
The Sleepy Model of Consensus

Rafael Pass
CornellTech

Elaine Shi
Cornell

May 11, 2017

Abstract

The literature on distributed computing (as well as the cryptography literature) typ-
ically considers two types of players—honest players and corrupted players. Resilience
properties are then analyzed assuming a lower bound on the fraction of honest players.
Honest players, however, are not only assumed to follow the prescribed the protocol, but
also assumed to be online throughout the whole execution of the protocol. The advent
of “large-scale” consensus protocols (e.g., the blockchain protocol) where we may have
millions of players, makes this assumption unrealistic. In this work, we initiate a study
of distributed protocols in a “sleepy” model of computation where players can be either
online (alert) or offline (asleep), and their online status may change at any point during
the protocol. The main question we address is:

Can we design consensus protocols that remain resilient under “sporadic par-
ticipation”, where at any given point, only a subset of the players are actually
online?

As far as we know, all standard consensus protocols break down under such sporadic
participation, even if we assume that 99% of the online players are honest.

Our main result answers the above question in the affirmative. We present a con-
struction of a consensus protocol in the sleepy model, which is resilient assuming only
that a majority of the online players are honest. Our protocol relies on a Public-Key
Infrastructure (PKI), a Common Random String (CRS) and is proven secure in the
timing model of Dwork-Naor-Sahai (STOC’98) where all players are assumed to have
weakly-synchronized clocks (all clocks are within ∆ of the “real time”) and all mes-
sages sent on the network are delivered within ∆ time, and assuming the existence
of sub-exponentially secure collision-resistant hash functions and enhanced trapdoor
permutations. Perhaps surprisingly, our protocol significantly departs from the stan-
dard approaches to distributed consensus, and we instead rely on key ideas behind
Nakamoto’s blockchain protocol (while dispensing the need for “proofs-of-work”). We
finally observe that sleepy consensus is impossible in the presence of a dishonest majority
of online players.

1

1 Introduction

Consensus protocols are at the core of distributed computing and also provide a foundational
building protocol for multi-party cryptographic protocols. In this paper, we consider consensus
protocols for realizing a “linearly ordered log” abstraction—often referred to as state machine
replication or linearizability in the distributed systems literature. Such protocols must respect two
important resiliency properties, consistency and liveness. Consistency ensures that all honest nodes
have the same view of the log, whereas liveness requires that transactions will be incorporated into
the log quickly.

The literature on distributed computing as well as the cryptography literature typically consider
two types of players—honest players and corrupted/adversarial players. The above-mentioned re-
siliency properties are then analyzed assuming a lower bound on the fraction of honest players (e.g.,
assuming that at least a majority of the players are honest). Honest players, however, are not only
assumed to follow the prescribed the protocol, but also assumed to be online throughout the whole
execution of the protocol. Whereas this is a perfectly reasonable assumption for the traditional
environments in which consensus protocols typically were deployed (e.g., within a company, say
“Facebuck”, to support an application, say “Fackbuck Credit”, where the number of nodes/players
is roughly a dozen), the advent of “large-scale” consensus protocols (such as e.g., the blockchain
protocol)—where want to achieve consensus among millions of players—makes this latter assump-
tion unrealistic. (For instance, in bitcoin, only a small fraction of users having bitcoins are actually
participating as miners.)

1.1 The Sleepy Model of Consensus

Towards addressing this issue, we here initiate a study of distributed protocols in a “sleepy” model
of computation. In this model, players can be either online (“awake/active”) or offline (“asleep”),
and their online status may change at any point during the protocol execution. The main question
we address is:

Can we design consensus protocols that remain resilient under “sporadic participation”—
where at any given point, only a subset of the players are actually online—assuming an
appropriate fraction (e.g., majority) of the online players are honest?

As far as we know, this question was first raised by Micali [31] in a recent manuscript1 —he
writes “... a user missing to participate in even a single round is pessimistically judged malicious—
although, in reality, he may have only experienced a network-connection problem, or simply taken
a break. [..] One possibility would be to revise the current Honest Majority of Users assumption
so as it applies only to the “currently active” users rather than the “currently existing” users.” In
Micali’s work, however, a different path is pursued.2 In contrast, our goal here is to address this
question. It is easy to see that consensus is impossible in this model unless we assume that at
least a majority of the awake players are honest (if the set of awake players can arbitrarily change
throughout the execution)—briefly, the reason for this is that a player that wakes up after being
asleep for a long time cannot distinguish the real execution by the honest player and an emulated

1Although our paper is subsequent, at the original time of writing this paper, we were actually not aware of this;
this discussion was present in the arXiv version from August 2016, but is no longer present in the most recent version
of his manuscript.

2Briefly, rather than designing a protocol that remains resilient under this relaxed honesty assumption, he designs
a protocol under an incomparable “honest-but-lazy” assumption, where honest players only are required to participate
at infrequent but individually prescribed rounds (and if they miss participation in their prescribed round, they are
deemed corrupted). Looking forward, the honest strategy in our protocols also satisfies such a laziness property.

1

“fake” execution by the malicious players, and thus must choose the “fake” one with probability at
least 1

2 . We formalize this in Theorem 10 (in Section 8).
We then consider the following question:

Can we design a consensus protocol that achieves consistency and liveness assuming
only that a majority of the online players are honest?

As far as we know, all standard consensus protocols break down in the sleepy model, even if we
assume that 99% of the online players are honest! Briefly, the standard protocols can be divided
into two types: 1) protocols that assume synchronous communication, where all messages sent by
honest players are guaranteed to be received by all other honest nodes in the next round; or, 2)
protocols handling partially synchronous or asynchronous communication, but in this case require
knowledge of a tight bound on the number of actually participating honest players. In more detail:

• Traditional synchronous protocols (e.g., [13,17,22]) crucially rely on messages being delivered in
the next round (or within a known, bounded delay ∆) to reach agreement. By contrast, in the
sleepy model, consider an honest player that falls asleep for a long time (greater than ∆) and
then wakes up at some point in the future; it now receives all “old” messages with a significantly
longer delay (breaking the synchrony assumption). In these protocols, such a player rejects all
these old messages and would never reach agreement with the other players. It may be tempting
to modify e.g., the protocol of [13] to have the players reach agreement on some transaction if
some threshold (e.g., majority) of players have approved it—but the problem then becomes how
to set the threshold, as the protocol is not aware of how many players are actually awake!

• The partially synchronous or asynchronous protocols (e.g., [8, 12, 14, 30, 33, 39]) a-priori seem
to handle the above-mentioned issue with the synchronous protocol: we can simply view the
sleeping player as receiving messages with a long delay (which is allowed in the asynchronous
model of communication). Here, the problem instead is the fact that the number of awake
players may be significantly smaller than the total number of players, and this means that no
transactions will even be approved! A bit more concretely, these protocols roughly speaking
approve transactions when a certain number of nodes have “acknowledged” them–for instance,
in the classic BFT protocol of Castro and Liskov [12] (which is resilient in the standard model
assuming a fraction 2

3 of all players are honest), players only approve a transaction when they
have heard 2N

3 “confirmations” of some message where N is the total number of parties. The
problem here is that if, say, only half of the N players are awake, the protocols stalls. And again,
as for the case of synchronous protocols, it is not clear how to modify this threshold without
knowledge of the number of awake players.

1.2 Main Result

Our main result answers the above question in the affirmative. We present constructions of con-
sensus protocols in the sleepy model, which are resilient assuming only that a majority of the
awake players are honest. Our protocols relies on the existence of a “bare” Public-Key Infrastruc-
ture (PKI)3, the existence of Common Random String (CRS)4 and is proven secure in a simple

3That is, players have some way of registering public keys; for honest players, this registration happens before the
beginning of the protocol, whereas corrupted players may register their key at any point. We do not need players to
e.g., prove knowledge of their secret-key.

4That is a commonly known truly random string “in the sky”.

2

version of the timing model of Dwork-Naor-Sahai [34] where all players are assumed to have weakly-
synchronized clocks—all clocks are within ∆ of the “real time”, and all messages sent on the network
are delivered within ∆ time.

Our first protocol relies only on the existence of collision-resistant hash functions (and it is
both practical and extremely simple to implement, compared to standard consensus protocols); it,
however, only supports static corruptions and a static (fixed) schedule of which nodes are awake at
what time step—we refer to this as a “static online schedule”.

Theorem 1 (Informal). Assume the existence of families of a collision-resistant hash functions
(CRH). Then, there exists a protocol for state-machine replication in the Bare PKI, CRS and in
the timing model, which achieves consistency and liveness assuming a static online schedule and
static corruptions, as long as at any point in the execution, a majority of the awake players are
honest.

Our next construction, enhances the first one by achieving also resilience with an arbitrary
adversarial selection of which nodes are online at what time; this protocol also handles adaptive
corruptions of players. This new protocol, however, does so at the price of assuming subexponen-
tially secure collision-resistant hash functions and enhanced trapdoor permutations (the latter are
needed for the constructions of non-interactive zero-knowledge proofs).

Theorem 2 (Informal). Assume the existence of families of sub-exponentially secure collision-
resistant hash functions (CRH), and enhanced trapdoor permutations (TDP). Then, there exists a
state-machine replication protocol in the Bare PKI, CRS and timing model, which achieves consis-
tency and liveness under adaptive corruptions as long as at any point in the execution, a majority
of the awake players are honest.

Perhaps surprisingly, our protocols significantly departs from the standard approaches to dis-
tributed consensus, and we instead rely on key ideas behind Nakamoto’s beautiful blockchain pro-
tocol [35], while dispensing the need for “proofs-of-work” [15]. As far as we know, our work demon-
strates for the first time how the ideas behind Nakamoto’s protocol are instrumental in solving
“standard” problems in distributed computing; we view this as our main conceptual contribution
(and hopefully one that will be useful also in other contexts).

Our proof will leverage and build on top of the formal analysis of the Nakamoto blockchain by
Pass et al. [36], but since we no longer rely on proofs-of-work, several new obstacles arise. Our main
technical contribution, and the bulk of our analysis, is a new combinatorial analysis for dealing with
these issues.

We finally mention that ad-hoc solutions for achieving consensus using ideas behind the blockchain
(but without proof-of-work) have been proposed [2,4,25], none of these come with an analysis, and
it is not clear to what extent they improve upon standard state-machine replication protocols (and
more seriously, whether they even achieve the standard notion of consensus).

1.3 Technical Overview

We start by providing an overview of our consensus protocol which only handles a static online
schedule and static corruptions; we next show how to enhance this protocol to achieve adaptive
security.

As mentioned, the design of our consensus protocols draws inspiration from Bitcoin’s proof-
of-work based blockchain [35]—the so-called “Nakamoto consensus” protocol. This protocol is
designed to work in a so-called “permissionless setting” where anyone can join the protocol exe-
cution. In contrast, we here study consensus in the classic “permissioned” model of computation

3

with a fixed set [N] of participating players; additionally, we are assuming that the players can
register public keys (whose authenticity can be verified). Our central idea is to eliminate the use
of proofs of work in this protocol. Towards this goal, let us start by providing a brief overview of
Nakamoto’s beautiful blockchain protocol.

Nakamoto consensus in a nutshell. Roughly speaking, in Nakamoto’s blockchain, players
“confirm” transactions by “mining blocks” through solving some computational puzzle that is a
function of the transactions and the history so far. More precisely, each participant maintains its
own local “chain” of “blocks” of transactions—called the blockchain. Each block consists of a triple
(h−1, η, txs) where h−1 is a pointer to the previous block in chain, txs denotes the transactions
confirmed, and η is a “proof-of-work”— a solution to a computational puzzle that is derived from
the pair (h−1, txs). The proof of work can be thought of as a “key-less digital signature” on the
whole blockchain up until this point. At any point of time, nodes pick the longest valid chain they
have seen so far and try to extend this longest chain.

Removing proofs-of-work. Removing the proof-of-work from the Nakamoto blockchain while
maintaining provable guarantees turns out to be subtle and the proof non-trivial. To remove the
proof-of-work from Nakamoto’s protocol, we proceed as follows: instead of rate limiting through
computational power, we impose limits on the type of puzzle solutions that are admissible for each
player. More specifically, we redefine the puzzle solution to be of the form (P, t) where P is the
player’s identifier and t is referred to as the block-time. An honest player will always embed the
current time step as the block-time. The pair (P, t) is a “valid puzzle solution” if H(P, t) < Dp where
H denotes a random oracle (for now, we provide a protocol in the random oracle model, but as we
shall see shortly, the random oracle can be instantiated with a CRS and a pseudorandom function),
and Dp is a parameter such that the hash outcome is only smaller than Dp with probability p. If
H(P, t) < Dp, we say that P is elected leader at time t. Note that several nodes may be elected
leaders at the same time steps.

Now, a node P that is elected leader at time step t can extend a chain with a block that
includes the “solution” (P, t), as well as the previous block’s hash h−1 and the transactions txs to
be confirmed. To verify that the block indeed came from P, we require that the entire contents of
the block, i.e., (h−1, txs, t,P), are signed under P’s public key. Similarly to Nakamoto’s protocol,
nodes then choose the longest valid chain they have seen and extend this longest chain.

Whereas honest players will only attempt to mine solutions of the form (P, t) where t is the
current time step, so far there is nothing that prevents the adversary from using incorrect block-
times (e.g., time steps in past or the future). To prevent this from happening, we additionally
impose the following restriction on the block-times in a valid chain:

1. A valid chain must have strictly increasing block-times;

2. A valid chain cannot contain any block-times for the “future” (where “future” is adjusted to
account for nodes’ clock offsets)

There are now two important technical issues to resolve. First, it is important to ensure that
the block-time rules do not hamper liveness. In other words, there should not be any way for an
adversary to leverage the block-time mechanism to cause alert nodes to get stuck (e.g., by injecting
false block-times).

Second, although our block-time rules severely constrain the adversary, the adversary is still
left with some wiggle room, and gets more advantage than alert nodes. Specifically, as mentioned
earlier, the alert nodes only “mine” in the present (i.e., at the actual time-step), and moreover they

4

never try to extend different chains of the same length. By contrast, the adversary can try to reuse
past block-times in multiple chains. (In the proof of work setting, these types of attacks are not
possible since there the hash function is applied also to the history of the chain, so “old” winning
solutions cannot be reused over multiple chains; in contrast, in our protocol, the hash function is
no longer applied to the history of the chain as this would give the attacker too many opportunities
to become elected a leader by simply trying to add different transactions.)

Our main technical result shows that this extra wiggle room in some sense is insignificant,
and the adversary cannot leverage the wiggle room to break the protocol’s consistency guarantees.
It turns out that dealing with this extra wiggle room becomes technically challenging, and none
of the existing analysis for proof-of-work blockchains [20, 36] apply. More precisely, since we are
using a blockchain-style protocol, a natural idea is to see whether we can directly borrow proof
ideas from existing analyses of the Nakamoto blockchains [20, 36]. Existing works [20, 36] define
three properties of blockchains—chain growth (roughly speaking that the chain grows at a certain
speed), chain quality (that the adversary cannot control the content of the chain) and consistency
(that honest players always agree on appropriate prefix of the chain)—which, as shown in earlier
works [36, 38] imply the consistency and liveness properties needed for state-machine replication.
Thus, by these results, it will suffice to demonstrate that our protocol satisfies these properties.

The good news is that chain growth and chain quality properties can be proven in almost
identically the same way as in earlier Nakamoto blockchain analysis [36]. The bad news is that the
consistency proofs of prior works [20, 36] break down in our setting (as the attacker we consider
is now more powerful as described above). The core of our proof is a new, and significantly more
sophisticated analysis for dealing with this.

Removing the random oracle. The above-described protocol relies on a random oracle. We
note that we can in fact instantiate the random oracle with a PRF whose seed is selected in
a common reference string (CRS). Roughly speaking, the reason for this is that in our proof we
actually demonstrate the existence of some simple polynomial-time computable events—which only
depend on the output of the hash function/PRF—that determine whether any (even unbounded)
attacks can succeed. Our proof shows that with overwhelming probability over the choice of the
random oracle, these events do not happen. By the security of the PRF, these events thus also
happen only with negligible probability over the choice of the seed of the PRF.

Dealing with adaptive sleepiness and corruption. We remark that the above-described
protocol only works if the choice of when nodes are awake is made before PRF seed is selected.
If not, honest players that are elected leaders could simply be put to sleep at the time step when
they need to act. The problem is that it is preditcable when a node will become a leader. To
overcome this problem, we take inspiration from a beautiful idea from Micali’s work [31]—we let
each player pick its own secret seed to a PRF and publish a commitment to the seed as part of
its public key; the player can then evaluate its own private PRF and also prove in zero-knowledge
that the PRF was correctly evaluated (so everyone else can verify the correctness of outputs of the
PRF);5. Finally, each player now instantiates the random oracle with their own “private” PRF.
Intuitively, this prevents the above-mentioned attack, since even if the adversary can adaptively
select which honest nodes go to sleep, it has no idea which of them will become elected leaders
before they broadcast their block.

5In essence, what we need is a VRF [32], just like Micali [31], but since we anyway have a CRS, we can rely on
weaker primitives.

5

Formalizing this, however, is quite tricky (and we will need to modify the protocol). The
problem is that if users pick their own seed for the PRF, then they may be able to select a “bad
seed” which makes them the leader for a long period of time (there is nothing in the definition of
a PRF that prevents this). To overcome this issue, we instead perform a “coin-tossing into the
well” for the evaluation of random oracle: As before, the CRS specifies the seed k0 of a PRF, and
additionally, each user P commits to the seed k[P] of a PRF as part of their public key; node P
can then use the following function to determine if it is elected in time t

PRFk0(P, t)⊕ PRFk[P](t) < Dp

where Dp is a difficulty parameter selected such that any single node is elected with probability p
in a given time step. Further, P additionally proves in zero-knowledge that it evaluated the above
leader election function correctly in any block it produces.

But, have we actually gained anything? A malicious user may still pick its seed k[P] after seeing
k0 and this may potentially cancel out the effect of having PRFk0(·) there in the first place! (For
instance, the string PRFk0(P, t)⊕ PRFk[P](t) clearly is not random any more.) We note, however,
that if the user seed k[P] is significantly shorter than the seed k0, and the cryptographic primitives
are subexponentially secure, we can rely on the same method that we used to replace the random
oracle with a PRF to argue that even if k[P] is selected as a function of k0, this only increases the
adversaries success probability by a factor 2L for each possibly corrupted user where L := |k[P]|
is the bit-length of each user’s seed (and thus at most 2NL where N is the number of players)
which still will not be enough to break security, if using a sufficiently big security parameter for the
underlying protocol. We can finally use a similar style of a union bound to deal also with adaptive
corruptions. (Note, however, that the loss in efficiency due to these complexity leveraging is non-
trivial: the security parameter must now be greater than N ; if we only require static corruption,
and allow the CRS to be selected after all public keys are registered—which would be reasonable in
practice—then, we can deal with adaptive sleepiness without this complexity leveraging and thus
without the loss in efficiency).

1.4 Applications in Permissioned and Permissionless Settings

As mentioned earlier, the variants of our protocols that deal with static corruption (and static or
adaptive sleepiness) need not employ complexity leveraging, thus they can be implemented and
adopted in real-world systems. We believe that our sleepy consensus protocol would be highly
desirable in the following application scenarios and the alike.

Permissioned setting: consortium blockchains. At the present, there is a major push where
blockchain companies are helping banks across the world build “consortium blockchains”. A con-
sortium blockchain is where a consortium of banks each contribute some nodes and jointly run a
consensus protocol, on top of which one can run distributed ledger and smart contract applica-
tions. Since enrollment is controlled, consortium blockchain falls in the classical “permissioned”
model of consensus. Since the number of participating nodes may be large (e.g., typically involve
hundreds of banks and possibly hundreds to thousands of nodes), many conjecture that classical
protocols such as PBFT [12], Byzantine Paxos [27], and others where the total bandwidth scales
quadratically w.r.t. the number of players might not be ideal in such settings. Our sleepy consensus
protocol provides a compelling alternative in this setting — with sleepy consensus, tasks such as
committee re-configuration can be achieved simply without special program paths like in classical
protocols [28], and each bank can also administer their nodes without much coordination with other
banks.

6

Permissionless setting: proof-of-stake. The subsequent work Snow White by Bentov, Pass,
and Shi [5] adapted our protocol to a permissionless setting, and obtained one of the first provably
secure proof-of-stake protocols. A proof-of-stake protocol is a permissionless consensus protocol to
be run in an open, decentralized setting, where roughly speaking, each player has voting power
proportional to their amount of stake in the cryptocurrency system (c.f. proof-of-work is where
players have voting power proportional to their available computing power). Major cryptocurrencies
such as Ethereum are eager to switch to a proof-of-stake model rather than proof-of-work to dispense
with wasteful computation. To achieve proof-of-stake, the Snow White [5] extended the our sleepy
consensus protocol by introducing a mechanism that relies the distribution of stake in the system
to periodically rotate the consensus committee. Further Snow White dealt with other issues such as
“nothing at stake” and posterior corruption that are well-known for proof-of-stake systems — note
that these issues pertain only to proof-of-stake systems and are thus out of scope for our paper.

Comparison with independent work. Although proof-of-stake is not a focus of our paper, we
compare with a few independent works on proof-of-stake [24,31] due to the superficial resemblance
of some elements of their protocol in comparison with ours. Specificaly, the elegant work by Micali
proposes to adapt classical style consensus protocols to realize a proof-of-stake protocol [31]; the
concurrent and independent work by Kiayias et al. [24] proposes to use a combination of blockchain-
style protocol and classical protocols such as coin toss to realize proof-of-stake. Both these works
would fail in the sleepy model like any classical style protocol. In comparison, we use a blockchain
style protocol in a pure manner which is essential to achieving consensus in the sleepy model.
We also point out that even when we replace Kiayias’s coin toss protocol with an ideal random
beacon, Kiayias’s proof would still fail in the sleepy model — and there does not seem to be a
trivial way to reinterpret their proof such that it works in the sleepy model. Other proof-of-stake
protocols [2,4,25] may also bear superficial resemblance but they do not have formal security models
or provable guarantees, and these protocols may also miss elements that turned out essential in our
proofs.

1.5 Related Work

We briefly review the rich body of literature on consensus, particularly focusing on protocols that
achieve security against Byzantine faults where corrupt nodes can deviate arbitrarily from the
prescribed behavior.

Models for permissioned consensus. Consensus in the permissioned setting [3,6–8,12–14,17–
19, 22, 26–30, 39] has been actively studied for the past three decades; and we can roughly classify
these protocols based on their network synchrony, their cryptographic assumptions, and various
other dimensions.

Roughly speaking, two types of network models are typically considered, the synchronous model,
where messages sent by honest nodes are guaranteed to be delivered to all other honest nodes in
the next round; and partially synchronous or asynchronous protocols where message delays may
be unbounded, and the protocol must nonetheless achieve consistency and liveness despite not
knowing any a-priori upper bound on the networks’ delay. In terms of cryptographic assumptions,
two main models have been of interest, the “unauthenticated Byzantine” model [29] where nodes are
interconnected with authenticated channels6; and the “authenticated Byzantine” model [13], where

6This terminology clash stems from different terminology adopted by the distributed systems and cryptography
communities.

7

a public-key infrastructure exists, such that nodes can sign messages and such digital signatures
can then be transferred.

Permissioned, synchronous protocols. Many feasibility and infeasibility results have been
shown. Notably, Lamport et al. [29] show that it is impossible to achieve secure consensus in
the presence of a 1

3 coalition in the “unauthenticated Byzantine” model (even when assuming
synchrony). However, as Dolev and Strong show [13], in a synchronous, authenticated Byzantine
model, it is possible to design protocols that tolerate an arbitrary number of corruptions. It is
also understood that no deterministic protocol fewer than f rounds can tolerate f faulty nodes [13]
— however, if randomness is allowed, existing works have demonstrated expected constant round
protocols that can tolerate up to a half corruptions [17,22].

Permissioned, asynchronous protocols. A well-known lower bound by Fischer, Lynch, and
Paterson [18] shows if we restrict ourselves to protocols that are deterministic and where nodes
do not read clocks, then consensus would be impossible even when only a single node may crash.
Known feasibility results typically circumvent this well-known lower bound by making two types
of assumptions: 1) randomness assumptions, where randomness may come from various sources,
e.g., a common coin in the sky [8,19,33], nodes’ local randomness [3,39], or randomness in network
delivery [7]; and 2) clocks and timeouts, where nodes are allowed to read a clock and make actions
based on the clock’s value. This approach has been taken by well-known protocols such as PBFT [12]
and FaB [30] that use timeouts to re-elect leaders and thus ensure liveness even when the previous
leader may be corrupt.

Another well-known lower bound in the partially synchronous or asynchronous setting is due
to Dwork et al. [14], who showed that no protocol (even when allowing randomness or clocks) can
achieve security in the presence of a 1

3 (or larger) corrupt coalition.
Guerraoui et al. [21] propose a technique to dynamically partition nodes into clusters with nice

properties, such that they can achieve consensus in a hostile environment where nodes join and
leave dynamically. Their scheme also fails in the sleepy model, when the set of online honest nodes
in adjacent time steps can be completely disjoint.

Permissionless consensus. The permissionless model did not receive sufficient academic at-
tention, perhaps partly due to the existence of strong lower bounds such as what Canetti et al.
showed [1]. Roughly speaking, we understand that without making additional trust assumptions,
not many interesting tasks can be achieved in the permissionless model where authenticated chan-
nels do not exist between nodes.

Amazingly, cryptocurrencies such as Bitcoin and Ethereum have popularized the permissionless
setting, and have demonstrated to us, that perhaps contrary to the common belief, highly interesting
and non-trivial tasks can be attained in the permissionless setting. Underlying these cryptocurrency
systems is a fundamentally new type of consensus protocol commonly referred to as proof-of-work
blockchains [35]. Upon closer examination, these protocols circumvent known lower bounds such
as those by Canetti et al. [1] and Lamport et al. [29] since they rely on a new trust assumption,
namely, proofs-of-work, that was not considered in traditional models.

Formal understanding of the permissionless model has just begun [20, 36–38]. Notably, Garay
et al. [20] formally analyze the Nakamoto blockchain protocol in synchronous networks. Pass et
al. [36] extend their analysis to asynchronous networks. More recently, Pass and Shi [38] show
how to perform committee election using permissionless consensus and then bootstrap instances of

8

permissioned consensus — in this way, they show how to asymptotically improve the response time
for permissionless consensus.

Finally, existing blockchains are known to suffer from a selfish mining attack [16], where a
coalition wielding 1

3 of the computation power can reap up to a half of the rewards. Pass and Shi [37]
recently show how to design a fair blockchain (called Fruitchains) from any blockchain protocol with
positive chain quality. Since our Sleepy consensus protocol is a blockchain-style protocol, we also
inherit the same selfish mining attack. However, we can leverage the same techniques as Pass and
Shi [37] to build a fair blockchain from Sleepy.

2 Definitions

2.1 Protocol Execution Model

We assume a standard Interactive Turing Machine (ITM) model [9–11] often adopted in the cryp-
tography literature.

(Weakly) synchronized clocks. We assume that all nodes can access a clock that ticks over
time. In the more general form, we allow nodes clocks to be offset by a bounded amount —
commonly referred to as weakly synchronized clocks. We point out, that it is possible to apply
a general transformation such that we can translate the clock offset into the network delay, and
consequently in the formal model we may simply assume that nodes have synchronized clocks
without loss of generality.

Specifically, without loss of generality, assume nodes’ clocks are offset by at most ∆, where ∆
is also the maximum network delay — if the two parameters are different, we can always take the
maximum of the two incurring only constant loss. Below we show a transformation such that we
can treat weakly synchronized clocks with maximum offset ∆ as setting with synchronized clocks
but with network delay 3∆. Imagine the following transformation: honest nodes always queue
every message they receive for exactly ∆ time before “locally delivering” them. In other words,
suppose a node i receives a message from the network at local time t, it will ignore this message
for ∆ time, and only act upon the received message at local time t + ∆. Now, if the sender of
the message (say, node j) is honest, then j must have sent this message during its own local time
[t− 2∆, t+ ∆]. This suggests that if an honest node j sends a message at its local time t, then any
honest node i must locally deliver the message during its local time frame [t, t+ 3∆].

Therefore henceforth in this paper we consider a model with a globally synchronized clocks
(without losing the ability to express weak synchrony). Each clock tick is referred to as an atomic
time step. Nodes can perform unbounded polynomial amount of computation in each atomic time
step, as well as send and receive polynomially many messages.

Public-key infrastructure. We assume the existence of a public-key infrastructure (PKI).
Specifically, we adopt the same technical definition of a PKI as in the Universal Composition
framework [9]. Specifically, we shall assume that the PKI is an ideal functionality FCA (availabile
only to the present protocol instance) that does the following:

• On receive register(upk) from P: remember (upk,P) and ignore any future message from P.

• On receive lookup(P): return the stored upk corresponding to P or ⊥ if none is found.

In this paper, we will consider a Bare PKI model, nodes are allowed register their public keys
with FCA any time during the exection — although typically, the honest protocol may specify

9

that honest nodes register their public keys upfront at the beginning of the protocol execution
(nonetheless, corrupt nodes may still register late).

Corruption model. At the beginning of any time step t, Z can issue instructions of the form

(corrupt, i) or (sleep, i, t0, t1) where t1 ≥ t0 ≥ t

(corrupt, i) causes node i to become corrupt at the current time, whereas (sleep, i, t0, t1) where
t1 ≥ t0 ≥ t will cause node i to sleep during [t0, t1]. Note that since corrupt or sleep instructions
must be issued at the very beginning of a time step, Z cannot inspect an honest node’s message to
be sent in the present time step, and then retroactively make the node sleep in this time step and
erase its message.

Following standard cryptographic modeling approaches [9–11], at any time, the environment Z
can communicate with corrupt nodes in arbitrary manners. This also implies that the environment
can see the internal state of corrupt nodes. Corrupt nodes can deviate from the prescribed pro-
tocol arbitrarily, i.e., exhibit byzantine faults. All corrupt nodes are controlled by a probabilistic
polynomial-time adversary denoted A, and the adversary can see the internal states of corrupt
nodes. For honest nodes, the environment cannot observe their internal state, but can observe any
information honest nodes output to the environment by the protocol definition.

To summarize, a node can be in one of the following states:

1. Honest. An honest node can either be awake or asleep (or sleeping/sleepy). Henceforth we
say that a node is alert if it is honest and awake. When we say that a node is asleep (or
sleeping/sleepy), it means that the node is honest and asleep.

2. Corrupt. Without loss of generality, we assume that all corrupt nodes are awake.

Henceforth, we say that corruption (or sleepiness resp.) is static if Z must issue all corrupt
(or sleep resp.) instructions before the protocol execution starts. We say that corruption (or
sleepiness resp.) is adaptive if Z can issue corrupt (or sleep resp.) instructions at any time
during the protocol’s execution.

Network delivery. The adversary is responsible for delivering messages between nodes. We
assume that the adversary A can delay or reorder messages arbitrarily, as long as it respects the
constraint that all messages sent from honest nodes must be received by all honest nodes in at most
∆ time steps.

When a sleepy node wakes up, (A,Z) is required to deliver an unordered set of messages
containing

• all the pending messages that node i would have received (but did not receive) had it not slept;
and

• any polynomial number of adversarially inserted messages of (A,Z)’s choice.

2.2 Compliant Exections

Randomized protocol execution. We use the notation view←$EXEC
Π(A,Z, λ)Π(A,Z, λ) to

denote a randomized execution of the protocol Π with security parameter λ and w.r.t. to an (A,Z)
pair. Specifically, view is a random variable containing an ordered sequence of all inputs, outputs,
and messages sent and received by all Turing Machines during the protocol’s execution. We use
the notation |view| to denote the number of time steps in the execution trace view.

10

Parameters of an execution. Globally, we will use N to denote (an upper bound on) the total
number of nodes, and Ncrupt to denote (an upper bound on) the number of corrupt nodes, and ∆
to denote the maximum delay of messages between alert nodes. More formally, we can define a
(N,Ncrupt,∆)-respecting (A,Z) as follows.

Definition 1 ((N,Ncrupt,∆)-respecting (A,Z)). Henceforth, we say that (A,Z) is (N,Ncrupt,∆)-
respecting w.r.t. protocol Π, iff the following holds: for any view ∈ EXECΠ(A,Z, λ) with non-zero
support,

• (A,Z) spawns a total of N nodes in view among which Ncrupt are corrupt and the remaining are
honest.

• If an alert node i gossips a message at time t in view, then any node j alert at time t′ ≥ t+ ∆
(including ones that wake up after t) will have received the message.

Henceforth when the context is clear, we often say that (A,Z) is (N,Ncrupt,∆)-respecting
omitting stating explicitly the protocol Π of interest.

Protocol-specific compliance rules. A protocol Π may formally ensure certain security guar-
antees only in executions that respect certain compliance rules. Compliance rules can be regarded
as constraints imposed on the (A,Z) pair. Henceforth, we assume that besides specifying the in-
structions of honest parties, a protocol Π will additionally specify a set of compliance rules. We
will use the notation a

Π-compliant (A,Z) pair

to denote an (A,Z) pair that respects the compliance rules of protocol Π — we also say that (A,Z)
is compliant w.r.t. to the protocol Π.

Additional protocol conventions. We adopt the universal composition framework [9–11] for
formal modeling. Each protocol instance and functionality is associated with a session identifier
sid . We omit writing this session identifier explicitly without risk of ambiguity. We assume that
ideal functionalities simply ignore all messages from parties not pertaining to the protocol instance
of interest.

2.3 Notational Conventions

Negligible functions. A function negl(·) is said to be negligible if for every polynomial p(·),
there exists some λ0 such that negl(λ) ≤ 1

p(λ) for every λ ≥ λ0.

Variable conventions. In this paper, unless otherwise noted, all variables are by default func-
tions of the security parameter λ. Whenever we say var0 > var1, this means that var0(λ) > var1(λ)
for every λ ∈ N. Similarly, if we say that a variable var is positive or non-negative, it means
positive or non-negative for every input λ. Variables may also be functions of each other. How
various variables are related will become obvious when we define derived variables and when we
state parameters’ admissible rules for each protocol. Importantly, whenever a parameter does not
depend on λ, we shall explicitly state it by calling it a constant.

Unless otherwise noted, we assume that all variables are non-negative (functions of λ). Further,
unless otherwise noted, all variables are polynomially bounded (or inverse polynomially bounded if
smaller than 1) functions of λ.

11

3 Problem Definitions

In this section, we formally define a state machine replication protocol. State machine replication
has been studied by the distributed systems literature for 30 years. In state machine replication,
nodes agree on a linearly ordered log over time, in a way that satisfies consistency and liveness. In
this section, we make explicit the formal abstraction for state machine replication. We then define
an alternative blockchain abstraction first proposed by Garay et al. [20] and Pass et al. [36]. We
point out that a blockchain abstraction implies the classical state machine replication abstraction
as shown by Pass and Shi [38]. Therefore, while our final goal is to achieve classical state machine
replication, we will construct a blockchain protocol as a stepping stone. Separately, this connection
between modern blockchains and classical state machine replication is also interesting in its own
right — this has been the common wisdom in the community, but we formalize this intuition.

3.1 State Machine Replication

We will aim to realize a state machine replication abstraction, also frequently referred to as a
“totally ordered log” or “linearity” by the distributed systems literature. In a replicated state
machine, nodes agree on a LOG over time that is basically a list of transactions; and further,
consistency and liveness are guaranteed.

More formally, a state machine replication abstraction satisfies the following — here we adopt
the same definitions as Pass and Shi [38].

Inputs and outputs. The environment Z may input a set of transactions txs to each alert node
in every time step. In each time step, an alert node outputs to the environment Z a totally ordered
LOG of transactions (possibly empty).

Security definitions. Let Tconfirm be a polynomial function in in λ,N,Ncrupt, and ∆. We say
that a state machine replication protocol Π is secure and has transaction conformation time Tconfirm

if for every Π-compliant (A,Z) that is (N,Ncrupt,∆)-respecting, there exists a negligible function
negl such that for every sufficiently large λ ∈ N, all but negl(λ) fraction of the views sampled from
EXECΠ(A,Z, λ) satisfy the following properties:

• Consistency: An execution trace view satisfies consistency if the following holds:

– Common prefix. Suppose that in view, an alert node i outputs LOG to Z at time t, and an
alert node j (same or different) outputs LOG′ to Z at time t′, it holds that either LOG ≺ LOG′

or LOG′ ≺ LOG. Here the relation ≺ means “is a prefix of”. By convention we assume that
∅ ≺ x and x ≺ x for any x.

– Self-consistency. Suppose that in view, a node i is alert at time t and t′ ≥ t, and outputs
LOG and LOG′ at times t and t′ respectively, it holds that LOG ≺ LOG′.

• Liveness: An execution trace view satisfies Tconfirm-liveness if the following holds: suppose that
in view, the environment Z inputs txs to an alert node at time t ≤ |view| − Tconfirm. Then, for
any node i alert at any time t′ ≥ t+Tconfirm, let LOG be the output of node i at time t′, it holds
that any tx ∈ txs is included in LOG.

Intuitively, liveness says that transactions input to an alert node get included in their LOGs
within Tconfirm time.

12

3.2 Blockchain Formal Abstraction

In this section, we define the formal abstraction and security properties of a blockchain. As Pass
and Shi [38] recently show, a blockchain abstraction implies a classical state machine replication
abstraction. Our definitions follow the approach of Pass et al. [36], which in turn are based on
earlier definitions from Garay et al. [20], and Kiayias and Panagiotakos [23].

Since our model distinguishes between two types of honest nodes, alert and sleepy ones, we define
chain growth, chain quality, and consistency for alert nodes. However, we point out the following:
1) if chain quality holds for alert nodes, it would also hold for sleepy nodes; 2) if consistency holds for
alert nodes, then sleepy nodes’ chains should also satisfy common prefix and future self-consistency,
although obviously sleepy nodes’ chains can be much shorter than alert ones.

Inputs and outputs. We assume that in every time step, the environment Z provides a possibly
empty input to every alert node. Further, in every time step, an alert node sends an output to the
environment Z. Given a specific execution trace view with non-zero support where |view| ≥ t, let i
denote a node that is alert at time t in view, we use the following notation to denote the output of
node i to the environment Z at time step t,

output to Z by node i at time t in view: chainti(view)

where chain denotes an extracted ideal blockchain where each block contains an ordered list of
transactions. Sleepy nodes stop outputting to the environment until they wake up again.

3.2.1 Chain Growth

The first desideratum is that the chain grows proportionally with the number of time steps. Let,

min-chain-increaset,t
′
(view) = min

i,j

(
|chaint+t′j (view)| − |chainti(view)|

)
max-chain-increaset,t

′
(view) = max

i,j

(
|chaint+t′j (view)| − |chainti(view)|

)
where we quantify over nodes i, j such that i is alert in time step t and j is alert in time t+ t′ in
view.

Let growtht0,t1(view,∆, T) = 1 iff the following two properties hold:

• (consistent length) for all time steps t ≤ |view| − ∆, t + ∆ ≤ t′ ≤ |view|, for every two
players i, j such that in view i is alert at t and j is alert at t′, we have that |chaint′j (view)| ≥
|chainti(view)|

• (chain growth lower bound) for every time step t ≤ |view| − t0, we have

min-chain-increaset,t0(view) ≥ T.

• (chain growth upper bound) for every time step t ≤ |view| − t1, we have

max-chain-increaset,t1(view) ≤ T.

In other words, growtht0,t1 is a predicate which tests that a) alert parties have chains of roughly
the same length, and b) during any t0 time steps in the execution, all alert parties’ chains increase
by at least T , and c) during any t1 time steps in the execution, alert parties’ chains increase by at
most T .

13

Definition 2 (Chain growth). A blockchain protocol Π satisfies (T0, g0, g1)-chain growth, if for all
Π-compliant pair (A,Z), there exists a negligible function negl such that for every sufficiently large
λ ∈ N, T ≥ T0, t0 ≥ T

g0
and t1 ≤ T

g1
the following holds:

Pr
[
view← EXECΠ(A,Z, λ) : growtht0,t1(view,∆, λ) = 1

]
≥ 1− negl(λ)

Additionally, we say that a blockchain protocol Π satisfies (T0, g0, g1)-chain growth w.r.t. failure
probability negl(·) if the above definition is satisfied when the negligible function is fixed to negl(·)
for any Π-compliant (A,Z).

3.2.2 Chain Quality

The second desideratum is that the number of blocks contributed by the adversary is not too large.
Given a chain, we say that a block B := chain[j] is honest w.r.t. view and prefix chain[: j′]

where j′ < j if in view there exists some node i alert at some time t ≤ |view|, such that 1)
chain[: j′] ≺ chainti(view), and 2) Z input B to node i at time t. Informally, for an honest node’s
chain denoted chain, a block B := chain[j] is honest w.r.t. a prefix chain[: j′] where j′ < j, if earlier
there is some alert node who received B as input when its local chain contains the prefix chain[: j′].

Let qualityT (view, µ) = 1 iff for every time t and every player i such that i is alert at t in view,
among any consecutive sequence of T blocks chain[j+1..j+T] ⊆ chainti(view), the fraction of blocks
that are honest w.r.t. view and chain[: j] is at least µ.

Definition 3 (Chain quality). A blockchain protocol Π has (T0, µ)−chain quality, if for all Π-
compliant pair (A,Z), there exists some negligible function negl such that for every sufficiently
large λ ∈ N and every T ≥ T0 the following holds:

Pr
[
view← EXECΠ(A,Z, λ) : qualityT (view, µ) = 1

]
≥ 1− negl(λ)

Additionally, we say that a blockchain protocol Π satisfies (T0, µ)-chain quality w.r.t. failure
probability negl(·) if the above definition is satisfied when the negligible function is fixed to negl(·)
for any Π-compliant (A,Z).

3.2.3 Consistency

Roughly speaking, consistency stipulates common prefix and future self-consistency. Common
prefix requires that all honest nodes’ chains, except for roughly O(λ) number of trailing blocks
that have not stabilized, must all agree. Future self-consistency requires that an honest node’s
present chain, except for roughly O(λ) number of trailing blocks that have not stabilized, should
persist into its own future. These properties can be unified in the following formal definition (which
additionally requires that at any time, two alert nodes’ chains must be of similar length).

Let consistentT (view) = 1 iff for all times t ≤ t′, and all players i, j (potentially the same)
such that i is alert at t and j is alert at t′ in view, we have that the prefixes of chainti(view) and
chaint

′
j (view) consisting of the first ` = |chainti(view)| − T records are identical — this also implies

that the following must be true: chaint
′
j (view) > `, i.e., chaint

′
j (view) cannot be too much shorter

than chainti(view) given that t′ ≥ t.

Definition 4 (Consistency). A blockchain protocol Π satisfies T0-consistency, if for all Π-compliant
pair (A,Z), there exists some negligible function negl such that for every sufficiently large λ ∈ N
and every T ≥ T0 the following holds:

Pr
[
view← EXECΠ(A,Z, λ) : consistentT (view) = 1

]
≥ 1− negl(λ)

14

Additionally, we say that a blockchain protocol Π satisfies T0-consistency w.r.t. failure proba-
bility negl(·) if the above definition is satisfied when the negligible function is fixed to negl(·) for
any Π-compliant (A,Z).

Note that a direct consequence of consistency is that at any time, the chain lengths of any two
alert players can differ by at most T (except with negligible probability).

3.3 Blockchain Implies State Machine Replication

We note that a blockchain protocol implies state machine replication, if alert nodes simply output
the stablized part of their respective chains (i.e., chain[: −λ]) as their LOG. This draws a tight
connection between modern blockchains and classical consensus (i.e., state machine replication)
protocols that have been studied by the distributed systems literature for 30 years. In this paper,
to obtain a classical state machine replication protocol, we will instead construct a blockchain
protocol as a stepping stone.

Lemma 1 (Blockchains imply state machine replication [38]). If there exists a blockchain protocol
that satisfies (TG, g0, g1)-chain growth, (TQ, µ)-chain quality, and TC-consistency, then there exists

a secure state machine replication protocol with confirmation time Tconfirm := O(
TG+TQ+TC

g0
+ ∆).

Proof. This lemma was proved in the hybrid consensus paper [38] for a different execution model,
but the same proof effectively holds in our sleepy execution model. Specifically, let Πblockchain

be such a blockchain protocol. We can consider the following state machine replication protocol
denoted Π′: whenever an alert node is about to output chain to the environment Z in Πblockchain,
it instead outputs chain[: −TC]. Further, suppose that Π′’s compliance rules are the same as
Πblockchain’s. Using the same argument as the hybrid consensus paper [38], it is not hard to see
that the resulting protocol is a secure state machine replication protocol with confirmation time
O(

TG+TQ+TC
g0

+ ∆).

Therefore, henceforth in this paper, we will focus on realizing a blockchain protocol as a stepping
stone towards realizing the standard notion of state machine replication.

4 Sleepy Consensus under Static Corruptions

In this section, we will describe our basic Sleepy consensus protocol that is secure under static
corruptions and static sleepiness. In other words, the adversary (and the environment) must declare
upfront which nodes are corrupt as well as which nodes will go to sleep during which intervals.
Furthermore, the adversary (and the environment) must respect the constraint that at any moment
of time, roughly speaking the majority of online nodes are honest.

For simplicity, we will first describe our scheme pretending that there is a random oracle H; and
then describe how to remove the random oracle assuming a common reference string. We assume
that the random oracle H instance is not shared with other protocols, and that the environment
Z is not allowed to query the random oracle H directly, although it can query the oracle indirectly
through A.

4.1 Valid Blocks and Blockchains

Before we describe our protocol, we first define the format of valid blocks and valid blockchains.
We use the notation chain to denote a real-world blockchain. Our protocol relies on an extract

function that extracts an ordered list of transactions from chain which alert nodes shall output to

15

the environment Z at each time step. A blockchain is obviously a chain of blocks. We now define
a valid block and a valid blockchain.

Valid blocks. We say that a tuple

B := (h−1, txs, time,P, σ, h)

is a valid block iff

1. Σ.verpk((h−1, txs, time);σ) = 1 where pk := FCA.lookup(P); and

2. h = d(h−1, txs, time,P, σ), where d : {0, 1}∗ → {0, 1}λ is a collision-resistant hash function —
technically collision resistant hash functions must be defined for a family, but here for simplicity
we pretend that the sampling from the family has already been done before protocol start, and
therefore d is a single function.

Valid blockchain. Let eligiblet(P) be a function that determines whether a party P is an eligible
leader for time step t (see Figure 1 for its definition). Let chain denote an ordered chain of real-world
blocks, we say that chain is a valid blockchain w.r.t. eligible and time t iff

• chain[0] = genesis = (⊥,⊥, time = 0,⊥,⊥, h = ~0), commonly referred to as the genesis block;

• chain[−1].time ≤ t; and

• for all i ∈ [1..`] where ` := |chain|, the following holds:

1. chain[i] is a valid block;

2. chain[i].h−1 = chain[i− 1].h;

3. chain[i].time > chain[i− 1].time, i.e., block-times are strictly increasing; and

4. let t := chain[i].time, P := chain[i].P, it holds that eligiblet(P) = 1.

4.2 The Basic Sleepy Consensus Protocol

We present our basic Sleepy consensus protocol in Figure 1. The protocol takes a parameter p as
input, where p corresponds to the probability each node is elected leader in a single time step. All
nodes that just spawned will invoke the init entry point. During initialization, a node generates
a signature key pair and registers the public key with the public-key infrastructure FCA.

Now, our basic Sleepy protocol proceeds very much like a proof-of-work blockchain, except that
instead of solving computational puzzles, in our protocol a node can extend the chain at time t
iff it is elected leader at time t. To extend the chain with a block, a leader of time t simply signs
a tuple containing the previous block’s hash, the node’s own party identifier, the current time t,
as well as a set of transactions to be confirmed. Leader election can be achieved through a public
hash function H that is modeled as a random oracle.

Removing the random oracle. Although we described our scheme assuming a random oracle
H, it is not hard to observe that we can replace the random oracle with a common reference string
crs and a pseudo-random function PRF. Specifically, the common reference string k0←${0, 1}λ is
randomly generated after Z spawns all corrupt nodes and commits to when each honest node shall
sleep. Then, we can simply replace calls to H(·) with with PRFk0(·).

16

Protocol Πsleepy(p)

On input init() from Z:

let (pk, sk) := Σ.gen(), register pk with FCA, let chain := genesis

On receive chain ′:

assert |chain ′| > |chain| and chain ′ is valid w.r.t. eligible and the current time t;

chain := chain ′ and gossip chain

Every time step:

• receive input transactions(txs) from Z
• let t be the current time, if eligiblet(P) where P is the current node’s party identifier:

let σ := Σ.sign(sk, chain[−1].h, txs, t), h′ := d(chain[−1].h, txs, t,P, σ),

let B := (chain[−1].h, txs, t,P, σ, h′), let chain := chain||B and gossip chain

• output extract(chain) to Z where extract is the function outputs an ordered list containing
the txs extracted from each block in chain

Subroutine eligiblet(P):
return 1 if H(P, t) < Dp and P is a valid party of this protocol; else return 0

Figure 1: The sleepy consensus protocol. The difficulty parameter Dp is defined such that
the hash outcome is less than Dp with probability p. For simplicity, here we describe the scheme
with a random oracle H — however as we explain in this section, H can be removed and replaced
with a pseurdorandom function and a common reference string.

Remark on how to interpret the protocol for weakly synchronized clocks. As mentioned
earlier, in practice, we would typically adopt the protocol assuming nodes have weakly synchronized
clocks instead of perfect synchronized clocks. Section 2.1 described a general protocol transforma-
tion that allows us to treat weakly synchronized clocks as synchronized clocks in formal reasoning
(but adopting a larger network delay). Specifically, when deployed in practice assuming weakly
synchronized clocks with up to ∆ clock offset, alert nodes would actually queue each received mes-
sage for ∆ time before locally delivering the message. This ensures that alert nodes will not reject
other alert nodes’ chains mistakenly thinking that the block-time is in the future (due to clock
offsets).

Remark on foreknowledge of ∆. Note that our protocol Πsleepy(p) is parametrized with a
parameter p, that is, the probability that any node is elected leader in any time step. Looking
ahead, due to our compliance rules explained later in Section 4.3, it is sufficient for the protocol to
have foreknowledge of both N and ∆, then to attain a targeted resilience (i.e., the minimum ratio
of alert nodes over corrupt ones in any time step), the protocol can choose an appropriate value
for p based on the “resilience” compliance rules (see Section 4.3).

Later in Section 8, we will justify why foreknowledge of ∆ is necessary: we prove a lower bound
showing that any protocol that does not have foreknowledge of ∆ cannot achieve state machine
replication even when all nodes are honest.

17

4.3 Compliant Executions

Our protocol can be proven secure as long as a set of constraints are expected, such as the number
of alert vs. corrupt nodes. Below we formally define the complete set of rules that we expect (A,Z)
to respect to prove security.

Compliant executions. We say that (A,Z) is Πsleepy(p)-compliant if the following holds:

• Static corruption and sleepiness. Z must issue all corrupt and sleep instructions prior to the
start of the protocol execution. We assume that A cannot query the random oracle H prior to
protocol start.

• Resilience. There are parameters (N,Ncrupt,∆) such that (A,Z) is (N,Ncrupt,∆)-respecting
w.r.t. Πsleepy(p), and moreover, the following conditions are respected:

– There is a positive consant φ, such that for any view ∈ EXECΠsleepy(p)(A,Z, λ) with non-zero
support, for every t ≤ |view|,

alertt(view)

Ncrupt
≥ 1 + φ

1− 2pN∆

where alertt(view) denotes the number of nodes that are alert at time t in view.

– Further, there is some constant 0 < c < 1 such that 2pN∆ < 1− c.

Informally, we require that at any point of time, there are more alert nodes than corrupt ones
by a constant margin.

Useful notations. We define additional notations that will become useful later.

1. Let Nalert := Ncrupt · 1+φ
1−2pN∆ be a lower bound on the number of alert nodes in every time step;

2. Let α := pNalert be a lower bound on the expected number of alert nodes elected leader in any
single time step;

3. Let β := pNcrupt ≥ 1− (1− p)Ncrupt be the expected number of corrupt nodes elected leader in
any single time step; notice that β is also an upper bound on the probability that some corrupt
node is elected leader in one time step.

4.4 Theorem Statement

We now state our theorem for static corruption.

Theorem 3 (Security of Πsleepy under static corruption). Assume the existence of a common
reference string (CRS), a bare public-key infrastructure (PKI), and that the signature scheme Σ
is secure against any p.p.t. adversary. Then, for any constants ε, ε0 > 0, any 0 < p < 1, any
T0 ≥ ε0λ, Πsleepy(p) satisfies (T0, g0, g1)-chain growth, (T0, µ)-chain quality, and T 2

0 consistency
with exp(−Ω(λ)) failure probability for the following set of parameters:

• chain growth lower bound parameter g0 = (1− ε)(1− 2pN∆)α;

• chain growth upper bound parameter g1 = (1 + ε)Np; and

• chain quality parameter µ = 1− 1−ε
1+φ .

18

Ftree(p)

On init: tree := genesis, time(genesis) := 0

On receive leader(P, t) from A or internally:

if Γ[P, t] has not been set, let Γ[P, t] :=

{
1 with probability p

0 o.w.

return Γ[P, t]

On receive extend(chain,B) from P: let t be the current time:

assert chain ∈ tree, chain||B /∈ tree, and leader(P, t) outputs 1

append B to chain in tree, record time(chain||B) := t, and return “succ”

On receive extend(chain,B, t′) from corrupt party P∗: let t be the current time

assert chain ∈ tree, chain||B /∈ tree, leader(P∗, t′) outputs 1, and time(chain) < t′ ≤ t
append B to chain in tree, record time(chain||B) = t′, and return “succ”

On receive verify(chain) from P: return (chain ∈ tree)

Figure 2: Ideal functionality Ftree.

where N,∆, α and φ are parameters that can be determined by (A,Z) as well as p as mentioned
earlier.

The proof of this theorem will be presented in Section 5.

Corollary 1 (Statically secure state machine replication in the sleepy model.). Assume the ex-
istence of a common reference string (CRS), a bare public-key infrastructure (PKI), and that the
signature scheme Σ is secure against any p.p.t. adversary. For any constant ε > 0, there exists a
protocol that achieves state machine replication assuming static corruptions and static sleepiness,
and that 1

2 + ε fraction of awake nodes are honest in any time step.

Proof. Straightforward from Theorem 3 and Lemma 1.

5 Proofs for Static Security

In this section, we present the proofs for the basic sleepy consensus protocol presented in Section 6.
We assume static corruption and static sleepiness and the random oracle model. Later in our paper,
we will describe how to remove the random oracle, and further extend our protocol and proofs to
adaptive sleepiness and adaptive corruptions.

We start by analyzing a very simple ideal protocol denoted Πideal, where nodes interact with
an ideal functionality Ftree that keeps track of all valid chains at any moment of time. Later in
Section 5.8, we will show that the real-world protocol Πsleepy securely emulates the ideal-world
protocol.

5.1 Simplified Ideal Protocol Πideal

Ideal protocol. We first define a simplified protocol Πideal parametrized with an ideal function-
ality Ftree — see Figures 2 and 3. Ftree flips random coins to decide whether a node is the elected

19

Protocol Πideal

On init: chain := genesis

On receive chain′: if |chain′| > |chain| and Ftree.verify(chain′) = 1: chain := chain′, gossip chain

Every time step:

• receive input B from Z
• if Ftree.extend(chain,B) outputs “succ”: chain := chain||B and gossip chain

• output chain to Z

Figure 3: Ideal protocol Πideal

leader for every time step, and an adversary A can query this information (i.e., whether any node
is a leader in any time step) through the leader query interface. Finally, alert and corrupt nodes
can call Ftree.extend to extend known chains with new blocks — Ftree will then check if the caller
is a leader for the time step to decide if the extend operation is allowed. Ftree keeps track of all
valid chains, such that alert nodes will call Ftree.verify to decide if any chain they receive is valid.
Alert nodes always store the longest valid chains they have received, and try to extend it.

Observe that Ftree has two entry points named extend — one of them is the honest version
and the other is the corrupt version. In this ideal protocol, alert nodes always mine in the present,
i.e., they always call the honest version of extend that uses the current time t. In this case, if
the honest node succeeds in mining a new chain denoted chain, Ftree records the current time t
as chain’s block-time by setting Ftree(view).time(chain) = t. On the other hand, corrupt nodes are
allowed to call a malicious version of extend and supply a past time step t′. When receiving an
input from the adversarial version of extend, Ftree verifies that the new block’s purported time t′

respects the strictly increasing rule. If the corrupt node succeeds in mining a new block, then Ftree

records the purported time t′ as the chain’s block-time.

Notations. Given some view sampled from EXECΠideal(A,Z, λ), we say that a chain ∈ Ftree(view).tree
has an block-time of t if Ftree(view).time(chain) = t. We say that a node P (alert or corrupt) mines
a chain′ = chain||B in time t if P called Ftree.extend(chain,B) or Ftree.extend(chain,B,) at time
t, and the call returned “succ”. Note that if an alert node mines a chain at time t, then the chain’s
block-time must be t as well. By contrast, if a corrupt node mines a chain at time t, the chain’s
block-time may not be truthful — it may be smaller than t.

We say that (A,Z) is Πideal(p)-compliant iff the pair is Πsleepy(p)-compliant. Since the protocols’
compliance rules are the same, we sometimes just write compliant for short.

Theorem 4 (Security of Πideal). For any constant ε0, ε > 0, any T0 ≥ ε0λ, Πsleepy satisfies
(T0, g0, g1)-chain growth, (T0, µ)-chain quality, and T 2

0 -consistency against any Πideal-compliant,
computationally unbounded pair (A,Z), with exp(−Ω(λ)) failure probability and the following
parameters:

• chain growth lower bound parameter g0 = (1− ε)(1− 2pN∆)α;

• chain growth upper bound parameter g1 = (1 + ε)Np; and

• chain quality parameter µ = 1− 1−ε
1+φ .

20

where N,∆, α and φ are parameters that can be determined by (A,Z) as well as p as mentioned
earlier.

In the remainder of this section, we will now prove the above Theorem 4. We first explain a
high-level roadmap and why, despite the similarity of our protocol in comparison with the Nakamoto
proof-of-work blockchain, our proofs are nonetheless non-trivial and not implied by earlier formal
analyses of the Nakamoto blockchain [20,36].

Intuitions and differences from Nakamoto’s ideal protocol. The key difference between
our ideal protocol and Nakamoto’s ideal protocol as described by Pass et al. [36] is the following. In
Nakamoto’s ideal protocol, if the adversary succeeds in extending a chain with a block, he cannot
reuse this block and concatenate it with other chains. Here in our ideal protocol, if a corrupt node
is elected leader in some time slot, he can reuse the elected slot in many possible chains. He can
also instruct Ftree to extend chains with times in the past, as long as the chain’s block-times are
strictly increasing.

Although our Ftree allows the adversary to claim potentially false block-times, we can rely on
the following block-time invariants in our proofs: 1) honest blocks always have faithful block-times;
and 2) any chain in Ftree must have strictly increasing block-times. Having observed these, we show
that Pass et al.’s chain growth and chain quality proofs [36] can be adapted for our scenario.

Unfortunately, the main challenge is how to prove consistency. As mentioned earlier, our adver-
sary is much more powerful than the adversary for the Nakamoto blockchain and can launch a much
wider range of attacks where he reuses the time slots during which he is elected. In Sections 5.5
and 5.6, we present new techniques for analyzing the induced stochastic process.

5.2 Convergence Opportunities

We now define a useful pattern called convergence opportunities, which we shall later use in both our
chain growth lower bound proof as well as consistency proof. Intuitively, a convergence opportunity
is a ∆-period of silence in which no alert node is elected leader, followed by a time step in which a
single alert node is elected leader, followed by another ∆-period of silence in which no alert node
is elected leader. We formalize this notion below.

Convergence opportunity. Given a view, suppose T ≤ |view| −∆, we say that [T −∆, T + ∆]
is a convergence opportunity iff

• For any t ∈ [max(0, T −∆), T), no node alert at time t is elected leader;

• A single node alert at T is elected leader at time T ;

• For any t ∈ (T, T + ∆], no node alert at time t is elected leader.

Let T denote the time in which a single alert node is elected leader during a convergence
opportunity. For convenience, we often use T to refer to the convergence opportunity. We say that
a convergence opportunity T is contained within a window [t′ : t] if T ∈ [t′ : t].

Henceforth, we use the notation C(view)[t′ : t] to denote the number of convergence opportuni-
ties contained within the window [t′ : t] in view.

21

Many convergence opportunities. We now show that convergence opportunities happen suf-
ficiently often.

Lemma 2 (Number of convergence opportunities for any fixed window). For any t0, t1 ≥ 0 such
that t := t1 − t0 > 0, any Πideal(p)-compliant pair (A,Z), for any positive constant η, there exists
a constant η′, such that for any λ ∈ N, the following holds:

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : C(view)[t0 : t1] ≤ (1− η)(1− 2pN∆)αt
]
< exp(−η′αt)

Proof. Consider some view, and imagine that Ftree flips alertr(view) coins for alert nodes (henceforth
referred to as alert coins for short) in some time step r, where alertr(view) denotes the number of
alert nodes in time step r in view. Henceforth, we imagine all these alert coins are sequentialized.

• Let X denote the total number of heads in all the alert coins during [t0, t1]. Due to the Chernoff
bound, it is not hard to see that for any ε > 0, it holds that

Pr[X < (1− ε) · αt] ≤ exp(−Ω(αt))

Henceforth let L := (1− ε) · αt for a sufficiently small constant ε.

• Let Yi = 1 iff after the i-th heads in the alert coin sequence during [t0, t1], there exists a heads
in the next Nalert∆ coin flips. Notice that all of the Yi’s are independent — to see this, another
way to think of Yi is that Yi = 0 iff the i-th coin flip and the (i + 1)-th coin flip are at least
Nalert∆ apart from each other.

Let Y :=
∑L

i=1 Yi. We have that

E[Y] ≤ (1− (1− p)Nalert∆) · L ≤ pNalert∆ · L = α∆L

By Chernoff bound, it holds that for any ε0 > 0,

Pr[Y > α∆L+ ε0L] ≤ exp(−Ω(L)) = exp(−Ω(αt))

• Let Zi = 1 iff before the i-th heads in the alert coin sequence during [t0, t1], there exists a
heads in the previous Nalert∆ coin flips. Similar as before, all of the Zi’s are independent. Let
Z :=

∑L
i=1 Zi. We have that

E[Z] ≤ (1− (1− p)Nalert∆) · L ≤ pNalert∆ · L = α∆L

By Chernoff bound, it holds that for any ε0 > 0,

Pr[Z > α∆L+ ε0L] ≤ exp(−Ω(L)) = exp(−Ω(αt))

• Observe that for any view,

C(view)[t0 : t1] ≥ X(view)−Y(view)− Z(view)

Recall that our compliance rule implies that α∆ ≤ pN∆ < 1
2 . For any view where the aforemen-

tioned relevant bad events do not happen, we have that for any η > 0, there exist sufficiently
small positive constants ε0 and ε such that the following holds:

22

X−Y − Z ≥(1− 2α∆− 2ε0)L = (1− 2α∆− 2ε0) · (1− ε) · αt
≥(1− η)(1− 2α∆) · αt
≥(1− η)(1− 2pN∆) · αt

The proof concludes by observing that there are at most exp(−Ω(αt)) fraction7 of bad views
that we could have ignored in the above.

The above lemma was to bound the number of convergence opportunities for any fixed window.
By taking a union bound, we can conclude that except for a negligible fraction of bad views, in all
good views, it must hold that any sufficiently long window has many convergence opportunities.
This is formally stated below.

Corollary 2 (Many convergence opportunities everywhere). For any positive constant ε0, any t ≥
ε0λ
α , for any Πideal(p)-compliant (A,Z), any positive constant η, there exists a positive constant η′

such that for any λ ∈ N, except for exp(−η′λ) fraction of views sampled from EXECΠideal(p)(A,Z, λ),
the following property holds:

For any t0, C(view)[t0 : t0 + t] > (1− η)(1− 2pN∆)αt

Proof. Follows in a straightforward manner from Lemma 2 by taking a union bound over all windows
of length t.

5.3 Chain Growth Lower Bound

To prove chain growth lower bound, we observe that for any view, whenever there is a convergence
opportunity, the shortest honest chain must grow by at least 1 (see Fact 1). Since earlier, we
proved that except with negligible probability over the choice of view, there are many convergence
opportunities, it naturally follows that honest chains must grow not too slowly. We now formalize
this intuition.

Fact 1. For any view, any t0, any t1 ≥ t0, it holds that

C(view)[t0 : t1 −∆] ≤ min chain increase(view)[t0 : t1]

where min chain increase(view)[t0 : t1] is the length of the shortest honest chain at the beginning of
time step t1 minus the length of the longest honest chain at the beginning of time step t0 in view.

Proof. By simple induction: given any view, any t0, suppose that the fact holds for any t1 ≤ t∗.
We now show that it holds for time t1 = t∗ + 1 as well. If time t∗ −∆ + 1 does not correspond to
a convergence opportunity, the induction step is trivial. Otherwise, if time t∗ −∆ + 1 corresponds
to a convergence opportunity, by definition of convergence opportunity, we have that

C(view)[t0 : t∗ + 1−∆] = C(view)[t0 : t∗ −∆] + 1 = C(view)[t0 : t∗ + 1− 2∆] + 1

7Whenever we refer to the fraction of views, we mean the total probability mass of all views of interest.

23

By induction hypothesis, we have that

min chain increase(view)[t0 : t∗ + 1−∆] + 1 ≥ C(view)[t0 : t∗ + 1− 2∆] + 1 = C(view)[t0 : t∗ + 1−∆]
(1)

Additionally, we have that at the end of time step t∗+1−∆, there is an honest chain whose length
is at least min alert lent

∗+1−∆(view) + 1, where min alert lent
∗+1−∆(view) denotes the length of the

shortest alert chain at the beginning time t∗+ 1−∆. Since network delay is bounded by ∆, at the
beginning of time time t∗+1, every alert node’s chain must be at least min alert lent

∗+1−∆(view)+1
blocks long. In other words, we have that

min chain increase(view)[t0 : t∗ + 1] ≥ min chain increase(view)[t0 : t∗ + 1−∆] + 1 (2)

The remainder of the induction step follows directly from Equations 1 and 2.

Lemma 3 (Chain growth lower bound). For any Πideal(p)-compliant (A,Z), for any positive con-
stants ε0, ε and any t ≥ ε0λ

α , there exists a positive constant η, such that for every λ ∈ N, except for

exp(−ηαt) fraction of the views sampled from EXECΠideal(p)(A,Z, λ), the following holds:

For any t0, min chain increase(view)[t0 : t0 + t] ≥ (1− ε)(1− 2pN∆)αt− 1

Proof. Ignore the exp(−Ω(λ)) fraction of views where bad events pertaining to Corollary 2 take
place. For every remaining good view, due to Fact 1 and Corollary 2, it holds that for every positive
constant ε,

min chain increase(view)[t0 : t0 + t] > (1− ε)(1− 2pN∆)α(t−∆)

= (1− ε)(1− 2pN∆)αt− (1− ε)(1− 2pN∆)α∆ ≥ (1− ε)(1− 2pN∆)αt− 1

where the last inequality is due to the fact α∆ < 2pN∆ < 1 which stems from the compliance
rules.

5.4 Chain Quality

Intuitively, we will prove chain quality by comparing how often corrupt nodes are elected leaders
with the honest chain growth lower bound. If corrupt nodes are elected leaders less often than
minimum honest chain growth, we can thus conclude that there cannot be too many corrupt blocks
in an honest node’s chain. We formalize this intuition below.

Upper bound on adversarial time slots. Given a view, let A(view)[t0 : t1] denote the number
of time steps in which at least one corrupt node is elected leader during the window [t0 : t1]. Let
At(view) denote the maximum number of time steps in which at least one corrupt node is elected
leader in any t-sized window in view.

Fact 2 (Upper bound on adversarial time slots for any fixed window). For any t0 and t1 such that
t := t1− t0 ≥ 0, for any Πideal(p)-compliant pair (A,Z), for any constant 0 < ε < 1 and any λ ∈ N,

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : A(view)[t0 : t1] > (1 + ε)βt
]
≤ exp(−ε

2βt

3
)

Proof. From a straightforward application of the Chernoff bound.

24

Fact 3 (Upper bound on adversarial time slots everywhere). For any Πideal(p)-compliant pair
(A,Z), any positive constant ε0, any t ≥ ε0λ

β , for any constant 0 < ε < 1, there exists a positive
constant η such that for any λ ∈ N,

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : At(view) > (1 + ε)βt
]
≤ exp(−ηλ)

Proof. Straightforward by Fact 2 and taking union bound over all possible windows of length t in
view.

Lemma 4 (Chain quality). For any Πideal(p)-compliant (A,Z), any positive constant ε0, ε, any
T ≥ ε0λ, there exists a positive constant η such that for all λ ∈ N, the following holds for µ :=
1− 1+ε

1+φ :

Pr
[
view← EXECΠideal(p)(A,Z, λ) : qualityT (view, µ) = 1

]
≥ 1− exp(−ηλ)

Proof. Let r be any time step, let i be any node honest at r ≤ |view|. Consider an arbitrary honest
chain chain := chainri (view), and an arbitrary sequence of T blocks chain[j + 1..j + T] ⊂ chainri ,
such that chain[j] is not adversarial (either an honest block or genesis); and chain[j + T + 1] is not
adversarial either (either an honest block or chain[j + T] is end of chainri). Note that if a sequence
of blocks is not sandwiched between two honest blocks (including genesis or end of chain), we can
always expand the sequence to the left and right to find a maximal sequence sandwiched by honest
blocks (including genesis or end of chain). Such an expansion will only worsen chain quality.

For an honest block, its block-time must be faithful, i.e., corresponding to the time step in
which the block was mined (recall that the block-time of genesis is 0). Consequently, by definition
of Πideal and Ftree, the block-times of all blocks in chain[j + 1..j + T] must be bounded in between
r′ and r′ + t, where r′ denotes the time step in which the honest (or genesis) block chain[j] was
mined, and r′ + t denotes the time step in which chain[j + T + 1] is mined (or let r′ + t := r if
chain[j + T] is end of chainri).

We ignore any views where bad events related to chain growth lower bound or adversarial time
slot upper bound take place. The fraction of views ignored is upper bounded by exp(−Ω(T))·poly(λ).

• Now, due to chain growth lower bound, for any positive constant ε, we have that

t <
T

(1− ε)(1− 2pN∆)α

• Due to adversarial time slot upper bound (Fact 3), for any positive constant ε′′ > 0, there exists
a sufficiently small positive constants ε′ (which depends on ε, ε′′, and φ), such that

A[r′ : r′ + t] ≤A[r′ : r′ +
T

(1− ε)(1− 2pN∆)α
]

≤ (1 + ε′)βT

(1− ε)(1− 2pN∆)α

≤ (1 + ε′)(1− 2pN∆)T

(1− ε)(1− 2pN∆)(1 + φ)

≤(1 + ε′′)T

1 + φ

25

• Therefore, the fraction of honest blocks in this length T sequence is lower bounded by

1− 1 + ε′′

1 + φ

5.5 Consistency: Proof Intuition

Since this is the most non-trivial part of our proof and where we significantly depart from earlier
blockchain proofs [20,36], we will first explain the intuition before presenting the formal proof.

Review: consistency proof for the Nakamoto blockchain. We first review how Pass et
al. [36] proved consistency for the Nakamoto blockchain, and explain why their proof fails in our
setting. This will help to clarify the challenges of the proof. To prove consistency, Pass et al.
rely on the notion of a convergence opportunity. Recall that we formally defined a convergence
opportunity in Section 5.2 (Pass et al.’s notion is almost identical except that in their model alert
nodes and honest nodes mean the same): a convergence opportunity is a period of time in which 1)
there is a ∆-long period of silence in which no honest node mines a block; and 2) followed by a time
step in which a single honest node mines a block; and 3) followed by yet another ∆-long period
of silence in which no honest node mines a block. Whenever there is a convergence period, and
suppose that at the beginning of the convergence period the maximum chain length of any honest
node is `. Then, it is not hard to see that there can be at most one honest block (if any) in position
` + 1 in any honest node’s chain — since after the first period of silence, all honest nodes’ chain
must be of length at least `; and after the second period of silence, all honest nodes’ chain length
must be at least ` + 1. Therefore, after the convergence period, no honest node will ever mine at
position `+ 1 again. However, recall that within the convergence period, only a single honest node
ever mines a block.

Now, Pass et al. [36] observes that for the adversary to cause divergence at some time s or
earlier, for every convergence opportunity after time s, the adversary must mine a chain of length
`+ 1 where ` is the maximum chain length of any honest node at the beginning of the convergence
period. This means that from time

(s− [small block withholding window])

onward, the adversary must have mined more blocks than the number of convergence opportunities
since s.

Pass et al. [36] then goes to show that if s is sufficiently long ago, this cannot happen — in
other words, there has to be more convergence opportunities than adversarially mined blocks in
any sufficiently long time window, even when adjusted for block withholding attacks. Proving an
upper bound on adversarially mined blocks in any window is relatively easy, therefore most of their
proof focuses on lower bounding the number of convergence opportunities within any time window
(our Lemma 2 earlier provided a simplified proof adapted to our sleepy model).

Why their proof breaks in our setting. The consistency proof by Pass et al. [36] crucially
relies on the following fact: when an adversary successfully extends a chain with a block, he cannot
simply transfer this block at no cost to extend any other chain. For this reason, to mine a chain of
length ` + 1 for each different ` will require separate computational effort, and no effort can ever
be reused.

26

Unfortunately, this crucial observation no longer holds in our protocol when proof-of-work is
removed. If a corrupt node is elected in a certain time step t, he can now reuse this earned time
slot to extend multiple chains, possibly at different lengths. Recall that Pass et al’s consistency
proof relies on arguing that the adversary cannot have mined chains of many different lengths.
Unfortunately, in our case, such an argument will not work. In particular, how many times the
adversary is elected leader (the direct analogy of how many times an adversary mines a block in a
proof-of-work blockchain) does not translate to how many chain lengths the adversary can attack
(by composing an adversarial chain of that length). It now appears that a fundamentally new proof
strategy is necessary.

Roadmap of our proof. Our proof strategy is the following. We will define a good event called
a (strong) pivot point. Roughly speaking, a (strong) pivot is a point of time t, such that if one
draws any window of time [t0, t1] that contains t, the number of adversarial time slots in that
window, if non-zero, must be strictly smaller than the number of convergence opportunities in the
same window. We will show the following:

• A pivot forces convergence: for any view where certain negligible-probability bad events do not
happen: if there is such a pivot point t in view, then the adversary cannot have caused divergence
prior to t.

• Pivots happen frequently: for all but negligible fraction of the views, pivot points happen fre-
quently in time — particularly,

in any sufficiently long time window there must exist such a pivot point. This then implies that
if one removes sufficiently many trailing blocks from an alert node’s chain (recall that by chain
growth, block numbers and time roughly translate to each other), the remaining prefix must be
consistent with any other alert node.

Remark 1. For clarity, we first present a somewhat loose version of the consistency proof, where we
need to chop of poly(λ) trailing blocks for consistency. Later in Appendix A, we present a tighter
version of the analysis, where we only need to chop off λ trailing blocks to obtain exp(−Ω(λ))
security failure.

5.6 Consistency: the Proof

5.6.1 Definition of Pivots and Strong Pivots

We first define two good events called a pivot and a strong pivot respectively. As mentioned, a strong
pivot is a point of time in view such that in any window that contains the time t, the number of
adversarial slots, if not zero, must be strictly smaller than the number of convergence opportunities
in the same window. A pivot is a slightly weakened version of a strong pivot, requiring that the
above condition hold for any window containing t that is not too long.

Definition 5 (Strong pivot). Given a view, a time step t is said to be a strong pivot in view, if for
any t0 ≤ t ≤ t1, it holds that C(view)[t0 : t1] > A(view)[t0 : t1] or A(view)[t0 : t1] = 0.

Definition 6 (Pivot). Given a view, a time step t is said to be a w-pivot in view, if for any t0 ≤ t ≤ t1
such that t1 − t0 ≤ w, it holds that C(view)[t0 : t1] > A(view)[t0 : t1] or A(view)[t0 : t1] = 0.

27

5.6.2 Strong Pivots Force Convergence

We first define what it means for two valid chains to diverge at some time t, this is defined in the
most natural manner as below:

Definition 7 (Divergence). Given any two chains chain0, chain1 ∈ Ftree.tree, we say that they
diverge at time t if their longest common prefix has an block-time before t.

We now prove that a strong pivot will force convergence, i.e., divergence cannot happen before
a strong pivot in any view.

Lemma 5 (Divergence cannot happen before a strong pivot). For any Πideal(p)-compliant (A,Z),
there exists a positive constant η, such that for any λ ∈ N, except for exp(−ηλ) fraction of the views
sampled from EXECΠideal(p)(A,Z, λ), the following must hold: Let i be alert at time any r and j be
alert at any r′ ≥ r in view; let t < r− λ

β be a strong pivot in view. Then, chainri and chainr
′
j cannot

diverge at t in view.

Proof. Suppose that T is a convergence opportunity in view, and that a single alert node that mines
a block at length ` at time T in view. Henceforth, we say that such a length ` corresponds to a
convergence opportunity in view. We first present a simple fact about convergence opportunities
that follows directly from the definition of convergence opportunities.

Fact 4 (Uniqueness of an honest block in any convergence opportunity). Given any view, let i
be alert at time r and j be alert at r′ ≥ r in view. If the length ` corresponds to a conver-
gence opportunity in view, and chainri [`] and chainr

′
j [`] are both honest blocks, then it follows that

chainri [`] = chainr
′
j [`].

Henceforth, we ignore the exp(−Ω(λ)) fraction of bad views where bad events related to Corol-
lary 2 take place. For the remaining good views, since t < r− λ

β , it must hold that chainri and chainr
′
j

both contain a position (i.e., length) corresponding to a convergence opportunity whose block-time
is after t.

Now, for both chainri and chainr
′
j , we look to the left and right of t, and identify the first honest

block that corresponds to a convergence opportunity on both sides. In other words, in both chainri
and chainr

′
j , we identify

1. The last honest block that corresponds to a convergence opportunity and moreover, whose
block-time is ≤ t. Let Bi and Bj denote the blocks found in this manner for chainri and chainr

′
j

respectively.

2. The first honest block that corresponds to a convergence opportunity and moreover, whose
block-time is ≥ t. Let B̂i and B̂j denote the blocks found in this manner for chainri and chainr

′
j

respectively.

Now there are two cases:

• Case 1: t is a convergence opportunity. In this case, the adversary cannot be leader at time t
since otherwise it violates the definition of t being a strong pivot. Further, if t is a convergence
opportunity, there can only be a unique honest block denoted B∗ mined at time t in view by
Fact 4. Summarizing the above, we conclude that Bi = B̂i = Bj = B̂j = B∗, and thus chainri and

chainr
′
j cannot diverge at t in view.

28

• Case 2: t is not a convergence opportunity. In this case, by the definition of a strong pivot,
we claim that in chainri , in between Bi and B̂i, there cannot be any adversarial blocks — since
otherwise for the window [Bi.time + 1,Bj .time − 1] there will be more adversarial blocks than
convergence opportunities. This means that there cannot be any convergence opportunity be-
tween [Bi.time+ 1,Bj .time− 1] in view, since otherwise, either Bi is not the nearest honest block

corresponding to a convergence opportunity to the left of t in chainri , or B̂i is not the nearest
honest block corresponding to a convergence opportunity to the right of t in chainri . To sum-
marize, Bi.time and B̂i.time must be the two convergence opportunities closest in time to t on
either side of t in view.

Similarly, we can conclude that Bj .time and B̂j .time must be the two convergence opportunities

closest in time to t on either side of t in view. Therefore, we know that B̂i and B̂j are honest

blocks correspond to the same convergence opportunity in view, and thus B̂i = B̂j since there
can only be a unique honest block corresponding to every convergence opportunity by Fact 4.
This also implies that chainri and chainr

′
j cannot have diverged at t.

5.6.3 Strong Pivots Recur Frequently

We proceed in several steps to show that strong pivots happen frequently in almost all views.

Convergence opportunities vs. adversarial time slots. First, we prove a lemma showing
that given a window [t0, t1], it is likely that there are more convergence opportunities in this window
than adversarial time slots. In particular, the longer the window is, the more likely that convergence
opportunities “win” in comparison with adversarial time slots. In other words, for sufficiently
long windows, convergence opportunities win almost surely. For shorter windows, convergence
opportunities are nonetheless likely to win although not almost surely.

Lemma 6 (Adversarial time slots vs. convergence opportunities for any fixed window). For any
t0, t1 such that t := t1 − t0 ≥ 0, for any Πideal(p)-compliant (A,Z), there exists some positive
constant η, such that for any λ ∈ N,

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : A(view)[t0 : t1] ≥ C(view)[t0 : t1]
]
< exp(−ηβt)

Proof. Due to Fact 2, for any 0 < ε1 < 1,

Pr [A[t0 : t1] > (1 + ε1)βt] < exp(−ε
2
1βt

3
)

Due to Lemma 2, for any positive ε2, there exists positive ε′, such that

Pr [C[t0 : t1] < (1− ε2)(1− 2pN∆)αt] < exp(−ε′βt)

Since we know that
α

β
>

1 + φ

1− 2pN∆

there must exist sufficiently small positive constants ε1 and ε2 such that

(1 + ε1)βt < (1− ε2)(1− 2pN∆)αt

29

Now by taking a union bound over all possible windows of sufficient length, we obtain the
following corollary.

Corollary 3 (Convergence opportunities outnumber adversarial slots for all sufficiently long win-
dows). For any Πideal(p)-compliant (A,Z), for any positive constant ε0, for any t ≥ ε0λ

β , there exists
a positive constant η such that for any λ ∈ N, except for exp(−ηλ) fraction of the views sampled
from EXECΠideal(p)(A,Z, λ), the following holds:

For any t0: A(view)[t0 : t0 + t] < C(view)[t0 : t0 + t]

w-pivots are strong pivots. Based on Corollary 3, we know that except for negligible fraction
of the views, in any sufficiently long window, the number of convergence opportunities must be
larger than the number of adversarial blocks. This immediately implies that for a suitably large
choice of w, except for negligible fraction of the views, every w-pivot must be a strong pivot as well.
This is formalized in the following fact.

Fact 5. For any Πideal(p)-compliant (A,Z), there exists a positive constant η such that for any
λ ∈ N, except for exp(−ηλ) fraction of the views sampled from EXECΠideal(p)(A,Z, λ), every w-pivot
is a strong pivot for w = λ

β .

Proof. Follows in a straightforward fashion from Corollary 3 which indicates that for any suffi-
ciently long window, convergence opportunities must outnumber adversarial time slots except for
a negligible fraction of the views.

Due to Fact 5, to show that strong pivots happen frequently in almost all views, it suffices to
show that w-pivots happen frequently in almost all views where w = λ

β .

Any fixed time is somewhat likely a pivot. To show that w-pivots happen frequently in
almost all views, we first show that any fixed time is a pivot with reasonable probability in almost
all views.

Lemma 7 (Any fixed time is a likely pivot). For any t, for any Πideal(p)-compliant (A,Z), there
is a polynomial function poly(·) such that for any λ ∈ N, the following holds for w = λ

β :

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : t is a w-pivot
]
>

1

poly(λ)

Proof. We define the following event goodt,v(view) = 1 iff both of the following hold:

• Gt,v1 (view): A is never elected leader during [t− v, t+ v] in view; and

• Gt,v2 (view): in any window [t0, t1] containing t of length v ≤ t1− t0 ≤ w, it holds that C(view)[t0 :
t1] > A(view)[t0 : t1].

First, it is not hard to see that for any view and any v, if goodt,v(view) = 1, then t must be a
w-pivot in view.

Next, let v = c log λ
2β for an appropriate constant c to be determined later. Thus, there exists

some polynomial poly(·) related to c such that

Pr
[
Gt,v1 (view)

]
≥ (1− β)2v = (1− β)

c log λ
β =

1

poly(λ)

30

Further, since there are at most w2 windows containing t of length between v and w, by Lemma 6
and the union bound, we have that

Pr
[
Gt,v2 (view)

]
≥ 1− exp(−ηβv) · w2 = 1− exp(−cη log λ) · w2

Recall that since β is inverse polynomially bounded in λ, it holds that w is polynomially bounded
in λ. Therefore, there exists a sufficiently large constant c such that exp(−cη log λ) ·w2 < 1

2 . Thus
for a sufficiently large constant c, we have that

Pr
[
Gt,v2 (view)

]
≥ 1

2

Finally, it is not hard to see that Pr[Gt,v2 (view)] ≤ Pr[Gt,v2 (view)
∣∣∣Gt,v1 (view)], i.e., G2 is more

likely conditioned on G1. We therefore conclude that for some polynomial function poly′(·), it holds
that

Pr
[
goodt,v(view) = 1

]
= Pr

[
Gt,v2 (view)

∣∣∣Gt,v1 (view)
]
· Pr

[
Gt,v1 (view)

]
≥ Pr

[
Gt,v2 (view)

]
· Pr

[
Gt,v1 (view)

]
≥ 1

poly′(λ)

Pivots are frequently recurring. Given a view, we say that many-pivotsw,W (view) = 1 iff for
any s, r such that r − s > W ≥ 0, there must exist a w-pivot during the window [s, r].

Theorem 5 (There are many pivots). For any Πideal(p)-compliant pair (A,Z), there exists a
polynomial W (·), such that for any λ ∈ N, the following holds where w = λ

β :

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : many-pivotsw,W (view) = 1
]
≥ 1− exp(−λ

2
)

Proof. Given (A,Z), let poly(·) denote the polynomial corresponding to Lemma 7 for w = λ
β . Now

let W (·) := 4(w+ ∆) · λ · poly(·). Consider a window (s, r) of length at least W (λ), and a sequence
of events G0,G1, . . . where Gi denote the good event that the time s + i · 2(w + ∆) is a w-pivot,
where i can range from 0 to 2λ · poly(λ). By the definition of w-pivots and that of convergence
opportunities, it is not hard to see that all these events G0,G1, . . . are independent. The probability
that all these good events do not happen is upper bounded by(

1− 1

poly(λ)

)2λ·poly(λ)

≤ exp(−λ)

The remainder of the proof follows from a simple union bound over all possible such windows.

Given a view, we say that many strong pivotsW (view) = 1 iff for any s, r such that r−s > W ≥ 0,
there must exist a strong pivot during the window (s, r).

Corollary 4 (There are many strong pivots). For any Πideal(p)-compliant pair (A,Z), there exists
a polynomial W (·) and a positive constant η, such that for any λ ∈ N, the following holds

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : many strong pivotsW (view) = 1
]
≥ 1− exp(−ηλ)

Proof. Follows in a straightforward manner from Theorem 5 and Fact 5.

31

5.6.4 Proof of Consistency

At this point, it is relatively easy to prove a weak version of the consistency property. Intuitively,
given an honest chain, as long as we remove poly(λ) blocks from the end for an appropriate poly-
nomial function poly(·), there must be a strong pivot in the last poly(λ) blocks worth of time. Thus
the honest chain cannot have diverged from other honest chains prior to this strong pivot. We now
formalize this intuition, and prove a weak version of consistency with somewhat loose parameters.
We defer a tighter proof to Appendix A.

Fact 6 (Total block upper bound). For any positive constants ε, ε0, there exists a positive constant η
such that for any λ ∈ N, except for exp(−ηλ) fraction of the views sampled from EXECΠideal(p)(A,Z, λ),
it holds that there cannot be more than (1 + ε)Npt slots in which any node (honest or corrupt) is
elected leader, in any window [s, r] of length t := r − s ≥ ε0λ.

Proof. By a straightforward application of the Chernoff bound over any fixed window of sufficient
length, and then taking a union bound over all windows.

Theorem 6 (Weak consistency). For any Πideal(p)-compliant (A,Z), there exists a polynomial
T (λ) and a positive constant η, such that for any λ ∈ N,

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : consistentT (view) = 1
]
≥ 1− exp(−ηλ)

Proof. For simplicity, we ignore exp(−Ω(λ) fraction of bad views where all relevant bad events take
place. Given any two honest chains chainri and chainr

′
j where r ≤ r′:

• By Corollary 4, there is at least a strong pivot between [r −W (λ) − λ
β , r −

λ
β] where W (·) is a

polynomial function defined by Corollary 4.

• By Lemma 5, chainri and chainr
′
j cannot have diverged at time r −W (λ)− λ

β .

• Finally, by Fact 6, for an appropriate polynomial T (λ), chainri cannot have more than T (λ)
blocks after time r −W (λ)− λ

β .

5.6.5 Tighter Consistency Analysis

As mentioned earlier, the above analysis actually can be tightened to obtain the following, tighter
version of the consistency theorem. The proof of this tighter consistency theorem will be provided
in Appendix A.

Theorem 7 (Consistency). For any Πideal(p)-compliant (A,Z), there exists positive constants η
and C, such that for any λ ∈ N, the following holds for T = Cλ2:

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : consistentT (view) = 1
]
≥ 1− exp(−ηλ)

32

5.7 Chain Growth Upper Bound

We now prove chain growth upper bound.

Lemma 8 (Chain growth upper bound). For any Πideal(p)-compliant (A,Z), for any positive
constants ε0, ε and any t ≥ ε0λ

α , there exists a positive constant η, such that for every λ ∈ N, except

for exp(−ηλ) fraction of the views sampled from EXECΠideal(p)(A,Z, λ), the following holds:

For any t0, max chain increase(view)[t0 : t0 + t] ≤ (1 + ε)Npt

where max chain increase(view)[t0 : t0 + t] denotes the length of the shortest honest chain at time
t0 + t minus the length of the longest honest chain at time t0.

Proof. Henceforth we ignore any view where relevant bad events take place. For any remaining
good view, we prove that there cannot exist positive constant ε0, constant 0 < ε < 1, some t ≥ ε0λ

α ,
and some t0, such that max chain increase(view)[t0 : t0 + t] > (1 + ε)Npt. Suppose for the sake
of contradiction the above is not true. Let chain denote the shortest chain belonging to an alert
node at time t0, let chain′ denote the longest chain belonging to an alert node at time t0 + t. Let
r := chain[−1].time, and r′ := chain′[−1].time; by definition of honest protocol, it holds that r ≤ t0
and r′ ≤ t0 + t.

• By Fact 6, there exists a positive constant η ≥ ε such that r′ − r ≥ (1 + η)t — since otherwise,
by Fact 6, there cannot be more than (1 + ε)Npt total elected time slots between r and r′.

• Since r′ ≤ t0 + t, it must hold that r ≤ t0 + t− (1 + η)t = t0 − ηt ≤ t0 − εt.

• By chain quality, for any positive constant η′, there must be an honest block in chain[−η′λ :].

• The above means that there exists an alert node whose chain length is at least |chain| − η′λ at
some time r̃ < r.

We also know that there is an alert node whose chain length is |chain| at t0. This means that
the minimal honest chain growth between r̃ < r and t0 is at most η′λ. For a sufficiently small
constant η′, this would be impossible due to chain growth lower bound, and thus we reach a
contradiction.

5.8 Real World Emulates the Ideal World

We now show that the real-world protocol Πsleepy securely emulates the ideal-world protocol Πideal.
This can be shown using a standard simulation paradigm as described below. We construct the
following simulator S.

• S internally simulates FCA. At the start of execution, S honestly generates a (pki, ski) pair for
each honest node i, and registers pki on behalf of honest node i with the internally simulated
FCA.

Whenever A wishes to interact with FCA, S simply forwards messages in between A and the
internally simulated FCA.

33

• Whenever S receives a hash query of the form H(P, t) from A or from internally, S checks if the
query has been asked before. If so, simply return the same answer as before.

If not, S checks if P is a party identifier corresponding to this protocol instance. If not, S
generates a random number of appropriate length and returns it. Else if the mapping succeeds,
S queries b← Ftree.leader(P, t). If b = 1, S rejection samples a random string h of appropriate
length, until h < Dp; it then returns h. Else if b = 0, S rejection samples a random string h of
appropriate length, until h ≥ Dp; it then returns h.

• S keeps track of the “real-world” chain for every honest node i. Whenever it sends chain to
A on behalf of i, it updates this state for node i. Whenever A sends chain to honest node i,
S checks the simulation validity (see Definition 8) of chain. If chain is simulation valid and
moreover chain is longer than the current real-world chain for node i, S also saves chain as the
new real-world chain for node i.

• Whenever an honest node with the party identifier P sends chain to S, S looks up the current
real-world state chain for node P. The simulator now computes a new chain using the real-
world algorithm: let (pk, sk) be the key pair for node P, let t be the current time, and let
B := chain[−1].

If eligiblet(P) where the hash function H is through internal query to the simulator itself:

let σ := Σ.sign(sk, chain[−1].h,B, t), h′ := d(chain[−1].h,B, t,P, σ),

let B := (chain[−1].h,B, t,P, σ, h′), let chain ′ := chain||B.

Now, the simulator S sends chain ′ to A.

• Whenever A sends a chain to an honest node i, S intercepts the message. S ignores the message
if chain is not simulation valid. Otherwise, let chain := extract(chain), and let chain[: `] ≺ chain
be the longest prefix such that Ftree.verify(chain[: `]) = 1. The simulator checks to see if there
exists a block in chain[` + 1 :] signed by an honest P. If so, abort outputting sig-failure. Else,
for each k ∈ [`+ 1, |chain|],

1. let P∗ := chain[k].P, let t∗ := chain[k].time.

2. S then calls Ftree.extend(chain[: k − 1], chain[k], t∗) on behalf of corrupt party P∗.

Notice that if the current chain is simulation valid, then the new chain ′ must be simulation
valid as well. Finally, S forwards chain to honest node i.

• At any point of time, if S observes two different simulation valid (real-world) chains that contain
identical (real-world) blocks, abort outputting duplicate-block-failure.

Definition 8 (Simulation valid chains). We say that a chain is simulation valid if it passes the
real-world validity checks, but using the H and the FCA implemented by the simulator S.

Fact 7. The simulated execution never aborts with duplicate-block-failure except with negligible
probability.

Proof. For this bad event to happen, it must be the case that two distinct queries to the hash
function d returns the same result. Since there can be only polynomially many such queries, this
happens with negligible probability.

Fact 8. The simulated execution never aborts with sig-failure except with negligible probability.

34

Proof. We ignore all views where the bad event duplicate-block-failure happens.
Suppose some block B is signed by the simulator S. Then, some honest node i must have sent

chain||extract(B) to S earlier, and this means that chain must be in Ftree. Therefore, if sig-failure
ever happens, it means that the adversary A has produced a signature on a different message that
S never signed (due to no duplicate-block-failure). We can now easily construct a reduction that
breaks signature security if sig-failure happens with non-negligible probability.

Lemma 9 (Indistinguishability). Conditioned on the fact that all of the aforementioned bad events
do not happen, then the simulated execution is identically distributed as the real-world execution
from the perspective of Z.

Proof. Observe that the simulator’s H coins are always consistent with Ftree’s leader coins. Fur-
ther, as long as there is no sig-failure, if the simulator receives any simulation valid chain from A,
either chain := extract(chain) already exists in Ftree, or else S must succeed in adding chain to Ftree.

The rest of the proof works through a standard repartitioning argument.

Fact 9. If (A,Z) is Πsleepy-compliant, then (SA,Z) is Πideal-compliant.

Proof. Πsleepy and Πideal have identical compliance rules. The only rule to verify is ∆-bounded
network delay rule — every other rule is straightforward to verify. Observe that whenever an
honest node sends S an ideal-world chain, S will transform it to a real-world chain and forward it
to A. Since (A,Z) is compliant, for each alert node j, within ∆ steps A will ask S to forward chain
to j. Similarly, for any sleepy node j that wakes up after ∆ time, at the time it wakes up, A will
ask S to forward chain to j. Note that S will never drop such a request since all chain sent from
S to A are simulation valid. Therefore S respects the ∆-delay rule as well, and further S respects
the rule to forward waking nodes all pending messages.

Finally, since the simulated execution is compliant, it respects all the desired properties as
Theorem 4 states. Now, since real-world execution and the simulated execution are indistiguishable,
it holds that all the desired properties hold in the same way for the real-world execution.

We thus complete the proof of main theorem assuming a random oracle. In the next subsection,
we describe how to adapt our proof when we replace the random oracle with a CRS and a PRF.

5.9 Removing the Random Oracle in the Proof

It is not hard to modify the proof when we remove the random oracle, and instead use PRFk0(P, t) <
Dp as the leader election function, where k0 is a random string to be included in the common
reference string. We state the modifications necessary to the proof below:

• First, we introduce an intermediate hybrid protocol where the ideal functionality Ftree selects
k0 at random prior to protocol start, and discloses k0 to the adversary A. Meanwhile, instead
of generating random bits to determine leader for both honest and corrupt nodes, the ideal
functionality Ftree instead uses PRFk0(P, t) < Dp.

We can argue that such a hybrid protocol is also secure against computationally unbounded,
compliant (A,Z). In particular, observe that in our previous ideal protocol analysis, once we
fix the random bits ~ν of the random oracle (RO), we can define certain bad events (that depend
only on the random bits of the random oracle, but those not of (A,Z)). Provided that these
bad events do not happen, even a computationally unbounded (A,Z) cannot break the chain
growth, chain quality, or consistency properties. Further, observe that there is a polynomial-time
algorithm that can efficient check for bad events given the random bits of the random oracle.

35

Therefore, when we replace the random oracle with PRFk0(·), over the probability space defined
over the choice of k0, these bad events should not happen except with negligible probability
as well — otherwise the algorithm that checks for the bad events can be used as an efficient
adversary that distinguishes the PRF from the random oracle. Similarly, in the PRF case, as
long as the bad events do not happen, even a computationally unbounded adversary should not
be able to break the security properties.

• Now, we can modify our simulation proof to prove that the real-world protocol emulates the
modified hybrid protocol as mentioned above. Most of the simulation proof is identical to the
random oracle case presented above, except that now when the simulator learns k0 from Ftree,
it simply gives k0 to A, and the simulator no longer needs to simulate random oracle queries for
A.

6 Achieving Adaptive Security

So far, we have assumed that the adversary issues both corrupt and sleep instructions statically
upfront. In this section, we will show how to achieve adaptive security with complexity leveraging.
It turns out even with complexity leveraging the task is non-trivial.

6.1 Intuition: Achieving Adaptive Sleepiness

To simplify the problem, let us first consider how to achieve adaptive sleepiness (but static corrup-
tion). In our statically secure protocol Πsleepy, the adversary can see into the future for all honest
and corrupt players. In particular, the adversary can see exactly in which time steps each honest
node is elected leader. If sleep instructions could be adaptively issued, the adversary could simply
put a node to sleep whenever he is elected leader, and wake up him when he is not leader. This
way, the adversary can easily satisfy the constraint that at any time, the majority of the online
nodes must be honest, while ensuring that no alert nodes are ever elected leader (with extremely
high probability).

To defeat such an attack and achieve adaptive sleepiness (but static corruption), we borrow an
idea that was (informally) suggested by Micali [31]. Basically, instead of computing a “leader ticket”
η by hashing the party’s (public) identifier and the time step t and by checking η < Dp to determine
if the node is elected leader, we will instead have an honest node compute a pseudorandom “leader
ticket” itself using some secret known only to itself. In this way, the adversary is no longer able to
observe honest nodes’ future. The adversary is only able to learn that an honest node is elected
leader in time step t when the node actually sends out a new chain in t — but by then, it will be
too late for the adversary to (retroactively) put that node to sleep in t.

A näıve attempt. Therefore, a näıve attempt would be the following.

• Each node P picks its own PRF key k[P], and computes a commitment c := comm(k[P]; r)
and registers c as part of its public key with the public-key infrastructure FCA. To determine
whether it is elected leader in a time step t, the node computes

PRFk[P](t) < Dp

where Dp is a difficulty parameter related to p, such that any node gets elected with probability
p in a given time step.

36

• Now for P to prove to others that it is elected leader in a certain time step t, P can compute a
non-interactive zero-knowledge proof that the above evaluation is done correctly (w.r.t. to the
commitment c that is part of P’s public key).

A second attempt. This indeed hides honest nodes’ future from the adversary; however, the
adversary may not generate k[P∗] at random for a corrupt player P∗. In particular, the adversary
can try to generate k[P∗] such that P∗ can get elected in more time steps. To defeat such an attack,
we include a relatively long randomly chosen string k0 in the common reference string. For a node
P to be elected leader in a time step t, the following must hold:

PRFk0(P, t)⊕ PRFk[P](t) < Dp

As before, a node can compute a non-interactive zero-knowledge proof (to be included in a block)
to convince others that it computed the leader election function correctly.

Now the adversary can still adaptively choose k[P∗] after seeing the common reference string
k0 for a corrupt node P∗ to be elected in more time steps; however, it can only manipulate the
outcome to a limited extent: in particular, since k0 is much longer than k[P∗], the adversary does
not have enough bits in k[P∗] to manipulate to defeat all the entropy in k0.

Parametrization and analysis. Using the above scheme, we can argue for security against an
adaptive sleepiness attack. However, as mentioned above, the adversary can still manipulate the
outcome of the leader election to some extent. For example, one specific attack is the following:
suppose that the adversary controls O(N) corrupt nodes denoted P∗0 , . . . ,P∗O(N) respectively. With

high probability, the adversary can aim for the corrupt nodes to be elected for O(N) consecutive
time slots during which period the adversary can sustain a consistency and a chain quality attack.
To succeed in such an attack, say for time steps [t : t+O(N)], the adversary can simply try random
user PRF keys on behalf of P∗0 until it finds one that gets P∗0 to be elected in time t (in expectation
only O(1

p) tries are needed); then the adversary tries the same for node P∗1 and time t+ 1, and so
on.

Therefore we cannot hope to obtain consistency and chain quality for O(N)-sized windows.
Fortunately, as we argued earlier, since the adversary can only manipulate the leader election
outcome to a limited extent given that the length of k0 is much greater than the length of each
user’s PRF key, it cannot get corrupt nodes to be consecutively elected for too long. In our proof, we
show that as long as we consider sufficiently long windows of N c blocks in length (for an appropriate
constant c and assuming for simplicity that N = ω(log λ)), then consistency and chain quality will
hold except with negligible probability.

6.2 Intuition: Achieving Adaptive Corruption

Once we know how to achieve adaptive sleepiness and static corruption, we can rely on complexity
leveraging to achieve adaptive corruption. This part of the argument is standard: suppose that
given an adversary under static corruption that can break the security properties of the consen-
sus protocol, there exists a reduction that breaks some underlying complexity assumption. We
now modify the reduction to guess upfront which nodes will become corrupt during the course of
execution, and it guesses correctly with probability 1

2N
. This results in a 2N loss in the security

reduction, and therefore if we assume that our cryptographic primitives, including the PRF, the
digital signature scheme, the non-interactive zero-knowledge proof, the commitment scheme, and
the collision-resistant hash family have sub-exponential hardness, we can lift the static corruption
to adaptive corruption.

37

Below, we put the aforementioned ideas together and present our adaptively secure scheme
formally.

6.3 Preliminary: Non-Interactive Zero-Knowledge Proofs

In the remainder of this section, f(λ) ≈ g(λ) means that there exists a negligible function ν(λ)
such that |f(λ)− g(λ)| < ν(λ).

A non-interactive proof system henceforth denoted NIZK for an NP language L consists of the
following algorithms:

• crs← gen(1λ,L): Takes in a security parameter λ, a description of the language L, and generates
a common reference string crs.

• π ← prove(crs, stmt, w): Takes in crs, a statement stmt, a witness w such that (stmt, w) ∈ L,
and produces a proof π.

• b ← ver(crs, stmt, π): Takes in a crs, a statement stmt, and a proof π, and outputs 0 or 1,
denoting accept or reject.

• (crs, τ)← gen(1λ,L): Generates a simulated common reference string crs and a trapdoor τ .

• π ← prove(crs, τ, stmt): Uses trapdoor τ to produce a proof π without needing a witness.

Perfect completeness. A non-interactive proof system is said to be perfectly complete, if an
honest prover with a valid witness can always convince an honest verifier. More formally, for any
(stmt, w) ∈ L, we have that

Pr
[
crs← setup(1λ,L), π ← prove(crs, stmt, w) : ver(crs, stmt, π) = 1

]
= 1

Computational zero-knowlege. Informally, an NIZK system is computationally zero-knowledge
if the proof does not reveal any information about the witness to any polynomial-time (or subex-
ponential time resp.) adversary. More formally, a NIZK system is said to have computational
zero-knowledge, if for all non-uniform polynomial-time adversary A (or subexponential-time A
resp.),

Pr
[
crs← gen(1λ,L) : Aprove(crs,·,·)(crs) = 1

]
≈ Pr

[
(crs, τ,)← gen(1λ,L) : Aprove1(crs,τ,·,·)(crs) = 1

]
In the above, prove1(crs, τ, stmt, w) verifies that (stmt, w) ∈ L, and if so, outputs prove(crs, τ, stmt)
which simulates a proof without knowing a witness. Otherwise, if (stmt, w) /∈ L, the experiment
aborts.

Computational soundness. We say that a NIZK scheme is computationally sound against any
p.p.t. (or subexponential-time resp.) adversary, if for any p.p.t. (or subexponential-time resp.)
adversary A, it holds that

Pr
[
crs← gen(1λ,L), (stmt, π)← A(crs) : ver(crs, stmt, π) = 1 but stmt /∈ L

]
≈ 0

NP language used in our construction. In our construction, we will use the following NP
language L. A pair (stmt, w) ∈ L iff

• parse stmt := (η, c, k0,P, time), parse w := (k, r);

• it holds that c = comm(k; r) and PRFk(time)⊕ PRFk0(P, time) = η

38

6.4 Sleepy Consensus with Adaptive Security

Henceforth we use the shorthand P.upk to mean FCA.lookup(P). Specifically, P.upk can be parsed
as P.upk := (pk, c) where pk denotes a signature public key, and c corresponds to a perfectly binding
commitment of a user’s PRF key.

Valid blocks and valid blockchains are defined in a similar fashion as in the earlierstatically secure
scheme — but we need to make minor changes to block format and validity rules to incorporate
the fact that now each block carries its own zero-knowledge proof to vouch for its validity.

Valid blocks. We say that a tuple

B := (h−1,B, time,P, η, π, σ, h)

is a valid block with respect to the difficulty parameter Dp and public parameters params iff

1. P is a valid node of the current protocol instance and has registered with FCA;

2. Parse P.upk := (pk,), it holds that Σ.verpk((h−1,B, time, π);σ) = 1;

3. Parse P.upk := (, c), parse params := (k0, crs), it holds that NIZK.ver(crs, stmt) = 1 where
stmt := (η, c, k0,P, time);

4. η < Dp; and

5. h = d(h−1,B, time,P, η, π, σ), where d : {0, 1}∗ → {0, 1}λ is a collision-resistant hash function —
technically collision resistant hash functions must be defined for a family, but here for simplicity
we pretend that the sampling from the family has already been done before protocol start, and
therefore d is a single function.

Valid blockchain. Let chain denote an ordered chain of real-world blocks, we say that chain is
a valid blockchain w.r.t. the difficulty parameter Dp, public parameters params, and t iff

• chain[0] = genesis = (⊥,⊥, time = 0,⊥,⊥, h = ~0), commonly referred to as the genesis block;

• chain[−1].time ≤ t; and

• for all i ∈ [1..`], the following holds:

1. chain[i] is a valid block w.r.t. the difficulty parameter Dp and public parameters params;

2. chain[i].h−1 = chain[i− 1].h; and

3. chain[i].time > chain[i− 1].time, i.e., block-times are strictly increasing.

Protocol description. We present our adaptively secure scheme Π∗sleepy in Figure 4. The main
differences from the previous statically secure protocol are the following. As mentioned earlier,
each node P picks a PRF secret key k[P] and registers a commitment c of k[P] with the public-key
infrastructure FCA. Further, there is a longer random seed k0 included in the common reference
string. To determine whether a node P is elected leader in a given time step t, P checks whether
PRFk0(P, t)⊕ PRFk[P](t) < Dp. If P is elected leader, it can extend the chain with a block, and it
includes a non-interactive zero-knowledge proof π in the block proving that it computed the leader
election function correctly.

39

Protocol Π∗sleepy(p, params := (k0, crs))

On input init() from Z:

let (pk, sk) := Σ.gen(1L), let k←${0, 1}L, let c := comm(k; r) for r←${0, 1}L;
let chain := genesis, let usk := (sk, c, k, r), register upk := (pk, c) with FCA;

On receive chain ′:

assert |chain ′| > |chain| and chain ′ is valid w.r.t. Dp, params, and the current time t;

chain := chain ′ and gossip chain

Every time step:

• receive input transactions(B) from Z
• let t be the current time, let P be the current party’s identifier, parse usk := (sk, c, k, r)

• let η := PRFk(t)⊕ PRFk0(P, t), if η < Dp:

let π := NIZK.prove(crs, stmt, w) where stmt := (η, c, k0,P, t), w := (k, r)

let σ := Σ.signsk(chain[−1].h,B, t, η, π), h′ := d(chain[−1].h,B, t,P, η, π, σ),

let B := (chain[−1].h,B, t,P, η, π, σ, h′), let chain := chain||B and gossip chain

• output extract(chain) to Z where extract is the function outputs an ordered list containing
the B extracted from each block in chain

Figure 4: The sleepy consensus protocol with adaptive security. The common reference
string params is generated as follows: k0←${0, 1}L0 , and crs← NIZK.gen(1L,L).

Compliant executions. We say that a pair (A,Z) is Π∗sleepy(p)-compliant if (A,Z) is Πsleepy(p)-
compliant — except that now we allow Z to adaptively corrupt nodes and make nodes sleep during
the protocol execution. Recall that A is allowed to register corrupt nodes’ public keys with FCA

after seeing the common reference string.

Parameter choices for cryptographic building blocks. We assume that the the PRF func-
tion, the collision resistance hash, the signature scheme, and the NIZK have sub-exponential hard-
ness. Throughout this paper, sub-exponential hardness means that except with 2−k

δ
probability,

the cryptographic primitive with input length k is secure against any adversary running in time
2k

δ
for a fixed constant δ < 1. We will use the following parameters:

• Each user’s PRF key k has bit length L = (2N + log2 λ)
1
δ ;

• The common reference string k0 has bit length L0 = (2LN)
1
δ ;

• All other cryptographic schemes such as the hash function, the digital signature scheme, and
the NIZK have input length L = (2N + log2 λ)

1
δ .

6.5 Theorem Statement

Theorem 8 (Security of Π∗sleepy under adaptive corruption). Assume that the PRF, the collision
resistant hash family, and the signature scheme Σ all have subexponential security, and that the
NIZK is perfectly complete, computational zero-knowledge and computationally sound against sub-
exponential adversaries. Then, for any positive constant ε > 0, any 0 < p < 1, any p.p.t. pair

40

(A,Z) that is Π∗sleepy(p)-compliant, there is a constant c such that for any T0 ≥ cLN , protocol

Π∗sleepy(p) satisfies (T0, g0, g1)-chain growth, (T0, µ)-chain quality, and T 2
0 consistency w.r.t. (A,Z)

where relevant parameters are defined below:

• chain growth lower bound parameter g0 = (1− ε)(1− 2pN∆)α;

• chain growth upper bound parameter g1 = (1 + ε)Np; and

• chain quality parameter µ = 1− 1−ε
1+φ .

where N,∆, α and φ are parameters that can be determined by (A,Z) as well as p as mentioned
earlier.

The proof of this theorem will be presented in Section 7.

Corollary 5 (Adaptively secure state machine replication in the sleepy model.). Assume the exis-
tence of a Bare PKI, a CRS; the existence of sub-exponentially hard collision-resistant hash func-
tions, and sub-exponentially hard enhanced trapdoor permutations. Then, for any constant ε > 0,
there exists a protocol that achieves state machine replication against adaptive corruptions and
adaptive sleepiness, as long as 1

2 + ε fraction of awake nodes are honest in any time step.

Proof. Straightforward from Theorem 8 and Lemma 1.

Remark 2 (A variant of practical interest.). Our complexity leveraging makes the security pa-
rameter dependent on N , the total number of players. This necessarily means that transaction
confirmation will need to wait for poly(N) blocks.

We point out a different variant that is of practical interest and which does not incur such
blowup in security parameter and transaction confirmation time — this variant is directly implied
by our proofs in Section 7. Specifically, if we are willing to assume adaptive sleepiness and static
corruption, and assume that the CRS may be chosen after registration of all public keys, then we
will not need complexity leveraging, and therefore we can achieve state machine replication with the
same protocol as in Figure 4, but with a tight security parameter λ that is independent of N . This
also means that the transaction confirmation time is independent of N .

7 Proofs for Adaptive Sleepiness and Adaptive Corruption

We first describe how to prove security under adaptive sleepiness but static corruption: this will
be the more interesting part of the proof, and to achieve this, we will need to rely on complexity
leveraging, but in this case how to do complexity leveraging turns out to be rather subtle. Once
we are able to do this, we then describe how to leverage additional, standard complexity leveraging
techniques (Section 7.4) to upgrade the security to the case of adaptive sleepiness and corruption.

7.1 Ideal-World Protocol: Adaptive Sleepiness and Static Corruption

Ideal functionality F∗tree. In Figure 5, we modify the ideal functionality Ftree for static cor-
ruption (see Section 5) to F∗tree. The main difference between Ftree and F∗tree is the highlighted
blue line: in Ftree, the adversary A is allowed to query the ideal functionality to check if anyone
(including honest nodes) is elected leader at any time. However, in F∗tree, each party can only make
such queries for itself. In other words, the adversary A can see into the future for corrupt parties
but not for honest parties. In our new ideal protocol, the adversary A can only learn that an honest
party P is elected for a time step t when P actually announces a valid new block in time step t.

41

F∗tree(p)

On init: tree := genesis, time(genesis) := 0

On receive leader(P, t) from P itself or internally:

if Γ[P, t] has not been set, let Γ[P, t] :=

{
1 with probability p

0 o.w.

return Γ[P, t]

On receive extend(chain,B) from P: let t be the current time:

assert chain ∈ tree, chain||B /∈ tree, and leader(P, t) outputs 1

append B to chain in tree, record time(chain||B) := t, and return “succ”

On receive extend(chain,B, t′) from corrupt party P∗: let t be the current time

assert chain ∈ tree, chain||B /∈ tree, leader(P∗, t′) outputs 1, and time(chain) < t′ ≤ t
append B to chain in tree, record time(chain||B) = t′, and return “succ”

On receive verify(chain) from P: return (chain ∈ tree)

Figure 5: Modified ideal functionality F∗tree.

Ideal protocol Π∗ideal. The ideal protocol Π∗ideal is identical to Πideal except that now Ftree is
replaced with F∗tree.

Compliant executions: adaptive sleepiness and static corruption. A Π∗ideal(p)-compliant
p.p.t. pair (A,Z) is defined in exactly the same way as a Π∗ideal(p)-compliant (A,Z) except that now
we allow Z to make nodes sleep adaptively. However, we require that Z still declares corruptions
statically upfront.

Theorem 9 (Security of the protocol Π∗ideal under adaptive sleepiness and static corruption).
For any constant ε0, ε > 0, any T0 ≥ ε0λ, Πsleepy satisfies (T0, g0, g1)-chain growth, (T0, µ)-chain
quality, and T 2

0 consistency against any Πideal-compliant, computationally unbounded pair (A,Z)
with exp(−Ω(λ)) failure probability and the following parameters:

• chain growth lower bound parameter g0 = (1− ε)(1− 2pN∆)α;

• chain growth upper bound parameter g1 = (1 + ε)Np; and

• chain quality parameter µ = 1− 1−ε
1+φ ;

Proof. Notice that in comparison with Πideal, here our Π∗ideal does not allow the adversary to see
into future random bits of honest parties, however, we allow the adversary to adaptively make
nodes sleep. It is not hard to observe that this change does not matter to the stochastic analysis
for the Πideal protocol presented in Section 5, and the same proof still holds.

7.2 Intermediate Hybrid Protocol

We make a few modifications to the ideal-world protocol Π∗ideal, and introduce the following hybrid
protocols.

42

Hybrid protocol Π
〈1〉
hyb. Recall that in the ideal-world protocol Π∗ideal, the ideal functionality

F∗tree generates fresh coins to decide of a player is elected leader for a time step. In the hybrid

protocol Π
〈1〉
hyb, we modify F∗tree to obtain a new F 〈1〉hyb that works as follows:

• Any any time during the protocol execution, F 〈1〉hyb allows the adversary A to specify what k[P]
value to use for a corrupt party P (if one has not been chosen before).

• The function leader(P, t) is implemented as the following instead. On receive leader(P, t)
from P or internally: If Γ[P, t] has been populated, return Γ[P, t]. Else,

– if P is honest, choose Γ[P, t] at random as before, and return Γ[P, t].

– else if P is corrupt: if A has not registered k[P] with F 〈1〉hyb, return 0 (and without populating
table Γ); else let Γ[P, t] := (H(P, t)⊕ PRFk[P](t) < Dp) where H denotes a random function,
and return Γ[P, t].

• F 〈1〉hyb is otherwise identical to F∗tree.

The protocol Π
〈1〉
hyb is identical to Π∗ideal except that the players interact with the new F 〈1〉hyb

instead of F∗tree. We say that (A,Z) is Π
〈1〉
hyb(p)-compliant iff the pair is Π∗ideal(p)-compliant.

Note that the main difference between Π
〈1〉
hyb and Π∗ideal is the following: in Π

〈1〉
hyb, corrupt nodes

can influence the choice of the coins used to decide whether corrupt nodes are leaders, by setting
the values of k[P]. In particular, the adversary can choose the values of k[P] after querying H(P,)
for varying t’s for any corrupt party P. Below, we argue that despite this ability, since the number
of bits ~kcorrupt := {k[P] : P corrupt} that can be controlled by the adversary is small, there is still
a significantly large fraction of random strings H that are good even for the worst-case choice of
~kcorrupt.

Claim 1 (Security of Π
〈1〉
hyb). For any T0 ≥ cLN where c is an appropriate constant, protocol

Π
〈1〉
hyb satisfies (T0, g0, g1)-chain growth, (T0, µ)-chain quality, and T 2

0 consistency against any Π
〈1〉
hyb-

compliant, computationally unbounded pair (A,Z), where g0, g1, µ are defined in the same way as
in Theorem 9, and moreover, with security failure probability exp(−Ω(LN)).

Proof. We abuse notation and sometimes use H to denote the random string generated by F 〈1〉hyb.

We use the notation υ to denote the random bits F 〈1〉hyb generated to decide whether honest nodes
are elected leaders.

Given a fixed ~kcorrupt, we say that the random string (H, υ) is good for ~kcorrupt, if in any view

consistent with H, υ, and ~kcorrupt, no bad events related to (T0, g0, g1)-chain growth, (T0, µ)-chain
quality, and T 2

0 -consistency occur where the paramters T0, g0, g1, µ are as given in the theorem

statement. In other words, (H, υ) is good for ~kcorrupt if the combination of H, υ, and ~kcorrupt does
not permit any bad events.

Due to Theorem 9, for every fixed ~kcorrupt and an appropriate choice of c, all but e−LN fraction

of random strings (H, υ) are good for ~kcorrupt.

Now by union bound over the choice of ~kcorrupt, we conclude that at least 1−e−LN ·2LN fraction

of random strings (H, υ) are good for all choices of ~kcorrupt.

43

Hybrid protocol Π
〈2〉
hyb. Almost identical to Π

〈1〉
hyb except that now, the new ideal functionality

F 〈2〉hyb generates a random PRF key k0, discloses it to A; and further F 〈2〉hyb replaces calls to the
random function H(,) with calls to PRFk0(,).

Claim 2 (Security of Π
〈2〉
hyb). Suppose that the PRF function with input length k is secure against all

2k
δ
-time adversaries for some fixed constant δ < 1. Suppose that L ≥ log2 λ, L0 := |k0| ≥ (2LN)

1
δ .

Then, for any T0 ≥ cLN where c is an appropriate constant, protocol Π
〈2〉
hyb satisfies (T0, g0, g1)-

chain growth, (T0, µ)-chain quality, and T 2
0 consistency against any Π

〈2〉
hyb-compliant, computationally

unbounded pair (A,Z), where g0, g1, µ are defined in the same way as in Theorem 9, and moreover
with security failure probability exp(−Ω(LN)).

Proof. Given a random or pseudorandom string r ∈ {0, 1}poly(λ,N) either sampled at random from
H(·), or generated from PRFk0(·) for a randomly chosen k0, and a random string υ corresponding

to randomness used for honest leader election, and a fixed ~kcorrupt, there is an algorithm running

in time poly(λ,N) that checks if (r, υ) is good for ~kcorrupt.
Therefore, given (r, υ), there is an algorithm running in time poly(λ,N) · 2LN that can check if

(r, υ) is good for all ~kcorrupt. Specifically, this algorithm brute-force enumerates all possible ~kcorrupt,

and checks if (r, υ) is good for every ~kcorrupt.

When the PRF’s input length L0 = (2LN)
1
δ , clearly the above algorithm runs in time that is

subexponential in the PRF’s input length. Due to the subexponential hardness of PRF, it holds
that

Pr
[
k0←${0, 1}L0 , r ← PRFk0(·), υ←${0, 1}poly(N,λ) : (r, υ) good for every ~kcorrupt

]
≤ Pr

[
r←$H, υ←${0, 1}poly(N,λ) : (r, υ) good for every ~kcorrupt

]
− 2−L

δ
0

Since otherwise, one can easily construct a reduction, such that when given a string r, the reduction
generates a random υ, and calls the above algorithm to check if (r, υ) is good for all ~kcorrupt — in
this way, the reduction can effectively distinguish whether r is truly random or pseudorandom, and
thus break the security of the PRF.

Hybrid protocol Π
〈3〉
hyb. Π

〈3〉
hyb is almost the same as Π

〈2〉
hyb, except now the ideal functionality

computes honest parties’ random strings using pseudorandomness too, whereas earlier in Π
〈2〉
hyb, the

ideal functionality uses true randomness when deciding if honest parties are leaders.

More formally, in Π
〈3〉
hyb, we modify the ideal functionality to obtain a new ideal functionality

F 〈3〉hyb that works as follows:

• During initialization, F 〈3〉hyb generates a fresh k[P]←${0, 1}L for every honest player P.

• Next, F 〈3〉hyb generates a random seed k0←${0, 1}L0 , and discloses k0 to the adversary A.

• At any time during the protocol execution, F 〈3〉hyb allows the adversary A to specify what k[P]
value to use for a corrupt party P (if one has not been chosen before).

• The function leader(P, t) is implemented as the following instead. On receive leader(P, t)
from P or internally: If Γ[P, t] has been populated, return Γ[P, t]. Else,

44

– if P is corrupt and A has not registered k[P] with F 〈3〉hyb, then return 0 without populating
the Γ table;

– else, compute η := PRFk0(P, t) ⊕ PRFk[P](t), populate the table Γ[P, t] := (η < Dp), notify
A of the tuple (P, t, η) and return Γ[P, t].

• F 〈3〉hyb is otherwise identical to F 〈3〉hyb.

Recall that we use L to denote the input length of each player’s PRF and all other cryptographic
primitives. We now have the following claim.

Claim 3 (Security of Π
〈3〉
hyb under adaptive sleepiness and static corruption). Assume that the PRF

is subexponentially hard. Then, if there is a Π
〈3〉
hyb-compliant (A,Z) running in time subexponential

in L that can cause bad events related to chain growth, quality, or consistency to happen with

probability ε in EXECΠ
〈3〉
hyb(A,Z, λ), then there exists a Π

〈2〉
hyb-compliant (A′,Z ′) that can cause the

same bad events to happen in EXECΠ
〈2〉
hyb(A′,Z ′, λ) with probability ε− 2−L

δ
.

Proof. By straightforward reduction to the subexponential security of PRF — in particular, we
can have a sequence of hybrids and replace each honest nodes’ random coins one by one with
pseudorandom bits.

Hybrid protocol Π
〈4〉
hyb. Π

〈4〉
hyb is almost identical to Π

〈3〉
hyb except that now, we modify the ideal

functionality slightly as follows and obtain F 〈4〉hyb:

• During initialization, the new F 〈4〉hyb will honestly compute commitments k[P] for every honest
node P, and send the committed value to A.

• During initialization, the new F 〈4〉hyb will call crs← gen(1L,L) and send crs to the adversary A.

• The new F 〈4〉hyb allows A to additionally query nizk(P, t′) at time t > t′ and for an honest party

P. Upon such a query, if P was not elected a leader in time t′, return ⊥. Otherwise, F 〈4〉hyb

computes η := PRFk[P](t
′) ⊕ PRFk0(P, t′), and π := NIZK.prove(crs, stmt, w) where stmt :=

(η, c[P], k0,P, t′), w := (k[P], r[P]), and sends η, π to A. In the above, k[P] is the honest party’s

key chosen for P by F 〈4〉hyb, c[P] was the commitment for party P computed by F 〈4〉hyb and revealed
to A, and r[P] was the randomness used in this commitment.

Claim 4 (Security of Π
〈4〉
hyb under adaptive sleepiness and static corruption). Assume that the

commitment scheme is hiding both against subexponential adversaries, and the NIZK scheme sat-

isfies computational zero-knowledge against subexponential adversaries. Then, if there is a Π
〈4〉
hyb-

compliant (A,Z) running in time subexponential in L that can cause bad events related to chain

growth, quality, or consistency to happen with probability ε in EXECΠ
〈4〉
hyb(A,Z, λ), then there ex-

ists a subexponential, Π
〈3〉
hyb-compliant (A′,Z ′) that can cause the same bad events to happen in

EXECΠ
〈3〉
hyb(A′,Z ′, λ) with probability ε− 2−L

δ
.

Proof. By straightforward reduction to the hiding property of the commitment scheme and the
computational zero-knowledge property of the zero-knowledge proof against subexponential adver-
saries.

45

Hybrid protocol Π
〈5〉
hyb. Π

〈5〉
hyb is almost identical to Π

〈4〉
hyb except with the following changes (we

call the new ideal functionality F 〈5〉hyb in Π
〈5〉
hyb):

• Instead of having A register k[P] with F 〈5〉hyb for a corrupt party P, we now have A regis-

ter (k[P], r[P], c[P]) with F 〈5〉hyb (if such a tuple has not been chosen before) such that c[P] =
com(k[P]; r[P]).

• Whenever A or F 〈5〉hyb internall calls F 〈5〉hyb.leader(P, t) on for a corrupt party P, F 〈5〉hyb performs
the following:

1. IfA has earlier supplied i) a tuple (k[P], r[P], c[P]) for corrupt party P, ii) a value η < Dp, and
iii) a valid NIZK proof π for the statement stmt := (η, c[P], k0,P, t), then if w = (k[P], r[P])
is not a valid witness for stmt, abort outputting soundness-failure; else return 1.

2. In all other cases, return 0.

Claim 5 (Security of Π
〈5〉
hyb under adaptive sleepiness and static corruption). If there is a Π

〈5〉
hyb-

compliant (A,Z) running in time subexponential in L that can cause bad events related to chain

growth, quality, or consistency to happen with probability ε in EXECΠ
〈5〉
hyb(A,Z, λ), then there

exists a subexponential, Π
〈4〉
hyb-compliant (A′,Z ′) that can cause the same bad events to happen in

EXECΠ
〈4〉
hyb(A′,Z ′, λ) with probability ε.

Proof. The proof is trivial.

Hybrid protocol Π∗hyb. Π∗hyb is almost identical to Π
〈5〉
hyb except that the new ideal functionality

F∗tree does not check for soundness-failure, and the adversary A only registers c[P] for corrupt party
P without having to explain the commitment with k[P], r[P].

Claim 6 (Security of Π∗hyb under adaptive sleepiness and static corruption). Assume that the com-
mitment scheme is perfectly binding and that the NIZK scheme satisfies computational soundness
against subexponential adversaries. Then, if there is a Π∗hyb-compliant (A,Z) running in time
subexponential in L that can cause bad events related to chain growth, quality, or consistency to

happen with probability ε in EXECΠ∗hyb(A,Z, λ), then there exists a subexponential, Π
〈5〉
hyb-compliant

(A′,Z ′) that can cause the same bad events to happen in EXECΠ
〈5〉
hyb(A′,Z ′, λ) with probability

ε− 2−L
δ
.

Proof. First, we show that Π
〈5〉
hyb does not abort with soundness-failure except with 2−L

δ
probability.

Since the commitment scheme is perfectly binding, if there is a valid witness, it must be (k[P], r[P]).
Therefore, if (k[P], r[P]) is not a valid witness then the statement must be false; but if A can forge

a valid NIZK proof for such a statement with more than 2−L
δ

probability, we can easily build a
reduction that breaks the computational soundness of the NIZK.

Due to the above, we may consider a version of F∗hyb does not check for soundness-failure but
A still submits a valid explanation k[P], r[P] along with c[P]. Since soundness-failure happens

only with 2−L
δ

failure probability, for any (A,Z), any bad event (related to chain quality, chain

growth, or consistency) that happens in Π
〈5〉
hyb with probability ε can happen with probability at

most ε + 2−L
δ

here. Now, since k[P], r[P] is never used by F∗hyb, we do not require A to submit
k[P], r[P], and this should not affect the probability of any bad event (related to chain growth,
quality, or consistency).

46

7.3 The Real World Emulates the Hybrid World

Simulator construction. We construct the following simulator S.

• In the beginning, the simulator S learns from F∗hyb the value of k0, NIZK.crs, as well as com-
mitments of k[P] for every honest node P. The simulator sets params := (k0,NIZK.crs) as the
common reference string, and supplies it to A any time upon query.

• For each honest node P, the simulator S chooses a signing key pair (pk[P], sk[P]) honestly.

The simulator simulates FCA. At the start of the execution, for each honest party P: the
simulator and registers (pk[P], c[P]) on behalf of P with the internally simulated FCA, where
pk[P] was chosen earlier by S and c[P] denotes the commitment S received earlier from F∗tree

for honest party P.

• If A tries to register the pair (pk[P], c[P]) with FCA on behalf of corrupt party P, S simply
forwards the request to the simulated FCA and registers c[P] with F∗hyb.

• S keeps track of the “real-world” chain for every honest node P. Whenever it sends chain to A
on behalf of an honest P, it updates this state for node P. Whenever A sends chain to honest
node P, it may also update P’s state in ways to be described later.

• Whenever A sends chain on behalf of corrupt party P ′ to to honest node P, S checks the
(real-world) validity of chain w.r.t. params and the current state of FCA. If the check fails, the
simulator simply ignores this message. Otherwise, do the following.

(a) If chain is longer than the current real-world chain for the honest recipient P, S saves chain
as the new real-world chain for P.

(b) Let chain := extract(chain), and let chain[: `] ≺ chain be the longest prefix such that
F∗hyb.verify(chain[: `]) = 1. The simulator checks to see if there exists a block in chain[`+1 :]
signed by an honest P. If so, abort outputting sig-failure. Else, for each j ∈ [`+ 1, |chain|],
(i) Let P∗ := chain[j].P, let t∗ := chain[j].time, π := chain[j].π, and η := chain[j].η.

(ii) Note that since the chain verifies it must be the case that A has registered (pk[P∗], c[P∗])
with S. Now, S supplies π to F∗hyb for the statement stmt := (η, c[P∗], k0,P∗, t∗)

(iii) S then calls F∗hyb.extend(chain[: j − 1], chain[j], t∗) on behalf of corrupt party P∗.

• Whenever an honest node P sends chain to S, S looks up the current real-world state chain for
node P. The simulator now computes a new chain using the real-world algorithm: let usk :=
(sk, c, ,) be the secret key for the node P, let t be the current time, and let B := chain[−1].

let (η, π) := F∗hyb.nizk(P, t)
let σ := Σ.signsk(chain[−1].h,B, t, η, π), h′ := d(chain[−1].h,B, t,P, η, π, σ)

let B := (chain[−1].h,B, t,P, η, π, σ, h′), let chain ′ := chain||B and gossip chain

Now, the simulator S sends chain ′ to A.

• At any point of time, if S observes two different (real-world) valid chains that contain identical
(real-world) blocks, abort outputting duplicate-block-failure.

47

Indistinguishability. We now prove that the simulated execution and the real-world executions
are computationally indistinguishable.

Fact 10. Assume that the collision resistant hash function and the signature scheme are secure.
The simulated execution never aborts with duplicate-block-failure or sig-failure except with negligible
probability.

Proof. Same as the proofs of Facts 7 and 8. If the above bad events happen with non-negligible
probability, we can construct a polynomial-time reduction that breaks the collision resistance of
the hash family or the signature scheme.

Fact 11. Conditioned on no duplicate-block-failure and no sig-failure the simulated execution is
identically distributed as the real execution from the view of Z.

Proof. Straightforward to observe. In particular, we point out that whenever S receives a valid
chain from A, either extract(chain) is already in F∗hyb or the simulator S must succeed in adding
extract(chain) to F∗hyb.

7.4 Proofs for Adaptive Sleepiness and Adaptive Corruption

So far, we have proved security under static corruption but adaptive sleepiness. Now, we would
like to prove security under adaptive corruption — here rely on standard complexity leveraging
techniques.

Our earlier proof shows the following: if there is a real-world p.p.t. (A,Z) that statically corrupts
nodes and can break the security properties of Π∗sleepy, then we can construct a p.p.t. reduction
that interacts with (A,Z) and breaks either the security of either the PRF, the hash function, the
NIZK, or the digital signature scheme.

Now, suppose we have an adaptive adversary (A′,Z ′) that can break the security properties
of Π∗sleepy with probability ε = 1

poly(λ,N) . We can construct a static adversary (A,Z) that makes

random guesses as to what (A′,Z ′). If the guess turns out to be wrong later, (A,Z) simply aborts.
Such a (A,Z) pair can break the security properties of Π∗sleepy with probability ε

2N
since (A,Z) can

guess correctly with probability 2−N . It holds that (A,Z) must be able to break either the PRF,
the hash function, the NIZK, or the digital signature scheme with probability ε

2N
. Therefore, if we

choose the security parameter of these cryptographic schemes to be L := (2N + log2 λ)
1
δ , we have

that poly(λ,N) · 2N � 2((2N+log2 λ)
1
δ)δ + exp(−Ω(LN)), then this should not be possible by our

subexponential hardness assumptions.

8 Lower Bounds

8.1 Lower Bound on Resilience

We show that in the sleepy model, honest majority (among awake nodes) is necessary for achieving
consensus. Intuitively, imagine that there is a sleepy node who sleeps from protocol start to some
time t∗ at which point it wakes up. If there are more corrupt nodes than alert ones, the adversary
can always simulate a fake execution trace that is identically distributed as the real one; and now
the sleepy node that just woke up cannot discern which one is real and which one simulated.

Theorem 10 (Majority honest is necessary). In the sleepy execution model, it is not possible to
realize state machine replication if there can be as many corrupt nodes than alert nodes — and this

48

lower bound holds even assuming static corruption and the existence of a public-key infrastructure.

Proof. For any protocol that achieves liveness (or in the case of blockchains, chain growth), there
exists a (A,Z) pair that can break consistency with constant probability if there are as many
corrupt nodes as alert ones:

• At the beginning of protocol execution, Z spawns k alert nodes, and k corrupt ones as well.
Additionally, Z spawns a sleepy node denoted i∗ and makes it sleep from protocol start to some
future time t∗.

• When protocol execution starts, A first has all corrupt nodes remain silent and not participate
in the actual protocol execution;

• However, A simulates a protocol execution with the k corrupt nodes. Suppose that Z generates
transaction inputs following some distribution D for the real execution. Now A uses the same
distribution to generate simulated transactions for the simulated execution. We henceforth
assume that two random samples from D are different with constant probability.

• When the sleepy node i∗ wakes up at time t∗, A delivers node i protocol messages from both
the real and simulated executions.

• Since the real and simulated executions are identically distributed to the newly joining node i,
there cannot exist an algorithm that can output the correct log with probability more than 1

2 .

8.2 Foreknowledge of ∆ is Necessary

Recall that in our model, we assume that alert nodes can receive messages from other alert nodes
within at most ∆ delay. Further, we assume that ∆ (or an upper bound on the network delay) is
known to our protocol. Below, we show that making this assumption is necessary, since any protocol
that does not have a-priori knowledge of ∆ cannot securely realize state machine replication in the
sleepy model.

Theorem 11. In the sleepy model, any protocol that does not take an upper bound on the network
delay ∆ as input cannot realize state machine replication even when all awake nodes are honest
(and the adversary therefore is merely a network adversary).

Proof. Consider any such protocol that has no foreknowledge of ∆. Consider the following adversary
A: it does not corrupt any nodes or make any nodes sleep; however, it divides the alert nodes into
two camps, with a large ∆ = poly(λ,N) in between the two camps.

After executing the protocol for some poly(λ,N) time, due to the requirement of achieving
liveness even when a polynomial fraction of the nodes are sleeping, alert nodes in both camps must
output a non-empty LOG — since nodes in one camp cannot distinguish if there is a long network
delay between the camps, or if the other camp has fallen asleep. However, if the environment Z
sent different inputs to the nodes in the two camps, their output LOGs will be different. This breaks
consistency.

49

Acknowledgments

We thank Rachit Agarwal, Hubert Chan, Kai-Min Chung, Naomi Ephraim, Ittay Eyal, and Andrew
Morgan for helpful and supportive discussions. This work is supported in part by NSF grant number
CNS-1561209.

References

[1] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computation
without authentication. In CRYPTO, pages 361–377, 2005.

[2] User ”BCNext”. NXT. http://wiki.nxtcrypto.org/wiki/Whitepaper:Nxt, 2014.

[3] Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, PODC ’83, pages 27–30, New York, NY, USA, 1983.
ACM.

[4] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of work. In
Financial Cryptography Bitcoin Workshop, 2016.

[5] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake.
https://eprint.iacr.org/2016/919.pdf.

[6] Alysson Neves Bessani, João Sousa, and Eduardo Ad́ılio Pelinson Alchieri. State machine
replication for the masses with BFT-SMART. In DSN, 2014.

[7] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J. ACM,
32(4):824–840, October 1985.

[8] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In CRYPTO, pages 524–541, 2001.

[9] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, 2001.

[10] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable secu-
rity with global setup. In Theory of Cryptography. 2007.

[11] Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO, 2003.

[12] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI, 1999.

[13] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
Siam Journal on Computing - SIAMCOMP, 12(4):656–666, 1983.

[14] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 1988.

[15] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In CRYPTO,
1992.

50

http://wiki.nxtcrypto.org/wiki/Whitepaper:Nxt
https://eprint.iacr.org/2016/919.pdf

[16] Ittay Eyal and Emin Gun Sirer. Majority is not enough: Bitcoin mining is vulnerable. In FC,
2014.

[17] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine
agreement. In SIAM Journal of Computing, 1997.

[18] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

[19] Roy Friedman, Achour Mostefaoui, and Michel Raynal. Simple and efficient oracle-based
consensus protocols for asynchronous byzantine systems. IEEE Trans. Dependable Secur.
Comput., 2(1):46–56, January 2005.

[20] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Anal-
ysis and applications. In Eurocrypt, 2015.

[21] Rachid Guerraoui, Florian Huc, and Anne-Marie Kermarrec. Highly dynamic distributed
computing with byzantine failures. In PODC, pages 176–183, 2013.

[22] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. J. Comput. Syst. Sci., 75(2):91–112, February 2009.

[23] Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in blockchain protocols.
IACR Cryptology ePrint Archive, 2015:1019, 2015.

[24] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. Cryptology ePrint Archive, Report
2016/889, 2016. http://eprint.iacr.org/2016/889.

[25] Sunny King and Scott Nadal. PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake,
August 2012.

[26] Leslie Lamport. The weak byzantine generals problem. J. ACM, 30(3):668–676, 1983.

[27] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[28] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical paxos and primary-backup repli-
cation. In PODC, pages 312–313, 2009.

[29] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[30] Jean-Philippe Martin and Lorenzo Alvisi. Fast byzantine consensus. IEEE Trans. Dependable
Secur. Comput., 3(3), 2006.

[31] Silvio Micali. Algorand: The efficient and democratic ledger.
https://arxiv.org/abs/1607.01341, 2016.

[32] Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable random functions. In FOCS, 1999.

[33] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT
protocols. In ACM CCS, 2016.

[34] P. Mockapetris and K. Dunlap. Development of the Domain Name System. In SIGCOMM,
pages 123–133, Stanford, CA, 1988.

51

http://eprint.iacr.org/2016/889

[35] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[36] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. https://eprint.iacr.org/2016/454.

[37] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. Manuscript, 2016.

[38] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.
Manuscript, 2016.

[39] Yee Jiun Song and Robbert van Renesse. Bosco: One-step byzantine asynchronous consensus.
In DISC, pages 438–450, 2008.

A Tighter Consistency Proof

A.1 Strong Pivots Recur Frequently

Earlier, for clarity, we presented a loose version of the consistency proof. In this section, we will
present a tighter, but somewhat more involved consistency analysis.

First, we need a stronger version of Lemma 6 and Corollary 3. Informally speaking, the stronger
version says the following: given any sufficiently long window, very likely there are more convergence
opportunities in this window than adversarial time slots — even when the adversary is given ∆
extra time. The proof of the stronger version is similar to those of Lemma 6 and Corollary 3 but
now also accouting for the extra ∆ time given to the adversary. As will become obvious later, this
∆ extra time given to the adversary will later allow us to perform a union bound for a sequence
of times with a ∆ skip (rather than performing a union bound over all time steps); and this is
important for tightening up the analysis.

Lemma 10 (Adversarial time slots vs. convergence opportunities for any fixed window). For any
t0, t1 such that t := t1 − t0 ≥ c′∆ for a sufficiently large constant c′, for any Πideal(p)-compliant
pair (A,Z), there exists some positive constant η, such that for any positive λ,

Pr
[
view←$EXEC

Πideal(A,Z, λ) : A(view)[t0 −∆ : t1] ≥ C(view)[t0 : t1]
]
< exp(−ηβt)

and8

Pr
[
view←$EXEC

Πideal(A,Z, λ) : A(view)[t0 : t1 + ∆] ≥ C(view)[t0 : t1]
]
< exp(−ηβt)

Proof. We prove one of the above cases with the extra ∆ given to the adversary at the beginning.
The other case is similar. Due to Fact 2, for any positive ε1,

Pr [A[t0 −∆ : t0 + t] > (1 + ε1)β(t+ ∆)] < exp(−ε
2
1βt

3
)

Due to Lemma 2, for any positive ε2, there exists positive ε′ that depends on ε2, such that

Pr [C[t0 : t0 + t] < (1− ε2)(1− 2pN∆)αt] ≤ exp(−ε′βt)
8 In this section, if the array bounds are ever negative or greater than |view|, they are rounded to 0 or |view|

automatically.

52

https://eprint.iacr.org/2016/454

Since we know that
α

β
>

1 + φ

1− 2pN∆

and moreover 2β∆ < 2pN∆ < 1, it holds that for sufficiently small constants ε1 and ε2, and
t ≥ c′ ·∆ for a sufficiently large constant c′,

(1 + ε1)β(t+ ∆) < (1− ε2)(1− 2pN∆)αt

The rest of the proof is straightforward.

Fact 12. Let t′ < t. For any view, if for every non-negative integer k, C(view)[t′ − k∆ : t] >
A(view)[t′ − (k + 1)∆ : t] or A(view)[t′ − (k + 1)∆ : t] = 0, then, it holds that for any r ≤ t′,

A(view)[r : t] < C(view)[r : t] or A(view)[r : t] = 0

Proof. Basically for every s ∈ [t′ − (k + 1)∆, t′ − k∆], we use C(view)[t′ − k∆ : t] as a lower bound
of C(view)[s : t]; and we use A(view)[t′ − (k + 1)∆ : t] as an upper bound of A(view)[s : t]. The
rest of the proof is straightforward.

Intuitively, the above fact says that to make sure in every window (starting no later than t′

and) ending at t, the convergence opportunities always outnumber adversarial time slots, it suffices
to check every window but with a ∆ skip, that the convergence opportunities win even when the
adversary is given ∆ extra time. This fact later allows us to do a union bound with a ∆ skip,
making the union bound tighter.

Similarly, we could also prove the following fact that is symmetric to Fact 12.

Fact 13. Let t′ > t. For any view, if for every non-negative integer k, C(view)[t : t′ + k∆] >
A(view)[t : t′ + (k + 1)∆] or A(view)[t : t′ + (k + 1)∆] = 0, then, it holds that for any r ≥ t′,

A(view)[t : r] < C(view)[t : r] or A(view)[t : r] = 0

Lemma 11 (Any given time is likely a strong pivot). For any t, for any Πideal(p)-compliant pair
(A,Z), there exists a positive constant c, such that for any positive λ,

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : t is a strong pivot in view
]
≥ c

Note that since every strong pivot must also be a w-pivot, it holds that for any w, the following
also holds:

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : t is a w-pivot in view
]
≥ c

Proof. For simplicity, for t′ < t, let bad(t′) denote the bad event that C[t′ : t] ≤ A[t′ −∆ : t]. For
t′ > t, let bad(t′) denote the bad event that C[t : t′] ≤ A[t : t′ + ∆].

Let tc := c1
βη where c1 is a suitable constant and η is the positive constant corresponding to

Lemma 10. Observe also since 2β∆ < 2pN < 1 and hence β < 0.5, it holds that (1− β)
1
β > 0.25.

53

We now have the following:

Pr [t is a strong pivot] ≥ Pr [t is a strong pivot and A[t− tc : t+ tc] = 0]

≥Pr [A[t− tc : t+ tc] = 0] · Pr
[
for any t′ < t− tc or t′ > t+ tc: bad(t′) |A[t− tc : t+ tc] = 0

]
≥Pr [A[t− tc : t+ tc] = 0] · Pr

[
for any t′ < t− tc or t′ > t+ tc: bad(t′)

]
≥
(

(1− β)
1
β

) c1
η ·
(

1− Pr [bad(t− tc)]− Pr [bad(t− tc −∆)]− Pr [bad(t− tc − 2∆)] . . .
−Pr [bad(t+ tc)]− Pr [bad(t+ tc + ∆)]− Pr [bad(t+ tc + 2∆)] . . .

) union
bound,
Fact 12

≥
(

1

4

)Θ(1)

·
(

1− 2e−c1 − 2e−c1+ηβ∆ − 2e−c1+2ηβ∆ − . . .
)

Lemma 10, c1 sufficiently large const

=

(
1

4

)Θ(1)

· (1− 2e−c1

1− e−ηβ∆
)

Since β∆ = Θ(1), as long as we pick constant c1 such that 2e−c1 < 1− e−ηβ∆, the last line above
is a constant greater than 0.

Recall that given a view, we say that many-pivotsw,W (view) = 1 iff for any s, r such that r− s >
W ≥ 0, there must exist a w-pivot during the window [s, r].

Theorem 12 (There are many pivot points). For any Πideal(p)-compliant pair (A,Z), there exists

a constant C, such that for any λ, the following holds for W = Cλ2

β and w = λ
β :

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : many-pivotsw,W (view) = 1
]
< exp(−λ)

Proof. Recall that β∆ < 2pN∆ < 1, therefore, W = Cλ2

β = C ·w · λ = C
2 · 2w · λ <

C
2 · (w+ ∆) · λ.

Consider a window (s, r) of length at least W , and a sequence of events G0,G1, . . . where Gi denote
the good event that the time s+ i · 2(w + ∆) is a w-pivot, where i can range from 0 to C

4 · λ. By
the definition of w-pivots and that of convergence opportunities, it is not hard to see that all these
events G0,G1, . . . are independent. The probability that all these good events do not happen is
upper bounded by the following where c is the constant from Lemma 11, and C is sufficiently large
w.r.t. c. (

1− 1

c

)C
4
·λ
≤ exp(−λ)

The remainder of the proof follows from a simple union bound over all possible such windows.

A.2 Proof of Consistency

Theorem 13 (Consistency). For any Πideal(p)-compliant (A,Z), there exists positive constants η
and C, such that for any λ ∈ N, the following holds for T = Cλ2:

Pr
[
view←$EXEC

Πideal(p)(A,Z, λ) : consistentT (view) = 1
]
≥ 1− exp(−ηλ)

Proof. The proof is identical to that of Theorem 6, except that now, we use a tighter value of W
as given in Theorem 12.

54

B Chernoff Bound

For completeness, we quote the version of Chernoff Bound adopted in this paper.

Theorem 14 (Chernoff bound). Let X :=
∑n

i=1 Xi, where each Xi = 1 with probability pi, and
Xi = 0 with probability 1 − pi; and further, all Xi’s are independent. Let µ := E[X] =

∑n
i=1 pi.

Then, we have that

Pr[X > (1 + δ)µ] ≤ e−
δ2

2+δ
µ for all δ > 0

55

	Introduction
	The Sleepy Model of Consensus
	Main Result
	Technical Overview
	Applications in Permissioned and Permissionless Settings
	Related Work

	Definitions
	Protocol Execution Model
	Compliant Exections
	Notational Conventions

	Problem Definitions
	State Machine Replication
	Blockchain Formal Abstraction
	Chain Growth
	Chain Quality
	Consistency

	Blockchain Implies State Machine Replication

	Sleepy Consensus under Static Corruptions
	Valid Blocks and Blockchains
	The Basic Sleepy Consensus Protocol
	Compliant Executions
	Theorem Statement

	Proofs for Static Security
	Simplified Ideal Protocol ideal
	Convergence Opportunities
	Chain Growth Lower Bound
	Chain Quality
	Consistency: Proof Intuition
	Consistency: the Proof
	Definition of Pivots and Strong Pivots
	Strong Pivots Force Convergence
	Strong Pivots Recur Frequently
	Proof of Consistency
	Tighter Consistency Analysis

	Chain Growth Upper Bound
	Real World Emulates the Ideal World
	Removing the Random Oracle in the Proof

	Achieving Adaptive Security
	Intuition: Achieving Adaptive Sleepiness
	Intuition: Achieving Adaptive Corruption
	Preliminary: Non-Interactive Zero-Knowledge Proofs
	Sleepy Consensus with Adaptive Security
	Theorem Statement

	Proofs for Adaptive Sleepiness and Adaptive Corruption
	Ideal-World Protocol: Adaptive Sleepiness and Static Corruption
	Intermediate Hybrid Protocol
	The Real World Emulates the Hybrid World
	Proofs for Adaptive Sleepiness and Adaptive Corruption

	Lower Bounds
	Lower Bound on Resilience
	Foreknowledge of is Necessary

	Tighter Consistency Proof
	Strong Pivots Recur Frequently
	Proof of Consistency

	Chernoff Bound

