
Efficient No-dictionary Verifiable SSE

Wakaha Ogata
Tokyo Institute of Technology

ogata.w.aa@m.titech.ac.jp

Kaoru Kurosawa
Ibaraki University

kaoru.kurosawa.kk@vc.ibaraki.ac.jp

Abstract

In the model of no-dictionary verifiable searchable symmetric en-
cryption (SSE) scheme, a client does not need to keep the set of key-
words W in the search phase, where W is called a dictionary. Still a
malicious server cannot cheat the client by saying that “your search
word w does not exist in the dictionary W” when it exists. In the
previous such schemes, it takes O(logm) time for the server to prove
that w ̸∈ W , where m = |W| is the number of keywords.

In this paper, we show a generic method to transform any SSE
scheme (that is only secure against passive adversaries) to a no-dictionary
verifiable SSE scheme. In the transformed scheme, it takes only O(1)
time for the server to prove that w ̸∈ W.

keywords. searchable symmetric encryption, verifiable, dictionary

1 Introduction

The notion of searchable symmetric encryption (SSE) schemes was intro-
duced by Song et al. [30]. In the store phase, a client encrypts a set of
files and an index table by a symmetric encryption scheme, and then stores
them on an untrusted server. In the search phase, he can efficiently retrieve
the matching files for a search keyword w keeping the keyword and the files
secret.

Since then, single keyword search SSE schemes [18, 15, 16, 23, 25], dy-
namic SSE schemes [21, 20, 24, 13, 28, 26], multiple keyword search SSE
schemes [19, 1, 7, 32, 12, 22] and more [14] have been studied extensively by
many researchers.

1

Curtmola, et al. [16, 17] gave a rigorous definition of privacy against hon-
est but curious servers. Kurosawa and Ohtaki [23, 25] showed a definition
of reliability against malicious servers who may return incorrect search re-
sults to the client, or may delete some encrypted files to save her memory
space. Kurosawa and Ohtaki [23, 25] also proved a weak equivalence between
the UC security and the stand alone security (i.e., the privacy and the re-
liability), where the UC security is a very strong security notion such that
if a protocol Π is UC secure, then its security is preserved under a general
protocol composition operation [9].

Now in the model of no-dictionary verifiable SSE scheme, a client does
not need to keep the set of keywords W in the search phase, where W is
called a dictionary. Still a malicious server cannot cheat the client by saying
that “your search word w does not exist in the dictionary W” if it exists.
This model is really practical, but it is not an easy task to prove that w ̸∈ W .

Recently, Taketani and Ogata [31] constructed a no-dictionary verifiable
SSE scheme. In their scheme, it takes O(logm) time for the server to prove
that w ̸∈ W , where m = |W| is the number of keywords.

In this paper, we show a generic method to transform any SSE scheme
(that is only secure against passive adversaries) to a no-dictionary verifiable
SSE scheme. In the transformed scheme, it takes only O(1) time for the
server to prove that w ̸∈ W . The search time for w ∈ W is almost the same
as that of the original scheme. We also prove that the transformed scheme
is UC-secure in Appendix similarly to [23, 25].

Very recently, Bost et al. [6] proposed a generic construction of no-
dictionary verifiable SSE schemes as an independent work of ours. Their
concrete scheme is almost the same as Taketani and Ogata [31], and there-
fore it takes O(logm) time for the server to prove that w ̸∈ W . They further
claim that their generic construction works for dynamic SSE schemes as well.
However, they do not show how to instantiate it.

2 Verifiable Searchable Symmetric Encryp-

tion

In this section, we define a no-dictionary (verifiable) SSE scheme and its
security. Basically, we follow the notation used in [23, 25, 12].

• Let D = {D1, . . . , DN} be a set of documents.

2

• Let W ⊂ {0, 1}∗ be a set of keywords. We call W a dictionary.

• For w ∈ {0, 1}∗, define

D(w) =
{

the set of documents that contain w if w ∈ W
∅ otherwise

• Let C = {C1, . . . , CN}, where Ci is a ciphertext of Di.

• Let
C(w) = {Ci | Ci is a ciphertext of Di ∈ D(w)}. (1)

Note that C(w) = ∅ if w ̸∈ W .

If X is a bit string, |X| denotes the bit length of X. If X is a set, |X|
denotes the cardinality of X. “PPT” refers to probabilistic polynomial time,
and “PT” refers to polynomial time.

2.1 Model

An SSE scheme has two phases, the store phase (which is executed only once)
and the search phase (which is executed a polynomial number of times). In
the store phase, the client encrypts all documents in D and stores them on
the server. In the search phase, the client sends a ciphertext of a word w,
and the server returns C(w). If there is a mechanism to verify the validity of
C(w), the scheme is called a verifiable SSE (vSSE).

Formally, a vSSE scheme consists of the following six polynomial-time
algorithms

vSSE = (Gen, Enc, Trpdr, Search, Dec, Verify)

such that

• K ← Gen(1λ): a PPT algorithm that generates a key K, where λ is
a security parameter. This algorithm is run by the client in the store
phase.

• (I, C) ← Enc(K,D,W , {(w,D(w)) | w ∈ W}): a PPT algorithm that
outputs an encrypted index I and the set of encrypted documents
C = {C1, . . . , CN}. This algorithm is run by the client in the store
phase. He then stores (I, C) on the server.

3

• t(w) ← Trpdr(K,w): a PPT algorithm that outputs a trapdoor t(w)
for w ∈ {0, 1}∗. In no-dictionary scheme, w is not necessarily a key-
word. This algorithm is run by the client in the search phase. He then
sends t(w) to the server.

• (C(w),Proof) ← Search(I, C, t(w)): a PT algorithm that outputs the
search result C(w) and Proof for the validity check. This algorithm is
run by the server in the search phase. She then returns (C(w),Proof)
to the client.

• accept/reject← Verify(K, t(w), C̃,Proof): a PT algorithm that ver-
ifies the validity of the search result C̃ based on Proof. This algorithm
is run by the client in the search phase.

• D ← Dec(K,C): a PT algorithm that decrypts C. The client applies
this algorithm to each C ∈ C̃ when Verify(K, t(w), C̃,Proof) = accept

in the search phase.

We say that a no-dictionary vSSE satisfies correctness if the following
holds for any K,D,W , {(w,D(w)) | w ∈ W} and any word w ∈ W .

• If

(I, C) ← Enc(K,D,W , {(w,D(w)) | w ∈ W}),
t(w) ← Trpdr(K,w),

(C̃,Proof) ← Search(I, C, t(w)),

then

Verify(K, t(w), C̃,Proof) = accept

{Di | Di ← Dec(K,Ci), Ci ∈ C̃} = D(w).

An (not verifiable) SSE scheme is defined by omitting Proof and Verify.

2.2 Security Definition

We next define the security of no-dictionary vSSE schemes. Note that
searched word w does not need to belong to the set W .

4

� �
1. Adversary A chooses (D,W) and sends them to challenger C.

2. C generates K ← Gen(1λ) and sends (I, C) ←
Enc(K,D,W , {(w,D(w)) | w ∈ W}) to A.

3. For i = 1, . . . , q, do:

(a) A chooses a word wi ∈ {0, 1}∗ and sends it to C.

(b) C sends the trapdoor t(wi)← Trpdr(K,wi) back to A.

4. A outputs bit b.� �
Figure 1: Real game Gamereal

2.2.1 Privacy

In a (v)SSE, the server should learn almost no information on D,W and the
search words w. Let L1(D,W) denote the information that the server can
learn in the store phase, and let L2(D,W ,w, w) denote that in the search
phase, where w is the current search word and w = (w1, w2, . . .) is the list of
the past search words queried so far.

In most existing SSE schemes, L1(D,W) = (|D1|, . . . , |DN |, |W|), and
L2(D,W ,w, w) consists of {j | Dj ∈ D(w)} and the search pattern

SPattern((w1, . . . , wq−1), w) = (sp1, . . . , spq−1),

where

spj =

{
1 if wj = w,
0 if wj ̸= w.

The search pattern reveals which past queries are the same as w.
Let L = (L1, L2). The client’s privacy is defined by using two games: a

real game Gamereal and a simulation game GameLsim, as shown in Figs.1
and 2, respectively. Gamereal is played by a challenger C and an adversary
A, and GameLsim is played by C, A and a simulator S.

Definition 1 (L-privacy) We say that a no-dictionary vSSE scheme has
L-privacy, if there exists a PPT simulator S such that

|Pr[A outputs b = 1 in Gamereal]− Pr[A outputs b = 1 in GameLsim]| (2)

5

� �
1. Adversary A chooses (D,W) and sends them to challenger C.

2. C sends L1(D,W) to simulator S.

3. S computes (I, C) from L1(D,W), and sends them to C.

4. C relays (I, C) to A.

5. For i = 1, . . . , q, do:

(a) A chooses wi ∈ {0, 1}∗ and sends it to C.

(b) C sends L2(D,W ,w, wi) to S, where w = (w1, . . . , wi−1).

(c) S computes t(wi) from L2(D,W ,w, wi) and sends it to C.

(d) C relays t(wi) to A.

6. A outputs bit b.� �
Figure 2: Simulation game GameLsim

is negligible for any PPT adversary A.

2.2.2 Reliability

In an SSE scheme, a malicious server might cheat a client by returning a false
result C̃∗(̸= C(w)) during the search phase. (Weak) reliability guarantees
that the client can detect such a malicious behavior. Formally, reliability is
defined by game Gamereli shown in Fig.3, which is played by an adversary
B = (B1,B2) (malicious server) and a challenger C. B1 and B2 are assumed
to be able to communicate freely.

Definition 2 (Reliability) We say that B wins in Gamereli if B1 re-
ceives D(wi)

∗ such that D(wi)
∗ ̸∈ {D(wi),⊥} for some i. We say that a

no-dictionary vSSE scheme satisfies reliability if for any PPT adversary B,

Pr[B wins in Gamereli]

is negligible.

6

� �
(Store phase)

1. B1 chooses (D,W) and sends them to C.

2. C generates K ← Gen(1λ), and sends (I, C) ←
Enc(K,D,W , {(w,D(w)) | w ∈ W}) to B2.

(Search phase) For i = 1, . . . , q, do

1. B1 chooses wi ∈ {0, 1}∗ and sends it to C.

2. C sends the trapdoor t(wi)← Trpdr(K,wi) to B2.

3. B2 returns (C̃∗i ,Proof∗i) to C.

4. C computes

accept/reject← Verify(K, t(wi), C̃∗i ,Proof∗i)

and returns D(wi)
∗ = {Di | Di ← Dec(K,Ci), Ci ∈ C̃∗i } to B1 if the

result is accept, otherwise sends ⊥ to B1.� �
Figure 3: Gamereli

7

Strong reliability was also defined in [25]．In strong reliability, the server
has to answer a wrong pair (C̃∗,Proof∗)(̸= (C(w),Proof)) that will be ac-
cepted in the search phase to win the game.

Definition 3 (Strong Reliability) We say that B strongly wins in Gamereli
if there exists i, such that both Verify(K, t(wi), C̃∗i ,Proof∗i) = accept and
(C̃∗i ,Proof∗i) ̸= (C(wi),Proofi) hold. We say that a no-dictionary vSSE scheme
satisfies strong reliability if for any PPT adversary B,

Pr[B strongly wins in Gamereli]

is negligible.

3 Building Blocks

3.1 Cuckoo Hashing

Cuckoo Hashing [29] is a hashing algorithm with the advantage that the
search time is constant. To store n keys, it uses two tables T1 and T2 of
size m, and two independent random hash functions h1 and h2 with the
range {1, . . . ,m}. Every key x is stored at one of two positions, T1(h1(x)) or
T2(h2(x)). So we need to inspect at most two positions to search x.

It can happen that both possible places T1(h1(x)) and T2(h2(x)) of a given
key x are already occupied. This problem is solved by allowing x to throw
out the key (say y) occupying the position T1(h1(x)). Next, we insert y at its
alternative position T2(h2(y)). If it is already occupied, we repeat the above
steps until we find an empty position.

If we failed after some number of trials, we choose new hash functions
and rebuild the data structure.

Let n = m(1− ϵ) for some ϵ ∈ (0, 1). Then the above algorithm succeeds
with probability 1− c(ϵ)/m+O(1/m2) for some explicit function c(·) [27].

3.2 Pseudo-random Function

Let R be a family of all functions f : {0, 1}∗ → {0, 1}n. We say that
F : {0, 1}ℓ × {0, 1}∗ → {0, 1}n is a pseudo-random function if for any PPT
distinguisher D,∣∣∣Pr[k $← {0, 1}ℓ : DF (k,·) = 1]− Pr[f

$←R : Df(·) = 1]
∣∣∣

8

is negligibly small.
It is well known that a pseudo-random function works as a MAC which

is existentially unforgeable against chosen message attack.

4 Generic Transformation from SSE to vSSE

In this section, we show a generic method to transform any SSE (with only
privacy) to a no-dictionary verifiable SSE. Namely, in our vSSE scheme, the
server can return a proof of the search result even if the search word is not
in the dictionary used in the store phase.

4.1 Construction

Let (Gen0, Enc0, Trpdr0, Search0, Dec0) be an SSE scheme. We construct a
no-dictionary verifiable SSE (Gen1, Enc1, Trpdr1, Search1, Verify1, Dec1) as
follows. Let F be a pseudo-random function.

• Gen1(1
λ) : Run Gen0(1

λ) to obtain K0. Also randomly choose a key k
of F . Output (K0, k). We write Fk(x) instead of F (k, x).

• Enc1((K0, k),D,W , {(w,D(w)) | w ∈ W}) : LetW = {w1, w2, . . . , w|W|}.

1. Run Enc0(K0,D,W , {(w,D(w)) | w ∈ W}) to obtain (I0, C). Note
that Ci ∈ C is a ciphertext of each document Di ∈ D.

2. Compute keyj ← Fk(0∥wj) for all wj ∈ W .

3. Construct cuckoo hash tables (T ′
1, T

′
2) of size |W|+ 1 which store

{keyj}|W|
j=1. Let (h1, h2) be the hash functions which are used to

construct (T ′
1, T

′
2). This means that

T ′
1(h1(keyj)) = keyj or T ′

2(h2(keyj)) = keyj

for each keyj.

4. Construct two tables (T1, T2) of size |W|+ 1 as follows.

For a = 1, 2, do
For i = 1, . . . , |W|+ 1, do

If T ′
a(i) = keyj for some keyj = Fk(0∥wj), then
Ta(i)← ⟨keyj, Fk(a∥i∥keyj), Fk(3∥keyj∥C(wj)⟩

9

Else
Ta(i)← ⟨null, Fk(a∥i∥null), null⟩

5. Output (I = (I0, T1, T2, h1, h2), C).

We note that for each keyj = Fk(0∥wj), it holds that

T1(h1(keyj)) = ⟨keyj, Fk(1∥h1(keyj)∥keyj), Fk(3∥keyj∥C(wj))⟩
or

T2(h2(keyj)) = ⟨keyj, Fk(2∥h2(keyj)∥keyj), Fk(3∥keyj∥C(wj))⟩.

• Trpdr1((K0, k), w) : Compute key ← Fk(0∥w) and t0(w)← Trpdr0(K0, w).
Output t(w) = (key, t0(w)).

• Search1((I0, T1, T2, h1, h2), C, t(w) = (key, token)): Retrieve

⟨α1, β1, γ1⟩ ← T1(h1(key)),

⟨α2, β2, γ2⟩ ← T2(h2(key)).

Let

C∗ =

{
Search0(I0, C, token) if key ∈ {α1, α2}
∅ otherwise

Proof =

γ1 if key = α1

γ2 if key = α2

(α1, β1, α2, β2) otherwise

Output (C∗,Proof).

• Verify1((K0, k), t(w) = (key, token), C∗,Proof) :
(Case 1) Proof = γ.

If γ = Fk(3∥key∥C∗), then output accept. Otherwise output reject.

(Case 2) Proof = (α1, β1, α2, β2).

If C∗ ̸= ∅, then output reject.

If key ∈ {α1, α2}, then output reject.

If β1 ̸= Fk(1∥h1(key)∥α1), then output reject.

If β2 ̸= Fk(2∥h2(key)∥α2), then output reject.

Otherwise output accept.

• Dec1((K0, k), Ci) : Output Di ← Dec0(K0, Ci).

10

Table 1: Example

keyword wj C(wj) h1(keyj) h2(keyj)
w1 C1, C4, C5, C8 6 1
w2 C2 2 4
w3 C1, C4 6 4
w4 C1, C3, C7 6 3
w5 C2, C6 7 8
w6 C5, C8 7 6
w7 C1 2 8

4.2 Example

Suppose that there are 7 keywords W = {w1, . . . , w7} and 8 ciphertexts
C = {C1, . . . , C8} such that C(wj) are given in Table 1. In the same table,
h1(keyj) and h2(keyj) are the hash values which are used to construct the
cuckoo hash tables (T ′

1, T
′
2) for the set {keyj = Fk(0∥wj) | j = 1, . . . , 7}.

Then T1 and T2 are constructed as shown in Table 2.

(Case 1) Suppose that a client searches for a keyword w3 ∈ W .

1. The client sends trapdoor (key3, t0(w3)) to the server.

2. Since h1(key3) = 6, h2(key3) = 4, the server retrieves

⟨α1, β1, γ1⟩ = T1(6) = ⟨key3, Fk(1∥6∥key3), Fk(3∥key3∥C1, C4)⟩,
⟨α2, β2, γ2⟩ = T2(4) = ⟨key2, Fk(2∥4∥key2), Fk(3∥key2∥C2)⟩

from T1 and T2.

Because α1 = key3, the server obtains the search result

C∗ = (C1, C4)← Search0(I0, C, t0(w3))

Proof = γ1 = Fk(3∥key3∥C1, C4).

and returns (C∗,Proof) to the client.

3. The client verifies if γ1 = Fk(3∥key3∥C∗).

(Case 2) Suppose that the client searches for w ̸∈ W .

11

Table 2: Tables (T1, T2)

i T1(i)
1 ⟨ null , Fk(1∥1) , null ⟩
2 ⟨ key7, Fk(1∥2∥key7), Fk(3∥key7∥C1) ⟩
3 ⟨ null , Fk(1∥3) , null ⟩
4 ⟨ null , Fk(1∥4) , null ⟩
5 ⟨ null , Fk(1∥5) , null ⟩
6 ⟨ key3, Fk(1∥6∥key3), Fk(3∥key3∥C1, C4) ⟩
7 ⟨ key6, Fk(1∥7∥key6), Fk(3∥key6∥C5, C8) ⟩
8 ⟨ null , Fk(1∥8) , null ⟩

i T2(i)
1 ⟨ key1, Fk(2∥1∥key1), Fk(3∥key1∥C1, C4, C5, C8) ⟩
2 ⟨ null , Fk(2∥2) , null ⟩
3 ⟨ key4, Fk(2∥3∥key4), Fk(3∥key4∥C1, C3, C7) ⟩
4 ⟨ key2, Fk(2∥4∥key2), Fk(3∥key2∥C2) ⟩
5 ⟨ null , Fk(2∥5) , null ⟩
6 ⟨ null , Fk(2∥6) , null ⟩
7 ⟨ null , Fk(2∥7) , null ⟩
8 ⟨ key5, Fk(2∥8∥key5), Fk(3∥key5∥(C2, C6)) ⟩

12

1. The client computes key ← Fk(0∥w) and t0(w) ← Trpdr0(K0, w). He
sends t(w) = (key, t0(w)) to the server.

2. Suppose that h1(key) = 5 and h2(key) = 3. Then the server retrieves

⟨α1, β1, γ1⟩ = T1(5) = ⟨null, Fk(1∥5), null⟩,
⟨α2, β2, γ2⟩ = T2(3) = ⟨key4, Fk(2∥3∥key4), Fk(3∥key4∥C1, C3, C7)⟩.

Because key ̸∈ {α1, α2}, the server returns C∗ = ∅ and

Proof = (α1, β1, α2, β2) = (null, Fk(1∥5), key4, Fk(2∥3∥key4)).

3. The client verifies if key ̸∈ {α1, α2}, β1 = Fk(1∥h1(key)∥α1) and β2 =
Fk(2∥h2(key)∥α2).

4.3 Security

Theorem 1 If the SSE scheme has L = (L1, L2)-privacy and F is a pseu-
dorandom function, then our vSSE scheme has L′ = (L′

1, L
′
2)-privacy such

that

L′
1(D,W) = L1(D,W) ∪ {|W|},

L′
2(D,W ,w, wi) = L2(D,W ,w, wi) ∪ {SPattarn(w, wi), [wi ∈ W]}.

In the all existing SSE schemes, |W| ∈ L1(D,W) and {SPattarn(w, wi), [wi ∈
W]} ⊆ L′

2(D,W ,w, wi). (There may be some exceptions which use oblivious
RAM. But such SSE schemes are inefficient.) So, the client’s privacy in our
vSSE scheme has the same level as that of the underlying SSE scheme.

Proof. Let S0 be a simulator of the underlining SSE scheme which has
(L1, L2)-privacy. We construct a simulator S of our vSSE scheme which
achieves (L′

1, L
′
2)-privacy as follows.

(Store phase)
In Gamesim, S takes L′

1(D,W) = L1(D,W)∪{|W|} as an input. S runs
S0(L1(D,W)) and gets its output (I0, C). Next S constructs T1 and T2 as
follows. Note that the size of each T1, T2 is m = |W|+ 1.

• Choose random strings key′1, . . . , key
′
|W|, and construct the cuckoo hash

tables (T ′
1, T

′
2) which store (key′π(1), . . . , key

′
π(|W|)), where π is a random

permutation. Let h1, h2 be the two hash functions which are used to
construct (T ′

1, T
′
2).

13

• For a = 1, 2, do
For i = 1, . . . , |W|+ 1, do

If T ′
a(i) = key′j for some j, then
choose two random strings r, r′ and Ta(i)← ⟨key′j, r, r′⟩

Else
choose a random string r and Ta(i)← ⟨null, r, null⟩

S sends (I0, T1, T2, h1, h2) and C to the challenger. Let counter ← 1.

(Search phase)
In the ith search phase, S takes L′

2(D,W ,w, w∗) = L2(D,W ,w, w∗) ∪
{SPattarn(w, w∗), [w∗ ∈ W])} as an input. S first obtains t0(w

∗) by running
S0(L2(D,W ,w, w∗)), and sets

key∗i ←

key′counter if spj = 0 for all j and w∗ ∈ W ,
key∗j if spj = 1 for some j,
a random string otherwise.

counter ←
{

counter + 1 if spj = 0 for all j and w∗ ∈ W ,
counter otherwise.

S outputs (key∗i , t0(w
∗)) as a simulated trapdoor.

We will prove that there is no adversary A who can distinguish between
Gamereal andGamesim. We consider a game sequence (Gamereal,Gamemid,Gamesim).
Gamemid is the same asGamereal except that all values of Fk(·) are replaced
with random strings. For i ∈ {real,mid, sim}, define

Pi = Pr[A outputs b = 1 in Gamei].

Then |Preal − Pmid| is negligible because F is a pseudorandom function.
We can also see that |Pmid − Psim| is negligible from the (L1, L2)-privacy of
the underlying SSE scheme. Consequently, |Preal−Psim| is negligible. Q.E.D.

Theorem 2 Our vSSE scheme satisfies strong reliability if F is a pseudo-
random function.

Proof. We look at the pseudorandom function F as a MAC. Suppose that
there exists an adversary B = (B1,B2) who can break the strong reliability

of our vSSE scheme, and B runs the search phase q times. Let (C̃∗i , P̃roofi)
be B2’s response to t(wi) = (keyi, t0(wi)) in the ith search phase, and let

(C(wi),Proofi) = Search1(I, C, t(wi)).

14

From the definition, B strongly wins if there exists i ∈ {1, . . . , q} such that

(C̃∗i , P̃roofi) ̸= (C(wi),Proofi)

and Verify1(K, (keyi, t0(wi)), C̃∗i , P̃roofi) = accept. (3)

By using B, we will construct a forger F against the MAC, where F has
oracle access to Fk.

F at first randomly chooses J ∈ {1, . . . , q}. Then, F runsB by playing the
role of the challenger C (see Fig.3) until the (J − 1)th search phase. During
this simulation, when C needs to compute Fk(x) for some x, F queries x to
its oracle Fk to obtain Fk(x).

In the Jth search phase, we have the following three cases.

(1) P̃roofJ = γ̃.

In this case, F outputs m′ = (3∥keyJ∥C̃∗J) and tag′ = γ̃ as a forgery of
the MAC F .

(2) ProofJ = γ and P̃roofJ = (α̃1, β̃1, α̃2, β̃2).

Since ProofJ = γ, there exists a ∈ {1, 2} such that Ta(ha(keyJ)) =
⟨keyJ , Fk(a∥ha(keyJ)∥keyJ), . . .⟩. For this a, F outputsm′ = (a∥ha(keyJ)∥α̃a)
and tag′ = β̃a as a forgery.

(3) ProofJ = (α1, β1, α2, β2) and P̃roofJ = (α̃1, β̃1, α̃2, β̃2).

If there exists a ∈ {1, 2} such that (αa, βa) ̸= (α̃a, β̃a), then, F outputs
m′ = (a∥ha(keyJ)∥α̃a) and tag′ = β̃a as a forgery. Otherwise F outputs
“fail.”

Now F succeeds in forgery if B strongly wins and F correctly predicts i
which satisfies eq.(3), i.e., eq.(3) holds in i = J . Since F predicts J correctly
with probability 1/q, we obtain that

Pr[F succeeds in forgery] ≥ Pr[B strongly wins in Gamereli]×
1

q
.

This completes the proof.
Q.E.D.

We prove the UC-security of the transformed scheme in Appendix.

15

4.4 Efficiency

In the Cuckoo hashing, the search time is constant. Therefore, in our trans-
formed scheme,

• It takes only O(1) time for the server to prove that w ̸∈ W .

• Also the search time for w ∈ W is almost the same as that of the
original scheme.

References

[1] L. Ballard, S. Kamara, F. Monrose: Achieving Efficient Conjunctive
Keyword Searches over Encrypted Data. ICICS 2005, pp.414-426 (2005)

[2] N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop sig-
nature schemes without trees. In Advances in Cryptology: Proc. EURO-
CRYPT, volume 1233 of LNCS, pages 480–494. Springer-Verlag, 1997.

[3] M. Bellare, A. Desai, E. Jokipii, P. Rogaway: A Concrete Security Treat-
ment of Symmetric Encryption. FOCS 1997: pp.394–403 (1997)

[4] M. Bellare, R. Guerin, P. Rogaway: XORMACs: New Methods for Mes-
sage Authentication Using Finite Pseudorandom Functions. CRYPTO
1995: 15-28

[5] S. Bellovin and W. Cheswick: Privacy-Enhanced Searches Using En-
crypted Bloom Filters, Cryptology ePrint Archive, Report 2006/210,
http://eprint.iacr.org/ (2006)

[6] “Verifiable Dynamic Symmetric Searchable Encryption Optimality and
Forward Security,” R. Bost, P.-A. Fouque, D. Pointcheval, ePrint
2016/62

[7] J. W. Byun, D. H. Lee, and J. Lim: Efficient conjunctive keyword search
on encrypted data storage system. EuroPKI, pp.184–196 (2006)

[8] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and applica-
tion to efficient revocation of anonymous credentials. CRYPTO 2002,
pp.61–76 (2002)

16

[9] R. Canetti, Universally Composable Security: A New Paradigm for
Cryptographic Protocols, Proc. of 42nd FOCS, 2001. Full version is
available at http://eprint.iacr.org/2000/067.

[10] R. Canetti: “Universally Composable Signatures, Certification and
Authentication,” Cryptology ePrint Archive, Report 2003/239 (2003),
http://eprint.iacr.org/

[11] R. Canetti: “Universally Composable Security: A New Paradigm for
Cryptographic Protocols,” Cryptology ePrint Archive, Report 2000/067
(2005), http://eprint.iacr.org/

[12] D. Cash, S. Jarecki, C.S. Jutla, H. Krawczyk, M. Rosu, M. Steiner:
Highly-Scalable Searchable Symmetric Encryption with Support for
Boolean Queries. CRYPTO (1) 2013, pp.353–373 (2013)

[13] D. Cash, J. Jaeger, S. Jarecki, C.S. Jutla, H. Krawczyk, M.-C. Rosu,
M. Steiner: Dynamic Searchable Encryption in Very-Large Databases:
Data Structures and Implementation. NDSS 2014

[14] D. Cash, S. Tessaro: The Locality of Searchable Symmetric Encryption.
EUROCRYPT 2014: 351-368

[15] Y. Chang and M. Mitzenmacher: Privacy Preserving Keyword Searches
on Remote Encrypted Data. ACNS 2005: pp.442–455 (2005)

[16] R. Curtmola, J.A. Garay, S.Kamara, R.Ostrovsky: Searchable symmet-
ric encryption: improved definitions and efficient constructions. ACM
Conference on Computer and Communications Security 2006: pp.79–88
(2006).

[17] Full version of [16]: Cryptology ePrint Archive, Report 2006/210,
http://eprint.iacr.org/ (2006)

[18] E.-J. Goh: Secure Indexes. Cryptology ePrint Archive, Report 2003/216,
http://eprint.iacr.org/ (2003)

[19] P. Golle, J. Staddon, B.R. Waters: Secure Conjunctive Keyword Search
over Encrypted Data. ACNS 2004, pp.31–45 (2004)

[20] S. Kamara and C. Papamanthou: Parallel and Dynamic Searchable
Symmetric Encryption. FC 2013

17

[21] S. Kamara, Charalampos Papamanthou, Tom Roeder: Dynamic search-
able symmetric encryption. ACM Conference on Computer and Com-
munications Security 2012: pp.965–976

[22] K. Kurosawa: Garbled Searchable Symmetric Encryption. Financial
Cryptography 2014: pp.234–251

[23] K. Kurosawa, Y. Ohtaki: UC-Secure Searchable Symmetric Encryption.
Financial Cryptography 2012: pp.285–298

[24] K. Kurosawa, Y. Ohtaki: How to Update Documents Verifiably in
Searchable Symmetric Encryption. CANS 2013: pp.309–328

[25] The final version of [23]. Cryptology ePrint Archive, Report 2015/251
(2015)

[26] K.Kurosawa, K.Sasaki, K.Ohta, K.Yoneyama: UC-Secure Dynamic
Searchable Symmetric Encryption Scheme. IWSEC 2016: 73-90

[27] R. Kutzelnigg: “Bipartite random graphs and cuckoo hashing,” Fourth
Colloquium on Mathematics and Computer Science. Discrete Mathe-
matics and Theoretical Computer Science. pp.403–406 (2006)

[28] M. Naveed, M. Prabhakaran and C. Gunter: Dynamic Searchable En-
cryption via Blind Storage. IEEE Security & Privacy 2014

[29] R. Pagh, F.F. Rodler: Cuckoo Hashing. ESA 2001: pp.121-133 (2001)

[30] D. Song, D. Wagner, A. Perrig: Practical Techniques for Searches on En-
crypted Data. IEEE Symposium on Security and Privacy 2000: pp.44–55
(2000)

[31] S. Taketani, W. Ogata: “Improvement of UC Secure Searchable Sym-
metric Encryption Scheme,” Advances in Information and Computer
Security, the 10th International Workshop on Security, IWSEC 2015,
LNCS Vol.9241, pp. 135–152 (2015)

[32] P. Wang, H. Wang, J. Pieprzyk: Keyword Field-Free Conjunctive Key-
word Searches on Encrypted Data and Extension for Dynamic Groups.
CANS 2008: 178-195

18

� �
Store: Upon receiving the input (store, sid,D1, . . . , DN ,W) from the

dummy client, verify that this is the first input from the client with
(store, sid).
If it is, then store D = {D1, . . . , DN}, and send L1(D,W) to Suc.
Otherwise, ignore this input.

Search: Upon receiving (search, sid, w) from the client, send
L2(D,W ,w, w) to Suc. Note that in a no-dictionary vSSE scheme,
the client may send w ̸∈ W . If Suc returns accept, then send D(w)
to the client. If Suc returns reject, then send ⊥ to the client.� �

Figure 4: Ideal functionality FL
vSSE

A UC-Security for No-Dictionary vSSE

If a protocol is secure in the universally composable (UC) security frame-
work, its security is maintained even if the protocol is combined with other
protocols [9, 10, 11]. The UC security is defined based on ideal functionality
F . Kurosawa and Ohtaki introduced an ideal functionality of vSSE [23, 25].
Taketani and Ogata [31] generalized it in order to handle the general leakage
functions L = (L1, L2) as shown in Fig.4.

In the no-dictionary verifiable SSE setting, the real world is described as
follows. We assume a real adversary, Auc, can control the server arbitrarily,
and the client is always honest. For simplicity, we ignore session id.

In the store phase, an environment, Z, chooses (D,W) and sends them to
the client. The client computesK ← Gen(1λ) and (I, C)← Enc(K,D,W , {(w,D(w)) |
w ∈ W}), and sends (I, C) to the server. The client stores K 1 and the
server stores (I, C). In the search phase, Z chooses a word w ∈ {0, 1}∗
and sends it to the client. The client computes t(w) ← Trpdr(K,w) and
sends it to the server. The server, who may be controlled by real adversary
Auc, returns (C̃∗, P̃roof) to the client. If Verify(K, t(w), C̃∗, P̃roof) outputs
accept, then the client decrypts all C̃i ∈ C̃∗, and sends the list of plaintexts

D̃(w) = (D̃1, D̃2, . . .) to Z. If Verify(K, t(w), C̃∗, P̃roof) outputs reject,
then ⊥ is sent to Z. After the store phase, Z outputs a bit b.

On the other hand, the ideal world is described as follows.

1he may forget D,W, C, I.

19

In the store phase, Z sends (D,W) to the dummy client. The dummy
client sends (store,D,W) to functionality FL

vSSE (see Fig.4). In the search
phase, Z sends w to the dummy client. The dummy client sends (search, w)
to FL

vSSE, and receives D(w) or ⊥ (according to ideal adversary Suc’s deci-
sion), which is relayed to Z. At last, Z outputs a bit b

In both worlds, Z can communicate with Auc (in the real world) or Suc

(in the ideal world) in an arbitrary way.
UC-security of no-dictionary vSSE scheme is defined as follows.

Definition 4 (UC-security with leakage L) We say that no-dictionary
vSSE scheme has universally composable (UC) security with leakage L against
non-adaptive adversaries, if for any PPT real adversary Auc, there exists a
PPT ideal adversary (simulator) Suc, and for any PPT environment Z,

|Pr[Z outputs 1 in the real world]− Pr[Z outputs 1 in the ideal world]|

is negligible.

We can show a weak equivalence of UC security and privacy with relia-
bility.

Theorem 3 If a no-dictionary vSSE scheme satisfies L-privacy and strong
reliability for some L, it has UC security with leakage L against non-adaptive
adversaries.

Proof. Assume that the scheme satisfies L-privacy and strong reliability.
We consider four games Game0, . . . ,Game3. Let

pi = Pr[Z outputs 1 in Gamei]

for a fixed Auc. Game0 is equivalent to the real world in the definition of
UC security. So,

p0 = Pr[Z outputs 1 in the real world].

Game1 is different from Game0 in the following points.

• In the store phase, the client records (D,W , I) as well as the key K.

• In the search phase, ifAuc instructs the server to return (C̃∗, P̃roof) such
that (C̃∗, P̃roof) ̸= (C∗,Proof) ← Search(I, C, t(w)), then the server
returns reject to the client. Otherwise the server returns accept.

20

Z

�� ��client1

�� ��client2
�
�

�
�server

'

&

$

%Auc

-
-

-
�

? ?
6

(a)
Z

�� ��client1

�� ��client2
�
�

�
�server

'

&

$

%Auc

S-
-

- -
�

? ?
6

FL
vSSE

Suc

(b)

Figure 5: (a) Game2, (b) Game3

• If the client receives accept from the server, he sends D(w) to Z.
Otherwise, he sends ⊥ to Z.

Game1 is the same as Game0 until Auc instructs the server to return
(C̃∗, P̃roof) such that

Verify(K, t(w), C̃∗, P̃roof) = accept and (C̃∗, P̃roof) ̸= (C∗,Proof).

The above condition is the (strongly) winning condition of B in Gamereli.
So, we can obtain

|p0 − p1| ≤ max
B

Pr[B strongly wins in Gamereli].

From the assumption, |p0 − p1| is negligibly small.
In Game2, we split the client into two entities, client1 and client2, as

follows. (See Fig. 5(a).)

• Both client1 and client2 receive all input from Z.

• In the store/search phase, only client2 sends (I, C)/t(w) to the server.

• In the search phase, only client1 receives accept/reject from the
server, and sends D(w)/⊥ to Z.

This change is conceptual only. Therefore p2 = p1.
Now, we look at (Z, client1, server,Auc) and client2 as an adversary A

and a challenger C in the real game of privacy, respectively. Then, from the
assumption, there exists a simulator S such that Eq.(2) is negligible.

21

In Game3, client2 plays the role of the challenger in the simulation game
of privacy; he sends L1(D,W) or L2(D,W ,w, w) to the simulator S, and
then S sends its outputs (the simulated message) to the server. (See Fig.
5(b).) Again, we look at (Z, client1, server,Auc) as A. Then Game3 is the
simulation game and Game2 is the real game. Therefore

|p3 − p2| ≤ |Pr[A outputs 1 in Gamereal]− Pr[A outputs 1 in GameLsim]|,

and it is negligible from the assumption.
In Game3, (client1, client2) behaves exactly the same way as FL

vSSE in
the ideal world. So, considering (S, server,Auc) as a simulator Suc, we obtain

p3 = Pr[Z outputs 1 in the ideal world]

for this simulator. Consequently, we can say that for any Auc there exists Suc

such that |p0−p3| = |Pr[Z outputs 1 in the real world]−Pr[Z outputs 1 in the ideal world]|
is negligible. Q.E.D.

Theorem 4 If a no-dictionary vSSE scheme has UC security with leakage L
against non-adaptive adversaries for some L, it has satisfies L-privacy and
reliability.

This theorem is shown by the following lemmas.

Lemma 1 If vSSE has UC security with leakage L against non-adaptive ad-
versaries for some L, vSSE has satisfies L-privacy.

Proof. Assume that the scheme has UC security with leakage L.
Consider a real adversary Auc

0 who sends Z all inputs that the corrupted
server receives from the client. That is, (I, C) and t(w) are sent to Z in the
store phase and the search phase, respectively. From the assumption, there
exists an ideal adversary Suc

0 for such Auc
0 , and any environment Z cannot

distinguish the real world and the ideal world (Fig. 6). That is,

|Pr[Z outputs 1 in the real world]− Pr[Z outputs 1 in the ideal world]|

is negligible for any Z. Note that Suc
0 can compute and send simulated (Ĩ, C̃)

and t̃(w) to Z.
Now we consider restricted environments Z0 that do not use the an-

swer from the client/dummy client to distinguish the worlds. Namely, in

22

Z

�
�

�
�client

�
�

�
�server

'

&

$

%Auc
0

6

-
�

?

�

?

(a)
Z

�
�

�
�dummy

client

�
�

�
�FL

vSSE�
�

�
�Suc

0

6

-
�

?

6 ?

?

(b)

Figure 6: (a) Auc
0 , (b) Suc

0

the real world, Z0 sends (D,W) and w to the client and receives (I, C) ←
Enc(K,D,W , {(w,D(w)) | w ∈ W}) and t(w) ← Trpdr(K,w) from Auc

0 in
the store phase and the search phase, respectively, and outputs a bit at last.
This situation is exactly the same as A in Gamereal (Fig. 7(a)). On the
other hand, in the ideal world, Z0 sends (D,W) and w to the dummy client
and receives (Ĩ, C̃) and t̃(w) from Suc

0 in each phase, and outputs a bit. This
situation is exactly the same as A in Gamesim (Fig. 7(b)). Therefore,

max
A
|Pr[A outputs 1 in Gamereal]− Pr[A outputs 1 in Gamesim]|

= max
Z0

|Pr[Z0 outputs 1 in the real world]− Pr[Z0 outputs 1 in the ideal world]|

≤ max
Z
|Pr[Z outputs 1 in the real world]− Pr[Z outputs 1 in the ideal world]|

= negl.

Q.E.D.

Lemma 2 If vSSE has UC security with leakage L against non-adaptive ad-
versaries for some L, vSSE has satisfies reliability.

Proof. We fix an arbitrary adversary B = (B1,B2) of reliability game.
Consider a real adversary Auc

B such that Auc
B interacts with the client like B2

(by controlling the server), while Auc
B interacts with Z like B1 (Fig. 8(a)).

More precisely, at the beginning of each phase, Auc
B suggests which (D,W)

or w the environment should send to the client.
If the scheme has UC security with leakage L, there exists an ideal ad-

versary, Suc
B , and any environment Z cannot distinguish the real world and

the ideal world.

23

Z0

�
�

�
�client

�
�

�
�server

'

&

$

%Auc
0

6

-
�

?

�

?

C

(a)
Z0

�
�

�
�dummy

client

�
�

�
�FL

vSSE�
�

�
�Suc

0

6

-
�

?

6 ?

?

(C,S)

(b)

Figure 7: Z0 in (a)real and (b)ideal world

Z

�
�

�
�client

�
�

�
�server

'

&

$

%A1

A2

Auc
(A1,A2)

6

-
� � �

?

? ?

6

(a)
Z1

�
�

�
�client

�
�

�
�server

'

&

$

%A1

A2
6

-
� � �

?

? ?

6

 	� �
(b)

Figure 8: (a) Auc
B , (b) Z1

24

Next, consider a simple environment Z1 performs as follows (Fig. 8(b)).
At the beginning of each phase, Z1 sends the client/dummy client (D,W) or
w suggested by Auc

B . When Z1 receives a message from the client/dummy
client, Z1 relays it to Auc

B . If Z1 receives D̃(w) ̸∈ {D(w),⊥} as a reply of w,
then outputs 1.

It is clear that

Pr[Z1 outputs 1 in the real world] = Pr[B wins in Gamereli].

On the other hand, in the ideal world, Z1 never receives D̃(w) ̸∈ {D(w),⊥}
from FL

vSSE through the client. Therefore,

Pr[Z1 outputs 1 in the ideal world] = 0.

Hence

Pr[B wins in Gamereli]

= |Pr[Z1 outputs 1 in the real world]− Pr[Z1 outputs 1 in the ideal world]| ,

which is negligible for any B from the assumption. Q.E.D.

Corollary 1 Our transformed scheme is UC-secure with leakage L′ = (L′
1, L

′
2)

if the original SSE scheme has L = (L1, L2)-privacy, where L and L′ are given
in Theorem 1.

25

