we say that a relation \(\mathcal{R} \) belongs to the complexity class IOP\([k, l, q, \varepsilon, tp, tv]\) if there is an IOP system for \(\mathcal{R} \) in which: (1) the number of rounds is at most \(k(n) \); (2) the proof length is at most \(l(n) \); (3) the query complexity is at most \(q(n) \); (4) the soundness error is \(\varepsilon(n) \); (5) the prover algorithm runs in time \(tp(n) \); (6) the verifier algorithm runs in time \(tv(n) \).

IOP vs. IPCP. An IPCP (see Section 3.2.1) is a special case of an IOP because an IPCP verifier must read in full all of the prover’s messages except the first one (while an IOP verifier may query any part of any prover message). The above complexity measures are consistent with those defined for IPCPs.

3.2.3 Restrictions and extensions

The definitions below are about IOPs, but IPCPs inherit all of these definitions because they are a special case of IOP.

Adaptivity of queries. An IOP system is non-adaptive if the verifier queries are non-adaptive, i.e., the queried locations depend only on the verifier’s inputs.

Public coins. An IOP system is public coin if each verifier message \(m_i \) is chosen uniformly and independently at random, and all of the verifier queries happen after receiving the last prover message.

Proximity. An IOP of proximity extends the definition of an IOP in the same way that a PCP of proximity extends that of a PCP [DR04, BGH06]. An IOPP system for a relation \(\mathcal{R} \) with soundness error \(\varepsilon \) and proximity parameter \(\delta \) is a pair \((P, V)\) that satisfies the following properties.

Completeness: For every instance-witness pair \((x, w)\) in the relation \(\mathcal{R} \), \(\Pr[(P(x, w, V^w(x)) = 1] = 1 \).

Soundness: For every instance-witness pair \((x, w)\) with \(\Delta(w, \mathcal{R}|x) \leq \delta(n) \) and unbounded malicious prover \(\hat{P} \), \(\Pr[(\hat{P}, V^w(x)) = 1] \leq \varepsilon(n) \).

Similarly to above, a relation \(\mathcal{R} \) belongs to the complexity class IOPP\([k, l, q, \varepsilon, \delta, tp, tv]\) if there is an IOPP system for \(\mathcal{R} \) with the corresponding parameters.

Promise relations. A promise relation is a relation-language pair \((\mathcal{R}^{YES}, \mathcal{L}^{NO})\) with \(\text{Lan}(\mathcal{R}^{YES}) \cap \mathcal{L}^{NO} = \emptyset \). An IOP for a promise relation is the same as an IOP for the (standard) relation \(\mathcal{R}^{YES} \), except that soundness need only hold for \(z \in \mathcal{L}^{NO} \). An IOPP for a promise relation is the same as an IPCP for the (standard) relation \(\mathcal{R}^{YES} \), except that soundness need only hold for \(z \in \text{Lan}(\mathcal{R}^{YES}) \cup \mathcal{L}^{NO} \).

3.2.4 Prior constructions

In this paper we give new IPCP and IOP constructions that achieve perfect zero knowledge for various settings. Below we summarize known constructions in these two models.

IPCPs. Prior work obtains IPCPs with proof length that depends on the witness size rather than computation size [KR08, GKR08], and IPCPs with statistical zero knowledge [GIMS10] (see Section 3.3 for more details).
Prior work obtains IOPs with perfect zero knowledge for \textit{NP} [BCGV16], IOPs with small proof length and query complexity [BCG+16], and an amortization theorem for “unambiguous” IOPs [RRR16]. Also, [BCS16] show how to compile public-coin IOPs into non-interactive proofs in the random oracle model.

3.3 Zero knowledge

We define the notion of zero knowledge for IOPs and IPCPs achieved by our constructions: \textit{perfect zero knowledge via straightline simulators}. This notion is quite strong not only because it unconditionally guarantees perfect simulation of the verifier’s view but also because straightline simulation implies desirable properties such as composability. We now provide some context and then give formal definitions.

At a high level, zero knowledge requires that the verifier’s view can be efficiently simulated without the prover. Converting the informal statement into a mathematical one involves many choices, including choosing which verifier class to consider (e.g., the honest verifier? all polynomial-time verifiers?), the quality of the simulation (e.g., is it identically distributed to the view? statistically close to it? computationally close to it?), the simulator’s dependence on the verifier (e.g., is it non-uniform? or is the simulator universal?), and others. The definitions below consider two variants: perfect simulation via universal simulators against either unbounded-query or bounded-query verifiers.

Moreover, in the case of universal simulators, one distinguishes between a non-blackbox use of the verifier, which means that the simulator takes the verifier’s code as input, and a blackbox use of it, which means that the simulator only accesses the verifier via a restricted interface; we consider this latter case. Different models of proof systems call for different interfaces, which grant carefully-chosen “extra powers” to the simulator (in comparison to the prover) so to ensure that efficiency of the simulation does not imply the ability to efficiently decide the language. For example: in ZK IPs, the simulator may rewind the verifier; in ZK PCPs, the simulator may adaptively answer oracle queries. In ZK IPCPs and ZK IOPs (our setting), the natural definition would allow a blackbox simulator to rewind the verifier \textit{and also} to adaptively answer oracle queries. The definitions below, however, consider only simulators that are straightline [FS89, DS98], that is they do not rewind the verifier, because our constructions achieve this stronger notion.

Recall that protocols that are perfectly secure with a straightline simulator (in the standalone model) remain secure under concurrent general composition [KLR10]. In particular, the above notion of zero knowledge is preserved under such composition and, for example, one can use parallel repetition to reduce soundness error without impacting zero knowledge. Indeed, straightline simulation facilitates many applications, e.g., verifiable secret sharing in [IW14], and unconditional general universally-composable secure computation in [GIMS10].

We are now ready to define the notion of perfect zero knowledge via straightline simulators. We first discuss the notion for IOPs, then for IOPs of proximity, and finally for IPCPs.

3.3.1 ZK for IOPs

Below is the definition of perfect zero knowledge (via straightline simulators) for IOPs.

Definition 3.2. Let A, B be algorithms and x, y strings. We denote by $\text{View}(B(y), A(x))$ the view of $A(x)$ in an interactive oracle protocol with $B(y)$, i.e., the random variable (x, r, a_1, \ldots, a_n) where x is A’s input, r is A’s randomness, and a_1, \ldots, a_n are the answers to A’s queries into B’s messages.

Straightline simulators in the context of IPs were used in [FS89], and later defined in [DS98]. The definition below considers this notion in the context of IOPs, where the simulator also has to answer oracle queries by the verifier. Note that since we consider the notion of perfect zero knowledge, the definition of straightline simulation needs to allow the efficient simulator to work even with inefficient verifiers [GIMS10].

Definition 3.3. We say that an algorithm B has \textit{straightline access} to another algorithm A if B interacts with A, without rewinding, by exchanging messages with A and also answering any oracle queries along the way. We denote by B^A the concatenation of A’s random tape and B’s output. (Since A’s random tape could be super-polynomially large, B cannot sample it for A and then output it; instead, we restrict B to not see it, and we prepend it to B’s output.)
Definition 3.4. An IOP system (P, V) for a relation R is perfect zero knowledge (via straightline simulators) against unbounded queries (resp., against query bound b) if there exists a simulator algorithm S such that for every algorithm (resp., b-query algorithm) \tilde{V} and instance-witness pair $(x, w) \in R$, $S^{\tilde{V}}(x)$ and View$(P(x, w), \tilde{V}(x))$ are identically distributed. Moreover, S must run in time $\text{poly}(|x| + q_v(|x|))$, where $q_v(\cdot)$ is \tilde{V}’s query complexity.

We say that a relation R belongs to the complexity class $\text{PZK-IOP}[k, l, q, \varepsilon, \tau, \text{tp}, \text{tv}, b]$ if there is an IOP system for R, with the corresponding parameters, that is perfect zero knowledge with query bound b; also, it belongs to the complexity class $\text{PZK-IOP}[k, l, q, \varepsilon, \tau, \text{tp}, \text{tv}, \ast]$ if the same is true with unbounded queries.

3.3.2 ZK for IOPs of proximity

Below is the definition of perfect zero knowledge (via straightline simulators) for IOPs of proximity. It is a straightforward extension of the corresponding notion for PCPs of proximity, introduced in [IW14].

Definition 3.5. An IOP system (P, V) for a relation R is perfect zero knowledge (via straightline simulators) against unbounded queries (resp., against query bound b) if there exists a simulator algorithm S such that for every algorithm (resp., b-query algorithm) \tilde{V} and instance-witness pair $(x, w) \in R$, the following two random variables are identically distributed:

\[
\left(S^{\tilde{V}}(x), q_S \right) \text{ and } \left(\text{View}(P(x, w), \tilde{V}(x)), q_{v} \right),
\]

where q_S is the number of queries to w made by S, and q_v is the number of queries to w or to prover messages made by \tilde{V}. Moreover, S must run in time $\text{poly}(|x| + q_v(|x|))$, where $q_v(\cdot)$ is \tilde{V}’s query complexity.

We say that a relation R belongs to the complexity class $\text{PZK-IOPP}[k, l, q, \varepsilon, \delta, \tau, \text{tp}, \text{tv}, b]$ if there is an IOP system for R, with the corresponding parameters, that is perfect zero knowledge with query bound b; also, it belongs to the complexity class $\text{PZK-IOPP}[k, l, q, \varepsilon, \delta, \tau, \text{tp}, \text{tv}, \ast]$ if the same is true with unbounded queries.

Remark 3.6. Analogously to [IW14], our definition of zero knowledge for IOPs of proximity requires that the number of queries to w by S equals the total number of queries (to w or prover messages) by \tilde{V}. Stronger notions are possible: “the number of queries to w by S equals the number of queries to w by \tilde{V}”; or, even more, “S and \tilde{V} read the same locations of w.” The definition above is sufficient for the applications of IOPs of proximity that we consider.

3.3.3 ZK for IPCPs

The definition of perfect zero knowledge (via straightline simulators) for IPCPs follows directly from Definition 3.4 in Section 3.3.1 because IPCPs are a special case of IOPs. Ditto for IPCPs of proximity, whose perfect zero knowledge definition follows directly from Definition 3.5 in Section 3.3.2 (For comparison, [GIMS10] define statistical zero knowledge IPCPs, also with straightline simulators.)

3.4 Codes

An error correcting code C is a set of functions $w : D \rightarrow \Sigma$, where D, Σ are finite sets known as the domain and alphabet; we write $C \subseteq \Sigma^D$. The message length of C is $k := \log_{|\Sigma|} |C|$, its block length is $\ell := |D|$, its rate is $\rho := k/\ell$, its (minimum) distance is $d := \min \{ \Delta(w, z) : w, z \in C, w \neq z \}$ when Δ is the (absolute) Hamming distance, and its (minimum) relative distance is $\tau := d/\ell$. At times we write $k(C), \ell(C), \rho(C), d(C), \tau(C)$ to make the code under consideration explicit. All the codes we consider are linear codes, discussed next.

Linearity. A code C is linear if Σ is a finite field and C is a Σ-linear space in Σ^D. The dual code of C is the set C^\perp of functions $z : D \rightarrow \Sigma$ such that, for all $w : D \rightarrow \Sigma$, $(z, w) := \sum_{i \in D} z(i)w(i) = 0$. We denote by $\dim(C)$ the dimension of C; it holds that $\dim(C^\perp) + \dim(C^\perp) = \ell$ and $\dim(C) = k$ (dimension equals message length).

Code families. A code family $\mathcal{C} = \{ C_n \}_{n \in \{0, 1\}}$ has domain $D(\cdot)$ and alphabet $\mathcal{F}(\cdot)$ if each code C_n has domain $D(n)$ and alphabet $\mathcal{F}(n)$. Similarly, \mathcal{C} has message length $k(\cdot)$, block length $\ell(\cdot)$, rate $\rho(\cdot)$, distance $d(\cdot)$, and relative distance $\tau(\cdot)$ if each code C_n has message length $k(n)$, block length $\ell(n)$, rate $\rho(n)$, distance $d(n)$, and relative distance $\tau(n)$. We also define $\rho(\mathcal{C}) := \inf_{n \in \mathbb{N}} \rho(n)$ and $\tau(\mathcal{C}) := \inf_{n \in \mathbb{N}} \tau(n)$.
Reed–Solomon codes. The Reed–Solomon (RS) code is the code consisting of evaluations of **univariate** low-degree polynomials: given a field \mathbb{F}, subset S of \mathbb{F}, and positive integer d with $d \leq |S|$, we denote by $\text{RS}[\mathbb{F}, S, d]$ the linear code consisting of evaluations $w: S \to \mathbb{F}$ over S of polynomials in $\mathbb{F}^<d[X]$. The code’s message length is $k = d$, block length is $\ell = |S|$, rate is $\rho = \frac{d}{|S|}$, and relative distance is $\tau = 1 - \frac{d-1}{|S|}$.

Reed–Muller codes. The Reed–Muller (RM) code is the code consisting of evaluations of **multivariate** low-degree polynomials: given a field \mathbb{F}, subset S of \mathbb{F}, and positive integers m, d with $d \leq |S|$, we denote by $\text{RM}[\mathbb{F}, S, m, d]$ the linear code consisting of evaluations $w: S^m \to \mathbb{F}$ over S^m of polynomials in $\mathbb{F}^<d[X_1, \ldots, X_m]$ (i.e., we bound individual degrees rather than their sum). The code’s message length is $k = d^m$, block length is $\ell = |S|^m$, rate is $\rho = \left(\frac{d}{|S|}\right)^m$, and relative distance is $\tau = \left(1 - \frac{d-1}{|S|}\right)^m$.
4 Succinct constraint detection

We introduce the notion of succinct constraint detection for linear codes. This notion plays a crucial role in constructing perfect zero knowledge simulators for super-polynomial complexity classes (such as \#P and \text{NEXP}), but we believe that this naturally-defined notion is also of independent interest. Given a linear code $C \subseteq \mathbb{F}^D$ we refer to its dual code $C^\perp \subseteq \mathbb{F}^D$ as the constraint space of C. The constraint detection problem corresponding to a family of linear codes $\mathcal{C} = \{C_n\}_n$ with domain $D(\cdot)$ and alphabet $\mathbb{F}(\cdot)$ is the following:

Given an index n and subset $I \subseteq D(n)$, output a basis for $\{z \in D(n)^I : \forall w \in C_n, \sum_{i \in I} z(i)w(i) = 0\}$.\footnote{In fact, the following weaker definition suffices for the applications in our paper: given an index n and subset $I \subseteq D(n)$, output $z \in \mathbb{F}(n)^I$ such that $\sum_{i \in I} z(i)w(i) = 0$ for all $w \in C_n$, or ‘independent’ if no such z exists. We achieve the stronger definition, which is also easier to work with.}

If $|D(n)|$ is polynomial in $|n|$ and a generating matrix for C_n can be found in polynomial time, this problem can be solved in $\text{poly}(|n| + |I|)$ time via Gaussian elimination; such an approach was implicitly taken by [BCGV16] to construct a perfect zero knowledge simulator for an IOP for \text{NP}. However, in our setting, $|D(n)|$ is exponential in $|n|$ and $|I|$, and the aforementioned generic solution requires exponential time. With this in mind, we say \mathcal{C} has succinct constraint detection if there exists an algorithm that solves the constraint detection problem in $\text{poly}(|n| + |I|)$ time when $|D(n)|$ is exponential in $|n|$.

After defining succinct constraint detection in Section 4.1, we proceed as follows.

• In Section 4.2, we construct a succinct constraint detector for the family of linear codes comprised of evaluations of low-degree polynomials. The construction of the detector exploits derandomization techniques from algebraic complexity theory. Later on (in Section 5), we leverage this result to construct a perfect zero knowledge simulator for an IPCP for \#P.

• In Section 4.3, we construct a succinct constraint detector for the family of evaluations of univariate polynomials concatenated with corresponding BS proximity proofs [BS08]. The construction of the detector exploits the recursive structure of these proximity proofs. Later on (in Section 8), we leverage this result to construct a perfect zero knowledge simulator for an IOP for \text{NEXP}; this simulator can be interpreted as an analogue of [BCGV16]'s simulator that runs exponentially faster and thus enables us to “scale up” from \text{NP} to \text{NEXP}.

Throughout this section we assume familiarity with terminology and notation about codes, introduced in Section 3.4. We assume for simplicity that $|n|$, the number of bits used to represent n, is at least $\log D(n) + \log \mathbb{F}(n)$; if this does not hold, then one can replace $|n|$ with $|n| + \log D(n) + \log \mathbb{F}(n)$ throughout the section.

Remark 4.1 (sparse representation). In this section we make statements about vectors v in \mathbb{F}^D where the cardinality of the domain D may be super-polynomial. When such statements are computational in nature, we assume that v is not represented as a list of $|D|$ field elements (which requires $\Omega(|D| \log |\mathbb{F}|)$ bits) but, instead, assume that v is represented as a list of the elements in $\text{supp}(v)$ (and each element comes with its index in D); this sparse representation only requires $\Omega(|\text{supp}(v)| \cdot (\log |D| + \log |\mathbb{F}|))$ bits.

4.1 Definition of succinct constraint detection

Formally define the notion of a constraint detector, and the notion of succinct constraint detection.

Definition 4.2. Let $\mathcal{C} = \{C_n\}_n$ be a linear code family with domain $D(\cdot)$ and alphabet $\mathbb{F}(\cdot)$. A constraint detector for \mathcal{C} is an algorithm that, on input an index n and subset $I \subseteq D(n)$, outputs a basis for the space

$$\left\{ z \in D(n)^I : \forall w \in C_n, \sum_{i \in I} z(i)w(i) \right\}.$$

We say that \mathcal{C} has a $T(\cdot, \cdot)$-time constraint detection if there exists a detector for \mathcal{C} running in time $T(n, \ell)$; we also say that \mathcal{C} has succinct constraint detection if it has $\text{poly}(|n| + \ell)$-time constraint detection.

A constraint detector induces a corresponding probabilistic algorithm for ‘simulating’ answers to queries to a random codeword; this is captured by the following lemma, the proof of which is in Appendix B. We shall use such probabilistic algorithms in the construction of perfect zero knowledge simulators (see Section 5 and Section 8).
Lemma 4.3. Let $\mathcal{C} = \{C_n\}_n$ be a linear code family with domain $D(\cdot)$ and alphabet $\mathbb{F}(\cdot)$ that has $T(\cdot, \cdot)$-time constraint detection. Then there exists a probabilistic algorithm A such that, for every index n, set of pairs $S = \{(\alpha_1, \beta_1), \ldots, (\alpha_\ell, \beta_\ell)\} \subseteq D(\mathbf{n}) \times \mathbb{F}(\mathbf{n})$, and pair $(\alpha, \beta) \in D(\mathbf{n}) \times \mathbb{F}(\mathbf{n})$,

$$\Pr \left[A(\mathbf{n}, S, \alpha) = \beta \right] = \Pr_{w \in C_n} \left[\begin{array}{c} w(\alpha_1) = \beta_1 \\ \vdots \\ w(\alpha_\ell) = \beta_\ell \end{array} \right].$$

Moreover A runs in time $T(n, \ell) + \text{poly}(\log|\mathbb{F}(\mathbf{n})| + \ell)$.

For the purposes of constructing a constraint detector, the sufficient condition given in Lemma 4.6 below is sometimes easier to work with. To state it we need to introduce two ways of restricting a code, and explain how these restrictions interact with taking duals; the interplay between these is delicate (see Remark 4.7).

Definition 4.4. Given a linear code $C \subseteq \mathbb{F}^D$ and a subset $I \subseteq D$, we denote by (i) $C_{\subseteq I}$ the set consisting of the codewords $w \in C$ for which $\text{supp}(w) \subseteq I$, and (ii) $C|_I$ the restriction to I of codewords $w \in C$.

Note that $C_{\subseteq I}$ and $C|_I$ are different notions. Consider for example the 1-dimensional linear code $C = \{00, 11\}$ in $\mathbb{F}_2^{(1\cdot 2)}$ and the subset $I = \{1\}$: it holds that $C_{\subseteq I} = \{00\}$ and $C|_I = \{0, 1\}$. In particular, codewords in $C_{\subseteq I}$ are defined over D, while codewords in $C|_I$ are defined over I. Nevertheless, throughout this section, we sometimes compare vectors defined over different domains, with the implicit understanding that the comparison is conducted over the union of the relevant domains, by filling in zeros in the vectors’ undefined coordinates. For example, we may write $C_{\subseteq I} \subseteq C|_I$ to mean that $\{00\} \subseteq \{0, 1\}$ (the set obtained from $\{0, 1\}$ after filling in the relevant zeros).

Claim 4.5. Let C be a linear code with domain D and alphabet \mathbb{F}. For every $I \subseteq D$,

$$(C|_I)^\perp = (C^\perp)_{\subseteq I},$$

that is,

$$\left\{ z \in D(\mathbf{n})^I : \forall w \in C_n, \sum_{i \in I} z(i)w(i) \right\} = \left\{ z \in C_n^\perp : \text{supp}(z) \subseteq I \right\}.$$

Proof. For the containment $(C^\perp)_{\subseteq I} \subseteq (C|_I)^\perp$: if $z \in C^\perp$ and $\text{supp}(z) \subseteq I$ then z lies in the dual of $C|_I$ because it suffices to consider the subdomain I for determining duality. For the reverse containment $(C^\perp)_{\subseteq I} \supseteq (C|_I)^\perp$: if $z \in (C|_I)^\perp$ then $\text{supp}(z) \subseteq I$ (by definition) so that $(z, w) = (z, w |_I)$ for every $w \in C$, and the latter inner product equals 0 because z is in the dual of $C|_I$; in sum z is dual to (all codewords in) C and its support is contained in I, so z belongs to $(C^\perp)_{\subseteq I}$, as claimed. \hfill \Box

Observe that Claim 4.5 tells us the constraint detection is equivalent to determining a basis of $(C_n|_I)^\perp = (C_n^\perp)_{\subseteq I}$. The following lemma asserts that, if given a subset $I \subseteq D$, we can find a set of constraints W in C^\perp that spans $(C^\perp)_{\subseteq I}$ then we can solve the constraint detection problem for C; we defer the proof of the lemma to Appendix C.

Lemma 4.6. Let $\mathcal{C} = \{C_n\}_n$ be a linear code family with domain $D(\cdot)$ and alphabet $\mathbb{F}(\cdot)$. If there exists an algorithm that, on input an index n and subset $I \subseteq D(\mathbf{n})$, outputs in $\text{poly}(|\mathbf{n}| + |I|)$ time a subset $W \subseteq \mathbb{F}(\mathbf{n})^{D(\mathbf{n})}$ (in sparse representation) with $(C_n^\perp)_{\subseteq I} \subseteq \text{span}(W) \subseteq C_n^\perp$, then \mathcal{C} has succinct constraint detection.

Remark 4.7. The following operations do not commute: (i) expanding the domain via zero padding (for the purpose of comparing vectors over different domains), and (ii) taking the dual of the code. Consider for example the code $C = \{0\} \subseteq \mathbb{F}_2^{(1\cdot 2)}$: its dual code is $C^\perp = \{0, 1\}$ and, when expanded to $\mathbb{F}_2^{(1\cdot 2)}$, the dual code is expanded to $\{(0, 0), (1, 0)\}$; yet, when C is expanded to $\mathbb{F}_2^{(1\cdot 2)}$ it produces the code $\{(0, 0)\}$ and its dual code is $\{(0, 0), (1, 0), (0, 1), (1, 1)\}$. To resolve ambiguities (when asserting an equality as in Claim 4.5), we adopt the convention that expansion is done always last (namely, as late as possible without having to compare vectors over different domains).
4.2 Partial sums of low-degree polynomials

We show that evaluations of partial sums of low-degree polynomials have succinct constraint detection (see Definition 4.2). In the following, \(\mathbb{F} \) is a finite field, \(m \) and \(d \) are positive integers, and \(H \) is a subset of \(\mathbb{F} \); also, \(\mathbb{F}^{<d}[X_1, \ldots, X_m] \) denotes the subspace of \(\mathbb{F}[X_1, \ldots, X_m] \) consisting of those polynomials with individual degrees less than \(d \). Moreover, given \(Q \in \mathbb{F}^{<d}[X_1, \ldots, X_m] \) and \(\vec{\alpha} \in \mathbb{F}^{\leq m} \) (vectors over \(\mathbb{F} \) of length at most \(m \)), we define \(Q(\vec{\alpha}) := \sum_{\vec{\beta} \in H^{m-|\vec{\alpha}|}} Q(\vec{\alpha}, \vec{\gamma}) \), i.e., the answer to a query that specifies only a suffix of the variables is the sum of the values obtained by letting the remaining variables range over \(H \). We begin by defining the code that we study, which extends the Reed–Muller code (see Section 3.4) with partial sums.

Definition 4.8. We denote by \(\SigmaRM[\mathbb{F}, m, d, H] \) the linear code that comprises evaluations of partial sums of polynomials in \(\mathbb{F}^{<d}[X_1, \ldots, X_m] \); more precisely, \(\SigmaRM[\mathbb{F}, m, d, H] := \left\{ w_Q \right\}_{Q \in \mathbb{F}^{<d}[X_1, \ldots, X_m]} \) where \(w_Q: \mathbb{F}^m \rightarrow \mathbb{F} \) is the function defined by \(w_Q(\vec{\alpha}) := \sum_{\vec{\beta} \in H^{m-|\vec{\alpha}|}} Q(\vec{\alpha}, \vec{\gamma}) \) for each \(\vec{\alpha} \in \mathbb{F}^{\leq m} \).\(^4\) We denote by \(\SigmaRM \) the linear code family indexed by tuples \(\vec{n} = (\mathbb{F}, m, d, H) \) and where the \(\vec{n} \)-th code equals \(\SigmaRM[\mathbb{F}, m, d, H] \). (We represent indices \(n \) so as to ensure that \(|n| = \Theta(\log |\mathbb{F}| + m + d + |H|) \).)

We prove that the linear code family \(\SigmaRM \) has succinct constraint detection:

Theorem 4.9 (formal statement of 1.5). \(\SigmaRM \) has \(\text{poly}(\log |\mathbb{F}| + m + d + |H| + \ell) \)-time constraint detection.

Combined with Lemma 4.3 the theorem above implies that there exists a probabilistic polynomial-time algorithm for answering queries to a codeword sampled at random from \(\SigmaRM \), as captured by the following corollary.

Corollary 4.10. There exists a probabilistic algorithm \(A \) such that, for every finite field \(\mathbb{F} \), positive integers \(m, d \), subset \(H \) of \(\mathbb{F} \), subset \(S = \{ (\alpha_1, \beta_1), \ldots, (\alpha_\ell, \beta_\ell) \} \subseteq \mathbb{F}^{\leq m} \times \mathbb{F} \), and \((\alpha, \beta) \in \mathbb{F}^{\leq m} \times \mathbb{F} \),

\[
\Pr \left[A(\mathbb{F}, m, d, H, S, \alpha) = \beta \right] = \Pr_{R \leftarrow \mathbb{F}^{<d}[X_1, \ldots, X_m]} \left[R(\alpha) = \beta \right] \quad \text{where } R(\alpha) = \begin{bmatrix} R(\alpha_1) = \beta_1 \\ \vdots \\ R(\alpha_\ell) = \beta_\ell \end{bmatrix} .
\]

Moreover \(A \) runs in time \(\text{poly}(\log |\mathbb{F}| + m + d + |H| + \ell) \).

We sketch the proof of Theorem 4.9, for the simpler case where the code is \(\text{RM}[\mathbb{F}, m, d, H] \) (i.e., without partial sums). We can view a polynomial \(Q \in \mathbb{F}^{<d}[X_1, \ldots, X_m] \) as a vector over the monomial basis, with an entry for each possible monomial \(X_1^{i_1} \cdots X_m^{i_m} \) (with \(0 \leq i_1, \ldots, i_m < d \)) containing the corresponding coefficient. The evaluation of \(Q \) at a point \(\vec{\alpha} \in \mathbb{F}^m \) then equals the inner product of this vector with the vector \(\phi_{\vec{\alpha}} \), in the same basis, whose entry for \(X_1^{i_1} \cdots X_m^{i_m} \) is equal to \(\alpha_1^{i_1} \cdots \alpha_m^{i_m} \). Given \(\alpha_1, \ldots, \alpha_\ell \), we could use Gaussian elimination on \(\phi_{\vec{\alpha}_1}, \ldots, \phi_{\vec{\alpha}_\ell} \) to check for linear dependencies, which would be equivalent to constraint detection for \(\text{RM}[\mathbb{F}, m, d, H] \).

However, we cannot afford to explicitly write down \(\phi_{\vec{\alpha}} \), because it has \(d^m \) entries. Nevertheless, we can still implicitly check for linear dependencies, and we do so by reducing the problem, by building on and extending ideas of \(\text{[BW04]} \), to computing the nullspace of a certain set of polynomials, which can be solved via an algorithm of \(\text{[RS05]} \) (see also \(\text{[Kay10]} \)). The idea is to encode the entries of these vectors via a succinct description: a polynomial \(\phi_{\vec{\alpha}} \) whose coefficients (after expansion) are the entries of \(\phi_{\vec{\alpha}} \). In our setting this polynomial has the particularly natural form:

\[
\Phi_{\vec{\alpha}}(\vec{X}) := \prod_{i=1}^{m} \left(1 + \alpha_i X_i + \alpha_i^2 X_i^2 + \cdots + \alpha_i^{d-1} X_i^{d-1} \right) ;
\]

note that the coefficient of each monomial equals its corresponding entry in \(\phi_{\vec{\alpha}} \). Given this representation we can use standard polynomial identity testing techniques to find linear dependencies between these polynomials, which corresponds to linear dependencies between the original vectors. Crucially, we cannot afford any mistake, even with exponentially small probability, when looking for linear dependencies for otherwise we would not achieve perfect simulation; this is why the techniques we leverage rely on derandomization. We now proceed with the full proof.

\(^4\)Note that \(\SigmaRM[\mathbb{F}, m, d, H] \) is indeed linear: for every \(w_{Q_1}, w_{Q_2} \in \SigmaRM[\mathbb{F}, m, d, H] \), \(a_1, a_2 \in \mathbb{F} \), and \(\vec{\alpha} \in \mathbb{F}^{\leq m} \), it holds that \(a_1 w_{Q_1}(\vec{\alpha}) + a_2 w_{Q_2}(\vec{\alpha}) = a_1 \sum_{\vec{\beta} \in H^{m-|\vec{\alpha}|}} Q_1(\vec{\alpha}, \vec{\gamma}) + a_2 \sum_{\vec{\beta} \in H^{m-|\vec{\alpha}|}} Q_2(\vec{\alpha}, \vec{\gamma}) = \sum_{\vec{\beta} \in H^{m-|\vec{\alpha}|}} (a_1 Q_1(\vec{\alpha}) + a_2 Q_2(\vec{\alpha}))(\vec{\gamma}) = w_{a_1 Q_1 + a_2 Q_2}(\vec{\alpha}) \). But \(w_{a_1 Q_1 + a_2 Q_2} \in \SigmaRM[\mathbb{F}, m, d, H] \), since \(\mathbb{F}^{<d}[X_1, \ldots, X_m] \) is a linear space.
Proof of Theorem 4.9. We first introduce some notation. Define $[d] := \{0, \ldots, d - 1\}$. For vectors $\vec{a} \in \mathbb{F}^m$ and $\vec{b} \in [d]^m$, we define $\vec{a}^\vec{b} := \prod_{i=1}^m a_i^{b_i}$; similarly, for variables $\vec{X} = (X_1, \ldots, X_m)$, we define $\vec{X}^\vec{a} := \prod_{i=1}^m X_i^{a_i}$.

We identify $\Sigma \mathbb{R}[F, m, d, H]$ with $\mathbb{F}^{[d]^m}$, a codeword w_Q then corresponds to a vector \vec{Q} whose \vec{a}-th entry is the coefficient of the monomial $\vec{X}^\vec{a}$ in Q. For $\vec{a} \in \mathbb{F}^m$, let

$$
\phi_{\vec{a}} := \left(\vec{a}^\vec{b} \sum_{\vec{\gamma} \in H^{m-|\vec{d}|}} \vec{\alpha}^\vec{\gamma} \right).
$$

We can also view $\phi_{\vec{a}}$ as a vector in $\mathbb{F}^{[d]^m}$ by permuting the indices, so that, for all $\vec{a} \in \mathbb{F}^m$ and $w_Q \in \Sigma \mathbb{R}[F, m, d, H]$, we have

$$
w_Q(\vec{a}) = \sum_{\vec{\gamma} \in H^{m-|\vec{d}|}} Q(\vec{a}, \vec{\gamma}) = \sum_{\vec{\gamma} \in H^{m-|\vec{d}|}} \sum_{\vec{\alpha} \in [d]^{m-|\vec{d}|}} \sum_{\vec{b} \in [d]^{m-|\vec{d}|}} \vec{Q}_{\vec{a}, \vec{b}} \cdot \vec{a}^\vec{b} = \sum_{\vec{a} \in [d]^{m-|\vec{d}|}} \vec{Q}_{\vec{a}, \vec{b}} \cdot \vec{a}^\vec{b} \sum_{\vec{\gamma} \in H^{m-|\vec{d}|}} \vec{\alpha}^\vec{\gamma} = \langle \vec{Q}, \phi_{\vec{a}} \rangle.
$$

Hence for every $\vec{a}_1, \ldots, \vec{a}_\ell, \vec{b} \in [d]^m$ and $a_1, \ldots, a_\ell \in \mathbb{F}$, the following statements are equivalent:

1. $w(\vec{a}) = \sum_{i=1}^\ell a_i w(\vec{a}_i)$ for all $w \in \Sigma \mathbb{R}[F, m, d, H]$;
2. $\langle \vec{f}, \phi_{\vec{a}} \rangle = \sum_{i=1}^\ell a_i \langle \vec{f}, \phi_{\vec{a}_i} \rangle$ for all $\vec{f} \in \mathbb{F}^{[d]^m}$;
3. $\phi_{\vec{a}} = \sum_{i=1}^\ell a_i \phi_{\vec{a}_i}$.

We deduce that this notion of constraint detection for $\Sigma \mathbb{R}[F, m, d, H]$ is equivalent to the problem of finding $a_1, \ldots, a_\ell \in \mathbb{F}$ such that $\phi_{\vec{a}} = \sum_{i=1}^\ell a_i \phi_{\vec{a}_i}$, or returning `independent' if no such a_1, \ldots, a_ℓ exist.

However, the dimension of the latter vectors is d^m, which may be much larger than poly$(\log |\mathbb{F}| + m + d + |H| + \ell)$, and so we cannot afford to “explicitly” solve the $\ell \times d^m$ linear system. Instead, we “succinctly” solve it, by taking advantage of the special structure of the vectors, as we now describe. For $\vec{a} \in \mathbb{F}^m$, define the polynomial

$$
\Phi_{\vec{a}}(\vec{X}) := \prod_{i=1}^m \left(1 + a_i X_i + a_i^2 X_i^2 + \cdots + a_i^{d-1} X_i^{d-1} \right).
$$

Note that, while the above polynomial is computable via a small arithmetic circuit, its coefficients (once expanded over the monomial basis) correspond to the entries of the vector $\phi_{\vec{a}}$. More generally, for $\vec{a} \in \mathbb{F}^m$, we define the polynomial

$$
\Phi_{\vec{a}}(\vec{X}) := \prod_{i=1}^{[\vec{d}]} \left(1 + a_i X_i + \cdots + a_i^{d-1} X_i^{d-1} \right) \prod_{i=1}^{m-[\vec{d}]} \left(1 + \gamma_i X_i + [\vec{a}] \gamma_i^{d-1} X_i^{d-1} \right).
$$

Note that $\Phi_{\vec{a}}$ is a product of univariate polynomials. To see that the above does indeed represent $\phi_{\vec{a}}$, we rearrange the expression as follows:

$$
\Phi_{\vec{a}}(\vec{X}) = \prod_{i=1}^{[\vec{d}]} \left(1 + a_i X_i + \cdots + a_i^{d-1} X_i^{d-1} \right) \sum_{\vec{\gamma} \in H^{m-[\vec{d}]} \setminus [\vec{a}]} \left(1 + \gamma_i X_i + [\vec{a}] \gamma_i^{d-1} X_i^{d-1} \right).
$$

Indeed, the coefficient of $\vec{X}^{\vec{a}, \vec{\gamma}}$ is $\vec{a}^\vec{b} \prod_{i=1}^{m-[\vec{d}]} \left(1 + \gamma_i X_i + [\vec{a}] \gamma_i^{d-1} X_i^{d-1} \right)$.

Thus, to determine whether $\phi_{\vec{a}} \in \text{span}(\phi_{\vec{a}_1}, \ldots, \phi_{\vec{a}_\ell})$, it suffices to determine whether $\Phi_{\vec{a}} \in \text{span}(\Phi_{\vec{a}_1}, \ldots, \Phi_{\vec{a}_\ell})$. In fact, the linear dependencies are in correspondence: for $a_1, \ldots, a_\ell \in \mathbb{F}$, $\phi_{\vec{a}} = \sum_{i=1}^\ell a_i \phi_{\vec{a}_i}$ if and only if $\Phi_{\vec{a}} = \sum_{i=1}^\ell a_i \Phi_{\vec{a}_i}$. Crucially, each $\Phi_{\vec{a}_i}$ is not only in $\mathbb{F}^{[d]^m}$ but is a product of m univariate polynomials each represented via an \mathbb{F}-arithmetic circuit of size poly$(|H| + d)$. We leverage this special structure and solve the above problem by relying on an algorithm of [RS05] that computes the nullspace for such polynomials (see also [Kay10]), as captured by the lemma below.\footnote{One could use polynomial identity testing to solve the above problem in probabilistic polynomial time; see [Kay10] Lemma 8. However, due to a nonzero probability of error, this suffices only to achieve statistical zero knowledge, but does not suffice to achieve perfect zero knowledge.}

\begin{enumerate}
\item \end{enumerate}
Lemma 4.11. There exists a deterministic algorithm \(D \) such that, on input a vector of \(m \)-variate polynomials \(\vec{Q} = (Q_1, \ldots, Q_\ell) \) over \(\mathbb{F} \) where each polynomial has the form \(Q_k(x) = \prod_{i=1}^{m} Q_{k,i}(x_i) \) and each \(Q_{k,i} \) is univariate of degree less than \(d \) with \(d \leq |\mathbb{F}| \) and represented via an \(\mathbb{F} \)-arithmetic circuit of size \(s \), outputs a basis for the linear space \(\vec{Q}^\perp := \{ (a_1, \ldots, a_\ell) \in \mathbb{F}^\ell : \sum_{k=1}^{\ell} a_k Q_k \equiv 0 \} \). Moreover, \(D \) runs in \(\text{poly}(\log |\mathbb{F}| + m + d + s + \ell) \) time.

The above lemma immediately provides a way to construct a constraint detector for \(\Sigma_{\text{RM}} \): given as input an index \(\mathfrak{n} = (F, m, d, H) \) and a subset \(I \subseteq D(\mathfrak{n}) \), we construct the arithmetic circuit \(\Phi_\alpha \) for each \(\alpha \in I \), and then run the algorithm \(D \) on vector of circuits \((\Phi_\alpha)_{\alpha \in I} \), and directly output \(D \)'s result. The lemma follows.

4.3 Univariate polynomials with BS proximity proofs

We show that evaluations of univariate polynomials concatenated with corresponding BS proximity proofs [BS08] have succinct constraint detection (see Definition 4.2). Recall that the Reed–Solomon code (see Section 3.4) is not locally testable, but one can test proximity to it with the aid of the quasilinear-size proximity proofs of Ben-Sasson and Sudan [BS08]. These latter apply when low-degree univariate polynomials are evaluated over linear spaces, so from now on we restrict our attention to Reed–Solomon codes of this form. More precisely, we consider Reed–Solomon codes \(RS[\mathbb{F}, L, d] \) where \(\mathbb{F} \) is an extension field of a base field \(\mathbb{K} \), \(L \) is a \(\mathbb{K} \)-linear subspace in \(\mathbb{F} \), and \(d = |L| \cdot |\mathbb{K}|^{-\mu} \) for some \(\mu \in \mathbb{N}^+ \). We then denote by \(BS-RS[\mathbb{K}, \mathbb{F}, L, \mu, k] \) the code obtained by concatenating codewords in \(RS[\mathbb{F}, L, |L| \cdot |\mathbb{K}|^{-\mu}] \) with corresponding BS proximity proofs whose recursion terminates at “base dimension” \(k \in \{1, \ldots, \dim(L)\} \) (for completeness we include a formal definition of these in Appendix F); typically \(\mathbb{K}, \mu, k \) are fixed to certain constants (e.g., [BS08] fixes them to \(\mathbb{F}_2, 3, 1 \), respectively) but below we state the cost of constraint detection in full generality. The linear code family BS-RS is indexed by tuples \(\mathfrak{n} = (\mathbb{K}, \mathbb{F}, L, \mu, k) \) and the \(n \)-th code is \(BS-RS[\mathbb{K}, \mathbb{F}, L, \mu, k] \), and our result about BS-RS is the following:

Theorem 4.12 (formal statement of 1.7). BS-RS has \(\text{poly}(\log |\mathbb{F}| + \dim(L) + |\mathbb{K}|^\mu + \ell) \)-time constraint detection.

The proof of the above theorem is technically involved, and we present it via several steps, as follows. (1) In Section 4.3.1 we introduce the notion of a code cover and two key combinatorial properties of these: \(\kappa \)-locality and \(\kappa \)-independence. (2) In Section 4.3.2 we introduce the notion of a recursive code cover and relate its combinatorial properties to those of (standard) code covers. (3) In Section 4.3.3 we show how to construct succinct constraint detectors starting from algorithms that detect constraints only ‘locally’ for code covers and recursive code covers. (4) In Section 4.3.4 we show that BS-RS has a recursive code cover with the requisite properties and thus implies, via the results of prior steps, a succinct constraint detector, as claimed. Several sub-proofs are deferred to the appendices, and we provide pointers to these along the way.

The role of code covers. We are interested in succinct constraint detection: solving the constraint detection problem for certain code families with exponentially-large domains (such as BS-RS). We now build some intuition about how code covers can, in some cases, facilitate this.

Consider the simple case where the code \(C \subseteq \mathbb{F}^D \) is a direct sum of many small codes: there exists \(S = \{(D_j, \tilde{C}_j)\}_j \) such that \(D = \cup_j \hat{D}_j \) and \(C = \oplus_j \tilde{C}_j \) where, for each \(j \), \(\tilde{C}_j \) is a linear code in \(\mathbb{F}^{D_j} \) and the subdomain \(\hat{D}_j \) is small and disjoint from other subdomains. The detection problem for this case can be solved efficiently: use the generic approach of Gaussian elimination independently on each subdomain \(\hat{D}_j \).

Next consider a more general case where the subdomains are not necessarily disjoint: there exists \(S = \{(\tilde{D}_j, \hat{C}_j)\}_j \) as above but we do not require that the \(\hat{D}_j \) form a partition of \(D \); we say that each \((\hat{D}_j, \hat{C}_j)\) is a local view of \(C \) because \(\tilde{D}_j \subseteq D \) and \(\tilde{C}_j = C_{|\tilde{D}_j} \), and we say that \(S \) is a code cover of \(C \). Now suppose that for each \(j \) there exists an efficient constraint detector for \(\tilde{C}_j \) (which is defined on \(\hat{D}_j \)); in this case, the detection problem can be solved efficiently at least for those subsets \(I \) that are contained in \(\hat{D}_j \) for some \(j \). Generalizing further, we see that we can efficiently solve constraint detection for a code \(C \) if there is a cover \(S = \{(\hat{D}_j, \hat{C}_j)\}_j \) such that, given a subset \(I \subseteq D \), (i) \(I \) is contained in some subdomain \(\hat{D}_j \), and (ii) constraint detection for \(\tilde{C}_j \) can be solved efficiently.

We build on the above ideas to derive analogous statements for recursive code covers, which arise naturally in the case of BS-RS. But note that recursive constructions are common in the PCP literature, and we believe that our cover-based techniques are of independent interest as, e.g., they are applicable to other PCPs, including [BFLS91],[AS98].
4.3.1 Covering codes with local views

The purpose of this section is to formally define the notion of cover and certain combinatorial properties of these.

Definition 4.13. Let C be a linear code with domain D and alphabet \mathbb{F}. A (local) view of C is a pair $\left(\tilde{D}, \tilde{C}\right)$ such that $\tilde{D} \subseteq D$ and $C|_{\tilde{D}} = \tilde{C}$. A cover of C is a set of local views $S = \left\{\left(\tilde{D}_j, \tilde{C}_j\right)\right\}_j$ of C such that $D = \cup_j \tilde{D}_j$. Also, we define a cover’s domain intersection as $\text{di}(S) := \cup_{j \neq j'} \left(\tilde{D}_j \cap \tilde{D}_{j'}\right)$ and, given a set J, we define $\tilde{D}_J := \cup_{j \in J} \tilde{D}_j$.

Example 4.14 (line cover of RM). Suppose for instance that C is the Reed–Muller code $\text{RM}[\mathbb{F}, \mathbb{F}, m, d]$; C consists of evaluations over $D = \mathbb{F}^m$ of polynomials in $\mathbb{F}^{<d}[X_1, \ldots, X_m]$ (see Definition 3.4). A cover of C that is extensively studied in the PCP and property-testing literature is the one given by (axis-parallel) lines. A line (in the i-th direction) is a set of $|\mathbb{F}|$ points that agree on all but one coordinate (the i-th one); and the line cover of C is thus $S = \left\{\left(\tilde{D}_i, \tilde{C}_i\right)\right\}$ where ℓ ranges over all (axis-parallel) lines and \tilde{C}_i is the Reed–Solomon code $\text{RS}[\mathbb{F}, \mathbb{F}, d]$ (see Definition 3.4).

Observe that the domain intersection of the line cover equals \mathbb{F}^m, which is also the domain D of the base code C. However, for BS-RS, we consider a cover whose domain intersection is a strict subset of D (see Appendix G).

Next, we specify a notion of locality for covers. A partial assignment $w' \in \mathbb{F}^{D'}$ is locally consistent with a cover $S = \left\{\left(\tilde{D}_j, \tilde{C}_j\right)\right\}_j$ if for every local view $\left(\tilde{D}_j, \tilde{C}_j\right)$ with $\tilde{D}_j \subseteq D'$ the restriction $w'|_{\tilde{D}_j}$ is a codeword of \tilde{C}_j. Then we say that a cover is κ-local if any locally consistent assignment $w' \in \mathbb{F}^{D'}$, where D' is a union of at most κ domains in the cover, can be extended to a "globally consistent" codeword w of C.

Definition 4.15. Let C be a linear code with domain D and alphabet \mathbb{F}. Given $\kappa \in \mathbb{N}$, a κ-local cover of C is a cover $S = \left\{\left(\tilde{D}_j, \tilde{C}_j\right)\right\}_j$ of C such that: for every subset of view-indices J of size at most κ and every word $w' \in \mathbb{F}^{D_J}$ with $w'|_{\tilde{D}_j} \subseteq \tilde{C}_j$ (for every $j \in J$), the word w' can be extended to some word w in C, i.e., w satisfies $w|_{\tilde{D}_j} = w'|_{\tilde{D}_j}$. (The trivial cover $S = \left\{\left(D, C\right)\right\}$ of C is κ-local for every κ.)

The following definition significantly strengthens the previous one. Informally, a cover is κ-independent if every partial assignment over a subdomain D' that is the union of κ subdomains from the cover and κ auxiliary locations can be extended to a "globally consistent" codeword. We use this stronger notion in our main Lemma 4.20.

Definition 4.16. Let C be a linear code with domain D and alphabet \mathbb{F}. Given $\kappa \in \mathbb{N}$, a κ-independent cover of C is a κ-local cover $S = \left\{\left(\tilde{D}_j, \tilde{C}_j\right)\right\}_j$ such that for every set J of size at most κ, subdomain $D' \subseteq \text{di}(S)$ of size at most κ, and $w' \in \mathbb{F}^{D' \cup \tilde{D}_j}$ with $w'|_{\tilde{D}_j} \subseteq \tilde{C}_j$ for every $j \in J$, there exists $w \in C$ such that $w|_{D' \cup \tilde{D}_j} = w'$. (The trivial cover $S = \left\{\left(D, C\right)\right\}$ of C is κ-independent for every $\kappa \in \mathbb{N}$ because it is κ-local and has $\text{di}(S) = \emptyset$.)

Example 4.17. The line cover from Example 4.14 is d-local because any evaluation on at most d (axis-parallel) lines ℓ_1, \ldots, ℓ_d that is a polynomial of degree $(d - 1)$ along each of ℓ_1, \ldots, ℓ_d can be extended to a codeword of $\text{RM}[\mathbb{F}, \mathbb{F}, m, d]$. Furthermore, it is $d/2$-independent because any locally consistent assignment to $d/2$ such lines and $d/2$ points $p_1, \ldots, p_{d/2}$ can be extended to a valid Reed–Muller codeword. To see this, observe that there exists an interpolating set $H_1 \times \cdots \times H_m$ (with $|H_i| = d$) that contains $p_1, \ldots, p_{d/2}$ and intersects each line in d points; we shall later use this observation for the bivariate case ($m = 2$), a proof for that case is provided at Claim H.1.3

4.3.2 Recursive covers and locality

Proximity proofs for codes such as the Reed–Solomon code and the Reed–Muller code are typically obtained via techniques of proof composition [AS98]. Informally, a problem is reduced to a set of smaller sub-problems of the same kind (which are usually interconnected), and a sub-proof is constructed for each sub-problem. This process leads to a proof for the original problem that is “covered” by the sub-proofs for the sub-problems, and naturally imply a cover of the proof by these sub-proofs. This process is then repeated recursively until the sub-problems are small enough for the verifier to check directly — and in our case leads to the notion of recursive covers, which we define below.

To support the definition of a recursive cover, we first introduce notation for rooted trees. Edges in a rooted tree $T = (V, E)$ are directed from the root r towards the leaves; the edge directed from v to u is denoted (v, u); v is the predecessor of u and u the successor of v; if there is a path from v to v' we say that v is an ancestor of v'; if there is no directed path between v and v' (either direction) we say that the two vertices are disconnected. The set of successors
of \(v\) is denoted successors\((T, v)\). The depth of a vertex \(v\) in \(T\) is denoted \(\text{depth}(T, v)\) and equals the number of edges on the path from \(r\) to \(v\). The depth of \(T\) is denoted \(\text{depth}(T)\) and equals the maximum of \(\text{depth}(T, v)\) as \(v\) ranges in \(V\). The \(i\)-th layer of \(T\) is denoted \(\text{layer}(T, i)\) and equals the set of \(v \in V\) such that \(\text{depth}(T, v) = i\). (Note that \(\text{depth}(T, r) = 0\) and \(\text{layer}(T, 0) = \{r\}\).) An equidepth tree is a tree in which all leaves have equal depth.

Definition 4.18. Let \(C\) be a linear code with domain \(D\) and alphabet \(\mathbb{F}\). A **recursive cover** of \(C\) is a directed rooted equidepth tree \(T\) of non-zero depth where each vertex \(v\) is labeled by a view \((C_v, D_v)\) such that: (i) \(C_v\) is a linear code with domain \(D_v\) and alphabet \(\mathbb{F}\); (ii) if \(v\) is the root, then \((C_v, D_v) = (C, D)\); and (iii) for every non-leaf \(v\) the set \(T_v := \{ (\tilde{C}_u, D_u) \}_{u \in \text{successors}(T, v)}\) is a cover of \(C_v\). Furthermore we define the following notions:

- Given \(d \in \{0, \ldots, \text{depth}(T)\}\), the \(d\)-**depth restriction** of \(T\) is \(T|_d := \bigcup_{v \in \text{layer}(T,d)} \{ (\tilde{C}_v, D_v) \}\). (Note that \(T|_0 = \{ (C, D) \}\).)

- Given \(c \in \mathbb{N}\), we say that \(T\) is \(c\)-**intersecting** if \(|\tilde{D}_u \cap \tilde{D}_w| \leq c\) for every two disconnected vertices \(u, v\).

- Given \(\kappa \in \mathbb{N}\), we say that \(T\) is \(\kappa\)-**independent** if \(T_v\) is a \(\kappa\)-independent cover of \(\tilde{C}_v\) for every non-leaf vertex \(v\) in \(T\).

Remark 4.19. The above definition is restricted to equidepth trees, but can be extended to general trees as follows. Iteratively append to each leaf \(v\) of non-maximal depth a single successor \(u\) labeled by \((\tilde{C}_u, D_u) := (\tilde{C}_v, D_v);\) this leads to a cover of \(T_v\) that is 0-intersecting and \(\kappa\)-doubly independent for \(\kappa\) that equals \(\tilde{C}_v\)'s dual distance.

Below we state the main lemma of this section. This lemma says that (given certain restrictions) if a recursive cover has the local property of independence (of some degree) at each internal vertex, then each of its layers has the global property of locality (of some degree) as a cover of the root. Later on (in Section 4.3.3) we show how cover locality is used to construct constraint detectors.

Lemma 4.20 (main). Let \(C\) be a linear code with domain \(D\) and alphabet \(\mathbb{F}\), and let \(T\) be a recursive cover of \(C\) such that (i) \(T\) is \(c\)-intersecting for \(c > 0\), and (ii) for every non-leaf vertex \(v\) in \(T\) it holds that \(T_v\) is a \(\kappa\)-independent cover of \(\tilde{C}_v\). Then, for every \(d = \{0, \ldots, \text{depth}(T)\}\), \(T|_d\) is a \(\frac{\kappa}{c}\)-local cover of \(C\).

Proof. We prove the statement by induction on the non-negative integer \(d\). The base case is when \(d = 0\), and holds because \(T|_0 = \{ (D, C) \}\) is the trivial cover, thus it is a \(\kappa\)-local cover of \(C\) for any \(\kappa \geq 0\) and, in particular, a \(\frac{\kappa}{c}\)-local cover. We now assume the statement for \(d < \text{depth}(T)\) and prove it for \(d + 1\).

Let \(T|_d = \{ (\tilde{D}_j, \tilde{C}_j) \}_j\) be the \(d\)-depth cover of \(C\), and let \(T|_{d+1} = \{ (\tilde{D}_{i,j}, \tilde{C}_{i,j}) \}_i\) be the \((d+1)\)-depth cover of \(C\), where, for every \(i, T|_{d+1}^{(i)} = \{ (\tilde{D}_{i,j}, \tilde{C}_{i,j}) \}_j\) is the cover of \(\tilde{C}_i\) (this can be ensured via suitable indexing). Let \(J\) be a set of pairs \((i, j)\) of size at most \(\frac{\kappa}{c}\), and let \(w' \in \mathbb{F}^D_j\) be such that \(w'|_{\tilde{D}_{i,j}} \subseteq \tilde{C}_{i,j}\) for every \((i, j) \in J\). We show that there exists \(w \in C\) such that \(w|_{\tilde{D}_j} = w'\). Define \(I := \{ i : \exists J \text{ s.t. } (i, j) \in J \text{ and } |J| \leq \frac{\kappa}{c} \}\). By the inductive assumption, it suffices to show that there exists \(w \in \mathbb{F}^D\) such that (a) \(w|_{\tilde{D}_{i,j}} = w'|_{\tilde{D}_{i,j}}\) for every \((i, j) \in J\), and (b) \(w|_{\tilde{D}_i} \subseteq \tilde{C}_i\) for every \(i \in I\).

For simplicity assume \(I = \{ 1, \ldots, |I| \}\). We construct \(w\) incrementally and view \(w\) as belonging to \((\mathbb{F} \cup \{0\})^D\), i.e., it is a partial mapping from \(D_I\) to \(\mathbb{F}\). Let \(\text{def}(w) := \{ \alpha \in D_I : w(\alpha) \neq 0 \}\) denote the set of locations where \(w\) is defined. Initialize \(\text{def}(w) = \tilde{D}_I\) and \(w|_{\tilde{D}_I} = w'\); then, for increasing \(i = 1, \ldots, |I|\), iteratively extend \(w\) to be defined (also) over \(\tilde{D}_i\), eventually obtaining \(w \in \mathbb{F}^D\). In the \(i\)-th iteration (that handles \(\tilde{D}_i\)), it is sufficient to prove the existence of a codeword \(w_i \in \tilde{C}_i\) such that \(w_i|_{\tilde{D}_i} = w|_{\tilde{D}_i \cap \text{def}(w)}\). If such a codeword exists then we shall define \(w\) on \(\tilde{D}_i\), by \(w|_{\tilde{D}_i} = w_i\), thus eventually reaching \(w\) that satisfies the stated requirements.

To show that during the \(i\)-th iteration the desired \(w_i\) exists, partition the elements of \(\tilde{D}_i \cap \text{def}(w)\) into two sets: \(V := \bigcup_{i' \neq i} \tilde{D}_{i'}\) and \(W := (\tilde{D}_i \cap \text{def}(w)) \setminus V\). Note that \(W \subseteq \bigcup_{i' \neq i} (\tilde{D}_{i'} \cap \text{def}(w))\), because defining \(w(\alpha)\) for any \(\alpha \in W\) can be done only: (i) in the initialization phase, so that \(\alpha \in \tilde{D}_{i', j'} \subseteq \tilde{D}_{i'}\); for some \((i', j') \in J\) with \(i' \neq i\) (as otherwise \(\alpha \in V\)); or (ii) in a previous iteration, so that \(\alpha \in \tilde{D}_{i'}\) for some \(i' < i\) (as \(\tilde{D}_i\) was already handled and \(w\) is already defined on all of \(\tilde{D}_{i'}\)). The above implies that \(W \subseteq \text{di}(T|_{d+1}^{(i)})\) and the assumption that \(T\) is \(c\)-intersecting implies

\[
|W| \leq \sum_{i' \neq i} |\tilde{D}_i \cap \tilde{D}_{i'}| \leq c \cdot |I| \leq c \cdot |J| \leq \kappa .
\]
Similarly, note that for every fixed $i \in I$ the number of pairs $(i, j) \in J$ is at most $|J| \leq \kappa$. By assumption \tilde{C}_i has a κ-independent cover and thus we conclude (via Definition 4.16) that the desired w_i exists, as required.

4.3.3 From recursive covers to succinct constraint detection

The purpose of this section is to establish sufficient conditions for succinct constraint detection by leveraging covers with small-enough views and large-enough locality. First, in Definition 4.21 and Lemma 4.22, we define cover-based constraint detection and prove that it implies succinct constraint detection; informally, we consider the case when a code has a sequence of covers where view size and locality reduce together, and prove that we can locally detect constraints in a number of views that is proportional to the constraint’s weight and each view’s size is proportional to the constraint’s weight, by choosing the right cover from the sequence. Then, in Definition 4.24 and Lemma 4.25 we extend our discussion to recursive code covers by defining recursive-cover-based constraint detection and establish that it implies the previous notion. We conclude (in Corollary 4.26) that recursive-cover-based constraint detection implies succinct constraint detection.

Definition 4.21. Let $\mathcal{C} = \{C_n\}_n$ be a linear code family with domain $D(\cdot)$ and alphabet $\mathbb{F}(\cdot)$. We say that \mathcal{C} has cover-based constraint detection if there exists an algorithm that, given an index n and subset $I \subseteq D(n)$, outputs in $\text{poly}(|n| + |I|)$ time a subset $W \subseteq \mathbb{F}(n)^{D(n)}$ for which there exists a subset S' of some $|I|$-local cover S of C_n, and the following holds: (i) $|S'| \leq |I|$; (ii) $I \subseteq \bigcup_{(\tilde{D}, \tilde{C}) \in S'} \tilde{D}$; (iii) $\text{span}(W) = \text{span}(\bigcup_{(\tilde{D}, \tilde{C}) \in S'} \tilde{C})$.

Lemma 4.22. Let $\mathcal{C} = \{C_n\}_n$ be a linear code family with domain $D(\cdot)$ and alphabet $\mathbb{F}(\cdot)$. If \mathcal{C} has cover-based constraint detection then \mathcal{C} has succinct constraint detection.

To prove this lemma we require a technical claim, the proof of which is deferred to Appendix E.

Claim 4.23. Let C be a linear code with domain D and alphabet \mathbb{F}, let $S = \{(\tilde{D}, \tilde{C})\}_{\tilde{C} \in S'}$ be a $|I|$-local cover of C. For any set J of size at most κ it holds $\text{span}(\bigcup_{(\tilde{D}, \tilde{C}) \in J} \tilde{C}) = (C^++)_{\subseteq \bigcup_{(\tilde{D}, \tilde{C}) \in J} \tilde{D}}$.

Proof of Lemma 4.22. By Lemma 4.6 it suffices to show an algorithm that, on input an index n and subset $I \subseteq D(n)$, outputs a subset $W \subseteq \mathbb{F}(n)^{D(n)}$ with $(C^++)_{\subseteq I} \subseteq \text{span}(W) \subseteq C^++$ in $\text{poly}(|n| + |I|)$ time. We take this algorithm to be the one guaranteed by Definition 4.21. To see correctness, let $\tilde{D}_{S'} := \bigcup_{(\tilde{D}, \tilde{C}) \in S'} \tilde{D}$, and note that Definition 4.21 and Claim 4.23 imply that $\text{span}(W) = (C^++)_{\subseteq \tilde{D}_{S'}}$ and $(C^++)_{\subseteq I} \subseteq (C^++)_{\subseteq \tilde{D}_{S'}} \subseteq C^++$, as required.

Next we show that, under certain conditions, code families with recursive covers imply a sequence of covers that we can use to construct cover-based constraint detectors. Combined with Lemma 4.22 this result is key for establishing a connection from certain proximity proof constructions to succinct constraint detectors.

Definition 4.24. Let $\mathcal{C} = \{C_n\}_n$ be a linear code family with domain $D(\cdot)$ and alphabet $\mathbb{F}(\cdot)$. We say that \mathcal{C} has recursive-cover-based constraint detection if:

- there exists $c \in \mathbb{N}$ such that, for every index n, C_n has a c-intersecting recursive cover T_n;
- there exists an algorithm that, given an index n and subset $I \subseteq D(n)$, outputs in $\text{poly}(|n| + |I|)$ time a subset $W \subseteq \mathbb{F}(n)^{D(n)}$ for which there exist $d \in \{0, \ldots, \text{depth}(T_n)\}$ and $U \subseteq \text{layer}(T_n, d)$ such that: (i) for every vertex v in T_n with depth(T_n, v) < d, the cover $T_n|_v$ is c-independent; (ii) $|U| \leq |I|$; (iii) $I \subseteq \bigcup_{u \in U} \tilde{D}_u$; (iv) $\text{span}(W) = \text{span}(\bigcup_{u \in U} \tilde{C}_u)$.

Lemma 4.25. Let $\mathcal{C} = \{C_n\}_n$ be a linear code family with domain $D(\cdot)$ and alphabet $\mathbb{F}(\cdot)$. If \mathcal{C} has recursive-cover-based constraint detection, then \mathcal{C} has cover-based constraint detection.

Proof. The definition of recursive-cover-based detection says that there exist (a) $c \in \mathbb{N}$ such that, for every index n, C_n has a c-intersecting recursive cover T_n, and (b) an algorithm satisfying certain properties. We show that this algorithm meets the requirements for being a cover-based constraint detector (see Definition 4.21). Consider any index n and subset $I \subseteq D(n)$, and let W be the output of the algorithm. Let $d \in \{0, \ldots, \text{depth}(T_n)\}$ and $U \subseteq \text{layer}(T_n, d)$ be the objects associated to W (guaranteed by the definition of recursive-cover-based constraint detection). Let $S := T_n|_d$...
The purpose of this section is to prove Theorem 4.12. By Corollary 4.26, it suffices to argue that the linear code family \(C \) has recursive-cover-based constraint detection, then \(C \) has succinct constraint detection.

Proof. Follows directly from Lemma 4.25 (recursive-cover-based constraint detection implies cover-based constraint detection) and Lemma 4.22 (cover-based constraint detection implies succinct constraint detection). □

4.3.4 Proof of Theorem 4.12

The purpose of this section is to prove Theorem 4.12. By Corollary 4.26, it suffices to argue that the linear code family BS-RS has recursive-cover-based constraint detection (see Definition 4.24).

Recall that we consider Reed–Solomon codes \(RS(\mathbb{F}, L, d) \) where \(\mathbb{F} \) is an extension field of a base field \(\mathbb{K} \), \(L \) is a \(\mathbb{K} \)-linear subspace in \(\mathbb{F} \), and \(d = |L| \cdot |\mathbb{K}|^{-\mu} \) for some \(\mu \in \mathbb{N} \); and we denote by BS-RS[\(\mathbb{K}, L, \mu, k \)] the code obtained by concatenating codewords in \(RS(\mathbb{F}, L, |L| \cdot |\mathbb{K}|^{-\mu}) \) with corresponding [BS08] proximity proofs with “base dimension” \(k \in \{1, \ldots, \dim(L)\} \) (see Appendix F for details). The linear code family BS-RS is indexed by tuples \((\mathbb{K}, L, \mu, k) \) and the \(n \)-th code is BS-RS[\(\mathbb{K}, L, \mu, k \)].

We represent indices \(n \) so that \(\log |\mathbb{F}| + \dim(L) + |\mathbb{K}|^\mu \leq \log(|n|) \). The base field \(\mathbb{K} \) and extension field \(\mathbb{F} \) require \(O(\log |\mathbb{K}|) \) and \(O(|\mathbb{F}|) \) bits to represent; the subspace \(L \) requires \(O(\dim(L)) \) elements in \(\mathbb{F} \) to represent; and the two integers \(\mu \) and \(k \) require \(O(\log |\mu|) \) and \(O(|\log k|) \) bits to represent. In addition, we add \(|\mathbb{K}|^\mu \) arbitrary bits of padding. Overall, we obtain that \(|n| = \Theta(\log |\mathbb{K}| + \log |\mathbb{F}| + \log |\mathbb{F}| \cdot \dim(L) + \log |\mu| + \log k + |\mathbb{K}|^\mu) = \Theta(\log |\mathbb{F}| \cdot \dim(L) + |\mathbb{K}|^\mu) \).

The main claim in this section is the following (and does not rely on fixing \(\mathbb{K}, \mu \)).

Lemma 4.27. Define the depth function \(d(\mathbb{K}, L, \mu, a) := \log_2 \dim(L) - \log_2 |\mathbb{K}| a + \mu + 2 - 1 \). The linear code family BS-RS satisfies the following properties.

- For every positive integer \(m \) and positive integer \(n \) with \(m \) and \(a \), BS-RS[\(\mathbb{K}, L, \mu, k \)] has a 1-intersecting recursive cover \(T_n \). Also, for every positive integer \(m \) and non-leaf vertex \(v \) in \(T_n \) with depth \((T_n, v) < d(\mathbb{K}, L, \mu, m) \), the cover \(T_n, v \) is \(m \)-independent.

- There exists an algorithm that, given an index \(n = (\mathbb{K}, L, \mu, k) \) and a subset \(I \subseteq \mathbb{D}(n) \), outputs in time \(\text{poly}(\log |\mathbb{F}| + \dim(L) + |\mathbb{K}|^\mu + |I|) \) a subset \(W \subseteq \mathbb{D}(n) \) for which there exist \(U \subseteq \text{layer}(T_n, d(\mathbb{K}, L, \mu, |I|)) \) such that: (i) \(|U| \leq |I| \); (ii) \(I \subseteq \bigcup_{u \in U} T_u \); (iii) \(\text{span}(W) = \text{span}(\bigcup_{u \in U} C_u) \).

Given the above lemma, we can complete the proof of Theorem 4.12, as explained below. We defer the (long and technical) proof of the lemma to Appendix G and instead end this section with an overview of that proof.

Proof of Theorem 4.12. The proof follows from Lemma 4.27 above and from Corollary 4.26, as we now explain.

Corollary 4.26 states that if a linear code family \(\mathcal{C} \) has recursive-cover-based constraint detection (see Definition 4.24), then \(\mathcal{C} \) has succinct constraint detection (see Definition 4.2). Also recall that the definition of recursive-cover-based detection requires having a \(c \)-intersecting recursive cover for each code in the class, and an algorithm satisfying certain properties.

Observe that Lemma 4.27 guarantees that every code in BS-RS has a 1-intersecting recursive code and, moreover, guarantees the existence of an algorithm whose output satisfies the required properties. We are left to argue that the algorithm runs in time \(\text{poly}(|n| + |I|) \). But this immediately follows from the running time stated in Lemma 4.27 and the fact that \(\log |\mathbb{F}| + \dim(L) + |\mathbb{K}|^\mu \leq \text{poly}(|n|) \). □

Overview of Lemma 4.27’s proof. We assume familiarity with the linear code family BS-RS from [BS08]; for completeness, we provide formal definitions and notations in Appendix F. Recall that the Reed–Solomon code is not locally testable, but one can test proximity to it with the aid of BS proximity proofs [BS08]: the linear code family BS-RS consists of the concatenation of Reed–Solomon codes with BS corresponding proximity proofs.

The construction of the aforementioned proximity proofs is recursive, with each step in the recursion reducing both the evaluation domain size \(|L| \) and the degree \(d \) to (approximately) their square roots. Namely, testing proximity of a
codeword \(w \) to \(\text{RS}[F, L, d] \) is reduced to testing proximity of \(\Theta(\sqrt{|L|}) \) codewords \(\{w_i\}_i \) to \(\{\text{RS}[F, L_i, d_i]\}_i \), where \(|L_i|, d_i = \Theta(\sqrt{|L|}) \) for each \(i \). This step is then recursively applied (by way of proof composition [AS98]) to each codeword \(w_i \), until the domain size is “small enough”.

The first part of the proof of Lemma 4.27 consists of various combinatorial claims (see Appendix G.1). First, we observe that the union of the domains of the codewords \(w_i \) covers (and, actually, slightly expands) the domain of the original codeword \(w \); this holds recursively, and induces a recursive cover \(T \) (see Definition G.3). We prove that \(T \) is 1-intersecting (see Claim G.4) and that, for every vertex \(v \) in \(T \) of depth at most \(d \), the cover \(T_v \) is \((|L|^2 - 2^{-d - 1} \cdot |\mathbb{K}|^{-\mu - 2}) \)-independent, which implies the stated independence property about \(T_v \) (see Claim G.5). The core of the argument for this second claim is to show that the code \(\tilde{C}_v \) equals \(\text{BS-RS}[K, F, L_v, \mu, k] \) for some subspace \(L_v \) such that \(\dim(L) \cdot 2^{-d} \leq \dim(\tilde{L}) \leq \dim(L) \cdot 2^{-d} + 2\mu \) (see Claim G.6).

The second part of the proof of Lemma 4.27 consists of establishing the computational efficiency of certain tasks related to the recursive cover (see Appendix G.2). Specifically, we bound the time required to compute a spanning set for covers in \(T \) (see Claim G.8). After a few more observations, we are able to conclude the proof.
5 Sumcheck with perfect zero knowledge

We show how to obtain an IPCP for sumcheck that is perfect zero knowledge against unbounded queries.

Sumcheck. The sumcheck protocol [LFKN92, Sha92] is an IP for the claim “\(\sum_{\vec{\alpha} \in H^m} F(\vec{\alpha}) = 0\), where \(F\) is a polynomial in \(F^{<d}[X_1, \ldots, X_m]\) and \(H\) is a subset of \(F\). The prover and verifier have input (\(F, m, d, H\)) and oracle access to (the evaluation table on \(F^m\) of) \(F\). The sumcheck protocol has soundness error \(1 - (1 - d/|H|)^m\); the prover runs in space \(\text{poly}(\log |F| + m + d + |H|)\) and the verifier in time \(\text{poly}(\log |F| + m + d + |H|)\); the number of rounds is \(m\); finally, the protocol is public coin and the verifier queries \(F\) only at one random point.

Leakage. The sumcheck protocol is not zero knowledge: a verifier, by interacting with the honest prover, learns partial sums of \(F\), in addition to the fact that “\(\sum_{\vec{\alpha} \in H^m} F(\vec{\alpha}) = 0\)” is true. Assuming one way functions, one can make any interactive proof, including the sumcheck protocol, to be (computational) zero knowledge [GMR89, IY87, BGG98]; moreover, one-way functions are necessary for obtaining zero knowledge IPs for non-trivial languages [OW93]. As we do not wish to make intractability assumptions, we now turn to a different proof system model.

Perfect zero knowledge via IPCPs. We obtain an IPCP for sumcheck that is perfect zero knowledge against unbounded queries. Namely, a malicious verifier has oracle access to a proof string \(\pi\) and also interacts with the prover, but learns no information about \(F\) beyond the fact that the statement about \(F\) is true, in the following sense. There exists an algorithm that perfectly simulates the verifier’s view by making as many queries to \(F\) as the total number of verifier queries to either \(F\) or the oracle \(\pi\). (Analogously to zero knowledge for proximity testers, a verifier may query \(F\) at any time, so any such information comes “for free” and, also, any query to \(\pi\) ‘counts’ as a query to \(F\); see Section 3.3.3.)

Our construction proceeds in two steps:

- **Step 1.** We modify the sumcheck protocol to make it perfect zero knowledge, but in a hybrid model where the prover and verifier have access to a random polynomial \(R \in F^{<d}[X_1, \ldots, X_m]\) such that \(\sum_{\vec{\alpha} \in H^m} R(\vec{\alpha}) = 0\). Crucially, soundness relies only on the fact that \(R\) is low-degree, but not the fact that it is random or sums to 0. Also, the modified protocol does not depend on a bound on the malicious verifier’s queries, and thus maintains zero knowledge even against unbounded queries.

- **Step 2.** We observe that in the IPCP model the prover can send an oracle proof string \(\pi\) that represents the evaluation table of \(R\), and the verifier can test that \(\pi\) is close to low-degree, and then use self correction to query it. This extension preserves the zero knowledge properties of the previous step.

The more interesting of the two steps is the first one, so we briefly discuss the intuition behind it. Our idea is that, rather than executing the sumcheck protocol on \(F\) directly, the prover and verifier execute it on \(\rho F + R\), where \(\rho\) is chosen at random by the verifier (after \(R\) is sampled). Completeness is clear because if \(\sum_{\vec{\alpha} \in H^m} F(\vec{\alpha}) = 0\) and \(\sum_{\vec{\alpha} \in H^m} R(\vec{\alpha}) = 0\) then \(\sum_{\vec{\alpha} \in H^m} (\rho F + R)(\vec{\alpha}) = 0\); soundness is also clear because if \(\sum_{\vec{\alpha} \in H^m} F(\vec{\alpha}) \neq 0\) then \(\sum_{\vec{\alpha} \in H^m} (\rho F + R)(\vec{\alpha}) \neq 0\) with high probability over \(\rho\) (regardless of \(\sum_{\vec{\alpha} \in H^m} R(\vec{\alpha})\)). We are thus left to show perfect zero knowledge, which turns out to be a much less straightforward argument.

On the surface, perfect zero knowledge appears easy to argue: simply note that \(\rho F + R\) is random among all polynomials in \(F^{<d}[X_1, \ldots, X_m]\) that sum to zero on \(H^m\). However, this argument, while compelling, is not enough. First, \(\rho F + R\) is not random because a malicious verifier can choose \(\rho\) depending on queries to \(R\); we discuss this issue further down below. Second, even if \(\rho F + R\) were random (e.g., the verifier does not query \(R\) before choosing \(\rho\)), the simulator must run in polynomial time but it is not clear how that is possible, as we now explain.

Consider the following simulator: (1) sample a random polynomial \(Q_{\text{sim}} \in F^{<d}[X_1, \ldots, X_m]\) subject to \(\sum_{\vec{\alpha} \in H^m} Q_{\text{sim}}(\vec{\alpha}) = 0\) and use it to simulate \(\rho F + R\); (2) whenever the verifier queries \(F(\vec{\alpha})\), respond by querying \(F(\vec{\alpha})\) and returning the true value; (3) whenever the verifier queries \(R(\vec{\alpha})\), respond by querying \(F(\vec{\alpha})\) and returning \(Q_{\text{sim}}(\vec{\alpha}) - \rho F(\vec{\alpha})\). One can argue that the simulator produces the correct distribution; moreover, the number of queries to \(F\) made by the simulator equals the number of (mutually) distinct queries to \(F\) and \(R\) made by the verifier, as desired.

But how does the simulator sample a random polynomial in \(F^{<d}[X_1, \ldots, X_m]\) in polynomial time? The size of the representation of such a polynomial is \(\Omega(d^m)\), which is exponential. We get around this problem by exploiting the fact that the number of queries the verifier can make is polynomially bounded, and the simulator can keep state about the answers to past queries and ‘make up’ on the fly the answer to a new query by resolving dependencies between queries. More precisely, we leverage our construction of a succinct constraint detector for evaluations of low-degree polynomials
(see Section 4.2), which itself relies on tools borrowed from algebraic complexity theory. The same detector also allows to simulate partial sums, which the prover sends in the course of the sumcheck protocol itself.

Finally, we explain how we address the issue that the verifier may choose to query \(R \) before sending \(\rho \). We handle this by first (implicitly) sampling a random polynomial \(R_{\text{sim}} \), and responding to each verifier query to \(R(\vec{a}) \) with \(R_{\text{sim}}(\vec{a}) \). Then, when the verifier sends \(\rho \), we draw \(Q_{\text{sim}} \) conditioned on the already-queried values for \(R \) being ‘correct’; i.e., for each point \(\vec{a} \) queried before \(\rho \) is sent, we add the condition that \(Q_{\text{sim}}(\vec{a}) = \rho F(\vec{a}) + R_{\text{sim}}(\vec{a}) \). We then continue as described above, and it is not too difficult to argue that this strategy yields the correct distribution.

We are now ready to turn the above discussions into formal definitions and proofs. First, we give the definition of the PZK Sumcheck Theorem.

Definition 5.1. The sumcheck relation and its promise variant are defined as follows.

- The sumcheck relation is the relation \(\mathcal{R}_{SC} \) of instance-witness pairs \(((F, m, d, H, v), F) \) such that (i) \(F \) is a finite field, \(H \) is a subset of \(F \), \(v \) is an element of \(F \), and \(m, d \) are positive integers with \(\frac{md}{|H|} < \frac{1}{2} \); (ii) \(F \) is in \(F^{\leq |d|}[X_1, \ldots, X_m] \) and sums to \(v \) on \(H^m \).

- The sumcheck promise relation is the pair of relations \((\mathcal{R}^{\text{yes}}_{SC}, \mathcal{R}^{\text{no}}_{SC}) \) where \(\mathcal{R}^{\text{yes}}_{SC} := \mathcal{R}_{SC} \) and \(\mathcal{R}^{\text{no}}_{SC} \) are the pairs \(((F, m, d, H, v), F) \) such that \((F, m, d, H, v) \) is as above and \(F \) is in \(F^{\leq |d|}[X_1, \ldots, X_m] \) but does not sum to \(v \) on \(H^m \).

Definition 5.2. A PZK IPCP system for sumcheck with soundness error \(\varepsilon \) is a pair of interactive algorithms \((P, V)\) that satisfies the following properties.

- **Completeness.** For every \((F, m, d, H, v), F) \in \mathcal{R}^{\text{yes}}_{SC} \), \(\Pr \left[\langle P^F(F, m, d, H, v), V^F(F, m, d, H, v) \rangle = 1 \right] = 1 \).

- **Soundness.** For every \((F, m, d, H, v), F) \in \mathcal{R}^{\text{no}}_{SC} \) and malicious prover \(\tilde{P} \), \(\Pr \left[\langle \tilde{P}, V^F(F, m, d, H, v) \rangle = 1 \right] \leq \varepsilon \).

- **Perfect Zero Knowledge.** There exists a straightforward simulator \(S \) such that, for every \((F, m, d, H, v), F) \in \mathcal{R}^{\text{yes}}_{SC} \) and malicious verifier \(\tilde{V} \), the following two random variables are identically distributed

\[
\left(S^V(F, m, d, H, v), q_S \right) \text{ and } \left(\text{View} \langle P^F(F, m, d, H, v), \tilde{V}^F \rangle, q_V \right),
\]

where \(q_S \) is the number of queries to \(F \) made by \(S \) and \(q_V \) is the number of queries to \(F \) or PCP oracle made by \(\tilde{V} \). Moreover, \(S \) runs in time \(\text{poly}(|F| + |H| + m + q_S) \), where \(q_V \) is \(\tilde{V} \)'s query complexity.

Theorem 5.3 (PZK Sumcheck). There exists a PZK public-coin IPCP system \((P, V)\) for sumcheck with soundness error \(\varepsilon = O\left(\frac{\text{poly}(m)}{|H|} \right) \) and the following efficiency parameters.

- **Oracle round:** \(P \) sends an oracle proof string \(\pi : F^m \to F \).

- **Interactive proof:** after the oracle round, \(P \) and \(V \) engage in an \(m \)-round interactive proof; across the interaction, the verifier sends to the prover \(O(m) \) field elements, while the prover sends to the verifier \(O(md) \) field elements.

- **Queries:** after the interactive proof, \(V \) non-adaptively queries \(\pi \) at \(\text{poly}(|F| + m + d) \) locations.

- **Space and time:** \(P \) runs in space \(\text{poly}(|F| + m + d + |H|) \), while \(V \) in time \(\text{poly}(|F| + m + d + |H|) \). (The prover’s space complexity assumes that the randomness tape is two-way rather than one-way; see Remark 5.7 below.)

5.1 Step 1

We construct a public-coin IP for sumcheck that is perfect zero knowledge, in the "\(R \)-hybrid" model, where the prover and verifier have access to a uniformly random \(R \in F^{\leq |d|}[X_1, \ldots, X_m] \) conditioned on \(\sum_{\vec{a} \in H^m} R(\vec{a}) = 0 \).

Construction 5.4. The IP system \((P_{IV}, V_{IV})\) is defined as follows. Both \(P_{IV} \) and \(V_{IV} \) receive a tuple \((F, m, d, H, v)\) as common input, and two polynomials \(F, R \in F^{\leq |d|}[X_1, \ldots, X_m] \) as oracles. The interaction proceeds as follows:

1. \(V_{IV} \) draws a random element \(\rho \in F \), and sends \(\rho \) to \(P_{IV} \); then
2. \(P_{IV} \) and \(V_{IV} \) run the sumcheck IP \([LFKN92, Sha92]\) on the statement \(\sum_{\vec{a} \in H^m} Q(\vec{a}) = \rho v \) where \(Q := \rho F + R \) (with \(P_{IV} \) playing the role of the prover and \(V_{IV} \) that of the verifier).
Note that \((P_{IP},V_{IP})\) is public-coin, and satisfies the following efficiency properties.

- **Communication:** The number of rounds is \(m\), because the first message is from \(V_{IP}\) to \(P_{IP}\); then the standard sumcheck protocol starts with a message from the prover to the verifier, and is followed by \(m-1\) full rounds. Across the interaction, \(P_{IP}\) sends \(O(m)\) field elements to \(V_{IP}\), while \(V_{IP}\) sends \(O(md)\) field elements to \(P_{IP}\).

- **Queries:** \(V_{IP}\) queries \(F\) and \(R\) each at a single random point because, at the end of the sumcheck protocol, the verifier queries \(Q\) at a random point \(\bar{\gamma}\), and such a query can be “simulated” by querying \(F\) and \(R\) at \(\bar{\gamma}\) and then using these answers, along with \(\rho\), to compute the necessary value for \(Q\).

- **Space and time:** \(P_{IP}\) runs in space \(\text{poly}(\log|F| + m + d + |H|)\), while \(V_{IP}\) in time \(\text{poly}(\log|F| + m + d + |H|)\).

(The prover’s space complexity assumes that the randomness tape is two-way; see Remark 5.7 below.)

We now state and prove the completeness, soundness, and perfect zero knowledge properties.

Lemma 5.5. The IP system \((P_{IP},V_{IP})\) satisfies the following properties.

- **Completeness.** For every \(((F,m,d,H,v),F) \in \mathcal{R}_{SC}^{poly}\) and \(R \in \mathbb{F}^{<d}[X_1,\ldots,X_m] \) with \(\sum_{\bar{\alpha} \in H^m} R(\bar{\alpha}) = 0\),

\[
\Pr \left[(P_{IP}^{F,R}(F,m,d,H,v), V_{IP}^{F,R}(F,m,d,H,v) = 1 \right] = 1 .
\]

- **Soundness.** For every \(((F,m,d,H,v), F) \in \mathcal{R}_{SC}^{poly}, R \in \mathbb{F}^{<d}[X_1,\ldots,X_m]\), and malicious prover \(\hat{P}\),

\[
\Pr \left[(\hat{P}, V_{IP}^{F,R}(F,m,d,H,v) = 1 \right] \leq \frac{md + 1}{|\mathbb{F}|} .
\]

- **Perfect zero knowledge.** There exists a straightline simulator \(S_{IP}\) such that, for every \(((F,m,d,H,v), F) \in \mathcal{R}_{SC}^{poly}\) and malicious verifier \(V\), the following two random variables are identically distributed

\[
\left(S_{IP}^{V,F}(F,m,d,H,v), q_{S_{IP}}\right) \quad \text{and} \quad \left(\text{View} \langle P_{IP}^{F,R}(F,m,d,H,v), V_{IP}^{F,R} \rangle, q_{V} \right),
\]

where \(R\) is uniformly random in \(\mathbb{F}^{<d}[X_1,\ldots,X_m]\) conditioned on \(\sum_{\bar{\alpha} \in H^m} R(\bar{\alpha}) = 0\), \(q_{S_{IP}}\) is the number of queries to \(F\) made by \(S_{IP}\), and \(q_{V}\) is the number of queries to \(F\) or \(R\) made by \(V\). Moreover, \(S_{IP}\) runs in time \(\text{poly}(\log|F| + m + d + |H| + q_{V})\) where \(q_{V}\) is \(V\)’s query complexity.

Proof. We argue first completeness, then soundness, and, finally, perfect zero knowledge.

Completeness. If both \(F\) sums to \(v\) on \(H^m\) and \(R\) sums to 0 on \(H^m\), then \(Q := \rho F + R\) sums to \(\rho v\) on \(H^m\) for every choice of \(\rho\). Then completeness follows from the completeness of standard sumcheck.

Soundness. For every \(F,R \in \mathbb{F}^{<d}[X_1,\ldots,X_m]\) with \(\sum_{\bar{\alpha} \in H^m} F(\bar{\alpha}) \neq 0\). Then \(\sum_{\bar{\alpha} \in H^m} Q(\bar{\alpha}) = \rho v\) for at most one choice of \(\rho\), namely, \((\sum_{\bar{\alpha} \in H^m} R(\bar{\alpha}))/v - \sum_{\bar{\alpha} \in H^m} F(\bar{\alpha}))\). Thus, except with probability \(1/|\mathbb{F}|\), the sumcheck protocol is invoked on an incorrect claim, which incurs a soundness error of at most \(md/|\mathbb{F}|\). The claimed soundness error follows by a union bound.

Perfect zero knowledge. We begin by proving perfect zero knowledge via a straightline simulator \(S_{\text{slow}}\) whose number of queries to \(F\) equals \(q_{V}\), but runs in time \(\text{poly}(|\mathbb{F}|^m + q_{V})\). After that, we explain how to modify \(S_{\text{slow}}\) into another simulator \(S_{IP}\), with an identical output distribution, that runs in the faster time claimed in the lemma.

<table>
<thead>
<tr>
<th>The simulator (S_{\text{slow}}), given straightline access to (V) and oracle access to (F), works as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Draw a uniformly random (R_{\text{sim}} \in \mathbb{F}^{<d}[X_1,\ldots,X_m]) conditioned on (\sum_{\bar{\alpha} \in H^m} R_{\text{sim}}(\bar{\alpha}) = 0).</td>
</tr>
<tr>
<td>2. Whenever (V) queries (F) at (\bar{\gamma} \in \mathbb{F}^m), return (F(\bar{\gamma})); whenever (V) queries (R) at (\bar{\gamma} \in \mathbb{F}^m), return (R_{\text{sim}}(\bar{\gamma})).</td>
</tr>
<tr>
<td>3. Receive (\hat{\rho}) from (V), and draw a uniformly random (Q_{\text{sim}} \in \mathbb{F}^{<d}[X_1,\ldots,X_m]) conditioned on (\sum_{\bar{\alpha} \in H^m} Q_{\text{sim}}(\bar{\alpha}) = \hat{\rho} v) and (Q_{\text{sim}}(\bar{\gamma}) = \hat{\rho} F(\bar{\gamma}) + R_{\text{sim}}(\bar{\gamma})) for every coordinate (\bar{\gamma} \in \mathbb{F}^m) queried in Step 2. (This latter condition requires querying (F) at (\bar{\gamma}) for every coordinate (\bar{\gamma} \in \mathbb{F}^m) queried to (R_{\text{sim}}) in Step 2.)</td>
</tr>
<tr>
<td>4. Hereafter: whenever (V) queries (F) at (\bar{\gamma} \in \mathbb{F}^m), return (F(\bar{\gamma})); whenever (V) queries (R) at (\bar{\gamma} \in \mathbb{F}^m), return (Q_{\text{sim}}(\bar{\gamma}) - \hat{\rho} F(\bar{\gamma})). (In either case, a query to (F) is required.)</td>
</tr>
<tr>
<td>5. Run the sumcheck protocol with (V) on (Q_{\text{sim}}). (Note that (V) may query (F) or (R) before, during, or after this protocol.)</td>
</tr>
</tbody>
</table>
We explain how to modify $S_{\vec{\gamma}}$• . In Step 1, simulator can use the algorithm $A_{\vec{\gamma}}$ on previous such queries; when $S_{\vec{\gamma}}$• justifies below) that all information about $R_{\vec{\gamma}}$Q\sim \equiv View\langle P_{IP}^{F,R}, \vec{V}^{F,R}\rangle.

\textbf{Proof.} Define the random variable $Q := \tilde{\rho}F + R$, where $\tilde{\rho}$ is chosen by \vec{V}. Observe that there exists a (deterministic) function $v(\cdot)$ such that

$$V \equiv View\langle P_{IP}^{F,R}, \vec{V}^{F,R}\rangle = v(Q, F, r) \quad \text{and} \quad S_{\vec{\gamma}}^{\sim} = v(Q_{\vec{\gamma}}^{\sim}, F, r),$$

where the random variable r is \vec{V}'s private randomness. Indeed, (i) the messages sent and received by \vec{V} are identical to those when interacting with P_{IP} on Q and $Q_{\vec{\gamma}}^{\sim}$, respectively; (ii) \vec{V}'s queries to F are answered honestly; (iii) \vec{V}'s queries to R are answered by $R = Q - \tilde{\rho}F$ and $R_{\vec{\gamma}}^{\sim} = Q_{\vec{\gamma}}^{\sim} - \tilde{\rho}F$ respectively. We are only left to argue that, for any choice of r, Q and $Q_{\vec{\gamma}}^{\sim}$ are identically distributed:

- $Q = \tilde{\rho}F + R$ is uniformly random in $F^{<d}[X_1, \ldots, X_m]$ conditioned on $\sum_{\alpha \in H^m} Q(\alpha) = \tilde{\rho}v$, because R is uniformly random in $F^{<d}[X_1, \ldots, X_m]$ conditioned on $\sum_{\alpha \in H^m} R(\alpha) = 0$ (and F is in $F^{<d}[X_1, \ldots, X_m]$ and satisfies $\sum_{\alpha \in H^m} F(\alpha) = v$); and

- $Q_{\vec{\gamma}}^{\sim}$ is uniformly random in $F^{<d}[X_1, \ldots, X_m]$ conditioned on $\sum_{\alpha \in H^m} Q_{\vec{\gamma}}^{\sim}(\alpha) = \tilde{\rho}v$, because $Q_{\vec{\gamma}}^{\sim}$ is sampled at random in $F^{<d}[X_1, \ldots, X_m]$ conditioned on $\sum_{\alpha \in H^m} Q_{\vec{\gamma}}^{\sim}(\alpha) = \tilde{\rho}v$ and $Q_{\vec{\gamma}}^{\sim}(\gamma) = R_{\vec{\gamma}}^{\sim}(\gamma) + \tilde{\rho}F(\gamma)$ for some (adversarial) choice of $\gamma_1, \ldots, \gamma_k$. But $R_{\vec{\gamma}}^{\sim}$ is uniformly random in $F^{<d}[X_1, \ldots, X_m]$ such that $\sum_{\alpha \in H^m} R_{\vec{\gamma}}^{\sim}(\alpha) = 0$, so the latter condition says that $Q_{\vec{\gamma}}^{\sim}$ matches a random polynomial on the set of points $\{\gamma_1, \ldots, \gamma_k\}$, giving the claimed distribution for $Q_{\vec{\gamma}}^{\sim}$. \square

We explain how to modify $S_{\vec{\gamma}}$• so as to reduce the running time to $\text{poly}(\log |F| + m + d + |H| + q_{\vec{V}})$.

Note that $S_{\vec{\gamma}}$•'s inefficiency arises from sampling two random polynomials in $F^{<d}[X_1, \ldots, X_m]$, namely $R_{\vec{\gamma}}^{\sim}$ and $Q_{\vec{\gamma}}^{\sim}$, subject to certain constraints, and using them to answer \vec{V}'s messages and queries. We observe (and carefully justify below) that all information about $R_{\vec{\gamma}}^{\sim}$ and $Q_{\vec{\gamma}}^{\sim}$ received by \vec{V} is answers to queries of the form “given $\vec{\gamma} \in F^{\leq m}$, return the value $A(\vec{\gamma}) := \sum_{\alpha \in H^{m-|\vec{\gamma}|}} A(\vec{\gamma}, \alpha)$” for a random $A \in F^{<d}[X_1, \ldots, X_m]$, possibly conditioned on previous such queries; when $\vec{\gamma}$ has length zero we use the symbol \bot, so that $A(\bot)$ denotes $\sum_{\alpha \in H^m} A(\alpha)$. The new simulator can use the algorithm A from our Corollary 4.10 to adaptively answer such queries, without ever explicitly sampling the two polynomials.

We now argue that all information about $R_{\vec{\gamma}}^{\sim}$ and $Q_{\vec{\gamma}}^{\sim}$ received by \vec{V} from $S_{\vec{\gamma}}$• can be viewed as queries of the above form, by discussing each step of $S_{\vec{\gamma}}$•.

- In Step 1, $S_{\vec{\gamma}}$• draws a uniformly random $R_{\vec{\gamma}}^{\sim} \in F^{<d}[X_1, \ldots, X_m]$ conditioned on $R_{\vec{\gamma}}^{\sim}(\bot) = 0$.

- In Step 2, $S_{\vec{\gamma}}$• answers any query $\vec{\gamma} \in F^{\leq m}$ to R with $R_{\vec{\gamma}}^{\sim}(\vec{\gamma})$.

- In Step 3, $S_{\vec{\gamma}}$• draws a uniformly random $Q_{\vec{\gamma}}^{\sim} \in F^{<d}[X_1, \ldots, X_m]$ conditioned on $Q_{\vec{\gamma}}^{\sim}(\bot) = \tilde{\rho}v$ and also on $Q_{\vec{\gamma}}^{\sim}(\vec{\gamma}) = R_{\vec{\gamma}}^{\sim}(\vec{\gamma}) + \tilde{\rho}F(\vec{\gamma})$ for at most $q_{\vec{V}}$ points $\vec{\gamma} \in F^{\leq m}$ (namely, the points corresponding to queries in Step 2).

- In Step 4, $S_{\vec{\gamma}}$• replies any query $\vec{\gamma} \in F^{\leq m}$ to R with $Q_{\vec{\gamma}}^{\sim}(\vec{\gamma}) - \tilde{\rho}F(\vec{\gamma})$.

- In Step 5, $S_{\vec{\gamma}}$• runs the sumcheck protocol with \vec{V} on $Q_{\vec{\gamma}}^{\sim}$, which requires computing univariate polynomials of the form $\sum_{\alpha \in H^{m-|\vec{\gamma}|}} Q_{\vec{\gamma}}^{\sim}(\vec{\theta}, X, \alpha) \in F[X]$ for various choices of $\vec{\theta} \in F^{<m}$. Each of these polynomials has degree less than d, and so can be obtained by interpolation from its evaluation at any d distinct points; each of these is the answer of a query to $Q_{\vec{\gamma}}^{\sim}$ of the required form, with $\vec{\gamma} = (\vec{\theta}, \delta)$ for some $\delta \in F$. Overall, during the protocol, $S_{\vec{\gamma}}$• only needs to query $Q_{\vec{\gamma}}^{\sim}$ at md points $\vec{\gamma} \in F^{\leq m}$.

31
In sum, we can modify S_{slow} so that instead of explicitly sampling R_{sim} and Q_{sim}, it uses A to sample the answer for each query to Q_{sim} or R_{sim}, conditioning the uniform distribution on the answers to previous queries. Putting all of this together, we obtain the simulator S_{IP} described below, whose output is identically distributed to the output of S_{slow}.

The simulator S_{IP}, given straightline access to \tilde{V} and oracle access to F, works as follows:

1. Let $\text{ans}_{R_{\text{sim}}}$ be a subset of $F^{\leq m} \times F$ that records query-value pairs for R_{sim}; initially, $\text{ans}_{R_{\text{sim}}}$ equals $\{(\perp, \ast)\}$.
2. Whenever V queries F at $\gamma \in F^m$, return $F(\gamma)$; whenever V queries R at $\gamma \in F^m$, return $\beta := A(F, m, d, H, \text{ans}_{R_{\text{sim}}}, \gamma)$.
 In the latter case, add (γ, β) to $\text{ans}_{R_{\text{sim}}}$.
3. Receive \tilde{V}, and compute $\text{ans}_{Q_{\text{sim}}} := \left\{(\gamma, \beta + \tilde{V}(\gamma)) \right\} \cap \text{ans}_{R_{\text{sim}}}$; this subset of $F^{\leq m} \times F$ records query-value pairs for Q_{sim}. Note that $\text{ans}_{Q_{\text{sim}}}$ includes the pair (\perp, \ast) because $F(\perp) = \ast$ by assumption.
4. Hereafter: whenever V queries F at $\gamma \in F^m$, return $F(\gamma)$; whenever V queries R at $\gamma \in F^m$, return $\beta' := \beta - \tilde{V}(\gamma)$ where $\beta := A(F, m, d, H, \text{ans}_{Q_{\text{sim}}}, \gamma)$. In the latter case, add (γ, β') to $\text{ans}_{Q_{\text{sim}}}$.
5. Run the sumcheck protocol with V on Q_{sim}, by using the algorithm A and updating $\text{ans}_{Q_{\text{sim}}}$ appropriately. (Note that \tilde{V} may query F or R before, during, or after this protocol.)
6. Output the view of the simulated V.

Note that S_{IP} makes the same number of queries to F as S_{slow} does. Also, the number of pairs in $\text{ans}_{R_{\text{sim}}}$ is at most $q_{\tilde{V}} + md + 1$; ditto for $\text{ans}_{Q_{\text{sim}}}$. Since the algorithm A is called at most $q_{\tilde{V}} + md$ times, the running time of S_{IP} is $\text{poly}(\log |F| + m + d + |H| + q_{\tilde{V}})$, as required. □

5.2 Step 2

The IP described and analyzed in Section 5.1 is in the “R-hybrid” model. We now compile that IP into an IPCP, by using proximity testing and self-correction, thereby concluding the proof of the PZK Sumcheck Theorem.

Proof of Theorem 5.3. Construct an IPCP system (P, V) for sumcheck as follows:

- The prover P, given input (F, m, d, H, v) and oracle access to F, samples a uniformly random polynomial $R \in F^{<d}[X_1, \ldots, X_m]$ conditioned on $\sum_{\alpha \in H^m} R(\alpha) = 0$ and sends its evaluation $\pi : F^m \rightarrow F$ to the verifier V. Then P simulates $P_{\text{IP}}(F, m, d, H, v)$.
- The verifier V, after receiving a proof string $\pi : F^m \rightarrow F$, simulates $V_{\text{IP}}^{F, \pi}(F, m, d, H, v)$ up to V_{IP}’s single query $\tilde{\alpha} \in F^m$ to π (which occurs after the interaction), which V does not answer directly but instead answers as follows. First, V checks that π is ϱ-close to the evaluation of a polynomial in $F^{<d}[X_1, \ldots, X_m]$ by performing an individual-degree test with proximity parameter $\varrho := \frac{1}{8}$ and soundness error $\varepsilon := \frac{md}{|F|^2}$ [GS06, GR15]; then, V computes $\pi(\tilde{\alpha})$ via self-correction with soundness error ε [RS96, AS03], and replies with that value. Both procedures require $\text{poly}(\log |F| + m + d)$ queries and time. Finally, V rejects if V_{IP} rejects or the individual degree test rejects.

Completeness and perfect zero knowledge of (P, V) are inherited, in a straightforward way, from those of $(P_{\text{IP}}, V_{\text{IP}})$. We now argue soundness. So consider an instance-witness pair $(F, m, d, H, v) \in \mathcal{R}_{\text{SC}}$ and a malicious prover \hat{P}, and denote by $\hat{\pi} : F^m \rightarrow F$ the proof string sent by \hat{P}. We distinguish between the following two cases.

- **Case 1:** $\hat{\pi}$ is ϱ-far from evaluations of polynomials in $F^{<d}[X_1, \ldots, X_m]$.
 - In this case, the low-degree test accepts with probability at most ε.

- **Case 2:** $\hat{\pi}$ is ϱ-close to evaluations of polynomials in $F^{<d}[X_1, \ldots, X_m]$.
 - In this case, let \hat{R} be the unique polynomial in $F^{<d}[X_1, \ldots, X_m]$ whose evaluation is ϱ-close to $\hat{\pi}$; this polynomial exists because ϱ is less than the unique decoding radius (of the corresponding Reed–Muller code), which equals $\frac{1}{2}(1 - \frac{1}{|F|^2})^{-m}$, and is at most $\frac{1}{2}$ by the assumption that $\frac{md}{|F|^2} < \frac{1}{2}$. By the soundness of $(P_{\text{IP}}, V_{\text{IP}})$, the probability that $V_{\text{IP}}^{F, \hat{R}}$ accepts is at most $\frac{md+1}{|F|^2} + \varepsilon$ (see Lemma 5.5). However V only has access to $\hat{\pi}$, and uses self-correction on it to compute \hat{R} at the single location $\tilde{\alpha} \in F^m$ required by V_{IP}; the probability that the returned value is not correct is at most ε. Hence, by a union bound, V accepts at probability at most $\frac{md+1}{|F|^2} + \varepsilon$.

32
Overall, we deduce that V accepts with probability at most $\max\{\epsilon, \frac{md+1}{|\rho|} + \epsilon\} \leq 3 \frac{md}{|\rho|}$.

Remark 5.6 (necessity of IPCP). One may be tempted to “flatten” the IPCP used to prove Theorem 5.3 by sending a single PCP that already contains all possible transcripts, relative to all possible ρ’s. Such a modification does indeed preserve completeness and soundness. (In fact, even a small subset of ρ’s is enough for constant soundness error, because only one ρ in \mathbb{F} is “bad”.) However, this modification does not preserve zero knowledge: if a verifier learns, say, the partial sums $\alpha_1 := \rho_1 F(\vec{\gamma}) + R(\vec{\gamma})$ and $\alpha_2 := \rho_2 F(\vec{\gamma}) + R(\vec{\gamma})$ for $\rho_1 \neq \rho_2$ and some $\vec{\gamma} \in \mathbb{F}^m$, then he also learns $F(\vec{\gamma}) = \frac{\alpha_1 - \alpha_2}{\rho_1 - \rho_2}$, violating zero knowledge. (That said, the modification does preserve honest-verifier zero knowledge.)

Remark 5.7 (space complexity of the prover). The prover in a zero knowledge protocol is a probabilistic function, and hence reads bits from its randomness tape. In the case of the above protocol, the prover P must sample the evaluation of a random polynomial R in $\mathbb{F}^{<d}[X_1, \ldots, X_m]$; the entropy of R is exponential and thus requires reading an exponential number of random bits from the randomness tape. (Beyond this, P requires no other randomness.) It is easy to see that P can run in exponential time and space. However, if the prover has two-way access to its random tape, P can run in exponential time and polynomial space: the prover treats the random tape as the coefficients of R, computing an evaluation at a given point by reading the tape coefficient-by-coefficient and summing the contributions of each monomial.

Two-way access to the randomness tape is a relaxation of the standard definition, which permits only one-way access to it [Nis93]; that is, random bits must be stored on the work tape in order to be accessed again. It is not known whether the relaxation makes polynomial-space machines more powerful for decision problems (the class is equivalent to “almost”-PSPACE [BVW98]), nor do we know how to obtain a polynomial-space prover with only one-way access. Nevertheless, we believe that polynomial space with two-way access to the random tape is still quite meaningful, e.g., it yields standard polynomial space relative to a random oracle.
6 Perfect zero knowledge for counting problems

We prove that \#P has an IPCP that is perfect zero knowledge against unbounded queries. (Recall that \#P corresponds to all counting problems associated to decision problems in NP.) We do so by constructing a suitable protocol for the counting problem associated to 3SAT, which is \#P-complete.

Definition 6.1. Let \(\mathcal{L}_{\#3SAT} \) be the language of pairs \((\phi, N) \) where \(\phi \) is a 3-CNF boolean formula and \(N \) is the number of satisfying assignments of \(\phi \). We denote by \(n \) the number of variables and by \(c \) the number of clauses in \(\phi \).

We construct a public-coin IPCP system for \(\mathcal{L}_{\#3SAT} \) that is perfect zero knowledge against unbounded queries, and has exponential proof length and polynomial query complexity. As in the non-ZK IP counterpart, the number ofarithmetic circuits associated to 3SAT counting problem associated to decision problems in \(\mathcal{NP} \).

Theorem 6.2 (formal statement of 1.1). There exists a IPCP system \((P, V) \) that puts \(\mathcal{L}_{\#3SAT} \) in the complexity class

\[
\begin{array}{c|c}
\text{rounds} & k = O(n) \\
\text{proof length} & l = \exp(n) \\
\text{query complexity} & q = \text{poly}(c) \\
\text{soundness error} & \varepsilon = 1/2 \\
\text{prover space} & \text{sp} = \text{poly}(c) \\
\text{verifier time} & tv = \text{poly}(c) \\
\text{query bound} & b = * \\
\end{array}
\]

Moreover, the verifier \(V \) is public-coin and non-adaptive.

Proof. Let \((P_{SC}, V_{SC}) \) be the PZK IPCP system for sumcheck from Theorem 5.3, and let \(S_{SC} \) be any simulator attests to its perfect zero knowledge. We construct an IPCP system \((P, V) \) for \(\mathcal{L}_{\#3SAT} \) as follows.

- The prover \(P \), given an instance \((\phi, N) \), finds a prime \(q \in (2^n, 2^{2n}] \) of \(\phi \) and simulates \(P_{SC}^F(\mathbb{F}, m, d, H, v) \) with \(\mathbb{F} := \mathbb{F}_q, m := n, d := 3c, H := \{0, 1\}, v := N, \) and \(F(X_1, \ldots, X_n) := p_\phi(X_1, \ldots, X_n) \). (The prover \(P \) also communicates the prime \(q \) to the \(V \) verifier.)
- The verifier \(V \), given an instance \((\phi, N) \), also computes \(\mathbb{F}, m, d, H, v, F \), and then simulates \(V_{SC}^F(\mathbb{F}, m, d, H, v) \), and accepts if and only if the simulation accepts.

Note that the arithmetization of a 3-CNF formula \(\phi \) can be computed in time \(\text{poly}(c) \), and the claimed given efficiency parameters follow from Theorem 5.3. We now argue completeness, soundness, and finally perfect zero knowledge.

Completeness. Completeness follows from the completeness of \((P_{SC}, V_{SC}) \) and the fact that if \((\phi, N) \in \mathcal{L}_{\#3SAT} \) then \(((\mathbb{F}, m, d, H, v), F) = ((\mathbb{F}_q, n, 3c, \{0, 1\}^n, N), p_\phi) \in \mathcal{R}_{SC} \).

Soundness. Soundness follows from the soundness of \((P_{SC}, V_{SC}) \) and the fact that if \((\phi, N) \notin \mathcal{L}_{\#3SAT} \) then \(((\mathbb{F}, m, d, H, v), F) = ((\mathbb{F}_q, n, 3c, \{0, 1\}^n, N), p_\phi) \in \mathcal{R}_{SC}^{\text{no}} \).

Perfect zero knowledge. We construct a simulator \(S \) that provides perfect zero knowledge. Given an instance \((\phi, N) \) and straightline access to a verifier \(\hat{V} \), the simulator \(S \) computes \(\mathbb{F}, m, d, H, v, F \) as above and simulates \(S_{SC}^\hat{V}(\mathbb{F}, m, d, H, v) \). By the perfect zero knowledge property of \((P_{SC}, V_{SC}) \), the simulator’s output is identically distributed to \(\text{View}(P_{SC}(\mathbb{F}, m, d, H, v), \hat{V}) \); but note that \(\hat{V} \) does not query any oracles outside of its interaction with \(P_{SC} \) so that \(\hat{V}^P = \hat{V} \). By the construction of \(P \) above, this view equals to \(\text{View}(P(\phi, N), \hat{V}) \), as desired. \(\square \)
7 Perfect zero knowledge from succinct constraint detection

We show how to obtain perfect zero knowledge 2-round IOPs of Proximity for any linear code that has proximity proofs with succinct constraint detection (Section 7.1). Afterwards, we instantiate this general transformation for the case of Reed–Solomon codes (Section 7.2), whose proximity proofs we discussed in Section 4.3.

7.1 A general transformation

PCPs of proximity for codes. A PCP of Proximity [DR04, BGH+06] for a code family \(\mathcal{C} = \{ C_n \}_n \) is a pair \((P, V)\) where for every index \(n \) and \(w \in \mathbb{F}^{D(n)} \); if \(w \in C_n \) then \(V^{\pi}(n) \) accepts with probability 1 with \(\pi := P(n, w) \); if \(w \) is ‘far’ from \(C_n \) then \(w \in C_n \) rejects with high probability regardless of \(\pi \). We do not formally define this notion because it is a special case of a 1-round IOP of Proximity (see Section 3.2.3) where the verifier message is empty; we use \(\text{PCPP}[l, q, \epsilon, \delta, tp, tv] \) to denote the corresponding complexity class. Note that, since both \(\pi \) and \(w \) are provided as oracles to \(V \), the query complexity of \(V \) is the total number of queries across both oracles.

Leakage from proximity proofs. While proximity proofs facilitate local testing, they are a liability for zero knowledge: in principle even a single query to \(\pi \) may ‘summarize’ information that needs many queries to \(w \) to simulate. (This holds for BS proximity proofs [BS08], for instance.) Our construction facilitates local testing while avoiding this leakage.

Perfect zero knowledge IOPs of Proximity. The notion of zero knowledge for IOPs of Proximity that we target is defined in Section 3.3.2 and is analogous to [IW14]'s notion for PCPs of Proximity (a special case of our setting). Informally, it requires an algorithm that simulates the verifier’s view by making as many queries to \(w \) as the total number of verifier queries to either \(w \) or any oracles sent by the prover; intuitively, this means that any bit of any message oracle reveals no more information than one bit of \(w \).

A generic ‘masking’ construction. Suppose that the linear code family \(\mathcal{C} = \{ C_n \}_n \) has a PCP of Proximity. Consider the 2-round IOP of Proximity that uses masking via random self-reducibility (similarly to [BCGV16]) as follows. The prover and verifier input \(n \) and oracle access to a codeword \(w \), and the prover wants to convince the verifier that \(w \) is close to \(C_n \). Rather than sending a proximity proof for \(w \), the prover samples a random codeword \(z \in C_n \) and sends it to the verifier; the verifier replies with a random field element \(\rho \); the prover sends a proximity proof for the new codeword \(\rho w + z \). Completeness follows from linearity of \(C_n \); soundness follows from the fact that if \(w \) is far from \(C_n \) then so is the word \(\rho w + z \) for every \(z \) with high probability over \(\rho \).

Perfect zero knowledge intuitively follows from the observation that \(\rho w + z \) is essentially a random codeword (up to malicious choice of \(\rho \). We formally prove this for the case where the linear code family consisting of the concatenation of codewords in \(\mathcal{C} \) with corresponding proximity proofs has succinct constraint detection.

We are now ready to turn the above discussions into formal definitions and proofs. Throughout, given a code family \(\mathcal{C} \), we denote by \(\text{Rel}(\mathcal{C}) \) the relation consisting of all pairs \((n, w) \) such that \(w \in C_n \).

Definition 7.1. Let \(\mathcal{C} = \{ C_n \}_n \) be a linear code family with domain \(D(\cdot) \) and alphabet \(\mathbb{F}(\cdot) \), and let \((P, V) \) be a PCPP system for \(\text{Rel}(\mathcal{C}) \). We say that \((P, V) \) is linear if \(P \) is deterministic and is linear in its input codeword: for every index \(n \) there exists a matrix \(A_n \) with entries in \(\mathbb{F}(n) \) such that \(P(n, w) = A_n \cdot w \) for all \(w \in C_n \) (equivalently, the set \(\{ w \parallel P(n, w) \}_{w \in C_n} \) is a linear code).

Definition 7.2. Let \(\mathcal{C} = \{ C_n \}_n \) be a linear code family with domain \(D(\cdot) \) and alphabet \(\mathbb{F}(\cdot) \), and let \((P, V) \) be a PCPP system for \(\text{Rel}(\mathcal{C}) \). We say that \((P, V) \) has \(T(\cdot, \cdot) \)-time constraint detection if \((P, V) \) is linear and, moreover, the linear code family \(\mathcal{Z} = \{ L_n \} \) has \(T(\cdot, \cdot) \)-time constraint detection, where \(L_n := \{ w \parallel P(n, w) \}_{w \in C_n} \); we also say that \((P, V) \) has succinct constraint detection if the same holds with \(T(n, \ell) = \text{poly}(n + \ell) \).

Theorem 7.3. Let \(\mathcal{C} = \{ C_n \}_n \) be a linear code family with domain \(D(\cdot) \), alphabet \(\mathbb{F}(\cdot) \), block length \(\ell(\cdot) \), and a \(S(\cdot) \)-time sampler. Suppose that there exists a PCPP system \((P_\mathcal{C}, V_\mathcal{C}) \) for \(\text{Rel}(\mathcal{C}) \) that (is linear and) has succinct...
constraint detection and puts $\text{Rel}(\mathcal{E})$ in the complexity class PCPP:

\[
\begin{array}{|c|c|}
\hline
\text{answer alphabet} & \mathbb{F}(n) \\
\text{proof length} & l_\mathcal{E}(n) \\
\text{query complexity} & q_\mathcal{E}(n) \\
\text{soundness error} & \varepsilon_\mathcal{E}(n) \\
\text{proximity parameter} & \delta_\mathcal{E}(n) \\
\text{prover time} & t_\mathcal{E}(n) \\
\text{verifier time} & t_{\mathcal{E}}(n) \\
\text{verifier randomness} & r_{\mathcal{E}}(n) \\
\hline
\end{array}
\]

Then there exists an IOPP system (P, V) that puts $\text{Rel}(\mathcal{E})$ in the complexity class PZK-IOPP:

\[
\begin{array}{|c|c|}
\hline
\text{answer alphabet} & \mathbb{F}(n) \\
\text{rounds} & k(n) = 2 \\
\text{proof length} & l(n) = l_\mathcal{E}(n) + \ell(n) \\
\text{query complexity} & q(n) = 2q_\mathcal{E}(n) \\
\text{soundness error} & \varepsilon(n) = \varepsilon_\mathcal{E}(n) + \frac{1}{|\mathbb{F}(n)|} \\
\text{proximity parameter} & \delta(n) = 2\delta_\mathcal{E}(n) \\
\text{prover time} & t_\mathcal{E}(n) = t_\mathcal{E}(n) + S(n) + O(\ell(n)) \\
\text{verifier time} & t_{\mathcal{E}}(n) = t_{\mathcal{E}}(n) + O(q_\mathcal{E}(n)) \\
\text{verifier randomness} & r_{\mathcal{E}}(n) = r_{\mathcal{E}}(n) + \log|\mathbb{F}(n)| \\
\text{query bound} & b(n) = * \\
\hline
\end{array}
\]

Remark 7.4 (the case of LTCs). It is tempting to apply Theorem 7.3 to the notable special case where the proximity proof is empty (e.g., when \mathcal{E} is locally testable so no proximity proofs are needed). However, in this case, the zero knowledge guarantee of our construction does not buy anything compared to when the verifier queries only the codeword (indeed, the verifier already learns precisely the value of codeword at those positions which it queries and nothing else).

Construction 7.5. The IOPP system (P, V) is defined as follows. The prover receives a pair (n, w) as input, while the verifier receives the index n as input and w as an oracle. The interaction proceeds as follows:

1. P samples a random codeword z in C_n and sends z to V;
2. V samples a random element ρ in $\mathbb{F}(n)$ and sends ρ to P;
3. P computes the proof $\pi := P_\mathcal{E}(n, \rho w + z)$ and sends π to V;
4. V checks that $V_{\mathcal{E}}^{w', \pi}(n)$ accepts, where $w' := \rho w + z$ (any query α to w' is computed as $\rho w(\alpha) + z(\alpha)$).

The round complexity, proof length, query complexity, and prover and verifier complexities claimed in Theorem 7.3 follow in a straightforward way from Construction 7.5. We now argue completeness and soundness (Claim 7.6) and perfect zero knowledge (Claim 7.7).

Claim 7.6. The IOPP system (P, V) has completeness 1 and soundness error $\varepsilon(n) = \varepsilon_\mathcal{E}(n) + \frac{1}{|\mathbb{F}(n)|}$.

Proof. First we argue completeness. Suppose that the instance-witness pair (n, w) is in the relation $\text{Rel}(\mathcal{E})$, i.e., that the word w is in the code C_n. Then, the linearity of C_n implies that, for every word z in C_n and element ρ in $\mathbb{F}(n)$, the word $\rho w + z$ is also in C_n. Thus completeness of (P, V) follows from the completeness of $(P_\mathcal{E}, V_\mathcal{E})$.

Next we argue soundness. Suppose that w is $2\delta_\mathcal{E}(n)$-far from C_n. For every word z in $\mathbb{F}(n)^{l(n)}$ (not necessarily in C_n), there exists at most one ρ in $\mathbb{F}(n)$ such that $\rho w + z$ is $\delta_\mathcal{E}(n)$-close to C_n (see Claim 3.1). The soundness of $(P_\mathcal{E}, V_\mathcal{E})$ implies that $V_\mathcal{E}$ accepts with probability at most $\varepsilon_\mathcal{E}(n)$ if $V_\mathcal{E}$ is invoked on a word that is $\delta_\mathcal{E}(n)$-far from C_n. Thus, since V invokes $V_\mathcal{E}$ on the word $\rho w + z$, the probability that V accepts is at most $\varepsilon_\mathcal{E}(n) + \frac{1}{|\mathbb{F}(n)|}$.

Claim 7.7. There exists a straightline simulator S such that, for every $(n, w) \in \text{Rel}(\mathcal{E})$ and malicious verifier \tilde{V}, the following two random variables are identically distributed:

\[
\left(S^w(n), q_S \right) \quad \text{and} \quad \text{View} \left(P^w(n), \tilde{V}^w \right), q_{\tilde{V}},
\]

where q_S is the number of queries to w made by S and $q_{\tilde{V}}$ is the number of queries to w or to prover messages made by \tilde{V}. Moreover, S runs in time $\text{poly}(n + q_{\tilde{V}})$, where $q_{\tilde{V}}$ is \tilde{V}’s query complexity.
We then invoke Lemma 4.3 to obtain probabilistic polynomial-time algorithms which need not be polynomial in \(n \) respectively. Using these algorithms, we write the more efficient simulator instead, adaptively sample them by relying on constraint detection.

Proof

We begin by proving perfect zero knowledge via a straightline simulator \(S_{\text{slow}} \) whose number of queries to \(w \) equals \(q_\ell \), but runs in time \(\text{poly}(t_\ell(n) + q_\ell) \). After that, we explain how to modify \(S_{\text{slow}} \) into another simulator \(S \), with an identical output distribution, that runs in the faster time claimed in the lemma.

The simulator \(S_{\text{slow}} \), given straightline access to \(V \) and oracle access to \(w \), works as follows:

1. Draw a uniformly random \(z_{\text{sim}} \in C_n \).
2. Whenever \(V \) queries \(w \) at \(\alpha \in D(n) \), return \(w(\alpha) \); whenever \(V \) queries \(z \) at \(\alpha \in D(n) \), return \(z_{\text{sim}}(\alpha) \).
3. Receive \(\tilde{\rho} \) from \(V \), and draw a uniformly random \(w'_{\text{sim}}||\pi_{\text{sim}} \in L_{\alpha} \) conditioned on \(w'_{\text{sim}}(\alpha) = \tilde{\rho}w(\alpha) + z_{\text{sim}}(\alpha) \) for every coordinate \(\alpha \in D(n) \) queried in Step 2. (This latter condition requires querying \(w \) at \(\alpha \) for every coordinate \(\alpha \in D(n) \) queried to \(z_{\text{sim}} \) in Step 2.)
4. Hereafter: whenever \(V \) queries \(w \) at \(\alpha \in D(n) \), return \(w(\alpha) \); whenever \(V \) queries \(z \) at \(\alpha \in D(n) \), return \(w'_{\text{sim}}(\alpha) - \tilde{\rho}w(\alpha) \). (In either case, a query to \(w \) is required.)
5. Tell \(V \) that the oracle \(\pi \) has been ‘sent’; whenever \(V \) queries the \(i \)-th entry of \(\pi \), return the \(i \)-th entry of \(\pi_{\text{sim}} \). (Note that \(V \) may query \(w \) or \(z \) before or after learning about \(\pi \).)
6. Output the view of the simulated \(V \).

Note that \(S_{\text{slow}} \) runs in time \(\text{poly}(t_\ell(n) + q_\ell) \). Also, \(S_{\text{slow}} \) makes one query to \(w \) for every query to \(w \) or \(z \) by \(V \) (at least provided that \(V \)'s queries have no duplicates, which we can assume without loss of generality), and zero queries to \(w \) for every query to \(\pi \) by \(V \). Thus, overall, the number of queries to \(w \) by \(S_{\text{slow}} \) is at most \(q_\ell \); clearly, this number of queries can be padded to be equal to \(q_\ell \). We now argue that \(S_{\text{slow}} \)'s output is identically distributed to \(V \)'s view when interacting with the honest prover \(P \), for \(z \) random in \(C_n \).

Claim. \(S_{\text{slow}}^V, w \equiv \text{View}(P^n(w), \tilde{V}w) \).

Proof. Define the random variable \(w' := \tilde{\rho}w + z \), where \(\tilde{\rho} \) is chosen by \(V \). Observe that there exists a (deterministic) function \(v(\cdot) \) such that

\[
\text{View}(P^n, w', z) = v(w', w, r) \quad \text{and} \quad S_{\text{slow}}^V, w = v(w'_{\text{sim}}, w, r),
\]

where the random variable \(r \) is \(\tilde{V} \)'s private randomness. Indeed, (i) the messages sent and received by \(V \) are identical to those when interacting with \(P \) on \(w' \) and \(w'_{\text{sim}} \), respectively; (ii) \(V \)'s queries to \(w \) are answered honestly; (iii) \(V \)'s queries to \(z \) are answered by \(z = w' - \tilde{\rho}w \) and \(z_{\text{sim}} = w'_{\text{sim}} - \tilde{\rho}w \); and (iv) \(V \)'s queries to \(\pi \) are answered by \(P_\ell(n, w') \) and \(P_\ell(n, w'_{\text{sim}}) \) respectively. We are only left to argue that, for any choice of \(r \), \(w' \) and \(w'_{\text{sim}} \), are identically distributed:

- \(w' = \tilde{\rho}w + z \) is uniformly random in \(C_n \), because \(z \) is uniformly random in \(C_n \), \(w \) is in \(C_n \), and \(C_n \) is linear; and
- \(w'_{\text{sim}} \) is uniformly random in \(C_n \), because \(w'_{\text{sim}} \) is sampled at random in \(C_n \) conditioned on \(w'_{\text{sim}}(\alpha_i) = z_{\text{sim}}(\alpha_i) + \tilde{\rho}w(\alpha_i) \) for some (adversarial) choice of \(\alpha_1, \ldots, \alpha_k \). But \(z_{\text{sim}} \) is uniformly random in \(C_n \), so the latter condition says that \(w'_{\text{sim}} \) matches a random codeword on the set of points \(\{\alpha_1, \ldots, \alpha_k\} \), giving the claimed distribution for \(w'_{\text{sim}} \). \(\Box \)

We explain how to modify \(S_{\text{slow}} \) so as to reduce the running time to \(\text{poly}(n + q_\ell) \). The inefficiency of \(S_{\text{slow}} \) comes from sampling \(z_{\text{sim}} \in C_n \) and \(w'_{\text{sim}}||\pi_{\text{sim}} \in L_n \), which takes time \(\text{poly}(S(n) + \ell(n)) \) and \(\text{poly}(t_\ell(n)) \) respectively, which need not be polynomial in \(n \). In the following, we show how to not explicitly sample these codewords but, instead, adaptively sample them by relying on constraint detection.

First, note that if \(L \) has constraint detection with a certain efficiency then so does \(\ell' \) with the same efficiency. The theorem’s hypothesis says that \(L \) has succinct constraint detection; so both \(\ell' \) and \(L \) have succinct constraint detection. We then invoke Lemma 4.3 to obtain probabilistic polynomial-time algorithms \(A_{\ell'}, A_L \) for the code families \(\ell', L \) respectively. Using these algorithms, we write the more efficient simulator \(S \), as follows.
Let $D^*(n)$ be the domain of L_S; this is the disjoint union of $D(n)$ (the domain of C_n) and $[\mathbb{F}^8(n)]$ (the domain of $P_{\mathbb{F}^8}(n, C_n)$). The simulator S, given straightline access to V and oracle access to w, works as follows:

1. Let ans_z be a subset of $D(n) \times \mathbb{F}(n)$ that records query-value pairs for z; initially, ans_z equals \emptyset.
2. Whenever V queries w at $\alpha \in D(n)$, return $w(\alpha)$; whenever V queries z at $\alpha \in D(n)$, return $\beta := \mathcal{A}_z(n, \text{ans}_z, \alpha)$.
 In the latter case, add (α, β) to ans_z.
3. Receive ρ from V, and compute $\text{ans} := \{(\alpha, \beta + \rho w(\alpha))\} \in \text{ans}_z$; this subset of $D^*(n) \times \mathbb{F}(n)$ records query-value pairs for $w_\text{sim}|\pi$.
4. Hereafter: whenever V queries w at $\alpha \in D(n)$, return $w(\alpha)$; whenever V queries z at $\alpha \in D(n)$, return $\beta' := \beta - \rho w(\alpha)$ where $\beta := \mathcal{A}_z(n, \text{ans}, \alpha)$ and add (α, β') to ans.
5. Tell V that the oracle π has been 'sent'; note that we do not yet commit to any entries in the proof, save for those which are implied by the verifier’s previous queries to w. Whenever V queries the i-th location in π, return $\pi_i := \mathcal{A}_z(n, \text{ans}, i)$ and add (i, π_i) to ans. (Note that V may query w or z before or after learning about π.)
6. Output the view of the simulated V.

Note that S makes the same number of queries to w as S_{slow} does. Also, the number of pairs in ans_z is at most q_V: ditto for ans. Since the algorithm \mathcal{A} is called at most q_V times, the running time of S is $\text{poly}(n + q_V)$, as required. □

We conclude with a lemma that says that succinct constraint detection is in some sense inherent to the “masking” approach used in Construction 7.5.

Lemma 7.8. If $(P_{\mathbb{F}^8}, V_{\mathbb{F}^8})$ is a linear PCPP such that Construction 7.5 yields (P, V) with perfect zero knowledge, then $(P_{\mathbb{F}^8}, V_{\mathbb{F}^8})$ has a constraint detector that runs in probabilistic polynomial time. (In fact, the same statement holds even if the construction yields (P, V) with only statistical zero knowledge.)

Proof. The linear code $L_n := \{w \mid P(n, w) \in C_n\}$ has domain $D^*(n) := D(n) \cup [\mathbb{F}^8(n)]$, which is the disjoint union of $D(n)$ (the domain of C_n) and $[\mathbb{F}^8(n)]$ (the domain of $P(n, C_n)$); see Definition 7.2. Let $I \subseteq D^*(n)$. We need, in probabilistic polynomial time, to output a basis for $(L_n|_I)^{-1}$. Construct a malicious verifier V that works as follows:

1. Receive $z \in C_n$ from P.
2. Send $\rho = 0$ to P.
3. Receive π from P.
4. For each $i \in I$: if $i \in D(n)$ then query z at i, and if $i \in [\mathbb{F}^8(n)]$ then query π at i; call the answer β_i.

By PZK, there is a probabilistic polynomial time algorithm \mathcal{S} such that the output of $S^{\mathbb{F}^8,w(n)}(\pi)$ is identically distributed to $V_{\mathbb{F}^8}^{\mathbb{F}^8, w(n)}$, for every $w \in C_n$. Set w to be the zero codeword, and suppose we run $S^{\mathbb{F}^8, w(n)}$; this invocation makes S sample answers $(\beta_i)_{i \in I} = (z'(i))_{i \in I}$ for $z' = z|_{P_{\mathbb{F}^8}(n, z)}$ uniformly random in L_n.

Thus, to perform constraint detection in probabilistic polynomial time, we proceed as follows. We run $S^{\mathbb{F}^8, w(n)}$ $k > |I|$ times, recording a vector $\vec{\beta} = (\beta_i)_{i \in I}$ at the j-th iteration. Let B be the $k \times |I|$ matrix with rows $\vec{\beta}_1, \ldots, \vec{\beta}_k$. Output a basis for the nullspace of B, which we can find in $\text{poly}(\log |\mathbb{F}| + k + |I|)$ time.

We now argue correctness of the above approach. First, for every $u \in \mathbb{F}^I$ such that $\sum_{i \in I} u(i)w'(i) = 0$ for every $w' \in L_n$, it holds that u is in the nullspace of B, because codewords used to generate B satisfy the same relation. Next, the probability that there exists $u \in \mathbb{F}^I$ in the nullspace of B such that $\sum_{i \in I} u(i)w'(i) \neq 0$ for some $w' \in L_n$ is at most $1/|\mathbb{F}|^{|I|}$. Indeed, for every such u, $\text{Pr}_{z' \leftarrow L_n}[\sum_{i \in I} u(i)z'(i) = 0] \leq 1/|\mathbb{F}|$ (since L_n is a linear code), so the probability that u is in the nullspace is at most $1/|\mathbb{F}|^k$; we then obtain the claimed probability by a union bound. Overall, the probability that the algorithm answers incorrectly is at most $1/|\mathbb{F}|^{k-|I|}$.

7.2 Perfect zero knowledge IOPs of proximity for Reed–Solomon codes

We have already proved that the linear code family BS-RS, which consists of low-degree univariate polynomials concatenated with corresponding BS proximity proofs [BS08], has succinct constraint detection. When combined with the results in Section 7.1, we obtain IOPs of Proximity for Reed–Solomon codes, as stated in the corollary below.

Definition 7.9. We denote by RS^+ the linear code family indexed by tuples $\mathbf{n} = (\mathbb{F}, L, d)$, where \mathbb{F} is an extension field of \mathbb{F}_2 and L is an \mathbb{F}_2-linear subspace of \mathbb{F} with $d \leq |L|/8$, and the \mathbf{n}-th code consists of the codewords from the Reed–Solomon code $\mathbb{R}(\mathbb{F}, L, d)$.

38
Theorem 7.10 ([BS08]). For every function \(\delta : \{0, 1\}^* \to (0, 1) \), the linear code family \(RS^+ \) has PCPs of Proximity with soundness error \(1/2 \), proximity parameter \(\delta \), prover running time (and thus proof length) that is quasilinear in the block length \(\ell(n) \), and verifier running time (and thus query complexity) that is polylogarithmic in \(\ell(n)/\delta(n) \).

Corollary 7.11. For every function \(\delta : \{0, 1\}^* \to (0, 1) \), there exists an IOPP system that puts \(\text{Rel}(RS^+) \) in the complexity class

\[
\text{PZK-IOPP}
\begin{align*}
\text{answer alphabet} & : \mathbb{F}(n) \\
\text{rounds} & : k(n) = 2 \\
\text{proof length} & : l(n) = \tilde{O}(\ell(n)) \\
\text{query complexity} & : q(n) = \text{polylog}(\ell(n)/\delta(n)) \\
\text{soundness error} & : \varepsilon(n) = 1/2 \\
\text{proximity parameter} & : \delta(n) \\
\text{prover time} & : \text{tp}(n) = \tilde{O}(\ell(n)) \\
\text{verifier time} & : \text{tv}(n) = \text{polylog}(\ell(n)/\delta(n)) \\
\text{query bound} & : b(n) = *
\end{align*}
\]

Proof. Invoke Theorem 7.3 on the linear code family \(RS^+ \) with corresponding BS proximity proofs (Theorem 7.10). Indeed, the concatenation of codewords in \(RS^+ \) and proximity proofs yields the family BS-RS, which has succinct constraint detection by Theorem 4.12 (This last step omits a technical, but uninteresting, step: the proximity proofs from Theorem 4.12 consider the case where the degree \(d \) equals the special value \(|L|/8 \), rather than being bounded by it; but proximity proofs for smaller degree \(d \) are easily obtained from these, as explained in [BS08].)

When constructing perfect zero knowledge IOPs for \(\text{NEXP} \) (Section 8) we shall need perfect zero knowledge IOPs of Proximity not quite for the family \(RS^+ \) but for an extension of it that we denote by \(ERS^+ \), and for which [BS08] also gives PCPs of proximity. The analogous perfect zero knowledge result follows in a similar way, as explained below.

Definition 7.12. Given a field \(\mathbb{F} \) of characteristic 2, \(\mathbb{F}_2 \)-linear subspaces \(H \subseteq \mathbb{F} \) with \(|H| \leq |L|/8 \), and \(d_0, d_1 \in \mathbb{N} \), \(w_{0,0}, w_{1,0} \in \mathbb{F} \) and \(w_{0,1}, w_{1,1} \in \mathbb{F} \), we denote by \(ERS^+[\mathbb{F}, H, d_0, d_1] \) the linear code consisting of all pairs \((w_{0,0}, w_{1,0}) \) where \(w_{0,0} \in \text{RS}[\mathbb{F}, L, d_0] \), \(w_{1,0} \in \text{RS}[\mathbb{F}, L, d_1] \), and \(w_{1,1}(x) = 0 \) for all \(x \in H \). We denote by \(ERS^+ \) the linear code family indexed by tuples \(n = (\mathbb{F}, L, d_0, d_1) \) for which the \(n \)-th code is \(ERS^+[\mathbb{F}, H, d_0, d_1] \).

Theorem 7.13 ([BS08]). For every function \(\delta : \{0, 1\}^* \to (0, 1) \), the linear code family \(ERS^+ \) has PCPs of Proximity with soundness error \(1/2 \), proximity parameter \(\delta \), prover running time (and thus proof length) that is quasilinear in the block length \(\ell(n) \), and verifier running time (and thus query complexity) that is polylogarithmic in \(\ell(n)/\delta(n) \).

Proof sketch. A PCP of proximity for a codeword \((w_{0,0}, w_{1,0}) \) to \(ERS^+[\mathbb{F}, H, d_0, d_1] \) consists of \((\pi_0, w_{1,1}^*, \pi_1)_1 \), where

- \(\pi_0 \) is a PCP of proximity for \(w_{0,0} \) to \(\text{RS}[\mathbb{F}, L, d_0] \);
- \(w_{1,1}^* \) is the evaluation of the polynomial obtained by dividing (the polynomial of) \(w_{1,0} \) by the zero polynomial of \(H \);
- \(\pi_1 \) is a PCP of proximity for \(w_{1,1}^* \) to \(\text{RS}[\mathbb{F}, L, d_1 - |H|] \).

The verifier, which has oracle access to \((w_{0,0}, w_{1,0}) \) and \((\pi_0, w_{1,1}^*, \pi_1)_1 \), checks both PCPs or proximity and then performs a consistency check between \(w_{1,0} \) and \(w_{1,1}^* \). See [BS08] for details.

Corollary 7.14. For every function \(\delta : \{0, 1\}^* \to (0, 1) \), there exists an IOPP system that puts \(\text{Rel}(ERS^+) \) in the complexity class

\[
\text{PZK-IOPP}
\begin{align*}
\text{answer alphabet} & : \mathbb{F}(n) \\
\text{rounds} & : k(n) = 2 \\
\text{proof length} & : l(n) = \tilde{O}(\ell(n)) \\
\text{query complexity} & : q(n) = \text{polylog}(\ell(n)/\delta(n)) \\
\text{soundness error} & : \varepsilon(n) = 1/2 \\
\text{proximity parameter} & : \delta(n) \\
\text{prover time} & : \text{tp}(n) = \tilde{O}(\ell(n)) \\
\text{verifier time} & : \text{tv}(n) = \text{polylog}(\ell(n)/\delta(n)) \\
\text{query bound} & : b(n) = *
\end{align*}
\]

Proof. Invoke Theorem 7.3 on the linear code family \(ERS^+ \) with corresponding BS proximity proofs (Theorem 7.13), which has succinct constraint detection as we now clarify. A codeword \((w_{0,0}, w_{1,0}) \) has proximity proof \((\pi_0, w_{1,1}^*, \pi_1)_1 \), and Theorem 4.12 implies that \((w_{0,0}, \pi_0) \) and \((w_{1,1}^*, \pi_1) \) have succinct constraint detection. But every coordinate of \(w_{1,1}^* \) is easy to compute from the same coordinate in \(w_{1,0} \), and concatenating codewords preserves succinct constraint detection.
8 Perfect zero knowledge for nondeterministic time

We prove that NEXP has 2-round IOPs that are perfect zero knowledge against unbounded queries. We do so by constructing a suitable IOP system for NTIME\((T) \) against query bound \(b \) for each time function \(T \) and query bound function \(b \), where the verifier runs in time polynomial in both \(T \) and \(b \). Crucially, the simulator runs in time \(\text{poly}(\tilde{g} + \log T + \log b) \), where \(\tilde{g} \) is the actual number of queries made by the malicious verifier; this exponential improvement over \([BCGV16]\), where the simulator runs in time \(\text{poly}(T + b) \), enables us to “go up to NEXP”.

Theorem 8.1 (formal statement of Theorem 1.2). For every constant \(d > 0 \), time bound function \(T: \mathbb{N} \rightarrow \mathbb{N} \) with \(n \leq T(n) \leq 2^n^d \), and query bound function \(b: \mathbb{N} \rightarrow \mathbb{N} \) with \(b(n) \leq 2^{n^d} \), there exists an IOP system \((P, V)\) that makes NTIME\((T) \) a subset of the complexity class NTIME\((\tilde{g}) \).

\[
\begin{array}{|c|c|}
\hline
\text{answer alphabet} & \mathbb{F}(n) = \mathbb{F}_2 \\
\text{rounds} & k(n) = 2 \\
\text{proof length} & l(n) = \tilde{O}(T(n) + b(n)) \\
\text{query complexity} & q(n) = \text{polylog}(T(n) + b(n)) \\
\text{soundness error} & \varepsilon(n) = 1/2 \\
\text{prover time} & tp(n) = \text{poly}(n) \cdot \tilde{O}(T(n) + b(n)) \\
\text{verifier time} & tv(n) = \text{poly}(n + \log(T(n) + b(n))) \\
\text{query bound} & b(n) \\
\hline
\end{array}
\]

Moreover, the verifier \(V \) is public-coin and non-adaptive.

Our proof is similar to that of [BCGV16], and the only major difference is that [BCGV16]’s simulator explicitly samples random codewords, while we rely on succinct constraint detection to do so implicitly. Indeed, the reduction from NTIME\((T) \) generates codewords of size \(\tilde{O}(T) \), which means that sampling random codewords of that size is infeasible when \(T \) is super-polynomial. We structure our argument in three steps, highlighting the essential components that implicitly underlie [BCGV16]’s ‘monolithic’ argument; we view this as a conceptual contribution of our work.

Step 1 (Section 8.1). We construct perfect zero knowledge IOPs of Proximity for linear algebraic constraint satisfaction problems (LACSPs) [BCGV16], a family of constraint satisfaction problems whose domain and range are linear codes. An instance \(\pi \) of LACSP is specified by a function \(g \) and a pair of codes \(C_0, C_1 \); a witness \(w \) for \(\pi \) is a pair \((w_0, w_1)\) such that \(w_0 \in C_0, w_1 \in C_1 \), and \(g(w_0) = w_1 \). A natural approach to construct a perfect zero knowledge IOPP for this relation is the following: if we are given a perfect zero knowledge IOP of Proximity for the relation \(\text{Rel}(C_0 \times C_1) \), then the verifier can test proximity of \((w_0, w_1)\) to \(C_0 \times C_1 \) and then sample a random index \(j \) and check that \(g(w_0)[j] = w_1[j] \). In order for the verifier’s strategy to make sense, we require \(g \) to (i) satisfy a distance condition with respect to \(C_0, C_1 \), namely, that \(C_1 \cup g(C_0) \) has large relative distance; (ii) be ‘local’, which means that computing \(g(w_0)[j] \) requires examining only a few indices of \(w_0 \); and (iii) be ‘evasive’, which means that if \(\tilde{w}_0 \) is close to some \(w_0 \in C_0 \), then \(g(\tilde{w}_0) \) is close to \(g(w_0) \). All of this implies that if \((\tilde{w}_0, \tilde{w}_1)\) is far from any valid witness but close to \(C_0 \times C_1 \), we know that \(g(\tilde{w}_0) \) is far from \(\tilde{w}_1 \), so that examining a random index \(j \) gives good soundness.

Step 2 (Section 8.2). We build on the above result to derive perfect zero knowledge IOPs for a subfamily of LACSPs called randomizable LACSPs (RLACSPs) [BCGV16]. The key difference between this protocol and the IOP of Proximity described above is that in the “proximity setting”, the verifier, and thus also the simulator, has oracle access to the witness, while in the “non-proximity setting” the witness is sent to the verifier but the simulator must make do without it; in particular, merely sending the witness \((w_0, w_1)\) is not zero knowledge. We thus rely on the randomizability property of RLACSPs to generate witnesses from a \(t \)-wise independent distribution, where \(t \) is larger than the query bound \(b \). In particular, while the simulator runs in time polynomial in the actual number of queries made by a verifier, it runs in time \(\text{polylogarithmic} \) in \(t \), and thus we can set \(b \) to be super-polynomial in order to obtain unbounded-query zero knowledge against polynomial-time verifiers.

Step 3 (Section 8.3). We derive Theorem 8.1 (perfect zero knowledge IOPs for NTIME\((T) \)) by combining: (1) the aforementioned result for RLACSPs; (2) [BCGV16]’s reduction from NTIME to RLACSPs; (3) a perfect zero knowledge IOP of Proximity for a suitable choice of \(C_0 \times C_1 \), which we derived in Section 7.2. This last component is the one that makes use of succinct constraint detection, and relies on the technical innovations of our work.
8.1 Perfect zero knowledge IOPs of proximity for LACSPs

A constraint satisfaction problem asks whether, for a given “local” function g, there exists an input w such that $g(w)$ is an accepting output. For example, in the case of 3SAT with n variables and m clauses, the function g maps $\{0, 1\}^n$ to $\{0, 1\}^m$, and $g(w)$ indicates which clauses are satisfied by $w \in \{0, 1\}^n$; hence w yields an accepting output if (and only if) $g(w) = 1^m$. Below we introduce a family of constraint satisfaction problems whose domain and range are linear-algebraic objects, namely, linear codes.

We begin by providing the notion of locality that we use for g, along with a measure of g’s “pseudorandomness”.

Definition 8.2. Let $g : \Sigma^n \rightarrow \Sigma^m$ be a function. We say that g is q-local if for every $j \in [m]$ there exists $I_j \subseteq [n]$ with $|I_j| = q$ such that $g(w)[j]$ (the j-th coordinate of $g(w)$) depends only on $w|_{I_j}$ (the restriction of w to I_j). Moreover, we say that g is s-evasive if for every $I \subseteq [n]$ the probability that I_j intersects I for a uniform $j \in [m]$ is at most $s \cdot \frac{|I|}{n}$.

For example, if g is a 3SAT formula then g is 3-local because I_j equals the variables appearing in clause j; moreover, g is s-evasive if and only if every variable x_i appears in at most a fraction s/n of the clauses (i.e., the evasiveness property corresponds to the fraction of clauses in which a variable appears). Also, a natural case where g is q-evasive is when the elements of I_j are individually uniform in $[n]$ when j is uniform in $[m]$.

Definition 8.3. Let $g : \Sigma^n \rightarrow \Sigma^m$ be a function. We say that g is c-efficient if there is a c-time algorithm that, given j and $w|_{I_j}$, computes the set I_j and value $g(w)[j]$.

The above definition targets succinctly-described languages. For example, a succinct 3SAT instance is given by a circuit of size S and value $g(w)[j]$.

Definition 8.4 (LACSP). Let $C_0(n), C_1(n)$ be (descriptions of) linear codes over $\mathbb{F}(n)$ with block length $\ell(n)$ and relative distance $\tau(n)$. The promise relation of linear algebraic CSPs (LACSPs)

$$(\mathcal{R}^{YES}_{\text{LACSP}}, \mathcal{R}^{NO}_{\text{LACSP}})[\mathbb{F}(n), C_0(n), C_1(n), \ell(n), \tau(n), q(n), c(n)]$$

considers instance-witness pairs (x, w) of the following form.

- An instance x is a tuple $(1^n, g)$ where:
 - $g : \mathbb{F}(n)^{\ell(n)} \rightarrow \mathbb{F}(n)^{\ell(n)}$ is $q(n)$-local, $q(n)$-evasive, and $c(n)$-efficient;
 - $C_1(n) \cup g(C_0(n))$ has relative distance at least $\tau(n)$ (though may not be a linear space).

- A witness w is a tuple (w_0, w_1) where $w_0, w_1 \in \mathbb{F}(n)^{\ell(n)}$. The yes-relation $\mathcal{R}^{YES}_{\text{LACSP}}$ consists of all pairs (x, w) as above where the instance x and witness w jointly satisfy the following: $w_0 \in C_0(n), w_1 \in C_1(n)$, and $g(w_0) = w_1$. (In particular, a witness $w = (w_0, g(w_0))$ with $w_0 \in C_0(n)$ satisfies x if and only if $g(w_0) \in C_1(n)$.) The no-language consists of all instances x as above where $x \notin \text{Lan}(\mathcal{R}^{YES}_{\text{LACSP}}).

Remark 8.5. In [BCG16] the codes C_0 and C_1 are allowed to have distinct block lengths while, for simplicity, we assume that they have the same block length; this restriction does not change any of their, or our, results.

We are now ready to give perfect zero knowledge IOPs of proximity for LACSPs.

Theorem 8.6. Suppose that there exists an IOP system (\hat{P}, \hat{V}) that puts $\text{Rel}(C_0 \times C_1)$ in the complexity class $\text{PZK-IOPP}[\mathbb{F}, \hat{k}, \hat{q}, \hat{\delta}, \hat{\epsilon}, \hat{\tau}, \hat{tv}, \hat{b}, \ast]$. Then there exists an IOP system $(P_{\text{LACSP}}, V_{\text{LACSP}})$ that puts $(\mathcal{R}^{YES}_{\text{LACSP}}, \mathcal{R}^{NO}_{\text{LACSP}})[\mathbb{F}, C_0, C_1, \ell, \tau, q, c]$ in the complexity class $\text{PZK-IOPP}

<table>
<thead>
<tr>
<th>Answer alphabet</th>
<th>$\mathbb{F}(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rounds</td>
<td>$k(n)$</td>
</tr>
<tr>
<td>Proof length</td>
<td>$l(n)$</td>
</tr>
<tr>
<td>Query complexity</td>
<td>$q(n)$</td>
</tr>
<tr>
<td>Soundness error</td>
<td>$\varepsilon(n)$</td>
</tr>
<tr>
<td>Proximity parameter</td>
<td>$\delta(n)$</td>
</tr>
<tr>
<td>Prover time</td>
<td>$\tau(p(n))$</td>
</tr>
<tr>
<td>Verifier time</td>
<td>$\tau(v(n))$</td>
</tr>
<tr>
<td>Query bound</td>
<td>$b(n)$</td>
</tr>
</tbody>
</table>
Moreover, if \((\hat{P}, \hat{V})\) is non-adaptive (respectively, public-coin) then so is \((P_{\text{LACSP}}, V_{\text{LACSP}})\).

Proof. We construct the IOPP system \((P_{\text{LACSP}}, V_{\text{LACSP}})\) for \(R\), where the prover receives \((x, w) = ((1^n, g), (w_0, w_1))\) as input while the verifier receives \(x\) as input and \(w\) as an oracle, as follows:
1. \(P_{\text{LACSP}}\) and \(V_{\text{LACSP}}\) invoke the IOPP system \((\hat{P}, \hat{V})\) to prove that \((w_0, w_1) \in C_0 \times C_1\);
2. \(V_{\text{LACSP}}\) chooses a random \(j \in [\ell]\) and checks that \(g(w_0)[j] = w_1[j]\);
3. \(V_{\text{LACSP}}\) rejects if and only if \(\hat{V}\) rejects or the above check fails.

Completeness. If \((x, w) \in \mathcal{R}^\text{YES}_{\text{LACSP}},\) then (i) \(w_0 \in C_0, w_1 \in C_1\), so \(\hat{V}\) always accepts, and (ii) \(g(w_0) = w_1\) so the consistency check succeeds for every \(j \in [\ell]\). We deduce that \(V_{\text{LACSP}}\) always accepts.

Soundness. Suppose that \(x \in \text{Lin}(\mathcal{R}^\text{YES}_{\text{LACSP}}) \cup \mathcal{L}^\text{NO}_{\text{LACSP}}\) and \(\tilde{w}\) are such that \(\Delta(\tilde{w}, \mathcal{R}^\text{YES}_{\text{LACSP}}) \geq \delta\). Writing \(\tilde{w} = (\tilde{w}_0, \tilde{w}_1)\), we argue as follows.

- **Case 1:** \(\Delta(\tilde{w}, C_0 \times C_1) \geq \delta\). In this case \(\tilde{V}\) rejects with probability at least \(1 - \epsilon\).
- **Case 2:** \(\Delta(\tilde{w}, C_0 \times C_1) < \delta\). There exist codewords \(w_0 \in C_0\) and \(w_1 \in C_1\) such that \((w_0, w_1)\) is \(\delta\)-close to \((\tilde{w}_0, \tilde{w}_1)\) for \(\delta < \delta\). By assumption, \(\Delta(\tilde{w}, \mathcal{R}^\text{YES}_{\text{LACSP}}) \geq \delta\), so in particular \((w_0, w_1)\) cannot be in \(\mathcal{R}^\text{YES}_{\text{LACSP}}\), and \(g(w_0) \neq w_1\). Since \(C_1 \cup g(C_0)\) has relative distance at least \(\tau\), \(\Delta(g(w_0), w_1) \geq \tau\). Observe that since \(C_0\) and \(C_1\) have the same block length, \(\Delta(\tilde{w}_0, w_0) \leq 2\delta\) and \(\Delta(\tilde{w}_1, w_1) \leq 2\delta\). Thus since \(g\) is \(q\)-evasive, the probability that the set of coordinates \(I := \{i \in [\ell]: w_0[i] \neq \tilde{w}_0[i]\}\) intersects with \(I_j\) for random \(j \in [\ell]\) is at most \(2\delta q\), so \(\Delta(g(w_0), g(\tilde{w}_0)) \leq 2\delta q\). Using the triangle inequality, we deduce that
\[
\Delta(g(\tilde{w}_0), \tilde{w}_1) \geq \tau - 2\delta (q + 1),
\]
which means the consistency check rejects with probability at least \(\tau - 2\delta (q + 1)\).

It follows that \(V_{\text{LACSP}}\) accepts with probability at most \(\max\{\epsilon, 1 - \tau + 2\delta (q + 1)\}\).

Perfect zero knowledge. We can choose the simulator \(S_{\text{LACSP}}\) for \((P_{\text{LACSP}}, V_{\text{LACSP}})\) to equal any simulator \(\hat{S}\) that fulfills the perfect zero knowledge guarantee of \((\hat{P}, \hat{V})\). Indeed, the behavior of \(P_{\text{LACSP}}\) is the same as \(\hat{P}\), and so the view of any malicious verifier \(\hat{V}\) when interacting with \(P_{\text{LACSP}}\) is identical to its view when interacting with \(\hat{P}\). \(\square\)

8.2 Perfect zero knowledge IOPs for RLACSPs

The above discussion achieves perfect zero knowledge for LACSPs, “up to queries to the witness”. We now explain how to simulate these queries as well, without any knowledge of the witness, for a special class of LACSPs called randomized LACSPs. For these, the prover can randomize a given witness \((w_0, g(w_0))\) by sampling a random \(u'\) in a \(t\)-wise independent subcode \(C'\) of \(C_0\), and use the new ‘shifted’ witness \((w_0 + u', g(w_0 + u'))\) instead of the original one. We now define the notion of randomized LACSPs, and then show how to construct perfect zero knowledge IOPs for these, against bounded-query verifiers and where the the query bound depends on \(t\).

Definition 8.7 (randomizability). An instance \(x = (1^n, g)\) is \(t(n)\)-randomizable in time \(r(n)\) (with respect to code families \(C_0(n), C_1(n)\)) if:
1. there exists a \(t(n)\)-wise independent subcode \(C' \subseteq C_0(n)\) such that if \((w_0, g(w_0))\) satisfies \(x\), then, for every \(w_0' \in C'\) and \(w_0 := \{w' + w_0 \mid w' \in C'\}\), the witness \((w_0', g(w_0'))\) also satisfies \(x\); and
2. one can sample, in time \(r(n)\), three uniformly random elements in \(C', C_0(n), C_1(n)\) respectively.

Definition 8.8 (RLACSP). The promise relation of randomized linear algebraic CSPs (RLACSPs) is
\[
(\mathcal{R}^\text{YES}_{\text{RLACSP}}, \mathcal{L}^\text{NO}_{\text{RLACSP}})[\mathbb{F}(n), C_0(n), C_1(n), \ell(n), \tau(n), q(n), c(n), t(n), r(n)]
\]
where \(\mathcal{R}^\text{YES}_{\text{RLACSP}}\) is obtained by restricting \(\mathcal{R}_{\text{LACSP}}\) to instances that are \(t\)-randomizable in time \(r\), and \(\mathcal{L}^\text{NO}_{\text{RLACSP}} := \mathcal{L}^\text{NO}_{\text{LACSP}}\).

Theorem 8.9. Suppose that there exists an IOPP system \((\hat{P}, \hat{V})\) that puts \(\text{Rel}(C_0 \times C_1)\) in the complexity class
\[
\text{PZK-IOPP}[\mathbb{F}, k, \ell, q, \delta, \epsilon, \hat{P}, \hat{V}, \ast].
\]
Then there exists an IOP system \((P_{RLACSP}, V_{RLACSP})\) that puts \((\mathcal{A}_{RLACSP}^{YES}, \mathcal{L}_{RLACSP}^{NO})[\mathbb{F}, C_0, C_1, \ell, \tau, q, c, t, r]\) (with \(c\) polynomially bounded) in the complexity class

<table>
<thead>
<tr>
<th>PZK-IOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>answer alphabet</td>
</tr>
<tr>
<td>rounds</td>
</tr>
<tr>
<td>proof length</td>
</tr>
<tr>
<td>query complexity</td>
</tr>
<tr>
<td>soundness error</td>
</tr>
<tr>
<td>prover time</td>
</tr>
<tr>
<td>verifier time</td>
</tr>
<tr>
<td>query bound</td>
</tr>
</tbody>
</table>

Moreover, if \((\hat{P}, \hat{V})\) is non-adaptive (respectively, public-coin) then so is \((P_{RLACSP}, V_{RLACSP})\).

Proof. Let \((P_{RLACSP}, V_{RLACSP})\) be the IOP system for \(\mathcal{A}_{RLACSP}\) guaranteed by Theorem 8.6. We construct the IOP system \((P_{RLACSP}^{YES}, V_{RLACSP}^{NO})\) for \((\mathcal{A}_{RLACSP}^{YES}, \mathcal{L}_{RLACSP}^{NO})\), where the prover receives \((z, w) = \left((1^n, g), (w_0, w_1)\right)\) as input while the verifier receives \(z\) as input, as follows:

1. The prover \(P_{RLACSP}\) parses the witness \(w = (w_0, w_1) \in C_0 \times C_1\), samples a random \(u' \in C'\) (the subcode of \(C_0\) for which \(t\)-randomizability holds), sets \(w'_0 := u' + w_0\) and \(w'_1 := g(w'_0)\), and sends \(w' := (w'_0, w'_1)\) to \(V_{RLACSP}\).

2. In parallel to the above interaction, the prover \(P_{RLACSP}\) and verifier \(V_{RLACSP}\) invoke the IOP system \((P_{RLACSP}, V_{RLACSP})\) on the input \(z\) and new ‘prover-randomized’ witness \(w'\). The verifier \(V_{RLACSP}\) accepts if and only if \(V_{RLACSP}\) does.

The claimed efficiency parameters immediately follow by construction. We now show that \((P_{RLACSP}, V_{RLACSP})\) satisfies completeness, soundness, and perfect zero-knowledge.

Completeness. Suppose that \((z, w) = \left((1^n, g), (w_0, w_1)\right)\) is in the relation \(\mathcal{A}_{RLACSP}^{YES}\), so that \(w_0 \in C_0, w_1 \in C_1\), and \(g(w_0) = w_1\). By randomizability (Definition 8.8), since \(w'_0 \in C' + w_0\), we deduce that \(w' = (w'_0, w'_1) = (w'_0, g(w'_0))\) satisfies \(z\), and so \((z, w') \in \mathcal{A}_{RLACSP}^{YES}\). Completeness then follows by the completeness of \((P_{RLACSP}, V_{RLACSP})\).

Soundness. Suppose that \(z = (1^n, g)\) is in the language \(\mathcal{L}_{RLACSP}^{NO} = \mathcal{L}_{RLACSP}^{NO}\), so that \(\mathcal{A}_{RLACSP}^{YES} = \emptyset\). Regardless of what ‘witness’ \(w'\) is sent by \(P_{RLACSP}\), it holds that \(\Delta(w', \mathcal{A}_{RLACSP}^{YES}) = \Delta(w', \emptyset) = 1 \geq \delta\), so that the soundness of \((P_{RLACSP}, V_{RLACSP})\) implies that \(V_{RLACSP}\), and thus \(V_{RLACSP}\), accepts with probability at most \(\max\{\hat{\varepsilon}, 1 - \tau + 2 \cdot \hat{\delta} \cdot (q + 1)\}\).

Perfect zero knowledge. Let \(V\) be any verifier that makes at most \(b := t/q\) queries, and let \(S_{LACSP}\) be the perfect zero knowledge simulator for \((P_{LACSP}, V_{LACSP})\). We construct a simulator \(S_{LACSP}^{\hat{z}}\) for \((P_{RLACSP}, V_{RLACSP})\) as follows:

\(S_{RLACSP}^{\hat{z}}(z)\):

1. \(S_{RLACSP}\) initializes two empty strings \(\hat{w}_0\) and \(\hat{w}_1\) which will be partially filled during the simulation.
2. \(S_{RLACSP}\) invokes \(\hat{V}(\hat{w}_0, \hat{w}_1)\), and during the execution answers oracle queries to \((\hat{w}_0, \hat{w}_1)\) in the following way.
 a) If \(S_{LACSP}\) queries \(\hat{w}_0\) at a location \(j \in [\ell]\): if \(\hat{w}_0[j]\) is already defined then return that value; otherwise sample a random \(a \in \mathbb{F}(n)\), set \(\hat{w}_0[j] := a\), and reply with \(\hat{w}_0[j]\).
 b) If \(S_{LACSP}\) queries \(\hat{w}_1\) at a location \(j \in [\ell]\): if \(\hat{w}_1[j]\) is already defined then return that value; otherwise compute the set of indices \(I_j \subseteq [\ell]\) that \(g(\cdot), j\) depends on; then ‘query’ the values of \(\hat{w}_0[i]\) for all \(i \in I_j\).

Observe that \(S_{RLACSP}\) runs in time \(\text{poly}(|z| + q_F + c)\), where \(q_F\) denotes the actual number of queries made by \(\hat{V}\) and \(c\) is \(g\)'s efficiency (see Definition 8.3). Since \(c\) is polynomially bounded, \(S_{RLACSP}\) runs in time \(\text{poly}(|z| + q_F)\), as required.

We must show that \(\text{View}\left(P_{RLACSP}(z, w), \hat{V}(z)\right)\) and \(S_{RLACSP}^{\hat{z}}(z)\) are identically distributed. Recall that \(P_{RLACSP}(z, w)\) samples \(w'\) and then invokes \(P_{LACSP}(z, w')\); viewing \(w'\) as a random variable, we get that \(\text{View}\left(P_{RLACSP}(z, w), \hat{V}(z)\right) \equiv \text{View}\left(P_{LACSP}(z, w'), \hat{V}(z)\right)\) by \((P_{LACSP}, V_{LACSP})'\)'s perfect zero knowledge guarantee, we also know that

\(\text{View}\left(P_{LACSP}(z, w'), \hat{V}(z), q_F\right) \equiv \left(S_{LACSP}^{\hat{z}w'}(z), q_S\right)\).

We are left to show that \(S_{LACSP}^{\hat{z}w'}(z) \equiv S_{RLACSP}^{\hat{z}}(z)\).
By the query bound, we know that \(S_{\text{LACSP}} \) makes at most \(t/q \) queries to \(w' \). By construction of \(S_{\text{RLACSP}} \), this causes at most \(t \) entries in \(\tilde{v}_0 \) to be ‘defined’, since \(|I_j| \leq q \) for all \(j \in \ell \) (by \(g \)'s locality); let \(E \subseteq \ell \) be these entries. Since \(u_1 = g(\tilde{v}_0) \), all of the responses to \(S_{\text{LACSP}} \)'s queries are determined by \(v(\tilde{v}_0) \). While \(E \) is itself dependent on \(\tilde{v}_0 \) (as \(\tilde{V} \)'s queries may be adaptive), this does not affect the distribution of the string \(v(\tilde{v}_0) \) because \(|E| \leq t \) and \(\tilde{v}_0 \) is drawn from a \(t \)-wise independent distribution. We deduce that there exists a deterministic function \(v(\cdot) \) such that \(S_{\text{LACSP}} \)'s queries to \(w' \) are answered by \(v(\tilde{v}_0) \) in the ‘real’ execution, and \(S_{\text{RLACSP}} \) answers the same queries with \(v(U) \) where \(U \) is uniformly random in \(\mathbb{F}^E \). But \(\tilde{v}_0 \) is \(|E| \)-wise independent, so that \(\tilde{v}_0 \equiv U \), and thus \(\tilde{V}, w' \equiv S_{\text{LACSP}}(x) \). □

8.3 Putting things together

We are almost ready to prove Theorem 8.1, the main theorem of this section. The last missing piece is a suitable reduction from \(\text{NTIME}(T) \) to \(\mathcal{R}_{\text{RLACSP}} \), the promise relation of RLACSPs. Below, we state a special case of [BCGV16 Thm. 7.9], which provides the reduction that we need.

Theorem 8.10 (NTIME → \(\mathcal{R}_{\text{RLACSP}} \)). For every \(T, t : \mathbb{N} \to \mathbb{N} \), constant \(\tau \in (0, 1) \), and \(\mathcal{R} \subseteq \text{NTIME}(T) \) there exist algorithms \(\text{inst}, \text{wit}_1, \text{wit}_2 \) satisfying the following conditions:

- **Efficient Reduction.** For every instance \(x \), letting \(x^\prime := \text{inst}(x) \):
 - if \(x \in \text{Lan}(\mathcal{R}) \) then \(x^\prime \in \text{Lan}(\mathcal{R}^{\text{YES}}_{\text{RLACSP}}) \);
 - if \(x \not\in \text{Lan}(\mathcal{R}) \) then \(x^\prime \in \mathcal{R}^{\text{NO}}_{\text{RLACSP}} \);
 - for every witness \(w \), if \(\langle x, w \rangle \in \mathcal{R} \) then \(\langle x^\prime, \text{wit}_1(x, w) \rangle \in \mathcal{R}^{\text{YES}}_{\text{RLACSP}} \);
 - for every witness \(w' \), if \(\langle x^\prime, w' \rangle \in \mathcal{R}^{\text{YES}}_{\text{RLACSP}} \) then \(\langle x, \text{wit}_2(x, w') \rangle \in \mathcal{R} \).

Moreover, \(\text{inst runs in time} \quad \text{poly}(n + \log(T(n) + t(n))) \) and \(\text{wit}_1, \text{wit}_2 \text{ run in time} \quad \text{poly}(n) \cdot \tilde{O}(T(n) + t(n)) \).

- **Randomizable Linear Algebraic CSP.** The promise relation \((\mathcal{R}^{\text{YES}}_{\text{RLACSP}}, \mathcal{R}^{\text{NO}}_{\text{RLACSP}}) \) has the parameters:

\[
\begin{array}{c|c}
\text{field} & \mathbb{F} = \mathbb{F}_2^{\log(T + t) + O(\log \log(T + t))} \\
\text{first code} & C_0 \\
\text{second code} & C_1 \\
\text{block length} & \ell = \tilde{O}(T + t) \\
\text{relative distance} & \tau \\
\text{map locality} & q = \text{polylog} T \\
\text{map efficiency} & c = \text{poly}(n + \log T) \\
\text{randomizability} & t \\
\text{randomize time} & r = \tilde{O}(T + t)
\end{array}
\]

(The hidden constants depend on the choice of \(\tau \); see [BCGV16 Thm. 7.9] for the dependence on \(\tau \).)

- **Additive Reed–Solomon codes.** \(\text{Rel}(C_0 \times C_1) \) is a subfamily of \(\text{ERS}^+ \).

Proof of Theorem 8.1. The theorem directly follows by having the prover and verifier reduce the given relation in \(\text{NTIME}(T) \) to \((\mathcal{R}^{\text{YES}}_{\text{RLACSP}}, \mathcal{R}^{\text{NO}}_{\text{RLACSP}}) \), following Theorem 8.10, and then invoking Theorem 8.9 with the perfect zero knowledge IOP of Proximity for \(\text{ERS}^+ \) from Corollary 7.14. □
Acknowledgements

Work of E. Ben-Sasson, A. Gabizon, and M. Riabzev was supported by the Israel Science Foundation (grant 1501/14). Work of M. A. Forbes was supported by the NSF, including NSF CCF-1617580, and the DARPA Safeware program; it was also partially completed when the author was at Princeton University, supported by the Princeton Center for Theoretical Computer Science.
A Prior work on single-prover unconditional zero knowledge

We summarize prior work on single-prover proof systems that achieve zero knowledge unconditionally. First, the complexity classes of PZK IPs and SZK IPs are contained in $\text{AM} \cap \text{coAM}$ [For87, AH91], so they do not contain NP unless the polynomial hierarchy collapses [BHZ87]; thus, IPs have strong limitations. Next, we discuss other single-prover proof systems: PCPs and IPCPs; all prior work for these is about statistical zero knowledge (SZK), via simulators that are straightline (which is needed in many of the cryptographic applications explored in these works).

SZK PCP for NEXP. [KPT97] obtain PCPs for NEXP that are SZK against unbounded queries; the PCP has exponential length, the honest verifier makes a polynomial number of queries, and malicious verifiers can make any polynomial number of queries. Their construction has two steps: (1) transform a given PCP into a new one that is PZK against (several independent copies of) the honest verifier; (2) transform the latter PCP into a new one that is SZK against malicious verifiers. The first step uses secret sharing and builds on techniques of [DFK+92]; the second uses locking schemes, which are information-theoretic PCP-analogues of commitment schemes. Subsequent work simplifies the steps: [IW14] use MPC techniques to simplify the first step; and [IMS12, IMSX15] give a simple construction of locking schemes, by obtaining a non-interactive PCP-analogue of [Nao91]'s commitment scheme.

SZK PCP for NP against unbounded queries. A PCP must have super-polynomial length if it ensures SZK against any polynomial number of malicious queries: if not, a malicious verifier could read the entire PCP, in which case zero knowledge is impossible for non-trivial languages [GO94]. If one allows the prover to be inefficient, then invoking [KPT97]'s result for any language in NEXP, including NP languages, suffices. Yet, in the case of NP, one can still aim for oracle efficiency: the prover outputs a succinct representation of the oracle, i.e., a polynomial-size circuit that, given an index, outputs the value at that index. However, [IMS12, MX13, IMSX15] show that languages with oracle-efficient PCPs that are SZK against unbounded queries are contained in the complexity class of SZP IPs, which is unlikely to contain NP.

SZK PCP for NP against bounded queries. [KPT97] obtain PCPs for NP that are SZK against b malicious queries, for a given polynomially-bounded function b. The construction is analogous to the one for NEXP, but with different parameter choices. (The simplifications in [IMS12, IMSX15, IW14] also apply to this case.)

Subsequently, [IW14] consider the case of zero knowledge PCPs of proximity; they obtain PCPPs for NP that are SZK against b malicious queries. Like [KPT97], their construction has two steps: (1) use MPC techniques to transform a given PCPP into a new one that is PZK against (several independent copies of) the honest verifier; (2) use locking schemes to transform the latter PCPP into a new one that is SZK against malicious verifiers.

SZK IPCP for NP against unbounded queries. For an IPCP to ensure SZK against any polynomial number of queries, the prover must send a PCP with super-polynomial length: if not, a malicious verifier could read the entire PCP, forcing the IPCP model to “collapse” to IP (recall that the complexity class of SZK IPs is unlikely to contain NP). As in the PCP model, one may still aim for oracle efficiency, and this time no limitations apply because a positive result is known: [GIMS10] obtain oracle-efficient IPCPs for NP that are SZK against unbounded queries. Their construction is analogous to [KPT97]'s, but relies on interactive locking schemes in the IPCP model, rather than non-interactive ones in the PCP model; this circumvents the impossibility result for oracle-efficient PCPs.
B Proof of Lemma 4.3

The algorithm \(\mathcal{A} \), given \((n,S,\alpha)\), where \(S = \{(\alpha_1, \beta_1), \ldots, (\alpha_\ell, \beta_\ell)\} \subseteq D(n) \times \mathbb{F}(n) \) and \(\alpha \in D(n) \), works as follows: (1) run \(\mathcal{C}' \)’s constraint detector on input \((n, \{\alpha_1, \ldots, \alpha_\ell, \alpha\})\); (2) if the detector outputs an empty basis or a basis \(z_1, \ldots, z_d \) where \(z_i(\alpha) = 0 \) for all \(i \), then output a random element in \(\mathbb{F}(n) \); (3) if the detector outputs some basis element \(z_j \) where \(z_j(\alpha) \neq 0 \), then output \(- \sum_{i=1}^\ell z_i(\alpha_i) / z_j(\alpha) \). The stated time complexity of \(\mathcal{A} \) is clear from its construction. We now argue correctness. Define the probability

\[
p := \Pr_{w \leftarrow C_n} \left[w(\alpha) = \beta \mid w(\alpha_1) = \beta_1, \ldots, w(\alpha_\ell) = \beta_\ell \right].
\]

Claim. (A) If there exist \(a_1, \ldots, a_\ell \in \mathbb{F}(n) \) such that \(w(\alpha) = \sum_{i=1}^\ell a_i w(\alpha_i) \) for all \(w \in C_n \) (Condition A), then \(p = 1 \) if \(\beta = \sum_{i=1}^\ell a_i \beta_i \) and \(p = 0 \) otherwise. (B) If no such \(a_1, \ldots, a_\ell \) exist, then \(p = 1 / |\mathbb{F}(n)| \).

Proof of claim. If Condition A holds, then, for any \(w \in C_n \) such that \(w(\alpha_1) = \beta_1, \ldots, w(\alpha_\ell) = \beta_\ell \), it holds that \(w(\alpha) = \sum_{i=1}^\ell a_i w(\alpha_i) = \sum_{i=1}^\ell a_i \beta_i \), which proves the first part of the claim.

Next, let \(d := \dim(C_n) \) and let \(w_1, \ldots, w_d \) be a basis of \(C_n \). Define \(\phi_\alpha := (w_1(\alpha), \ldots, w_d(\alpha)) \). We argue that Condition A holds if and only if \(\phi_\alpha \notin \text{span}\{\phi_{\alpha_1}, \ldots, \phi_{\alpha_\ell}\} \):

- Suppose that Condition A holds. Then \(w_j(\alpha) = \sum_{i=1}^\ell a_i w_j(\alpha_i) \) for every \(j \in \{1, \ldots, d\} \). Since \(w_j(\alpha) \) is the \(j \)-th coordinate of \(\phi_\alpha \), it also holds that \(\phi_\alpha = \sum_{i=1}^\ell a_i \phi_{\alpha_i} \), so that \(\phi_\alpha \notin \text{span}\{\phi_{\alpha_1}, \ldots, \phi_{\alpha_\ell}\} \).
- Suppose that \(\phi_\alpha \in \text{span}\{\phi_{\alpha_1}, \ldots, \phi_{\alpha_\ell}\} \). Then there exist \(a_1, \ldots, a_\ell \) such that \(\phi_\alpha = \sum_{i=1}^\ell a_i \phi_{\alpha_i} \). For any \(w \in C_n \), we can write \(w = \sum_{j=1}^d b_j w_j \) (for some \(b_j \)'s), so that \(w(\alpha) = \sum_{j=1}^d b_j w_j(\alpha) = \langle w, \phi_\alpha \rangle = \sum_{i=1}^\ell a_i \phi_{\alpha_i} \).

Thus, the negation of Condition A is equivalent to \(\phi_\alpha \notin \text{span}\{\phi_{\alpha_1}, \ldots, \phi_{\alpha_\ell}\} \), which we now assume to prove the second part of the claim, as follows.

Let \(\Phi \in \mathbb{F}(n)^k \times \mathbb{F}(n) \) be the matrix whose rows are \(\phi_{\alpha_1}, \ldots, \phi_{\alpha_\ell} \), and let \(w_1', \ldots, w_k' \) be a basis for \(\Phi \)'s nullspace. Let \(\Phi' \) be the matrix \(\Phi \) augmented with the row \(\phi_\alpha \). Note that \(\text{rank}(\Phi') = \text{rank}(\Phi) + 1 \), so the nullspace of \(\Phi' \) has dimension \(k - 1 \), which implies that there exists \(j \in \{1, \ldots, k\} \) such that \(\langle w_j', \phi_\alpha \rangle \neq 0 \). Also note that, for every \(w \in C_n \) such that \(w(\alpha_1) = \beta_1, \ldots, w(\alpha_\ell) = \beta_\ell \) and \(r \in \mathbb{F}(n) \), the codeword \(w + rw_j' \) satisfies the same equations as \(w \) does. Therefore, if \(w \) is drawn uniformly randomly from \(C_n \) such that \(w(\alpha_1) = \beta_1, \ldots, w(\alpha_\ell) = \beta_\ell \), then \(w + rw_j' \) for \(r \) uniformly random in \(\mathbb{F}(n) \) is identically distributed to \(w \). We conclude that \(\Pr[w(\alpha) = \beta] = \Pr[(w + rw_j')(\alpha) = \beta] = \Pr[r = \frac{\langle w, \phi_\alpha \rangle}{\langle w_j', \phi_\alpha \rangle}] = \frac{1}{|\mathbb{F}(n)|} \) since \(\langle w_j', \phi_\alpha \rangle \neq 0 \).

By the definition of constraint detection, \(a_1, \ldots, a_\ell \) as above exist if and only if there exists \(z \) in the space output by the constraint detector such that \(z(\alpha) = 1 \). If the constraint detector outputs \(z_1, \ldots, z_d \) such that \(z_i(\alpha) = 0 \) for all \(i \), then clearly the space contains no such vector. Otherwise, let \(j \) be such that \(z_j(\alpha) \neq 0 \); then \(a_j = -z_j(\alpha_i) / z_j(\alpha) \) for \(i = 1, \ldots, \ell \) is a solution. Hence this distribution equals that of \(\mathcal{A} \)'s output, and moreover fully describes the probability distribution of \(w(\alpha) \). The lemma follows.
C Proof of Lemma 4.6

By Claim 4.5, it suffices to show an algorithm that computes a basis of \((C_n^+)_{\subseteq I}\) in \(\text{poly}(|n| + |I|)\) time. So consider the algorithm that, on input an index \(n\) and subset \(I \subseteq D(n)\), works as follows. First, invoke the hypothesis to compute the set \(W\); since vectors are represented sparsely we conclude that \(|W|, |\text{supp}(W)| \leq \text{poly}(|n| + |I|)\). (Recall that \(\text{supp}(W) := \bigcup_{z \in W} \text{supp}(z)\).) We may assume \(W\) is linearly independent; otherwise, make it thus via Gaussian elimination which runs in time \(\text{poly}(|W| + |\text{supp}(W)|)\). Similarly, the bound on \(|W|\) and \(|\text{supp}(W)|\) implies that a basis \(W'\) for the subspace \(W_{\subseteq I}\) can be found in time \(\text{poly}(|n| + |I|)\), and we let \(W'\) be the output of our algorithm.

To argue correctness it suffices to show that \(\text{span}(W') = (C_n^+)_{\subseteq I}\). We first argue \(\text{span}(W') \subset (C_n^+)_{\subseteq I}\), so let \(z' \in \text{span}(W')\), which can be represented as \(z' = \sum_{\lambda \in \Lambda} a_\lambda \sum_{z \in W} \lambda(z) \cdot z\); note that \(z' \in \text{span}(W) \subset C_n^+\) and \(\text{supp}(z') \subseteq \text{supp}(W) = I \cup \overline{I}\). Hence, it suffices to show that \(\text{supp}(z') \cap \overline{I} = \emptyset\); but this is true by the choice of \(\Lambda\), because \(M \cdot \lambda = 0\) for every \(\lambda \in \Lambda\), so that \(\sum_{z \in W} \lambda(w) \cdot z(\alpha) = 0\) for every \(\alpha \in \overline{I}\) (by \(M\)'s definition), so that \(z'(\alpha) = \sum_{\lambda \in \Lambda} a_\lambda \sum_{z \in W} \lambda(z) \cdot z(\alpha) = 0\) for every \(\alpha \in \overline{I}\), as required.

We next argue that \(\text{span}(W') \supset (C_n^+)_{\subseteq I}\), and for this it suffices to show that any \(w \in \text{span}(W)\) having representation \(w = \sum_{z \in W} a_z \cdot z\) such that \(\vec{a} := (a_z)_{z \in W} \notin \text{span}(\Lambda)\) cannot be in \((C_n^+)_{\subseteq I}\). This follows by the definition of \(\Lambda\), because for any \(\vec{a} \notin \text{span}(\Lambda)\) there exists \(\alpha \in \overline{I}\) such that \(w(\alpha) = \sum_{z \in W} a_z \cdot z(\alpha) \neq 0\), so that \(w \notin (C_n^+)_{\subseteq I}\).
The naive approach yields an exponential-time algorithm since we reduce the problem to computing a basis of \(\mathbf{Q} \) for some notation. We consider a polynomial \(Q \in \mathbb{F}^{<d}[X_1, \ldots, X_m] \) equivalently as a univariate polynomial of degree less than \(d \) in \(X_1 \) with coefficients in \(\mathbb{F}^{<d}[X_2, \ldots, X_m] \), and let \(\partial_1^{i} Q \) be the coefficient of \(X_1^{i} \) in this representation. Define \(\partial_1^{i} \mathbf{Q} := (\partial_1^{i} Q_1, \ldots, \partial_1^{i} Q_\ell) \). In general, given an arbitrary arithmetic circuit representing a polynomial \(Q \), it is not clear how to efficiently compute a circuit representing \(\partial_1^{i} Q \), because \(Q \) may have exponentially many monomials. Nevertheless, for circuits of the required form, this computation is trivial.

Thus to compute a basis of \(\mathbf{Q}^\perp \) it suffices to compute the intersection of the bases of \((\partial_1^{i} \mathbf{Q})^\perp \) for all \(j \in \{0, \ldots, d-1\} \). The naive approach yields an exponential-time algorithm since we reduce the problem to \(d \) subproblems of roughly the same size. Observe, however, that for \(Q_k \) of the specified form,

\[
\partial_1^{i} Q_k = c_{k,j} T_k \quad \text{where} \quad T_k := \left(\prod_{i=2}^{m} Q_{k,i}(X_i) \right),
\]

for constants \(c_{k,j} \) computable in time \(\text{poly}(s) \). Let \(\bar{T} := (T_1, \ldots, T_\ell) \) and let \(T^\perp \in \mathbb{F}^{\ell \times b} \) be a basis for \(\bar{T}^\perp \); note that \(b \leq \ell \). Let \(\bar{a} := (a_1, \ldots, a_\ell) \in \mathbb{F}^\ell \) and observe that for each \(j \), \(\sum_{k=1}^{\ell} a_k \partial_1^{i} Q_k = 0 \) if and only if \(\sum_{k=1}^{\ell} a_k c_{k,j} T_k = 0 \), or equivalently, \((a_1 c_{1,j}, \ldots, a_\ell c_{\ell,j}) \in \mathbb{T}^\perp \). Hence \((a_1, \ldots, a_\ell) \in \bigcap_{j=0}^{\ell} (\partial_1^{i} \mathbf{Q})^\perp \) if and only if for each \(j \) there exists \(v_j^\perp \in \mathbb{F}^{\ell+b} \) such that \(T^\perp v_j^\perp = (a_1 c_{1,j}, \ldots, a_\ell c_{\ell,j}) \). This is a system of linear equations in \(\bar{a}, \bar{v}_0, \ldots, \bar{v}_{d-1} \) of size \(\text{poly}(\ell + d + b) \), and hence we can compute a basis for its solution space in time \(\text{poly}(\log |\mathbb{F}| + d + \ell + b) \). Restricting this basis to \(\bar{a} \) yields a basis for \(\mathbf{Q}^\perp \).

If \(Q_1, \ldots, Q_m \) are univariate then we can easily determine a basis for \(\mathbf{Q}^\perp \) in deterministic polynomial time (by Gaussian elimination). Otherwise, if the \(Q_i \) are \(m \)-variate, we use the procedure above to reduce computing \(\mathbf{Q}^\perp \) to computing \(T^\perp \) for some \(\bar{T} = (T_1, \ldots, T_\ell) \) where the \(T_i \) are \((m-1) \)-variate. This algorithm terminates in time \(\text{poly}(\log |\mathbb{F}| + m + d + s + \ell) \).

D Proof of Lemma 4.11

For completeness, we give an elementary proof of Lemma 4.11 by simplifying the proof of [Kay10, Thm. 10] for polynomials of the form we require; note that [RS05] and [BW04] also use similar techniques. We first introduce some notation. We consider a polynomial \(Q \in \mathbb{F}^{<d}[X_1, \ldots, X_m] \) equivalently as a univariate polynomial of degree less than \(d \) in \(X_1 \) with coefficients in \(\mathbb{F}^{<d}[X_2, \ldots, X_m] \), and let \(\partial_1^{i} Q \) be the coefficient of \(X_1^{i} \) in this representation. Define \(\partial_1^{i} \mathbf{Q} := (\partial_1^{i} Q_1, \ldots, \partial_1^{i} Q_\ell) \). In general, given an arbitrary arithmetic circuit representing a polynomial \(Q \), it is not clear how to efficiently compute a circuit representing \(\partial_1^{i} Q \), because \(Q \) may have exponentially many monomials. Nevertheless, for circuits of the required form, this computation is trivial.

Claim. Let \(\mathbf{Q} := (Q_1, \ldots, Q_\ell) \) be a vector of polynomials in \(\mathbb{F}^{<d}[X_1, \ldots, X_m] \). If \(d \leq |\mathbb{F}| \) then \(\mathbf{Q}^\perp = \bigcap_{j=0}^{d-1} (\partial_1^{i} \mathbf{Q})^\perp \).

Proof. When \(d \leq |\mathbb{F}|, Q \in \mathbb{F}^{<d}[X_1, \ldots, X_m] \equiv 0 \) if and only if all of its coefficients are zero when written as a formal sum. Then one direction of the set equality follows straightforwardly from the linearity of \(\partial_1^{i} \), namely, \(\mathbf{Q}^\perp \subseteq \bigcap_{j=0}^{d-1} (\partial_1^{i} \mathbf{Q})^\perp \).

For the other direction, we argue as follows. Fix some \((a_1, \ldots, a_\ell) \in \bigcap_{j=0}^{d-1} (\partial_1^{i} \mathbf{Q})^\perp \) and let \(T := \sum_{k=1}^{\ell} a_k Q_k \); we have that \(\partial_1^{i} T \equiv 0 \) for all \(j \in \{0, \ldots, d-1\} \), by linearity. But \(T = \sum_{j=0}^{d-1} (\partial_1^{i} T) X_j^j \) by definition, so \(T \equiv 0 \), and thus \((a_1, \ldots, a_\ell) \in \mathbf{Q}^\perp \).
E Proof of Claim 4.23

First we show that \(\text{span}(\bigcup_{j \in J} \tilde{C}_j^\perp) \subseteq (C^\perp)_{\subseteq (\cup_{j \in J} \tilde{D}_j)} \). For every \(j \in J \) and \(z \in \tilde{C}_j^\perp \), it holds that \(\text{supp}(z) \subseteq \tilde{D}_j \); therefore, for every \(z \in \text{span}(\cup_{j \in J} \tilde{C}_j^\perp) \), it holds that \(\text{supp}(z) \subseteq \cup_{j \in J} \tilde{D}_j \); thus it is suffices to show that, for every \(z \in \cup_{j \in J} \tilde{C}_j^\perp \) and \(w \in C \), it holds that \(\langle w, z \rangle = 0 \). But this holds because for every \(z \in \cup_{j \in J} \tilde{C}_j^\perp \) there exists \(j \in J \) such that \(z \in \tilde{C}_j^\perp \) and \(C |_{\tilde{D}_j} = \tilde{C}_j \) so that \(\langle w, z \rangle = \langle w |_{\tilde{D}_j}, z \rangle = 0 \), as required.

Next we show that \(\text{span}(\cup_{j \in J} \tilde{C}_j^\perp) \supseteq (C^\perp)_{\subseteq (\cup_{j \in J} \tilde{D}_j)} \), which is equivalent to \(\text{span}(\cup_{j \in J} \tilde{C}_j^\perp) \supseteq (C |_{\cup_{j \in J} \tilde{D}_j})^\perp \) by Claim 4.5. Recall that for any two linear spaces \(U, V \) it holds that \(U \subseteq V \) if and only if \(U^\perp \supseteq V^\perp \), thus it is sufficient to show that \(\text{span}(\cup_{j \in J} \tilde{C}_j^\perp)^\perp \subseteq C |_{\cup_{j \in J} \tilde{D}_j} \); i.e., that every \(w \in \text{span}(\cup_{j \in J} \tilde{C}_j^\perp)^\perp \) can be extended to \(w' \in C \). This latter statement holds because \(\text{span}(\cup_{j \in J} \tilde{C}_j^\perp)^\perp |_{\tilde{D}_j} \subseteq (\tilde{C}_j)^\perp = \tilde{C}_j \) for every \(j \in J \), and thus \(w |_{\tilde{D}_j} \in \tilde{C}_j \). Recalling \(|J| \leq \kappa \) implies, by Definition 4.15, that \(w \) can be extended to a codeword \(w' \in C \), as claimed.
F Definition of the linear code family BS-RS

In this section we define the linear code family BS-RS, which consists of evaluations of univariate polynomials concatenated with corresponding BS proximity proofs [BS08]. The definition is quite technical, and we refer the interested reader to [BS08] for a discussion of why it enables proximity testing. We begin with notation used later.

Definition F.1. Given a field \mathbb{F}, a subfield $\mathbb{K} \subseteq \mathbb{F}$, a \mathbb{K}-linear space $L \subseteq \mathbb{F}$ with a basis $(b_1, b_2, \ldots, b_\ell)$, a positive integer μ, and a positive integer $k > 2\mu$, we make the following definitions.

- **Four subspaces of L and a subset of L:**

 \[
 L_0[\mathbb{K}, \mathbb{F}, L, \mu] := \text{span}_\mathbb{K}(b_1, b_2, \ldots, b_{\ell/2}) \\
 L'_0[\mathbb{K}, \mathbb{F}, L, \mu] := \text{span}_\mathbb{K}(b_1, b_2, \ldots, b_{\ell/2} + \mu - 1) \\
 L_1[\mathbb{K}, \mathbb{F}, L, \mu] := \text{span}_\mathbb{K}(b_{\ell/2} + 1, \ldots, b_\ell) \\
 \forall \beta \in L_1[\mathbb{K}, \mathbb{F}, L, \mu], L_\beta[\mathbb{K}, \mathbb{F}, L, \mu] := \text{span}_\mathbb{K}(b_1, b_2, \ldots, b_{\ell/2} + \mu - 1, \beta') \\
 \forall \beta \in L_1[\mathbb{K}, \mathbb{F}, L, \mu], R_\beta[\mathbb{K}, \mathbb{F}, L, \mu] := L_\beta \setminus (L_0 + \beta)
 \]

 where $\beta' := b_{\ell/2} + \mu$ if $\beta \in L'_0$ and $\beta' := \beta$ otherwise.

- **The vanishing polynomial of L_0:** $Z_{L_0}[\mathbb{K}, \mathbb{F}, L, \mu](X) := \prod_{\alpha \in L_0}(X - \alpha)$.

- **The following domains:**

 \[
 D_{\text{hi}}[\mathbb{K}, \mathbb{F}, L, \mu] := \{ (\alpha, Z_{L_0}(\beta)) : \beta \in L_1, \alpha \in L_\beta \} \\
 D_{\text{pf}}[\mathbb{K}, \mathbb{F}, L, \mu] := \{ (\alpha, Z_{L_0}(\beta)) : \beta \in L_1, \alpha \in R_\beta \} \\
 D_{\Omega}[\mathbb{K}, \mathbb{F}, L, \mu] := \{ \{\text{rs}\} \times L \} \sqcup \{ \{\text{px}\} \times D_{\text{pf}} \}
 \]

 where we use the symbols ‘rs’ and ‘px’ to distinguish different parts of the disjoint union.

- **The bijection $\phi[\mathbb{K}, \mathbb{F}, L, \mu]$:** $D_{\text{hi}} \to D_{\Omega}$ is defined by $\phi(\alpha, \beta) := \begin{cases} (\text{px}, (\alpha, \beta)) & (\alpha, \beta) \in D_{\text{pf}} \\ (\text{rs}, \alpha) & \text{otherwise} \end{cases}$

- **Given $w \in [D_{\Omega}[\mathbb{K}, \mathbb{F}, L, \mu]]$, the bivariate function $f_w : D_{\text{hi}}[\mathbb{K}, \mathbb{F}, L, \mu] \to \mathbb{F}$ is defined by $f_w(\alpha, \beta) := w(\phi(\alpha, \beta))$.**

- **The fractional degree $\rho[\mathbb{K}, \mathbb{F}, \mu] := |\mathbb{K}|^{-\mu}$.**

- **The domain $D_{\text{px-RS}}[\mathbb{K}, \mathbb{F}, L, \mu, k]$ implied by the recursion below:**

 \[
 \begin{aligned}
 &- \text{if dim}(L) \leq k & \text{then } D_{\text{px-RS}}[\mathbb{K}, \mathbb{F}, L, \mu, k] := D_{\text{pf}}[\mathbb{K}, \mathbb{F}, L, \mu]; \\
 &- \text{if dim}(L) > k & \text{then } D_{\text{px-RS}}[\mathbb{K}, \mathbb{F}, L, \mu, k] := D_{\text{pf}}[\mathbb{K}, \mathbb{F}, L, \mu] \sqcup \left(\bigcup_{\alpha \in L'_0} \{ (\text{col}, \alpha) \} \times D_{\text{px-RS}}[\mathbb{K}, \mathbb{F}, Z_{L_0}(L_1), \mu, k] \right) \sqcup \left(\bigcup_{\beta \in L_1} \{ (\text{row}, \beta) \} \times D_{\text{px-RS}}[\mathbb{K}, \mathbb{F}, L_\beta, \mu, k] \right)
 \end{aligned}
 \]

 where we use the symbols ‘col’ and ‘row’ to distinguish different parts of the disjoint union.

- **The domain $D_{\text{BS-RS}}[\mathbb{K}, \mathbb{F}, L, \mu, k] := \{ \{\text{rs}\} \times L \} \sqcup \{ \{\text{px}\} \times D_{\text{px-RS}}[\mathbb{K}, \mathbb{F}, L, \mu, k] \}.**

- **Given $\alpha \in L'_0$, the embedding $\phi_{\text{col}, \alpha} : D_{\text{BS-RS}}[\mathbb{K}, \mathbb{F}, Z_{L_0}(L_1), \mu, k] \hookrightarrow D_{\text{BS-RS}}[\mathbb{K}, \mathbb{F}, L, \mu, k]$ is defined by $\phi_{\text{col}, \alpha}(x) := \begin{cases} (\text{px}, (\text{col}, \alpha, x)) & x \in \{\text{px}\} \times D_{\text{px-RS}}[\mathbb{K}, \mathbb{F}, Z_{L_0}(L_1), \mu, k] \\ \phi(\alpha, \beta) & x = \{\text{rs}\}, Z_{L_0}(\beta) \end{cases}$**

We denote by $D_{\text{col}, \alpha}$ the image of $\phi_{\text{col}, \alpha}$.

51
• Given $\beta \in L_1$, the embedding $\phi_{\text{row},\beta} : D^{\text{BS-RS}}[K, F, L\beta, \mu, k] \mapsto D^{\text{BS-RS}}[K, F, L, \mu, k]$ is defined by
 $$\phi_{\text{row},\beta}(x) := \begin{cases} (px, ((\text{row}, \beta), x)) & x \in \{px\} \times D^{\text{BS-RS}}[K, F, L\beta, \mu, k] \\ \phi(\alpha, \beta) & x = \{(\text{rs})\}, \alpha \end{cases}$$

We denote by $D_{\text{row},\beta}$ the image of $\phi_{\text{row},\beta}$.

• Given $\alpha \in L_0$, $\psi_{\text{col},\alpha} : F^{D^{\text{BS-RS}}[K, F, L\mu, k]} \rightarrow F^{D^{\text{BS-RS}}[K, F, Z_{L_0}(L_1), \mu, k]}$ is the projection of $D^{\text{BS-RS}}[K, F, L, \mu, k]$ on $D_{\text{col},\alpha}$ with indices renamed to elements of $D^{\text{BS-RS}}[K, F, Z_{L_0}(L_1), \mu, k]$. Formally, $\psi_{\text{col},\alpha}(w) = w'$ if and only if $\psi'_{\text{col},\alpha}(x) = w(x)$ for all $x \in D^{\text{BS-RS}}[K, F, Z_{L_0}(L_1), \mu, k]$.

• Given $\beta \in L_1$, $\psi_{\text{row},\beta} : F^{D^{\text{BS-RS}}[K, F, L\beta, \mu, k]} \rightarrow F^{D^{\text{BS-RS}}[K, F, L\beta, \mu, k]}$ is the projection of $D^{\text{BS-RS}}[K, F, L, \mu, k]$ on $D_{\text{row},\beta}$ with indices renamed to elements of $D^{\text{BS-RS}}[K, F, L\beta, \mu, k]$. Formally, $\psi_{\text{row},\beta}(w) = w'$ if and only if $\psi'_{\text{row},\beta}(x) = w(x)$ for all $x \in D^{\text{BS-RS}}[K, F, L\beta, \mu, k]$.

The following definition considers a code that extends the evaluation of a univariate polynomial with a bivariate function that represents the polynomial over a specially-chosen set.

Definition F.2 (RS$_\cap$). Given a field F, a subfield $\mathbb{K} \subseteq F$, a \mathbb{K}-linear space $L \subseteq F$, and a positive integer μ, the code $\text{RS}_\cap[\mathbb{K}, F, L, \mu, k]$ consists of all $w \in \mathbb{F}^{D^{\text{BS-RS}}[\mathbb{K}, F, L, \mu, k]}$ such that $f_{w} : D_{\cap} \rightarrow F$ is an evaluation of a low degree polynomial: there exists a polynomial $g \in F[X, Y]$ such that: (i) $\deg_X g < |L_0|$, (ii) $\deg_Y g < |L_1| \cdot \rho | \mathbb{K}, F, \mu |$, (iii) $g|_{D_{\cap}} = f_w$.

Ben-Sasson and Sudan [BS08] show that:

- $v \in \text{RS}[F, L, |L| \cdot \rho]$ if and only if there exists $w \in \text{RS}_\cap[\mathbb{K}, F, L, \mu, k]$ such that $w|_{\{(\text{rs})\} \times L} = v$;

- $w \in \text{RS}_\cap[\mathbb{K}, F, L, \mu, k]$ if and only if
 - for every $\alpha \in L_0$, $f_w|_{\{\alpha\} \times Z_{L_0}(L_1)} \in \text{RS}[F, Z_{L_0}(L_1), |L_1| \cdot \rho]$ (with the standard mapping between domains) and
 - for every $\beta \in L_1$, $f_w|_{L\beta \times \{Z_{L_0}(\beta)\}} \in \text{RS}[F, L\beta, |L_0|]$ (with the standard mapping between domains).

The above equivalences illustrate the ‘quadratic reduction’ from testing that $w \in \mathbb{F}^L$ is a codeword of $\text{RS}[F, L, |L| \cdot \rho]$ to a set of $\Theta(\sqrt{|L|})$ problems of testing membership in codes of the form $\text{RS}[F, L', d']$ with $|L'|, d' = \Theta(\sqrt{|L|})$.

The code from Definition F.2 corresponds to one step of the recursive construction of [BS08]. We now build on that definition, and recursively define the linear code family BS-RS.

Definition F.3 (BS-RS). Given a field F, a subfield $\mathbb{K} \subseteq F$, a \mathbb{K}-linear space $L \subseteq F$, a positive integer μ, and a positive integer $k > 2\mu$, the code $\text{BS-RS}[\mathbb{K}, F, L, \mu, k]$ consists of all words $w \in \mathbb{F}^{D^{\text{BS-RS}}[\mathbb{K}, F, L, \mu, k]}$ satisfying the following. If $\dim(L) \leq k$ then $w \in \text{RS}_\cap[\mathbb{K}, F, L, \mu, k]$. If $\dim(L) > k$ the following holds: (1) for every $\alpha \in L_0$ there exists $\alpha \in \text{BS-RS}[\mathbb{K}, F, Z_{L_0}(L_1), \mu, k]$ such that $w_{\alpha}(\phi_{\text{col},\alpha}(x)) = w(x)$ for every $x \in D[\mathbb{K}, F, Z_{L_0}(L_1), \mu, k]$; (2) for every $\beta \in L_1$ there exists $\beta \in \text{BS-RS}[\mathbb{K}, F, L\beta, \mu, k]$ such that $w_{\beta}(\phi_{\text{row},\beta}(x)) = w(x)$ for every $x \in D[\mathbb{K}, F, L\beta, \mu, k]$.

We conclude this section with two claims about BS-RS that we use in later sections. We omit the proof of the first claim (refer the interested reader to [BS08]), and prove the second claim based on the first one.

Claim F.4. For every codeword $w \in \text{RS}[F, L, |L| \cdot \rho]$, positive integer μ, and positive integer $k > 2\mu$, there exists a unique π_w such that $w \circ \pi_w \in \text{BS-RS}[\mathbb{K}, F, L, \mu, k]$.

Claim F.5. The following two statements hold for the code $\text{BS-RS}[\mathbb{K}, F, L, \mu, k]$:

- for every $\alpha \in L_0$ and $w' \in \text{BS-RS}[\mathbb{K}, F, Z_{L_0}(L_1), \mu, k]$ there exists $w \in \text{BS-RS}[\mathbb{K}, F, L, \mu, k]$ such that $\psi_{\text{col},\alpha}(w) = w'$;

- for every $\beta \in L_1$ and $w' \in \text{BS-RS}[\mathbb{K}, F, L\beta, \mu, k]$ there exists $w \in \text{BS-RS}[\mathbb{K}, F, L, \mu, k]$ such that $\psi_{\text{row},\beta}(w) = w'$.

Proof. The proofs for the two statements are similar, so we only give the proof for the first statement. Let $w' \in \text{BS-RS}[\mathbb{K}, F, Z_{L_0}(L_1), \mu, k]$, and define $w_{\text{rs}} := w'|_{\{(\text{rs})\} \times Z_{L_0}(L_1)}$, observe that w_{rs} in $\text{RS}[F, Z_{L_0}(L_1), |L_1| \cdot \rho]$. By Claim F.4 w' is uniquely determined by w_{rs}, thus it suffices to show that there exists $w \in \text{RS}[\mathbb{K}, F, L, \mu, k]$ such that $f_{w'}|_{\{\alpha\} \times Z_{L_0}(L_1)} = w_{\text{rs}}$. By definition of RS_\cap, it suffices to show that there exists a bivariate polynomial $g \in F[X, Y]$ such that: (i) $\deg_X g < |L_0|$, (ii) $\deg_Y g < |L_1| \cdot \rho$, (iii) $g|_{\{\alpha\} \times Z_{L_0}(L_1)} = w_{\text{rs}} \in \text{RS}[F, Z_{L_0}(L_1), |L_1| \cdot \rho]$. The existence of such g follows by considering a suitable interpolating set (see, e.g., Appendix H).
G Proof of Lemma 4.27

In this section we prove Lemma 4.27. In Appendix G.1 we define the recursive cover and prove its combinatorial properties; in Appendix G.2 we prove that a spanning set for the duals of codes in this cover can be computed efficiently; in Appendix G.3, we put these together to conclude the proof.

G.1 The recursive cover and its combinatorial properties

We define a recursive cover for BS-RS and then prove certain combinatorial properties for it. The definition relies on the definition of another cover, which we now introduce.

Definition G.1. The native cover $S[L,\mathbb{F},\mu,k]$ of BS-RS is defined as follows:

- if $\dim(L) \leq k$ then the cover contains only the trivial view $(D^{BS-RS}[L,\mathbb{F},\mu,k], BS-RS[L,\mathbb{F},\mu,k])$;
- if $\dim(L) > k$ then the cover contains
 - the view $(D^{BS-RS}[L,\mathbb{F},Z_{L_0}(L_1),\mu,k], D_{col,\alpha})$ for every $\alpha \in L_0'$ and
 - the view $(D^{BS-RS}[L,\mathbb{F},L,\beta,\mu,k], D_{row,\beta})$ for every $\beta \in L_1$.

We now prove that the native cover is indeed a cover.

Claim G.2. The native cover $S[L,\mathbb{F},\mu,k]$ of BS-RS is a code cover (see Definition 4.13).

Proof. From Claim F.5 we know that:

- for every $\alpha \in L_0'$, the restriction of BS-RS $[L,\mathbb{F},\mu,k]$ to $D_{col,\alpha}$ equals BS-RS $[L,\mathbb{F},Z_{L_0}(L_1),\mu,k]$;
- for every $\beta \in L_1$, the restriction of BS-RS $[L,\mathbb{F},\mu,k]$ to $D_{row,\beta}$ equals BS-RS $[L,\mathbb{F},L,\beta,\mu,k]$.

Therefore, it suffices to show that $D_{\square} \subseteq (\cup_{\alpha \in L_0} D_{col,\alpha}) \cup (\cup_{\beta \in L_1} D_{row,\beta})$. So let x be an index in D_{\square}.

- If there exists $\alpha \in L_0'$ such that $x \in \{px\} \times \{(col,\alpha)\} \times D_{pf}^{BS-RS}[L,\mathbb{F},Z_{L_0}(L_1),\mu,k]$, then $x \in D_{col,\alpha}$.
- If there exists $\beta \in L_1$ such that $x \in \{px\} \times \{(row,\beta)\} \times D_{pf}^{BS-RS}[L,\mathbb{F},L,\beta,\mu,k]$, then $x \in D_{row,\beta}$.
- If $x \in \{px\} \times D_{pf}[L,\mathbb{F},\mu,k]$, then there exist $\beta \in L_1$ and $\alpha \in R_\beta$ such that $x = (px,(\alpha,Z_{L_0}(\beta)))$, so $x \in D_{row,\beta}$.
- If $x \in \{rs\} \times L$, then there exist $\beta \in L_1$ and $\alpha \in L_0'$ such that $\phi[L,\mathbb{F},\mu,k]((\alpha,Z_{L_0}(\beta))) = x$, so $x \in D_{row,\beta}$.

The recursive cover of BS-RS is recursively defined based on the native cover of BS-RS.

Definition G.3. The recursive cover $T[L,\mathbb{F},\mu,k]$ of BS-RS is the tree of depth $\lceil \log \dim(L) - \log(k) \rceil$ where, for every non-leaf vertex v labeled by $(D, BS-RS[L,\mathbb{F},\mu,k])$, the vertex v has $|S[L,\mathbb{F},\mu,k]|$ successors, all labeled by elements of $S[L,\mathbb{F},\mu,k]$ with the natural embedding of their domains into D.

Claim G.4. The recursive cover of BS-RS is 1-intersecting (see Definition 4.18).

Proof. We must show that for every two disconnected vertices u, v it holds that $|D_u \cap D_v| \leq 1$. It suffices to do so for every two distinct siblings u, v, because if a is an ancestor of b then D_a contains D_b. Hence, we only need to show that for every two distinct views $(\tilde{D}, \tilde{C}), (\hat{D}, \hat{C})$ in the native cover $S[L,\mathbb{F},\mu,k]$, it holds that $|\tilde{D} \cap \hat{D}| \leq 1$. First we observe that for every $\alpha_1 \neq \alpha_2 \in L_0'$ and $\beta_1 \neq \beta_2 \in L_1$, the following sets are disjoint by definition:

- $\{px\} \times \{(col,\alpha_1)\} \times D_{pf}^{BS-RS}[L,\mathbb{F},Z_{L_0}(L_1),\mu,k]$,
- $\{px\} \times \{(col,\alpha_2)\} \times D_{pf}^{BS-RS}[L,\mathbb{F},Z_{L_0}(L_1),\mu,k]$,
- $\{px\} \times \{(row,\beta_1)\} \times D_{pf}^{BS-RS}[L,\mathbb{F},L,\beta_1,\mu,k]$,
- $\{px\} \times \{(row,\beta_2)\} \times D_{pf}^{BS-RS}[L,\mathbb{F},L,\beta_2,\mu,k]$.

Thus it is enough to show that:

- Any two columns are distinct: $\phi(\alpha_1, \beta_1) \neq \phi(\alpha_2, \beta_2)$ for every $\alpha_1 \neq \alpha_2 \in L_0'$ and $\beta_1 \neq \beta_2 \in Z_{L_0}(L_1)$.
- Any two rows are distinct: $\phi(\alpha_1, \beta_1) \neq \phi(\alpha_2, \beta_2)$ for every $\beta_1 \neq \beta_2 \in Z_{L_0}(L_1)$, $\alpha_1 \in L_\beta_1$, and $\alpha_2 \in L_\beta_2$.
- The intersection of any row and column has at most one element: $\phi(\alpha, \beta') \neq \phi(\alpha', \beta)$ for every $\alpha, \alpha' \in L_0'$ and $\beta, \beta' \in Z_{L_0}(L_1)$ with $(\alpha', \beta') \neq (\alpha, \beta)$.

But all the above follow from the fact that $\phi[L,\mathbb{F},\mu,k]$ is a bijection and, thus, an injection. \qed
The next claim establishes a connection between the depth of a vertex \(v\) in the recursive cover and the independence of the cover \(T_v\) of the code \(C_v\).

Claim G.5. For every vertex \(v\) in layer \((T, d)\), the cover \(T_v\) is \(([\mathbb{K}]^{\dim(L)} - 2^{−d−1}−\mu−2\)\)-independent. In particular, by assignment, it holds that, for every positive integer \(m\) and every non-leaf vertex \(v\) in \(T[\mathbb{K}, F, L, \mu, k]\) with depth less than \(\log_2 \dim(L) \leq 0\), the cover \(T_v\) is \(m\)-independent.

The proof of the above claim directly follows from Claim G.7 and Claim G.6, stated and proved below. The first of these two claims connects the depth of a vertex \(v\) and the dimension of a space \(L_v\) such that \(C_v = BS-RS[\mathbb{F}, \mathbb{K}, L_v, \mu, k]\) (this claim is used separately also for establishing computational properties in in Appendix G.2).

Claim G.6. If \(v \in \text{layer}(T[\mathbb{K}, F, L, \mu, k], d)\) then \(C_v = BS-RS[\mathbb{K}, F, \hat{L}, \mu, k]\) for some \(\hat{L}\) such that
\[
\dim(L) \cdot 2^{−d} \leq \dim(\hat{L}) \leq \dim(L) \cdot 2^{−d} + 2\mu.
\]

Proof. The proof is by induction on \(d\). The base case \(d = 0\) follows directly from the definition; so we now assume the claim for \(d − 1\) and prove it for \(d\). Let \(v \in \text{layer}(T, d)\) be a vertex of depth \(d\), and let \(u \in \text{layer}(T, d − 1)\) be \(v\)'s predecessor. By the inductive assumption, \(C_u = BS-RS[\mathbb{K}, F, L_u, \mu, k]\) for some \(L_u\) such that \(\dim(L) \cdot 2^{−(d−1)} \leq \dim(L_u) \leq \dim(L) \cdot 2^{−(d−1)} + 2\mu\).

First we argue that \(T_u\) is not the trivial (singleton) cover. For this, it suffices to show that \(\dim(L_u) > k\). But this follows from the inductive assumption, since depth \((T, u) < \left\lceil \log_2 \dim(L) − \log(k) \right\rceil\), so that \(\dim(L_u) \geq \dim(L) \cdot 2^{−(\log_2 \dim(L) − \log(k))−1} \geq 2k\).

Recall \(C_v = BS-RS[\mathbb{K}, F, L_v, \mu, k]\) for some space \(L_v\); we are thus left to show that \(\dim(L_u) \cdot 2^{−1} \leq \dim(L) \leq \dim(L_u) \cdot 2^{−1} + \mu\). We do so by giving two cases, based on the form of \(L_u\): (a) if \(L_u = Z_{L_v}[\mathbb{K}, F, L_v, \mu, k]\) then \(\dim(L_v) = \dim(L_v[\mathbb{K}, F, L_v, \mu, k]) = \left\lceil \dim(L) \right\rceil\); (b) if there exists \(\beta \in L_v[\mathbb{K}, F, L_v, \mu, k]\) such that \(L_v = L_v[\mathbb{K}, F, L_v, \mu, k]\) then \(\dim(L_v) = \dim(L_v[\mathbb{K}, F, L_v, \mu, k]) + \mu = \left\lceil \dim(L) \right\rceil + \mu\). In either case \(\dim(L_v) \cdot 2^{−1} \leq \dim(L_v) \cdot 2^{−1} + \mu\), and the claim follows.

Claim G.7. The native cover \(S[\mathbb{K}, F, L, \mu, k]\) is \(([\mathbb{K}]^{\dim(L)} - 2^{−\mu} \)\)-independent.

Proof. Recalling Definition 4.16, fix arbitrary subsets \(D' \subseteq (\{\text{col}\} \times L_0) \cup (\{\text{row}\} \times L_1)\) and \(D'' \subseteq D_{\text{col}}[\mathbb{K}, F, \mu, k]\) both of size at most \([\mathbb{K}]^{\dim(L)} - 2^{−\mu}\), and define \(D := D' \cup (\cup_{(\text{col}, \alpha)} D_{\text{col}, \alpha}) \cup (\cup_{(\text{row}, \beta)} D_{\text{row}, \beta})\). Let \(w' \in F^{D_{\text{col}}[\mathbb{K}, F, \mu, k]}\) be such that: (i) for every \((\text{col}, \alpha) \in D'\) it holds that \(\psi_{\text{col}, \alpha}(w') \in BS-RS[\mathbb{K}, F, Z_{L_v}[\mathbb{K}, F, L_v], \mu, k]\); and (ii) for every \((\text{row}, \beta) \in D''\) it holds that \(\psi_{\text{row}, \beta}(w') \in BS-RS[\mathbb{K}, F, L_{\beta}, \mu, k]\). We need to show that there exists \(w \in BS-RS[\mathbb{K}, F, L, \mu, k]\) such that \(w|_D = w'|_D\).

In fact, it suffices to show that \(w \in RS[\mathbb{K}, F, L, \mu, k]\) such that \(w|_{D_{\text{col}}} = w'|_{D_{\text{col}}}\); because Claim F.4 implies there exists a unique codeword \(w \in BS-RS[\mathbb{K}, F, L, \mu, k]\) such that \(w|_{D_{\text{col}}} = w|_{D_{\text{col}}}\).

Thus, we now argue that \(w \in RS[\mathbb{K}, F, L, \mu, k]\) such that the following holds.

- For every \((\text{col}, \alpha) \in D'\) and \(\beta \in Z_{L_v}[\mathbb{K}, F, L_v]\), it holds that \(f_{\text{col}, \alpha}(\alpha, \beta)|_{z_{L_v}(L_v)} \subseteq RS[\mathbb{K}, F, Z_{L_v}[\mathbb{K}, F, L_v], |L_v| \cdot \rho]\), and let \(p_{\text{col}, \alpha}\) be its univariate low degree extension to \(F\).
- For every \((\text{row}, \beta) \in D''\) and \(\alpha \in L_{\beta}\), it holds that \(f_{\text{row}, \beta}(\alpha, Z_{L_v}[\mathbb{K}, F, L_v]) \subseteq RS[\mathbb{K}, F, L_{\beta}, |L_v| \cdot \rho]\), and let \(p_{\text{row}, \beta}\) be its univariate low degree extension to \(F\).
- For every \((\alpha, \beta) \in D''\), it holds that \(f_{\text{row}, \beta}(\alpha, Z_{L_v}[\mathbb{K}, F, L_v]) = w'(\alpha, Z_{L_v}[\mathbb{K}, F, L_v])\).

By Definition F.2 it suffices to show that there exists a bivariate polynomial \(g \in F[X, Y]\) such that: (i) \(\deg_X(g) < |L_v|\); (ii) \(\deg_Y(g) < |L_v| \cdot \rho\); (iii) \(g_X|_{\alpha} = p_{\text{col}, \alpha}\) for every \((\text{col}, \alpha) \in D'\); (iv) \(g_Y|_{Z_{L_v}[\mathbb{K}, F, L_v]} = p_{\text{row}, \beta}\) for every \((\text{row}, \beta) \in D''\); (v) \(g(\alpha, \beta) = w'(\alpha, Z_{L_v}[\mathbb{K}, F, L_v])\) for every \((\alpha, \beta) \in D''\). But notice that \(|D'| + |D''| \leq 2 \cdot |\mathbb{K}|^{\dim(L)} - 2^{−\mu} = |\mathbb{K}|^{\dim(L)} - 2^{−\mu} < \min\{|L_v|, |L_v| \cdot \rho\}\), because (a) \(\log_2 |\mathbb{K}|(|L_v| \cdot \rho) = \dim(L) - \mu \geq \frac{\dim(L)}{2} + \mu\). The claim follows by considering a suitable interpolating set (see Section H).
We prove that spanning sets for duals of codes in the recursive cover can be computed efficiently; this is the key fact that we later use to argue that the algorithm required by Lemma 4.27 satisfies the stated time complexity.

Claim G.8. For every positive integer m and vertex v in $T\langle K, F, L, \mu, k \rangle$ of depth at least $\log_2 \dim(L) - \log_2 \log_2 |K| m$, a spanning set of \tilde{C}_v can be computed in time $\text{poly}(\log_2 |F| + |K|^\mu + m)$.

The above claim directly follows from Claim G.9 and Claim G.10, stated and proved below.

Claim G.9. For every positive integer m and vertex v in $T\langle K, F, L, \mu, k \rangle$ of depth at least $\log_2 \dim(L) - \log_2 \log_2 |K| m$, $|\tilde{D}_v| \leq \text{poly}(m + |K|^\mu)$.

Proof. Ben-Sasson and Sudan [BS08] show that the block length of BS-RS$\langle K, F, L, \mu, k \rangle$ is $\tilde{O}_{K, \mu,k}(|L|)$ for any fixed K, μ, k. One can verify that, if we do not fix these parameters, the block length is $\tilde{O}(|L| \cdot |K|^\mu)$. Next, observe that $\tilde{C}_v = \text{BS-RS}\langle K, F, L_L, \mu, k \rangle$ for some L_L such that $\dim(L_L) \leq \log_2 |K| m + 2\mu$ (Claim G.6); in this case, the aforementioned bound becomes $\text{poly}(m + |K|^\mu)$.

Claim G.10. A spanning set for BS-RS$\langle K, F, L, \mu, k \rangle^\perp$ can be found in time $\text{poly}(\log_2 |F| + |D^{\text{BS-RS}}\langle K, F, L, \mu, k \rangle|)$.

Proof. We show an algorithm that constructs the desired spanning set in the stated time complexity. First, a spanning set for RS$\langle F, S, d \rangle^\perp$ can be found in time $\text{poly}(\log_2 |F| + |S|)$, for any finite field F, subset $S \subseteq F$, and degree bound $d < |S|$. Hence, a spanning set for RS$\subseteq \langle K, F, L, \mu \rangle$ can be found in time $\text{poly}(\log_2 |F| \cdot |L| \cdot |K|^\mu c^\ast$ for some $c > 0$.

We argue by induction on $\dim(L)$ that a spanning set for BS-RS$\langle K, F, L, \mu, k \rangle^\perp$ can be found in time $\text{poly}(\log_2 |F| \cdot |L| \cdot |K|^\mu c^\ast$. We rely the property that the code BS-RS$\langle K, F, L, \mu, k \rangle$ is covered by

$$\{(\text{BS-RS}\langle K, F, Z_{L_0}(L_1), \mu, k \rangle, D_{\text{col,}\alpha})\}_{\alpha \in L_0} \cup \{(\text{BS-RS}\langle K, F, L_\beta, \mu, k \rangle, D_{\text{row,}\beta})\}_{\beta \in L_1},$$

and the property that $w \in \text{BS-RS}\langle K, F, L, \mu, k \rangle$ if and only if:

1. $\psi_{\text{col,}\alpha}(w) \in \text{BS-RS}\langle K, F, Z_{L_0}(L_1), \mu, k \rangle$ for every $\alpha \in L_0$ and
2. $\psi_{\text{row,}\beta}(w) \in \text{BS-RS}\langle K, F, L_\beta, \mu, k \rangle$ for every $\beta \in L_1$.

Thus BS-RS$\langle K, F, L, \mu, k \rangle^\perp$ is spanned by the duals of codes in its cover and, in particular, is spanned by their spanning sets; in sum, it suffices to construct a spanning set for its cover.

In light of the above, we can bound the construction time of a spanning set for BS-RS$\langle K, F, L, \mu, k \rangle^\perp$ as follows:

1. If $\dim(L) \leq k$, the claim follows as the code in this case simply equals RS$\subseteq \langle K, F, L, \mu \rangle$.
2. If $\dim(L) > k$, the time to construct a spanning set is at most the time to construct spanning sets for the cover:

 $$|L_0| \cdot (\log_2 |F| \cdot |L_1| \cdot |K|^{\mu c^\ast} + |L_1| \cdot (\log_2 |F| \cdot |L_0| \cdot |K|^{\mu + 1} c^\ast)^c$$

 $$= |L_0| \cdot |K|^{\mu - 1} \cdot (\log_2 |F| \cdot |L_1| \cdot |K|^{\mu c^\ast} + |L_1| \cdot (\log_2 |F| \cdot |L_0| \cdot |K|^{2\mu c^\ast})$$

 $$\leq |L_0| \cdot |K|^{\mu - 1} \cdot |K|^{\mu c^\ast + 1} + |K|^{\mu c^\ast - 1} |L_0|^{\mu c^\ast - 1}$$

 $$\leq |L_0|^{\mu c^\ast} \cdot |K|^{\mu c^\ast + 1} + |K|^{\mu c^\ast} |L_0|^{\mu c^\ast - 1}$$

Above, (1) is by the inductive assumption, (2) is by definition of L_0, (3) is by the fact that $|L_0| \cdot |L_1| = |L|$, and (4) is by definition of L_0, L_1. We are left to show (6), and this follows from the fact that: (i) $\dim(L) > k$, (ii) $k > 2\mu$ by definition, and (iii) we can choose c to be large enough (namely, so that $|K|^{\mu c^\ast + 2} + |K|^{\mu c^\ast} \leq |L|^{\frac{k}{2}}$ holds).
Proof of Lemma 4.27. Define the depth function
\[d(K, L, \mu, a) := \log_2 \dim(L) - \log_2(\log_2 |K| a + \mu + 2) - 1. \]
We argue the two conditions in the lemma. First, for every index \(n = (K, F, L, \mu, k) \), \(T|K, F, L, \mu, k | \) is a 1-intersecting recursive cover of \(BS-RS[K, F, L, \mu, k] \) (by Claim G.4). Moreover, for every positive integer \(m \) and non-leaf vertex \(v \) in \(T \) with \(\text{depth}(T, v) < d(K, L, \mu, m) \), the cover \(T_v \) is \(m \)-independent (by Claim G.5).

Second, consider the algorithm that, given an index \(n = (K, F, L, \mu, k) \) and subset \(I \subseteq D^{BS-RS}[K, F, L, \mu, k] \), works as follows: (1) for every \(\alpha \in I \) choose an arbitrary vertex \(v_\alpha \) in \(\text{layer}(T, d(K, L, \mu, |I|)) \) such that \(\alpha \in \tilde{D}_{v_\alpha} \), and then set \(U := \{v_\alpha\}_{\alpha \in I} \); (2) compute a spanning set \(W \) set for \(\tilde{C}_u^\perp \); (3) return \(W := \bigcup_{u \in U} W_u \). This algorithm satisfies the required properties. First, it runs in time \(\text{poly}(\log_2 |F| + \dim(L) + |K|^{\mu} + |I|) \) because a spanning set set for \(\tilde{C}_u^\perp \) can be computed in time \(\text{poly}(\log_2 |F| + |K|^{\mu} + |I|) \) (by Claim G.8). Next, its output \(W \) meets the requirements:

- \(U \subseteq \text{layer}(T[K, F, L, \mu, k], d(K, L, \mu, |I|)) \);
- \(|U| \leq |I| \), by definition of \(U \);
- \(I \subseteq (\bigcup_{u \in U} \tilde{D}_u) \), by definition of \(U \);
- \(\text{span}(W) = \text{span}(\bigcup_{u \in U} W_u) = \text{span}(\bigcup_{u \in U} \tilde{C}_u^\perp) \), by definition of \(W \) and \(W_u \).

This completes the proof of Lemma 4.27.

\[\square \]
H Folklore claim on interpolating sets

Claim H.1. Let \(F \) be a field, let \(d_{\text{cols}}, d_{\text{rows}} \in \mathbb{N} \), and consider three sets \(S_{\text{cols}}, S_{\text{rows}} \subseteq F \) and \(S_{\text{pnts}} \subseteq F \times F \) such that \(|S_{\text{cols}}| + |S_{\text{rows}}| + |S_{\text{pnts}}| \leq \min\{d_{\text{cols}}, d_{\text{rows}}\} \). Let \(f : F \times F \to F \) be a function such that:

- for every \(\alpha \in S_{\text{cols}} \) there exists \(g_{\text{col}, \alpha} \in F^{<d_{\text{rows}}[x]} \) such that \(f(\alpha, \beta) = g_{\text{col}, \alpha}(\beta) \) for every \(\beta \in F \);
- for every \(\beta \in S_{\text{rows}} \) there exists \(g_{\text{row}, \beta} \in F^{<d_{\text{cols}}[x]} \) such that \(f(\alpha, \beta) = g_{\text{row}, \beta}(\alpha) \) for every \(\alpha \in F \).

Then there exists \(g \in F[X, Y] \) such that: (i) \(\deg_X(g) < d_{\text{rows}} \); (ii) \(\deg_Y(g) < d_{\text{cols}} \); (iii) \(g|_{X=\alpha} = g_{\text{col}, \alpha} \) for every \(\alpha \in S_{\text{cols}} \); (iv) \(g|_{Y=\beta} = g_{\text{row}, \beta} \) for every \(\beta \in S_{\text{rows}} \); (v) \(g(\alpha, \beta) = f(\alpha, \beta) \) for every \((\alpha, \beta) \in S_{\text{pnts}} \).

Proof. Any rectangle \(D_X \times D_Y \subseteq F \times F \) with \(|D_X| = d_{\text{rows}} \) and \(|D_Y| = d_{\text{cols}} \) is an interpolating set: for every \(w \in F^{D_X \times D_Y} \) there exists a unique \(g \in F[X, Y] \) such that: (i) \(\deg_X(g) < d_{\text{rows}} \); (ii) \(\deg_Y(g) < d_{\text{cols}} \); (iii) \(g|_{D_X \times D_Y} = w \).

Define

\[
D_X := S_{\text{cols}} \cup \{ \alpha : \exists \beta \text{ s.t. } (\alpha, \beta) \in S_{\text{pnts}} \} \quad \text{and} \quad D_Y := S_{\text{rows}} \cup \{ \beta : \exists \alpha \text{ s.t. } (\alpha, \beta) \in S_{\text{pnts}} \}.
\]

Note that \(|D_X| \leq d_{\text{rows}} \) and \(|D_Y| \leq d_{\text{cols}} \); if either is strictly smaller, extend it arbitrarily to match the upper bound.

Choose \(w \in F^{D_X \times D_Y} \) to be a word that satisfies: (i) \(w(\alpha, \beta) = f(\alpha, \beta) \) for every \(\alpha \in S_{\text{cols}} \) and \(\beta \in D_Y \); (ii) \(w(\alpha, \beta) = f(\alpha, \beta) \) for every \(\beta \in S_{\text{rows}} \) and \(\alpha \in D_X \); (iii) \(w(\alpha, \beta) = f(\alpha, \beta) \) for every \((\alpha, \beta) \in S_{\text{pnts}} \). Denote by \(g_w \in F[X, Y] \) the unique “low degree extension” of \(w \); we show that \(g_w \) satisfies the requirements of the claim.

The degree bounds and the equivalence on \(S_{\text{pnts}} \) follows by definition of \(g_w \); thus it suffices to show equivalence of \(g_w \) with \(f \) when restricted to the required rows and columns.

- For every \(\alpha \in S_{\text{cols}} \): it holds by definition of \(g_w \) that \(g_w|_{\{\alpha\} \times D_Y} = f|_{\{\alpha\} \times D_Y} \); moreover, \(g_w|_{\{\alpha\} \times F} \) and \(f|_{\{\alpha\} \times F} \) are evaluations of polynomials of degree less than \(|D_Y| \), which implies that \(g_w|_{\{\alpha\} \times F} = f|_{\{\alpha\} \times F} \).

- For every \(\beta \in S_{\text{rows}} \): it holds by definition of \(g_w \) that \(g_w|_{D_X \times \{\beta\}} = f|_{D_X \times \{\beta\}} \); moreover, \(g_w|_{F \times \{\beta\}} \) and \(f|_{F \times \{\beta\}} \) are evaluations of polynomials of degree less than \(|D_X| \), which implies that \(g_w|_{F \times \{\beta\}} = f|_{F \times \{\beta\}} \).

\(\square \)
References

