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Abstract. Distance Bounding (DB) is designed to mitigate relay attacks. This paper provides
a complete study of the DB protocol of Kleber et al. based on Physical Unclonable Functions
(PUFs). We contradict the claim that it resists to Terrorist Fraud (TF). We propose some slight
modifications to increase the security of the protocol and formally prove TF-resistance, as well
as resistance to Distance Fraud (DF), and Man-In-the-Middle attacks (MiM) which include relay
attacks.

1 Introduction

Wireless devices are subject to relay attacks. It is problematic because these devices are at
the basis for authentication in many domains like payment with credit cards, building access
control, or biometric passports [16, 19]. To ensure the security of wireless devices against relay
attacks, Brands and Chaum [8] introduced the notion of Distance Bounding (DB) protocols
in 1993. The idea is that a prover P must prove that he is close to a verifier V. Several attack
models exist to make the verifier accept with a prover too far away from the verifier. The
attacks described in the literature are: 1. Distance Fraud attacks (DF) [8]: A far away prover
P tries to make V accept. No participant is close to V . 2. Mafia Fraud attacks (MF) [11]: A
malicious actor A who does not hold the secret tries to make V accept using an honest but
far away prover P. 3. Distance Hijacking attacks (DH) [10]: A malicious far away prover P
which holds the secret tries to make V accept him using an honest prover, who holds another
secret and is close to V. 4. Terrorist Fraud (TF) [11]: A malicious actor A who does not hold
the secret tries to make V accept by colluding with a malicious far away prover P who holds
the secret.

Most of the proposed protocols are vulnerable to Terrorist Fraud attacks [18, 23, 27, 28,
31]. Moreover, Hancke [17] observed that noisy-resilience in nearly all the protocols, including
the SwissKnife protocol [24], allows Terrorist Fraud attacks. It was important to provide a
clear model to ensure security against all types of threats. Avoine et al. [1] proposed the
complete but rather informal ABKLM model. Dürholz et al. [12] provided a formal model
to prove the security of the protocols. However, this model is too strong as admitted by
the authors [13], and it is difficult to prove TF security in this model. Another model was
proposed by Boureanu et al. [4].

Most of the proposed protocols are vulnerable to TF attacks but a few protocols provide
security against all types of threats: the protocol of Fischlin and Onete [14], the SKI proto-
col [5, 6], DBopt protocols [7], the public-key DB protocols ProProx [35] and eProProx [34],
and the anonymous DB protocol SPADE [9]. However, all these proofs are made on the as-
sumption that in TF, the prover does not want to give his credential to the adversary for
further application. This assumption is weak and does not correspond to reality. None of the
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DB protocols in the plain model can provide TF security without this assumption, so, we
should consider alternate models. DF, DH and TF security are easier to provide using tamper
resistant hardware on the prover side because the prover cannot access his secret. Kılınç and
Vaudenay [22] provide a new model for distance bounding protocols with secure hardware.
In this model, the game consists of several verifier instances including a distinguished one
V, hardware with their instances, instances of provers and actors. There is one distinguished
hardware h with instances far away from V. The winning condition of this game is that V
accepts.

– The DB protocol is DF-secure if the winning probability is negligible whenever there is
no instance close to V.

– The DB protocol is MiM-secure if the winning probability is negligible whenever an honest
prover is holding h (i.e. it can only be accessed by an honest and far away prover).

– The DB protocol is DH-secure if the winning probability is negligible whenever all close
instances are honest.

– The DB protocol is TF-secure if the winning probability is negligible.

PUFs are tamper resistant hardware used in counterfeiting detection [30, 32] and authentica-
tion protocols [3, 15]. A PUF is a physical component which maps a challenge to a response.
By definition, a PUF, as it is described in [29], has the following properties: non clonable,
non emulable, a response Ri gives negligible information on a response Rj with Ri 6= Rj and
a PUF cannot be distinguished from a random oracle (as discussed in [2]). For simplicity
reasons, we will treat PUFs as random oracles with access limited to their holder. The aim of
our work is to provide a provably secure protocol using PUF in DB protocols. A TF-secure
DB protocol based on PUF was proposed in [21]. Nevertheless, this protocol assumes that
provers implement their protocol while using a PUF. In the model of Kleber et al. [25], the
prover can implement any malicious protocol while accessing to the PUF, the protocol in [21]
is trivially TF-insecure in this stronger model.1 Kleber et al. design a protocol in [25] which
is claimed to be secure in their model. However we contradict that fact in this paper and
propose to modify it in order to improve the security.

Our contribution in this paper is as follows: 1. We show that the protocol proposed by
Kleber et al. [25] is not secure against Terrorist Fraud which contradicts the claims from
their authors; 2. We provide some slight modifications of this protocol which we call pufDB
to improve its security; 3. We provide proofs of security for this pufDB protocol for the
following attacks: Distance Fraud , Mafia Fraud and Distance Hijacking ; 4. We prove the
security of pufDB protocol against Terrorist Fraud when the prover is limited in the amount
of bits per round he can send. The security strengthens when the distance from the prover to
the verifier increases. Our protocol, pufDB provides security against Distance Fraud, Mafia
Fraud and Distance Hijacking. In the case of a prover at a distance close to B, the protocol
achieves a security of 2−10 against these three attacks in 61 rounds. In the case of a prover
far to the verifier, the protocol can achieve a security of 2−20 against these three attacks in 28
rounds. To the best of our knowledge, pufDB is the first protocol which provides TF security
even when the prover is allowed to leak his secret.

1 In this protocol, the PUF is not used during the fast phase, so the malicious prover can give whatever is
needed to complete the protocol to a close-by adversary.
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2 The Kleber et al. Protocol

2.1 Details of the Protocol

Fig. 1: DB protocol from Kleber et al. [25]

The verifier is called V and the prover P. The main idea of the protocol proposed by
Kleber et al. [25] is to replace the PRF in P of conventional Distance Bounding protocols by
a PUF. In this protocol, represented Figure 1, it is possible to use both Challenge-response
PUF and a public PUF.2 The protocol is made of two distinct phases: the preparation phase
and the time critical phase.

Prior to the protocol, it is assumed that V can query the PUF and store a number of
challenge-response pairs (CRP ), at a round i such that ri = PUF (Ci). A CRP is defined as
(Ci, ri), 0 ≤ i < n with n the number of rounds. There is always a set of CRPs corresponding
to PC to complete the run. A set of CRPs shall not be used in protocols more than once.

In the time critical phase, only one bit can be sent from V to P in a round. However the
PUF needs a big space of challenges to be secure. Therefore V transmits a pre-challenge PC to
P during the preparation phase. Then, in the time critical phase, the pre-challenge is combined
with the challenges ci received by P to generate a challenge Ci = PC0...PCn−2−i||c0c1 . . . ci
for the PUF. It is assumed that the hardware is such that the PUF can precompute Ci and
when the prover receives the last bit of Ci he can return the response ri in almost no time.
The time critical phase consists of n transmission rounds. The verifier V starts the clock when
he sends a challenge ci and stops the clock when he receives the response ri. In the paper,

2 Normally, a PUF is non emulable so the verifier should first borrow the PUF to get input-output pairs. To
avoid it, we can use Public-PUF also called SIMPL system (SIMulation Possible but Laborious). SIMPL
systems guarantee that the response to a challenge cannot be computed faster with a simulator of the PUF
than with the real PUF. Anyone can compute the right response but it takes much more time with the
simulator of the PUF.
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Tmax and Emax are defined. Tmax is the maximal number of responses which can arrive too
late. Emax is the maximal number of errors admitted in the responses. (A late response is not
checked.)

We note that if one ci is incorrectly received by P , then all subsequent PUF computations
will produce random outputs, independently from the expected ri. So, this protocol is not
tolerant to reception errors by P .

The protocol is claimed to be provably secure for all types of Fraud by Kleber et al. [25].
They prove the security of their protocol using the model of Dürholz et al. [12]. They only
give a proof of security against Terrorist Fraud attacks. In fact, in the model defined by
Kılınç et al. [22], when the protocol uses hardware, the proof that the protocol is secure
against Terrorist Fraud attacks gives a proof of security against all the other types of attacks.
However, when there is no additional restriction in the protocol, this protocol is insecure
against Terrorist Fraud attack as we show in the section 2.2. To prove the security against
Terrorist Fraud, Kleber et al. assume that the probability for the adversary to win the game

is equal to
(
1
2

)n−Emax−Tmax . We contradict this assumption.

2.2 A Terrorist Fraud Attack

Fig. 2: Terrorist Fraud attack, dV P = 2B, T ≥ t1 + 2tB

Notations. dV P is the distance between V and the far away prover P, tV P is the signal
propagation time between V and P (it is assume that dV P

tV P
is a constant such as the speed of

4



light); Similarly, dAP is the distance between A and the far away prover P, tAP is the signal
propagation time between A and P ; B is the maximal distance allowed by the protocol, tB
is the maximal signal propagation time over the distance B; Finally, T is the time between
sending two consecutive challenges ci and ci+1.

In this scenario a malicious far away prover colludes with an adversary close to the verifier.
In the protocol of Kleber et al. the adversary receives PC from the verifier. He can send it
to the malicious prover who holds the PUF. There is no information concerning the distance
dAP between P and A nor about the time T in between rounds. A forwards every message
from V to P . To answer a challenge ci on time, P is missing m bits. He computes 2m PUF
values and sends them to A so that A will always be able to respond on time. For instance,
if tm denotes the time it takes for P to compute the 2m values and to transmit them to A
(without time of flight), the attack works if

tAP + tV A ≤ tB +
(mT − tm)

2
(1)

As an example, with m = 1, P has two PUF values to compute and to send and the condition
is tAP + tV A ≤ tB + T−t1

2 . Since there is no information on dAP , dV A and T , we can have
dAP = B, dV A = B and T ≥ t1 + 2tB, in that configuration Equation (1) is true. Then A
can pass the round if he is in the previous configuration. He can pass all rounds with high
probability, so the protocol is not secure against Terrorist Fraud. Figure 2 highlights this
attack.

More concretely, we assume m = 1, B = 3m and tB = 10ns. We consider V running at
1GHz and have one clock cycle between rounds, so T = 1µs. We consider a faster malicious
prover P running at 10GHz so that he can evaluate two challenges with the PUF (correspond-
ing to the possible challenges for m =1) in tm = 200ns. With dV A = B, the attack succeeds
for tAP = 400ns i.e dV P = 120m. The attack is possible because there is a huge amount of
time between the reception of ri and the emission of ci+1, but these figures clearly show it is
a quite realistic scenario.

2.3 Slight Modifications of the Protocol

We choose to slightly modify the protocol of Kleber et al. [25] to improve its security. We call
pufDB the new protocol. pufDB is presented on Figure 3. First, we impose a regular rhythm
for sending the challenges, second, the (n− 1) bits of PC are sent with the same rhythm as if
there were challenges in the time critical phase but expecting no answer. The prover begins
to send responses when he receives the first bit of challenge c0. With this slight change, we
make sure there is no more time left for attacks in between the transmission of PC and c0
than there is in between the transmission of each ci and this time is bounded. Moreover, we
assume that P cannot accept consecutive challenges separated by time lower than T

2 , so, we
cannot speed up P by sending challenges too fast.3 Finally, another modification is that we
concatenate PC with the challenges without dropping any bit. So, Ci = PC||c0...ci is of n+ i
bits. This guarantees domain separation for the functions computing the responses. So, to
summarize, we use the three following requirements: 1. The elapsed time between sending
each bit of PC||c0...cn−1 by V is exactly T ; 2. The elapsed time in between receiving two
consecutive bits by P is at least T

2 ; 3. PC is concatenated to c0...ci without dropping any bit.

3 We allow challenges to arrive faster than a period T to capture the Doppler effect when P moves towards
V . With T

2
as a limit, P can move at 20% of the light speed!
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Fig. 3: The pufDB protocol

We denote by t0 the time when the verifier sends c0 to the prover. So ci is sent at time
t0 + iT and PCi is sent at time t0 + (i− n+ 1)T .

Lemma 1 (Number of missing bits). For each round i, the number of challenges which
did not arrive yet to the far away prover P when it becomes critical to send the response ri is
m = d2( tV P−tBT )e. The number of possible Ci is 2m.

Proof. The proof is highlighted by the Figure 4. ci is sent by V at time t0 + iT and ci is
received by P at time t0 + iT + tV P . The response ri must be received at time t0 + iT + 2tB
the latest. To arrive on time, ri is sent by P at time t0 + iT + 2tB − tV P . The round of
the last challenge received is called ilast. So, t0 + ilastT + tV P ≤ t0 + iT + 2tB − tV P . Then
d(i− ilast)e = d2( tV P−tBT )e = m. ut

We will use the following bound:

Lemma 2 (Chernoff-Hoeffding [26]). Given integers N and E and a probability p, we
have

E∑
i=0

(
N

i

)
pN−i(1− p)i ≤ e−2N(1−p−EN )

2

for E ≤ N(1− p)

3 Distance Fraud Analysis of pufDB

To prove resistance against Distance Fraud attacks, it is necessary to prove that a far away
prover P who holds the PUF has a negligible probability to win the game presented in section
2. The idea of a Distance Fraud attack is to find a way for the far away prover P to send ri
such that it arrives on time to V. To arrive on time, the response ri should be sent before
receiving the challenge ci. So, there are chances for the response to be wrong.

Lemma 3. If k = d nme and n = (k − 1)m+ b, with m from Lemma 1, then a DF-attack has

a success probability limited by
∑Emax+Tmax

i=0

(
n
i

)∏m
l=1 pl

k with pl = 1
2 + 1

2 ×
1

22l

(
2l

2l−1

)
.
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Fig. 4: Missing data depending on distance from V to P when T = tB

This security bound does not seem so tight. Intuitively, pm is the probability to guess
correctly the output of a random (but known) boolean function on m random (but unknown
bits). We would like to prove that it is

Emax∑
i=0

(
n− Tmax

i

)
pm

n−Tmax−i(1− pm)−i

but we have troubles in proving it due to non independence between the rounds.

Proof. We prove security against DF attacks. We first describe what is the best possible
attack. In the worst case, we assume no computational bound to the malicious prover. At
each round i, P can compute each of the 2m possible Ci (given that he is missing the last m
bits of Ci) and their responses with the PUF. Then P can choose to :

– send a ri early enough,

– send a response ri (or none) which arrives too late. In this case, we denote ri = ⊥. P can
do that strategy at most Tmax times.

We remind that ci is the challenge at round i, and Ci = PC||c0...ci. We denote by F the
function realized by the PUF. We let Fi be the restriction of F over all strings of size exactly
(n+ i) so that ri = Fi(Ci). Clearly all Fi are independent.

Let A be a DF algorithm. For i = 0, ..., n − 1, this algorithm computes the responses ri
(or decides to be late) based on the received challenges and the function F realized by the
PUF. Clearly, when A wins there exist index sets I, J ⊂ {0, ..., n− 1} such that #I ≤ Emax
and #J ≤ Tmax such that for all i, either i ∈ J or ri = Fi(Ci) ⊕ 1i∈I . As we want to upper
bound the success probability, we can give advantages to the adversary. So, it is valid to allow
infinite computational capabilities to A, to give more time to answer to challenges in some
rounds and to allow Tmax more errors instead of late answers. So, A wins if there exist I such
that #I ≤ Emax + Tmax and for all i, ri = Fi(Ci) ⊕ 1i∈I . That reduces to J empty. If I is
fixed, it is equivalent to have I empty (it just changes the function Fi). So we just make the
analysis for I and J empty and multiply by the number of possible I sets which is

∑
i

(
n
i

)
.
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We let Wi be the event ri = Fi(Ci) (I and J are empty). We denote Wi1,i2 = Wi1 ∩ ... ∩Wi2

with i1 ≤ i2.
We divide the number of rounds n by m, n = (k − 1)m+ b with 1 ≤ b ≤ m. We split the

n rounds into k = d nme blocks and we allow the prover to answer to the whole block at once
to make them independent. The first block goes from i = 0 to i = b− 1, we call it the block
zero. The block i′ (for i′ = 1, ..., k − 1) goes from i = b+ i′m−m to i = b+ i′m− 1.

We called pl the probability that a random l-bit string belongs to the largest preimage of
a l-bit to 1-bit random function. We have

pl =
2l∑
v=0

(
2l

v

)
max(v, 2l − v)

2l+2l

with v the number of preimages that give 0 by the random function. max(v, 2l − v) has
symmetric properties so pl is equal to

pl = 2×
2l∑

v=2l−1+1

(
2l

v

)
v

2l+2l
+

(
2l

2l−1

)
2l−1

2l+2l
=

1

2
+

1

2
× 1

22l

(
2l

2l−1

)

We denote by C[i′] the challenges of block 0, ..., i′, r[i′] the response sent, F [i′] the function
used to compute it, and W [i′] the event to win for the entire block, we have r[i′] = A(C[i′ −
1], F [i′]).

Pr(win the game) ≤
∑
F

∑
Cn−1

Pr(F,W0,n−1, Cn−1)

≤
∑
F

∑
Cn−1

Pr(F )×
k∏

i′=1

Pr(W [i′], C[i′]|W [0, ..., i′ − 1], C[i′ − 1], F [i′])

× Pr(W [0], C[0]|PC,F [0])

As we assume no bound on A, we can assume it to be deterministic without loss of
generality. Clearly, W [i′] is the event that for indices i not in I, we have a matching be-
tween A(C[i′ − 1], F [i′]) and F [i′](C[i′]). In Pr(W [i′], C[i′]|W [0, ..., i′ − 1], C[i′ − 1], F [i′]),
C[i′ − 1] and F [i′] are fixed, so only the bits of C[i′] from the block i′ are random. The
value Pr(W [i′], C[i′]|W [0, ..., i′ − 1], C[i′ − 1], F [i′]) is maximized when A computes r[i′] with
the largest preimage b0...bm−1 → F [i′](C[i′ − 1]||b0...bm−1), so independently from the func-
tions F [0]...F [i′ − 1]F [i′ + 1]...F [k]. We consider the greedy adversary maximizing all these
possibilities. For this adversary, the probability simplifies to

Pr(win the game) ≤

(
k∏

i′=0

Pr(W [i′])

)
We define fl(x1, ...xl) = Fb+l−1(Cbx1...xl). Let pl be the probability that a random x1...xl is
chosen in the largest preimage of fl. We have

Pr(W [0]) ≤
b∏
l=1

pl and Pr(W [i′]) ≤
m∏
l=1

pl for i′ > 0
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So,

Pr(win the game) ≤
m∏
l=1

pl
k

b∏
l=1

pl

for I fixed and we have to multiply this by the number of possible I to obtain the result. ut

Theorem 1. We use m from Lemma 1. We define qm =
∏m
l=1 pl

1
m for pl = 1

2 + 1
2 ×

1

22l

(
2l

2l−1

)
,

in a DF-attack, we have that

Pr(win the game) ≤
Emax+Tmax∑

i=0

(
n

i

)
qm

n

For 2(Emax + Tmax) ≤ n any DF-attack is bounded by

Pr(win the game) ≤ e−n×
(
2( 1

2
−Emax+Tmax

n )
2−ln(2qm)

)
= boundDF

If there exist α, β ∈ R such that Emax ≤ αn, Tmax ≤ βn and α+ β < 0.049 then, boundDF is
negligible.

Here is the table of the first values of qm:

m 1 2 3 4 5 6 7 8 9

qm 0.75 0.7181 0.6899 0.6657 0.6454 0.6283 0.6141 0.6022 0.5921

So depending on m, qm smoothly goes from 3
4 to 1

2 as m grows. pl decreases and tends towards
1
2 , so qm decreases and tends towards 1

2 as well.

Proof. The first bound is a straightforward consequence of Lemma 3. Then, we apply Lemma 2.
We know that pl decreases and p1 = 3

4 so we have qm ≤ 3
4 , the probability to win is negligible

for α+ β < 1
2 −

√
ln(2qm)

2 ≤ 0.049. ut

For m ≥ 2n − 1, we can have a better bound. The adversary has no bit to compute the
PUF (not even the bits of PC), so we can redo the analysis and obtain

Pr(win the game) ≤
Emax+Tmax∑

i=0

(
n

i

)
pn

n ≤ e−n×
(
2( 1

2
−Emax+Tmax

n )
2−ln(2pn)

)

These results are unchanged when using a public PUF.

4 Mafia Fraud Analysis of pufDB

To prove resistance against Mafia Fraud attacks it is necessary to prove that if an honest far
away prover P holds the PUF, an adversary close to V has a negligible probability to win
the game presented in section 2.
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4.1 MiM Attack

We prove security against Man-in-the-Middle (MiM) attacks. We first informally describe
what is the best possible attack. A is a malicious actor. Before receiving a challenge ci from
the verifier V, he sends a guessed challenge c′i to a far away prover P. He receives r′i from the
prover. If c′i = ci then the adversary sends r′i to the verifier. In this case, the adversary wins
the round with probability 1.

Pre-asking gives an extra chance to pass a round. But if one ci is incorrectly guessed, any
subsequent pre-asking request will return some useless random bits. So the best strategy is
to start pre-asking until there exists a round i such that c′i 6= ci, then to continue with the
impersonation attack strategy. This scenario is represented Figure 5.

We have not considered replay attacks because A has no time to begin any other instance
of the protocol if P does not answer at frequency larger than T

2 . Actually, let V be the
distinguisher verifier in a MiM attack and PC the value that he sends. As the PUF is held
by a single participant, there are no concurrent sessions for P . Sending ci to P takes at least
(n+1)T

2 time but during this time, the session for V terminates. So, only one session of P
receives ci, for each i.

Fig. 5: MiM attack, i < K

Theorem 2. In any MiM attack, we have

Pr(win the game) ≤
(

1

2

)n+1−Tmax
×
Emax+1∑
i=0

(
n+ 1− Tmax

i

)
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This is bounded by e
−2(n+1−Tmax)×

(
1
2
− Emax+1
n+1−Tmax

)2

when 2Emax+Tmax ≤ n+1. For Emax ≤ αn,
Tmax ≤ βn, and 2α+ β < 1, this is negligible.

Proof. At a round i, let bi = 1 if it holds that challenge c′i is pre-asked to P (i.e., A sent c′i
to P in his round i before receiving ci from V in his round i) and bi = 0 otherwise. Let K
be the maximal (at most n) value such that bi = 1 implies c′i = ci for all i = 0, ...,K − 1. It
means that A pre-asks P with a correctly guessed ci until the round number K − 1. Clearly,
either K = n or bK = 1 and c′K 6= cK .

In the bK = 1 and c′K 6= cK case, there is no time to restart a session with P with the
same CK so any i > k such that bi = 1 brings no information about the correct ri to answer.
At each round, A can decide either to skip this round (at most Tmax times), or guess ci, or
to guess ri. Whenever cK is incorrectly guessed, this error does not count and A is offered
an extra chance, either to skip this round or to guess rK , but he can no longer use the guess
ci option. So, the game is equivalent to having n + 1 rounds, being allowed to skip at most
Tmax ones, and to make Emax + 1 errors, in which either A can guess ci or to guess ri but not
both. So,

Pr(win the game) ≤
Emax+1∑
i=0

(
n+ 1− Tmax

i

)(
1

2

)n+1−Tmax−i(1

2

)i
This prove the first bound. According to the Lemma 2, for 2Emax + Tmax ≤ n+ 1 we obtain

Pr(win the game) ≤ e−2(n+1−Tmax)×
(

1
2
− Emax+1
n+1−Tmax

)2

= boundMiM

If there exist α, β ∈ R such that Emax ≤ αn, Tmax ≤ βn and (2α + β) < 1 then,

boundMiM = e
− 2n

1−β×( 1−β
2
−α)

2
+o(n)

= O(e−Ω(n)). So, the probability to win is negligible. ut

Using a public PUF just adds a negligible term in the bound.

4.2 Impersonation Attack

The adversary receives ci from V, he picks a random r′i and sends it to the verifier.

Theorem 3. The probability of success of an Impersonation attack is bounded by(
1

2

)n−Tmax
×
Emax∑
j=0

(
n− Tmax

j

)

For 2Emax +Tmax ≤ n+ 1, this is bounded by e
−2(n−Tmax)×

(
1
2
− Emax
n−Tmax

)2

. For Emax ≤ αn and
Tmax ≤ βn, and 2α+ β < 1, this is negligible.

Proof. The best strategy consists to send late responses for Tmax selected rounds, the way
these rounds are selected is not important. So, n− Tmax is the number of bits the adversary
has to guess. j is the number of errors made by the adversary during these rounds.

Pr(win the game) =

Emax∑
j=0

(
n− Tmax

j

)(
1

2

)n−Tmax−j (1

2

)j
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This prove the first bound. According to Lemma 2, for 2Emax + Tmax ≤ n we obtain

Pr(win the game) ≤ e−2(n−Tmax)×
(

1
2
− Emax
n−Tmax

)2

= boundIMP

If there exist α, β ∈ R such that Emax ≤ αn, Tmax ≤ βn and (2α+β) < 1 then, boundIMP =

e
− 2n

1−β×( 1−β
2
−α)

2
+o(n)

= O(e−Ω(n)). So, the probability to win is negligible. ut

5 Distance Hijacking Analysis of pufDB

To prove resistance against Distance Hijacking attacks it is necessary to prove that if a far
away prover P ∗ holds PUF ∗1 and uses interaction between the verifier and an other prover P
(holding PUF2) close to V (using CRPs from PUF ∗1 ), then P ∗ has a negligible probability
to win the game presented in section 2.

The PUF is responsible of the authentication. If V interacts with another prover the
responses will be different than those produced by the PUF. Then, if P ∗ wants to use P
to pass the time critical phase, he needs to make P answer to challenges from V such that
V thinks that responses come from the computation of challenges with PUF ∗1 . P ∗ cannot
interact with P or V because in pufDB all the bits are sent during the time critical phase,
so P ∗, who is far away, has no time to make an efficient attack (according to the proof of
Distance Fraud resistance).

Then the only possibility for P ∗ to win is that V begins an instance with P in thinking
that he is doing an instance with P ∗. It means that responses from PUF2 are the same as
with PUF ∗1 (these responses are stored in the database of V ). So, in this scenario, V sends
a challenge ci to P who sends back ri after computation with PUF2. If PUF2(PC||c0...ci) =
PUF ∗1 (PC||c0...ci) then P ∗ passes the round i. The probability that it happens is 1

2 because
PUFs are similar to random oracles and are unique (non clonable, non emulable). V is honest
so the rounds are independent, moreover we consider that P is honest but he can unfortunately
send exactly Tmax responses later than allowed. So

Pr(win the game) ≤
(

1

2

)n−Emax−Tmax
which is negligible for α+ β < 1, Emax ≤ αn and Tmax ≤ βn.

One detail is that P ∗ could try to learn PUF2 prior to the attack to estimate his chances
to win. P ∗ can do this with many participants to select the one increasing his chances, but
he can only learn a negligible fraction of the function so this just adds a negligible term in
the advantage.

This is unchanged when using a public PUF.

6 Terrorist Fraud Analysis of pufDB

In Terrorist Fraud attacks, an adversary A colludes with a far away malicious prover P to
make V accept. Without any limitation on the power of the verifier the protocol is insecure
against TF. In our model, the prover is limited on the communication complexity. With this
limitation, the prover can compute all the challenges but he has a limitation on the amount
of bits he can send to A. He can compress the 2m bits of the table of responses for each round
into s bits and send to A the compressed version. From the s bits received and the challenge
sent by V , A can try to recover the response.
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Notation. BN (R) =
∑R

i=0

(
N
i

)
.

Lemma 4. Given 0 ≤ δ ≤ R ≤ N
2 with δ integer, we have

BN (R) ≥
(

1 +
δ2 − 1

N

)
BN (R− δ)

Proof. For δ ≤ i ≤ R, we have

(
N

i

)
=

(
N + 1

i
− 1

)
...

(
N + 1

i− δ + 1
− 1

)(
N

i− δ

)
≥

(
N + 1

R− δ
2

− 1

) δ
2 ( N

i− δ

)

For this we kept the δ
2 last factors and lower bounded the first ones by 1. Then, for R ≤ N

2 ,

N + 1

R− δ
2

− 1 ≥ N
N
2 −

δ
2

− 1 ≥ 2

1− δ
N

− 1 ≥ 1 +
2δ

N

and finally (
1 +

2δ

N

) δ
2

≥ 1 +
δ2

N

So, by summing we obtain the result. The above is for δ even, For δ odd, we split in δ−1
2 and

δ+1
2 and finally obtain (

1 +
2δ

N

) δ
2

≥ 1 +
δ2 − 1

N

ut

Lemma 5. Let s and N be two positive integers. Let R be the maximum value such that∑R
i=0 2s

(
N
i

)
≤ 2N . We have R ≥ N

2 −
√

Ns ln 2
2 − 1.

Proof. If R+ 1 > N
2 , we have R > N

2 − 1 ≥ N
2 −

√
Ns ln 2

2 − 1.

We now assume that R+1 ≤ N
2 . We have BN (R+1) ≥ 2N

2s and, due to Chernoff-Hoeffding
bound presented in Lemma 2,

BN (R+ 1) ≤ 2Ne−2N( 1
2
−R+1

N )
2

So,

2N

2s
≤ 2Ne−2N( 1

2
−R+1

N )
2

We deduce

R ≥ N

2
−
√
Ns ln 2

2
− 1

ut
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We consider a prover P and a verifier V receiving a random boolean function f with an
input of l bits. The prover P can give a string of s bits to the adversary who ignores f . Then
the adversary receives a random l-bit input x and tries to predict f(x).

Every s-bit string given to the adversary defines an element g of a code C of size 2s, we
denote g = help(f). The adversary answers to the input x by g(x) and wins if f(x) = g(x).
Let phelp = Pr(f(x) = help(f)(x)) where the probability is over the random choice of f and x.
We have phelp = 1− 1

NE(d(f, help(f))), where d denotes the Hamming distance and N = 2l.
Clearly the function help is optimal when help(f) is a closest element g ∈ C to f . We define
pC = 1 − 1

NE(d(f, C)). We want to bound pl,s = maxhelp phelp = maxC pC over a code C of
size 2s.

Lemma 6. Let s and l be two positive integers and N = 2l. We define

pl,s = 1− 1

N
E(min

C
d(f, C))

where f is a random boolean function of l-bit input and the minimum is over sets C of up to
2s elements. We define

p∗l,s = 1− 1

2N

R+1∑
i=0

i

N
N ′i , p̄l,s =

1

2
+

1√
N
×

(√
s ln 2

2
+

√
2

2s
+

1

N

)
+

1

N

where R is the maximum value such that
∑R

i=0 2s
(
N
i

)
≤ 2N and N ′i = 2s

(
N
i

)
for 0 ≤ i ≤ R,

N ′i = 0 for i > R+ 1, and N ′R+1 = 2N − 2s
∑R

i=0

(
N
i

)
. We have pl,s ≤ p∗l,s. For s ≤ 2l

2 , we also
have p∗l,s ≤ p̄l,s.

Proof. Let Ni be the number of f such that d(f, C) = i. We have pC = 1 − 1
2N

∑N
i=0

i
NNi,

clearly, 0 ≤ Ni ≤ 2s
(
N
i

)
and

∑N
i=0Ni = 2N . Let R be the maximum value such that∑R

i=0 2s
(
N
i

)
≤ 2N . Let N ′i = 2s

(
N
i

)
for 0 ≤ i ≤ R, N ′i = 0 for i > R + 1, and N ′R+1 =

2N − 2s
∑R

i=0

(
N
i

)
. Clearly, the vector of all N ′i satisfies the same constraints as the vector of

all Ni and we have pC ≤ 1− 1
2N

∑R+1
i=0

i
NN

′
i for all C. So pl,s ≤ 1− 1

2N

∑R+1
i=0

i
NN

′
i = p∗l,s. This

prove the first bound.

For l < 6 we can check that p∗l,s ≤ p̄l,s by direct inspection, so the result is true. We now
assume that l ≥ 6. Now, the average of i appearing N ′i times for i = 0, ..., R + 1 is greater
than the average of i appearing N ′i times for i = 0, ..., R. So,

p∗l,s ≤ 1− 1

BN (R)

R∑
i=0

i

N
N ′i = 1− 2s

BN (R)

R∑
i=0

i

N

(
N

i

)

As expected, if s = 2l, it means that the adversary has all the information to choose a response
then R = 0 so p∗l,s = 1, but we assume that s ≤ 2l

2 to prove p∗l,s ≤ p̄l,s. In the particular case

when s = 0, we have R = N and the above bound gives p∗l,s ≤
1
2 . So, we can exclude this

case as it proves our result. Since s > 0, we have
∑R

i=0

(
N
i

)
≤ 2N

2s ≤
2N

2 so R ≤ N
2 . For

N ≥ 4 we have p̄l,2 ≤ p̄l,1. So, assuming p∗l,2 ≤ p̄l,2, as p∗l,s can only increase with s, we have
p∗l,1 ≤ p∗l,2 ≤ p̄l,2 ≤ p̄l,1 which proves the result for s = 1. Hence we just have to prove the
bound for s ≥ 2 and l ≥ 6.
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We take δ the smallest positive integer bigger than
√

2N
2s + 1 (i.e

√
2N
2s + 1 ≤ δ ≤√

2N
2s + 1 + 1), we assumed that 2 ≤ s ≤ 2l

2 and l ≥ 6. We can prove that
√

2N
2s + 1 + 1 ≤

N
2 −

√
Ns ln 2

2 − 1 so δ ≤ R due to Lemma 5. For i > R − δ, the terms in the sum are lower

bounded by R−δ+1
N

(
N
i

)
. For i ≤ R− δ, the terms are positive. So, we have

p∗l,s ≤ 1− 2s

BN (R)

R∑
i=R−δ+1

i

N

(
N

i

)
≤ 1− 2s × R− δ + 1

N
× BN (R)−BN (R− δ)

BN (R)

Using Lemma 4 we obtain

p∗l,s ≤ 1− 2s × R− δ + 1

N
×

(
1− 1

1 + δ2−1
N

)

We can prove that
√

2N
2s + 1 + 1 ≤

√
N + 1 for s ≥ 2 and l ≥ 4 so we have δ ≤

√
N + 1. We

know that 1

1+ δ2−1
N

≤ 1− δ2−1
2N for δ ≤

√
N + 1 so

p∗l,s ≤ 1− 2s × R− δ + 1

N
× δ2 − 1

2N

We have δ ≥
√

2N
2s + 1 and δ ≤

√
2N
2s + 1 + 1, so we obtain

p∗l,s ≤ 1−
R−

√
2N
2s + 1

N

Using the inequality R ≥ N
2 −

√
Ns ln 2

2 − 1 from the Lemma 5 we obtain p∗l,s ≤ p̄l,s. ut

Theorem 4. We use m as defined in Lemma 1. We assume that the malicious prover is
limited to s bits of transmission per round to the adversary in a TF-attack. We use qm,s =∏m
l=1 pl,s

1
m and we have

Pr(win the game) ≤
Emax+Tmax∑

i=0

(
n

i

)
qm,s

n

where pl,s is defined in Lemma 6. For 2(Emax+Tmax) ≤ n a TF-attack has a success probability
bounded by

Pr(win the game) ≤ e−n×
(
2( 1

2
−Emax+Tmax

n )
2−ln(2qm,s)

)
= boundTF

If there exist α, β ∈ R such that Emax ≤ αn, Tmax ≤ βn then the protocol is secure when

α+ β < 1
2 −

√
ln(2qm)

2 .

Using a public PUF just adds a negligible term in the bound.
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Proof. The first bound comes from the same technique as Th. 1 but using pl,s. Then, we apply
Lemma 2. If there exist α, β ∈ R such that Emax ≤ αn, Tmax ≤ βn then

boundTF ≤ e
−n×

(
2( 1

2
−α−β)

2−ln(2qm,s)
)

which is negligible when α+ β < 1
2 −

√
ln(2qm)

2 . ut

For l ≤ 7 and any s, we upper bound pl,s by p∗l,s because this formula is more precise. For
l ≥ 8, it is not possible to use the same formula because of heavy computations so we use p̄l,s

when s ≤ 2l

2 . For s > 2l

2 we use the bound 1 for pl,s. Here is the table of upper bounds of qm,s
for different values of s such that s ≤ 2m

2 :

m 6 8 10 20 30 50 500 1000

qm,1 0.6283 0.6127 0.6021 0.5550 0.5362 0.5214 0.5021 0.5010

qm,2 0.7170 0.6793 0.6534 0.5780 0.5509 0.5300 0.5029 0.5015

qm,4 0.7969 0.7402 0.6998 0.5981 0.5636 0.5372 0.5036 0.5018

qm,50 0.9413 0.8766 0.6816 0.6151 0.5662 0.5063 0.5031

qm,100 0.9787 0.9214 0.7066 0.6302 0.5745 0.5070 0.5035

qm,200 0.9599 0.7322 0.6456 0.5829 0.5077 0.5038

qm,210 0.7917 0.6812 0.6020 0.5094 0.5047

So depending on m, qm,s smoothly goes from 1 to 1
2 as m grows. From the definition of pl,s,

it is clear that pl,s decreases and tends to 1
2 . So, qm,s decreases and tends towards 1

2 as well.
We have the following relation:

Packet transmission time =
Packet size

Bit rate

The adversary succeeds to send s bits when dAP
c + s

Bit rate ≤ T with dAP
c the packet traveling

time is in ns, this is negligible compared to T in µs. So, we get the relation s ≤ Bit rate× T .
For wireless communication, the maximal bit rate is of order 1Gbps and we define T = 1µs.
So the prover can send maximum s = 1000 bits to the adversary. So the maximal s is s = 210.

For a noisy communication such that Emax = 5%n and Tmax = 0 with s = 210, if the
prover is close to the verifier (m ≤ 18), pufDB cannot be proven secure against TF-attacks.

If the prover is close to the verifier then he can help the adversary in doing the authenti-
cation himself or in giving directly the device to the adversary. So, we can assume that the
prover is quite far from the adversary proportionally to the distance allowed. For instance, if
we consider that dV P = 3000m, B = 3m, T = 1µs and the speed of the light c = 3.108m.s−1

we get tB = 10ns and m = 20. For s = 210, we obtain qm,s = 0.7917 so the protocol achieves
a security level of 2−10 in 110 rounds, and 2−20 in 307 rounds.

If we can lower T to T = 100ns and tB = 10ns then the prover can send at most s = 27

bits to the adversary and we have security for a noisy communication with Emax = 5%n and
Tmax = 0 for m ≥ 15 which corresponds to tV P > 71tB.

7 Conclusion

Until pufDB, none of the existing protocol has provided Terrorist Fraud resistance in the plain
model without assuming that the adversary would not share his secret, which is not a realistic
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assumption. The protocol of Kleber et al. is not secure against Terrorist Fraud attacks. pufDB
is an improvement of this protocol. We prove security against Distance Fraud, Mafia Fraud
and Distance Hijacking. In the case of a prover at a distance close to B (i.e m = 1), the
protocol achieves a security of 2−10 against these three attacks in 61 rounds. In the case of
a prover far from the verifier (i.e m > 2n − 1), the protocol can achieve a security of 2−20

against these three attacks in 28 rounds. We further prove the security against TF using a
reasonable limitations on the number of transmission per round.

The following table presents the performance of the protocol against the different types of
attacks and the sufficient number of rounds to reach a level of security of 2−10 and 2−20, we
consider a noise such that Emax = 5%n and Tmax = 0. In the row of DF with m = 1, we also
indicate the necessary number of rounds due to the attack in Appendix A. For DF, the bound
is given in Section 3. The best MF-attack described in Appendix B reaches the upper bound
given in Th. 2. The upper bound for DH given in Section 5 is already the best DH-attack
possible. So the number of rounds in the MF and DH rows are necessary and sufficient.

Attack m n (security level 2−10) n (security level 2−20)

DF 1 [33-37] [76-114]

2 32 76

9 14 34

m > 2n− 1 11 25

MF all m 13 28

DH all m 10 21

TF (s = 27) 26 17 51

40 14 34

93 12 28

TF (s = 210) 20 78 259

30 19 56

120 12 28

Table 1: pufDB security

We compare with other distance bounding protocols. The parameters in pufDB, SKI [5, 6],
FO [14, 33] and DBopt [7] are taken such that the protocols achieve 99% completeness with
a noise of 5% as it is described in [7]. (I.e., we adjust Emax to have 99% completeness and
obtain different figures than in the previoous table.) If we take the worst case for pufDB (i.e.
m = 1), pufDB needs more rounds than the previous protocols to achieve the same security
level. However, for m large, pufBD is more efficient than SKI and FO to achieve security
against DF, DH and MF and it almost reaches the optimal bounds of DBopt.

Protocol n (security level of 2−10) n (security level of 2−20)

SKI 48 91

FO 84 151

DBopt (DB2,DB3) 24 43

pufDB (m = 1) 345 474

pufDB (m > 2n− 1) 26 45

Table 2: Efficiency of the protocols against DF, DH and MF for completeness 99% under noise
5% (Tmax = 0)
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A A DF-attack found for m = 1

Teff is the counter of the number of time P chooses to answer late. If Teff < Tmax, P can
choose to answer late at the round i or to compute each of the 2m possible Ci and to send for
ri the most probable response to be accepted. For m = 1 the probability that the 2 possible
challenges Ci output the same bit is 1

2 . If the 2 different Ci output the same bit ri then the
malicious prover can send ri to the verifier and we bound the winning probability by 1. If the
Ci output different results and if Teff < Tmax then P can choose to send a random response
ri late, the winning probability is 1. P can give at most Emax wrong responses.

Let us define ω the number of rounds in which the two challenges Ci give opposite results.
Then ω − Tmax is the number of rounds when the Ci return opposite results for which P did
not choose to use the joker of answering late. So ω − Tmax is the number of rounds P has to
guess.

Let us define j the number of errors in the case when the possible Ci give opposite results.

For DF, when the adversary is the most powerful (m = 1), we have the probability for
this attack to succeed equal to:

P [win] =

Tmax∑
ω=0

(
n

ω

)
1

2n
+

n∑
ω=Tmax+1

(
n

ω

)
1

2n

(
1

2

)ω−Tmax min(Emax,ω−Tmax)∑
j=0

(
ω − Tmax

j

)

For Emax = 5%n, Tmax = 0 we have a security of 2−10 in 41 rounds and a security of 2−20 in
84 rounds.

B A MF-attack

A is a malicious actor. Before receiving ci from V , he sends a guessed challenge c′i to a far away
prover P . He receive r′i from P . If c′i = ci then the adversary sends r′i to V . Pre-asking gives
an extra chance to pass a round. But if ci is incorrectly guessed, any subsequent pre-asking
request request will return some useless random bits. So, the best strategy is to pre-ask until
c′j 6= cj , then to continue with the impersonation attack strategy.

We define K the number of rounds passed before that c′j 6= cj .

We define k0 = n− Tmax −K the number of rounds the adversary has to guess.

The adversary succeed if he makes at most Emax errors while guessing.

If K ≥ n − Emax − Tmax then the adversary wins. The adversary has to make guesses
when K < n− Emax − Tmax i.e k0 > Emax. ω is the number of error made by the adversary.
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So, the probability for the adversary to win with the most powerful attack we known is:

Pmax[win] =
1

2n−Emax−Tmax
+

1

2n+1−Tmax

n−Tmax∑
k0=Emax+1

Emax∑
ω=0

(
k0
ω

)

=
1

2n−Emax−Tmax
+

1

2n+1−Tmax

Emax∑
w=0

[(
n− Tmax + 1

ω + 1

)
−
(
Emax + 1

ω + 1

)]

=
1

2n−Emax−Tmax
+

1

2n+1−Tmax

Emax∑
w=0

(
n− Tmax + 1

ω + 1

)
− 2Emax+1

2n+1−Tmax +
1

2n+1−Tmax

=

(
1

2

)n+1−Tmax Emax+1∑
w=0

(
n+ 1− Tmax

w

)
This is equal to the bound found in Th. 2. For Emax = 5%n, Tmax = 0 we have a security

of 2−10 in 13 rounds and a security of 2−20 in 48 rounds.
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