Spritz—a spongy RC4-like stream cipher and hash function

Ronald L. Rivest
MIT CSAIL
Cambridge, MA 02139
rivest@mit.edu

Jacob C. N. Schuldt

Research Institute for Secure Systems

AIST, Japan
jacob.schuldt@aist.go. jp

November 10, 2014 (rev. August 31. 2016)

Abstract

This paper reconsiders the design of the stream cipher
RC4, and proposes an improved variant, which we
call “Spritz” (since the output comes in fine drops
rather than big blocks.)

Our work leverages the considerable cryptanalytic
work done on the original RC4 and its proposed vari-
ants. It also uses simulations extensively to search
for biases and to guide the selection of intermediate
expressions.

We estimate that Spritz can produce output with
about 24 cycles/byte of computation. Furthermore,
our statistical tests suggest that about 28! bytes of
output are needed before one can reasonably distin-
guish Spritz output from random output; this is a
marked improvement over RCA[T]

In addition, we formulate Spritz as a “sponge (or
sponge-like) function,”[7], which can ABSORB new
data at any time, and from which one can SQUEEZE
pseudorandom output sequences of arbitrary length.
Spritz can thus be easily adapted for use as a cryp-
tographic hash function, an encryption algorithm, or
a message-authentication code generator. (However,
in hash-function mode, Spritz is rather slow.)

Keywords: RC4, Spritz, stream cipher, sponge
function, Absorb, Squeeze, encryption, message au-
thentication code, cryptographic hash function.

However, see Appendix [F| for references to more recent
work that suggest that our estimates of the work required to
break Spritz may be optimistic.

1 Introduction

The cryptographic stream cipher RC4 was designed
by Ronald L. Rivest in 1987 for RSA Data Security;
it then appeared in RSA’s cryptographic library and
was used first on a commercial basis in Lotus Notes.

RC4 was at first a trade secret, but the algorithm
was reverse-engineered and published in 1994. Pseu-
docode for RC4 is given in Figure

Since then, RC4 has been widely studied and has
been adopted for use in TLS and other standards. It
has been said that RC4 is (or was) the most widely
used stream cipher in the world.

It is a maxim that cryptographic algorithms never
get stronger over time, only weaker. RC4 is no excep-
tion. Studies of the algorithm have revealed that the
key scheduling algorithm, the state update algorithm,
and the output function all have statistical or other
weaknesses. While RC4 is still usable (with care),
the algorithm is now over 25 years old and deserves
retirement and replacement by newer, stronger, al-
ternatives.

This paper considers the space of “RC4-like”
stream ciphers, and proposes one, which we call
Spritz, that might make a suitable replacement.
Spritz attempts to repair weak design decisions in
RC4, while remaining true to its general design prin-
ciples. We do not consider other stream-cipher pro-
posals here, and expect that for many applications
other word-oriented architectures may be a better
choice than the byte-oriented RC4/Spritz style.

We thus consider the question, “What should the

KSA(K)

fori =0to N —1
S[i] =i

ji=0

fori =0to N —1
j = 7+ S[i] + K[i mod K. length]
Swap (S, S[j])

i=j=0

N O U W N

PRG()

i=1+1

j =7+ 5[
Swap(STi], S[j])
z = S[S[i] + S[j]]

return z

T W N

Figure 1: Pseudocode for the original RC4. KSA is the RC4 key setup algorithm, which initializes 4, j, and
the permutation S based on a supplied key K. PRG is the pseudorandom generator—each call to PRG
updates the state and produces one byte (modulo N) of output. All additions are modulo N.

original RC4 have looked like?”

Our proposal Spritz not only provides a “drop-in
replacement” for RC4, with much improved security
properties, but also provides a suite of new crypto-
graphic functionalities based on its new “sponge-like”
construction and interface.

(We reserve “RC4” to refer to the original RC4
as described in Figure Our new proposal will be
referred to as “Spritz.”)

Today’s crypto-designer has the advantage of faster
processors: simulations and statistical analyses are
much easier to perform. Intel’s 386 (introduced in
1985) had a clock rate of 16MHz; today’s processors
are multi-core and run at 2GHz. We rely on exten-
sive simulations of alternative designs to inform our
design choices. (Indeed, our computations required
about five “core-months” on modern CPU’s!)

RC4 embodies the following architectural choices:

Large state space: The RC4 state is very large,
compared to most previous stream cipher pro-
posals.

Permutation of Zy: The major portion of the
state is a 256-byte array S that represents a
permutation of Zy = {0,1,..., N — 1}; in the
original RC4 we have N = 256, so RC4 is byte-
oriented.

Fast update and output: The next-state function
changes (swaps) only two bytes of the array S;

the output function depends only on two regis-
ters i, j, and a few bytes of the array S.

Scalable (variable N): The RC4 cipher is well-
defined for any value of N > 2, not just N = 256.
This is helpful when analyzing RC4 variants. We
call a value in {0,1,...,N — 1} a “byte” (or N-
value) throughout.

Arbitrary key-length: The length L of the sup-
plied key is arbitrary (up to 256 bytes in RC4).
Each element of the key is a byte.

Non-invertible key setup: The key-setup algo-
rithm is designed to be difficult to invert: it
should be hard to derive the key, given the initial
RC4 state.

Invertible update function: The next-state func-
tion is invertible. This provides some assurance
that the period of the next-state function will be
large.

Complex output function: The output function
is a complex (yet simple to evaluate) function
of the current state.

Given the cryptanalysis that has been performed
on RC4 to date, the above design principles seem
sound. Yet the particular design choices made for
RC4 (such as the choice of key setup algorithm) seem
to have been not as strong as one might like. In this
paper, we revisit these particular design decisions,

INITIALIZESTATE(N)

1l i=j=k=2z=a=0
2 w=1

3 forv=0toN —1

4 Slv] = v

ABSORB(I)

1 for v =0to I.length —1
2 ABSORBBYTE(I[v])

ABSORBBYTE(b)

1 ABSORBNIBBLE(LOW(b))
2 ABSORBNIBBLE(HIGH(b))

ABSORBNIBBLE(Z)
1 if a=|N/2]
2 SHUFFLE()

3 Swap(S[al, S[|N/2] + 2])
4 a=a+1

ABSORBSTOP()

1 if a=|N/2]

2 SHUFFLE()
3 a=a+1

SHUFFLE()

WHIP(2N)
CRUSH()
WHIP(2N)
CRruUSH()
WHIP(2N)
a=20

ST W N

Figure 2: Pseudocode for Spritz. The main interface routines are INITIALIZESTATE, ABSORB (and ABSORB-
StoP), and SQUEEZE. The state consists of byte registers i, j, k, z, w, and a, and an array S containing a
permutation of {0,1,..., N — 1}. Section [2]illustrates the use of Spritz for encryption, decryption, hashing,
MAC’s, and authenticated encryption. Section [3|describes the above procedures in detail. These procedures
have as an implicit argument the current state @Q; components of @ (such as the permutation Q.S) are
referred to by component name (e.g. S) rather than fully qualified names (as in Q.S) for brevity. This is
the entire code, other than the definitions of LOW and HIGH in equations 7. When N is a power of 2,

WHIP(r)
1 forv=0tor—1
2 UPDATE()

3 dow=w+1
4 until cep(w, N) =1

CRUSH()

1 forv=0to |N/2] -1

2 if S[v] > S[N —1—1]
3 SwaP(S[v], SN — 1 —v])
SQUEEZE(r)

1 ifa>0

2 SHUFFLE()

3 P = ARRAY.NEW(r)

4 forv=0tor—1

5 Plv] = DriIp()

6 return P

DriIp()

1 ifa>0

2 SHUFFLE()

3 UPDATE()
4 return OUTPUT()

1 z=S[j+S[i+S[z+k]

2 return z

the last two lines of WHIP are equivalent to w = w + 2.

and suggest improved alternatives. Our Spritz pro-
posal may serve as a “drop-in replacement” for RC4
with improved security; it also provides additional
cryptographic capabilities, such as hashing, derived
from its reformulation with a sponge-like construc-
tion.

2 Sponge functions

One objective of our RC4 redesign is to reformulate
RC4 as a “sponge function.” RC4 is a natural fit
for adaptation to the sponge function paradigm, as
it already has a large state space.

As proposed by Bertoni et al. in their seminal pa-
per [7], a sponge function has a function ABSORB that
absorbs variable-length input into the state, and a
function SQUEEZE that produces variable-length out-
put from the state. Both functions may change the
state, using a single state-space permutation func-
tion f.

Many properties of the sponge function method
are derived assuming that f is an arbitrary such
permutation—that there are no properties of f that
may be useful to an adversary, and that the adver-
sary’s best attacks are “generic” (they would work
for any f).

In Spritz, the SHUFFLE procedure corresponds to
the state-space permutation f of the sponge function.
However, SHUFFLE is not a state-space permutation,
but a many-to-one map (due to its invocations of
CRUSH), so the correspondence is not precise. SHUF-
FLE does invoke procedure WHIP, however, which
is such a state-space permutation. The sponge-like
character of Spritz, based on SHUFFLE, WHIP, and
CRUSH, is discussed further in Section [7.1

Spritz does not fit the sponge function model ex-
actly, for several reasons:

e the main component of the state is not a
bit string, but rather a permutation S of
{0,1,...,N — 1},

e the state changes involve swapping bytes of the
permutation S, not exclusive-oring new input
into the state, and

e the SHUFFLE primitive is not a permutation of
the state space, but a many-to-one mapping,

e the production of output using SQUEEZE does
not involve f (that is, SHUFFLE), but is based
rather on a separate state-change operation
(Drip) that makes only local state changes, and

e Spritz includes a novel additional primitive, AB-
SORBSTOP, that has the effect of absorbing a
special “stop-symbol” that is not part of the or-
dinary input alphabet.

Nonetheless, our work is inspired by that of Bertoni et
al., and we consider the design of Spritz to be at least
“sponge-like” or “spongy,” if not strictly speaking a
sponge function by their definition.

Bertoni et al. define the “capacity” ¢ of a sponge
function to be the amount of information in the state
that is protected from changes when new input is
absorbed, and that is only changed when f is applied.

The strength of a cryptographic function based on
a sponge construction depends upon its capacity—for
many security properties an adversary who wishes
to break the property must find a collision within
the state space, which requires time O(2¢/?) for a
generic sponge construction [7], when the capacity ¢
is measured in bits.

The capacity of Spritz (with N = 256) is at least
896 bits (112 bytes), since the last 112 bytes of S
are untouched by ABSORB except through calls to
SHUFFLE. The Spritz capacity is actually a bit larger,
since we should include registers ¢, j, k, w, and z in
our count; doing so yields a total Spritz capacity of
c = 936 bits.

The capacity of Spritz exceeds that of the new
SHA-3 standard hash function as adopted (Keccak)
in all SHA-3 configurations except SHA-3 with 512-
bit outputs (when the Keccak capacity is 1024 bits).

The following subsections illustrate the versatil-
ity of sponge functions, following Bertoni et al. [7].
The reader may also wish to consult the Spritz pseu-
docode in Figure [2[while reading these subsections,
as our presentations have some aspects adapted for
use with Spritz.

Our focus in this paper is on Spritz as a stream ci-
pher. Although we formulate our proposal for Spritz

in the sponge function framework, additional evalu-
ation is definitely needed regarding the use of Spritz
in these additional sponge function modes.

2.1 ABSORBSTOP function

We extend the sponge function interface by introduc-
ing the function ABSORBSTOP(); calling ABSORB-
SToP() is equivalent to absorbing a special “stop”
symbol (“17) that is outside the ordinary input al-
phabet. The intent is to provide a simple clean way to
separate different inputs being absorbed. The name
“stop” was chosen as it is reminiscent of the use of the
word “STOP” for the full stop character in telegrams.

2.2 Encryption

Here is pseudocode illustrating the use of a sponge
function for encryption and decryption.

ENCRYPT(K, M)

1 KEYSETUP(K)
2 C = M + SQUEEZE(M. length)
3 return C

DECRYPT(K, C)

1 KEYSETUP(K)
2 M = C — SQUEEZE(M. length)
3 return M

KEYSETUP(K)

1 INITIALIZESTATE()
2 ABSORB(K)

ENCRYPT uses key-setup algorithm KEYSETUP to
initialize the state and absorb the key K, then adds
modulo N each byte of the message M with the cor-
responding byte of the output of SQUEEZE, yielding
ciphertext C. Procedure DECRYPT is identical, ex-
cept for switching M and C, and replacing addition
modulo N with subtraction modulo N. Note that the
key, message, and ciphertext are all byte sequences
(sequences of values modulo N).

Addition/subtraction modulo N are used instead
of the more traditional exclusive-or, for consistency

with the design goal that Spritz should work for all V,
not just IV that are powers of 2. Of course, when N is
a power of 2, one could use exclusive-or rather than
addition/subtraction. We call this variant Spritz-xor,
but do not further discuss this variant in this paper.

To encrypt with an IV (initialization vector or
nonce) IV, one should, after the key is input, call
ABSORBSTOP procedure to separate the two fields,
and then input the IV, as follows.

ENCRYPTWITHIV (K, IV, M)

1 KEYSETUP(K); ABSORBSTOP()
2 ABSORB(IV)

3 C = M + SQUEEZE(M. length)
4 return C

2.3 Hash function

The following procedure HASH produces an r-byte
hash of the input message (byte sequence) M.

HasH(M, r)

1 INITIALIZESTATE()

2 ABSORB(M); ABSORBSTOP()
3 ABSORB(r)

4 return SQUEEZE(r)

HasH first absorbs the input message M (a byte
sequence). Next, it call ABSORBSTOP to signal the
end of the message M, and the beginning of the next
input, which is the desired hash length, r.

For definiteness, assume that r is represented as a
base-N integer, high-order byte first, with no leading
Z€ros.

We achieve functional separation by including the
value r as part of the input; we do not want a hash
function producing 16-byte outputs to behave any-
thing like its cousin that produces 32-byte outputs.
Without including r as input, the 16-byte output
would merely be a prefix of the 32-byte output.

Domain separation We next illustrate using a
sponge function to provide “hashing with domain
separation” —different functional behavior for differ-
ent domains or applications.

Let J denote the domain or application name.

The DoMHASH procedure uses the new ABSORB-
STOP procedure to cleanly separate the input of the
domain name J from the input of the message M to
be hashed; the hash length r is also provided as in-
put, as in HASH, for providing functional separation
based on output length.

DomHASH(J, M, r)
INITIALIZESTATE()
ABSORB(J); ABSORBSTOP()
ABSORB(M); ABSORBSTOP()
ABSORB(r)

return SQUEEZE(r)

Uk W N~

2.4 Message Authentication Code

(MAC)

The following pseudocode shows how one may imple-
ment a MAC (Message Authentication Code) easily
using a sponge function.

MAC(K,M,r)
INITIALIZESTATE()
ABSORB(K); ABSORBSTOP()
ABSORB(M); ABSORBSTOP()
ABSORB(r)

return SQUEEZE(r)

T W N

2.5 Authenticated Encryption with
Associated Data

The procedure AEAD(K, Z, H, M, r) takes as input
a key K, a nonce Z (a value that will never be used
again), a “header” H (this is the “associated data”
that needs to be authenticated but not encrypted),
and a message M (to be both encrypted and authen-
ticated), and returns a two-part result consisting of
the encryption of message M followed by an r-byte
authentication tag (computed over K, Z, H, and M).
The receipient may need to be sent Z and H if she
doesn’t otherwise know these values; we assume she
knows K and r. See Bellare et al. [6] for more dis-
cussion of AEAD mode.

AEAD(K,Z, H,M,r)

INITIALIZESTATE()

ABSORB(K); ABSORBSTOP()

ABSORB(Z); ABSORBSTOP()

ABSORB(H); ABSORBSTOP()

Divide M into blocks My, My, ..., My,

each N/4 bytes long except possibly the last.

fort:=1tot
Output C; = M, + SQUEEZE(M;. length)
ABSORB(C;)

ABSORBSTOP()

ABSORB(r)

Output SQUEEZE(T)

Uk W N~

— O © oo

_ =

The N/4-byte block size is chosen to equal the
Spritz input block size for ABSORB, for efficiency.

2.6 Deterministic Random Bit Gener-
ator (DRBG)

A sponge function is naturally a deterministic
random-bit generator (DRBG), see NIST [23], or
pseudo-random number generator (PRNG), as might
be used for example in \dev\random. The sponge
state is the “entropy pool.” New random input can
be included at any time using ABSORB, and output
may be extracted at any time using SQUEEZE.

3 Spritz specification

This section gives a precise specification of Spritz.
See Figure [2 for Spritz pseudocode.

3.1 Notation and terminology

N: All values in Spritz are modulo-N (in Zy =
{0,1,...,N — 1}). The default value of N is 256,
so Spritz is byte-oriented. For convenience, we con-
sistently refer to a value in Zy as a “byte”, or an
“N-value.”

Addition, etc.: The symbol “+” always means ad-
dition modulo N, and “—” always means subtraction
modulo N.

Registers: Spritz uses a small number of registers,
each holding one byte (N-value). RC4 used two reg-
isters: ¢ and j. For Spritz we consider designs with
six such registers: ¢, j, k, w, 2z, and a.

To the original registers ¢ and j we add a new reg-
ister k, with similar function.

Registers w, z, and a have special functions.

Register w is modified every time that WHIP is
called, but is always relatively prime to IV; register ¢
is incremented by w whenever it is changed.

Register z holds the last value produced by the
output function.

Finally, we let a denote the number of nibbles (half-
bytes) that have been absorbed since the start or the
last SHUFFLE of the permutation S. Spritz is in “ab-
sorbing mode” if a > 0, and is in “squeezing mode”
(that is, ready to squeeze output) if a = 0.

Permutation S: As with RC4, the array S of
length N holds a permutation of Zy = {0,1,..., N —
1}. Subscripts for S are interpreted modulo N.

State: The state Q; of Spritz at time ¢ consists of
the register values and S. We denote components of
state Q as 1, j, k, w, z, and a for the registers, and S
for the S array; an element of array S is denoted with
a subscript (e.g. S[i]).

Spritz thus has at most

#(N)= NOSN!

states.

In the pseudocode of Figure [2| the state () is an
implicit argument to all functions, and components
of the state are for brevity written as ¢, j, S[¢] and
so on rather than Q.i, Q.j, Q.S[Q.i].... Later, in
Section [5} we may make the state explicit sometimes
as a first argument, writing ABSORB(Q), I) instead of
ABSORB(I), etc.

Key: The cryptographic key K is a length L array
K[0..L — 1] where each element of the key is a byte
(N-value). The length L of K may be any nonnega-
tive integer (including zero).

We let K, denote the set of all possible L-byte keys;
the size of Kr is N*. Abusing notation, we let K ()

denote a procedure that returns a randomly-chosen
key from K.

Nibbles: It is convenient to consider a byte as con-
sisting of two half-byte “nibbles.” Let D = [v/N],
and let “nibble” mean a D-value (that is, a value in
{0,1,...,D —1}).

A byte b can be represented as a pair (z,y) of nib-
bles, where b = D - x + y. Here x is the high-order
nibble and y is the low-order nibble. In radix-D no-
tation, b = xy.

Let Low(b) and HIGH(b) denote the low and high
order nibbles z and y, respectively, of a byte (N-
value) b:

Low(b) =
HIGH(b) =

b mod D (1)
[b/D] (2)

For the default N = 256 we have D = 16; each
eight-bit byte contains two four-bit (hexadecimal)
nibbles, which can be easily computed using shifting
and masking.

Other notation: Let [x] and |z] denote the ceil-
ing and floor functions (the least integer not less than
z, and the greatest integer not more than z, respec-
tively).

If 2 and y are bytes (N-values), z +y denotes their
sum modulo N. If z and y are byte sequences of the
same length, x + y denotes the element-by-element
sum modulo N. We similarly extend the notation
z — y (subtraction modulo N).

We let lg(z) denote the base-2 logarithm of z.

3.2 Spritz procedures

This section gives a more detailed description of the
Spritz procedures given in Figure

InitializeState: INITIALIZESTATE sets Spritz to its
standard initial state.

It sets the five registers i, j, k, z, and a to zero,
and sets register w to 1. It also sets S[0..N — 1] to
the identity permutation on {0,1,.., N —1}.

The registers have the following functions. Each
time the function DRIP is called, register i increases

by w modulo N, while registers j and k change pseu-
dorandomly. Register a counts how many key nibbles
have been absorbed in the current block (since initial-
ization or the last call to SHUFFLE), and register z
records the last output byte produced. Register w is
always relatively prime to N—when N is a power of
two this just means that w is odd—and w is updated
every time WHIP is called.

Absorb: ABSORB takes as input a variable-length
input sequence I (of N-values), and updates the
Spritz state based on I. Here I might be a crypto-
graphic key, or a portion of a message being hashed.

Spritz does not need to apply a “padding rule”
to I to extend it out to a multiple of some desired
block size, since input is implicitly padded out to a
multiple of N/4 bytes with copies of the stop sym-
bol “17. (The stop symbol is perhaps best viewed
as a “missing nibble” —calling ABSORBSTOP() incre-
ments register a that counts the number of absorbed
nibbles, without actually absorbing any nibble.)

Spritz absorbs the input I in blocks of | N/2] nib-
bles each (low-order nibble of each byte first). After
each block is absorbed SHUFFLE is executed.

For N = 256, an input block of N/2 = 128 four-bit
nibbles contains 512 bits (64 bytes) of information, so
each Spritz input block has a size (512 bits) equal to
the typical block size of many existing hash functions.

Spritz may ABSORB additional input even after it
has produced some output, since ABSORB merely up-
dates the current state without re-initializing it. This
corresponds to “duplex mode” in sponge function ter-
minology (see Bertoni et al.[7]), where new input is
provided (using ABSORB) alternately with new out-
put being taken (using SQUEEZE).

For a given starting state ABSORB will map dis-
tinct inputs I to distinct states, up to the point where
SHUFFLE is first called. Similarly, for any fixed in-
put I, distinct starting permutations S yield distinct
final permutations, up to the point where SHUFFLE
is first called.

An input I may be supplied in pieces, each of non-
negative length, using ABSORB on each piece. It
doesn’t matter how the input is divided into pieces,
since ABSORB(X);ABSORB(Y') is equivalent to AB-

SORB(XY).

AbsorbByte: ABSORBBYTE updates the current
Spritz state based on a given input byte (N-value) b.
It splits the byte into two nibbles, and updates the
state based on each nibble, low-order nibble first.

AbsorbNibble: See Figure [3] ABSORBNIBBLE
first tests whether Spritz is “full” of absorbed data
(that is, whether a = |N/2]); if so, it calls SHUF-
FLE to mix in the absorbed data and reset a to 0.
ABSORBNIBBLE then updates the state based on the
value of the supplied nibble (D-value) z, by exchang-
ing S[a] and S[|N/2] + z]. (Note that if N > 2 then
[N/2| 4+ D < N, so the expression S[|N/2] + z] will
not access beyond the end of S.)

AbsorbStop: ABSORBSTOP is the same as AB-
SORBNIBBLE, except that no swapping is done.

ABSORBSTOP() may be used to ensure that the in-
put from a preceding ABSORB and that of a following
ABSORB are cleanly separated. More precisely: in
general ABSORB(X);ABSORB(Y) is fully equivalent
to ABSORB(XY); putting a ABSORBSTOP() between
the two calls to ABSORB ensures that this is not true.
The call to ABSORBSTOP is equivalent to absorbing
a special stop symbol “ 1”7 that is outside the usual
input alphabet.

The use of ABSORBSTOP in Spritz replaces the tra-
ditional use of “padding rules.”

Shuffle: SHUFFLE whips, crushes, whips, crushes,
and then whips again. Each whip “randomizes the
state.” Because CRUSH is called between each pair
of calls to WHIP, the effects of CRUSH are not eas-
ily determined by manipulating the input, and any
biases introduced by CRUSH are smoothed out be-
fore SHUFFLE returns. The parameter 2N on the
size of each WHIP is chosen to produce a strong iso-
lation of SHUFFLE inputs, outputs, and CRUSH in-
puts/outputs from each other.

Whip: WHIP(r) calls UPDATE a specified number r
times. The Spritz system is “being whipped” (stirred
vigorously) without producing output. The registers

012 3456 7,89 ab;cdef
S:|9[alo]8[4]5]6][7|8 2 1 b|c|d]e]f
a spots usedF= :(N/Q —a) free=
) N/2 o D N2-D
Pile Quarry Reserve
. N/2+D ~ N2-D
Outer Inner

Figure 3: ABSORBNIBBLE diagram. Here N = 16, D = f\/ﬁ] = 4. The array S may be viewed as an
N/2-element “Pile”, a D-element “Quarry”, and an (N/2 — D)-element “Reserve.” In sponge function
terminology, Reserve is the “inner state” Inner while the Pile and the Quarry form the “outer state” Outer.
From the standard initial state, the four nibbles 1210 have just been absorbed, so that a = 4 and Pile
elements S[0..3] have been updated by exchanges with elements of the Quarry determined by the nibbles.
Elements that have been exchanged are shown in gray. Absorbing nibble with value 3 next would exchange
the Pile element S[4] = 4 with the element from the Quarry at S[N/2 4+ 3] = b and then increase a to 5.
The Reserve (inner state) is never modified by ABSORBNIBBLE; the capacity of Spritz is the size of Reserve,
plus the number of bits in the registers.

S:lc|5[1|7[4|0]|8|2|6|e|lalb|d|3|9]|f

Figure 4: CrRUsH diagram. The N elements of S are considered as N/2 pairs, and each pair is sorted into
increasing order. The input is at the top, and the output at the bottom. Each horizontal line represents a
two-element sorting operation. This operation provides “forward security” for the SHUFFLE operation.

and permutation S are given new values that is a
complex function of their initial values, with larger
values of r resulting in more complexity. The use
of WHIP reflects a common recommendation for im-
proving RC'4. The name “WHIP” is intended to sug-
gest the whipping of an egg or of cake batter.

Every WHIP call also updates w to the next larger
value that is relatively prime to N. When N is a
power of two, the last two lines of the WHIP code
in Figure [2] are equivalent to w = w + 2. The new
value for w is always relatively prime to N, so that
the repeated execution of i = i 4+ w in the first line
of UPDATE causes i to cycle between all values mod-
ulo N. (The cycle followed depends on w.)

Crush: See Figure @l CRUSH provides a non-
invertible transformation from states to states.
CRUSH intentionally “loses information” about the
current state. More precisely, it maps 27V/2 states to
one, since each of N/2 pairs of compared values in S
are sorted into increasing order. See Section

The name “CRUSH” is intended to suggest the
many-to-one nature of its mapping.

Squeeze: SQUEEZE is the main output function for
Spritz. The name derives from the terminology of
sponge functions (see Bertoni et al. [7])—think of
squeezing water from a sponge. The input r says
how many output bytes (N-values) to produce.

SQUEEZE begins (even if r = 0) by calling SHUFFLE
if @ > 0, thereby shuffling any unabsorbed input and
putting Spritz into “squeeze mode” (a = 0).

SQUEEZE is otherwise equivalent to calling DRIP
r times, and returning an array of the r outputs re-
turned.

Drip: Procedure DRIP is the basic pseudorandom
output routine designed in Sections (3.1 each call
to DRIP first calls SHUFFLE if necessary (when a > 0)
to ensure that Spritz is in “squeezing mode,” updates
the Spritz state using UPDATE, and produces one out-
put byte using OUTPUT.

The test for @ > 0 and call to SHUFFLE are placed
both here, in DRIP, and in SQUEEZE, so that DRIP
may be safely called directly by applications, ensuring

10

that absorbed data is always SHUFFLE’d before any
output is produced.

Update: UPDATE advances the system to the next
state by adding w to 4, giving 7 and k their next
values, and swapping S[i] and S[j]. Since w is rela-
tively prime to N, the value of ¢ cycles modulo N as
repeated UPDATEs are performed.

Output: OUTPUT computes a single byte (N-
value) to output, saves this value in register z, and
returns this value.

This completes our description of the basic Spritz
procedures.

4 Attacks on RC4

We now begin our discussion of the design of Spritz,
starting with a brief review of some of the known
weaknesses of and attacks on the original RC4.

We do not provide a comprehensive review of RC4
attacks, since our emphasis is on the design of Spritz,
but the design of Spritz should be informed by the
weaknesses in RC4. For excellent extended reviews
of RC4 attacks, see Paul and Maitra [25] and Sen
Gupta et al. [30]. Our sketch here follows the outline
given in [30].

Weak keys and key recovery from state An
ideal key-setup algorithm would take as input a
key K and produce as output an RC4 state that is in-
distinguishable (to an adversary who does not know
the key) from a state chosen uniformly at random
from the set of all states. Unfortunately, the RC4
KSA did not come close to this goal.

Initial key-dependent biases In 1995, Roos [28]
observed that for small v, S[v] is highly correlated
with the bytes of key K.

Key collisions One would hope that different
keys would not produce the same state (a ‘“key
collision”)—since this means the colliding keys pro-
duce the same output keystream. But Matsui [I§]

produced such collisions for RC4; further work by
Chen and Myaji [9] has produced short (22-byte) col-
liding key pairs.

Key recovery from internal state The problem
of recovering the key from the internal state was first
studied by Paul and Maitra [24], with further con-
tributions made by Biham and Carmeli [§], Khazaei
and Meier [14], Akgiin et al. [I], and Basu et al. [5].
These results are still being improved, and one can
reasonably conclude that RC4 provides little protec-
tion against key recovery from the internal state.

Key recovery from the keystream Fluhrer et
al. [IT] demonstrated that the approach used by WEP
(the Wired Equivalent Privacy protocol, part of the
802.11 standard), in which a secret key is concan-
tenated with a public key to form the working key,
is insecure—they give a powerful related-key attack.
See comments by RSA Labs [29], improvements to
the attack by Klein [15], and the implementations of
this and related attacks by Stubblefield et al. [34] [33],
and by Tews et al. [35]. See also Maitra et al. [16].
Sepehrdad et al. [32] provide a practial attack on
WPA (the WEP successor) that recovers the RC4
key using 23® packets and complexity 2. Also see
Sepehrdad’s PhD thesis [31].

State recovery attacks A number of authors
have work on the RC4 state recovery problem—
determining the RC4 internal state from a known
output sequence.

Maximov and Khovratovich[20] have perhaps the
most efficient of the known state-recovery attacks,
with a complexity of 224! (both time and keystream)
under reasonable assumptions.

Goli¢ and Morgari [12] describe an interesting it-
erative probabilistic algorithm that can reconstruct
an internal RC4 state from an output keystream of
length 2*! using computation time 268,

Biases and Distinguishers The output biases of
RC4 are of two types: short-term, and long-term.
Short-term biases disappear once enough keystream

11

bytes are produced (or discarded as part of the KSA),
while long-term biases are persistent.

In 2001, Fluhrer, Mantin, and Shamir [II] pub-
lished an analysis of RC4’s Key Scheduling Algorithm
(KSA), identifying a number of weak keys, for which
knowledge of a small part of the secret key implies
knowledge of many bits of the KSA output state.
Fluhrer et al. [I1] recommend discarding the first N
output bytes (so that the corresponding state updates
become part of KSA).

Paul and Maitra [25, p. 26] show that the RC4
KSA has “intrinsic” biases—changing the KSA update
function for j will not remove such biases. However,
increasing the number of KSA rounds will help.

In 2002, Mironov published an analysis [22] of RC4
focused on determining the number of initial output
bytes that should be discarded in order for the re-
sultant state to be indistinguishable from random,
using a coupling argument; he recommends that at
least 512 bytes be so discarded.

In 2001, Mantin and Shamir [I7] published an dis-
tinguishing attack on RC4 based on the observation
that the second keystream byte is biased towards
zero: it occurs with probability about 2/N, instead
of the desired 1/N.

In 2013, Alfardan et al. [2] gave plaintext attacks
on RC4 based on extensive statistical analyses of
single-byte biases in the RC4 output. Their work
stimulated the work presented in this paper.

Our own statistical tests support the conclusion
that the RC4 rule for updating j, (j = j + S[i]) was
not a particularly good one.

5 Desired Security Properties

This section describes some desired security proper-
ties for Spritz, formalizing issues identified in the last
section.

There are two security parameters for Spritz: the
value N and the length L of the supplied crypto-
graphic key (for those operations that have a key).
In practice, we expect to have N = 256 and L = 16
or L = 32. In theory, we want security levels specified
in terms of N and L.

We assume that L < N/4, so that the number of

pairs of keys is a negligible function of the number of
Spritz states.

The capacity ¢ = ¢(IV) of Spritz is also relevant for
some security analyses (as it is for sponge functions);
for Spritz we have ¢(N) = ([N/2] — D) - 1g(N) bits
where D = [V/N].

We introduce useful notations for Spritz states
and the transformations of states induced by vari-
ous Spritz procedures. In general, we use) to denote
some Spritz state, Qy to denote the state produced by
INITIALSTATE(), and Qr() to denote a state picked
uniformly at random.

We use abbreviations for the 12 Spritz procedures
of Figure[2} a procedure’s abbreviation consists of the
first two letters of each of its words (which is the same
as its first two letters, except for two-word names:
ABBY for ABSORBBYTE), ABNI for ABSORBNIB-
BLE, and ABST for ABSORBSTOP.)

We denote the state resulting from applying pro-
cedure XY to state @ as Q.XY() (even in cases like
DRIP or SQUEEZE whose usual output convention is
to return a byte or byte sequence; here our notation
reflects the state transformation made).

The output produced by a given expression is de-
noted by underlining the expression, so that

Q0-5Q(r).SqQ(s)

denotes the r 4+ s byte output produced by running
SQUEEZE(r) and then SQUEEZE(s) from the initial
state, and

Qo-AB(M).AB(r).Sq(r)

denotes the r-byte Spritz HASH of message M (see
Section .

Our notation allows AB’s (ABSORB’s) argument to
be a generalized input sequence that may contain in-
stances of the stop symbol “ 17, with the natural
interpretation, as in:

Q.AB(K 1 M) = Q.AB(K).ABST().AB(M)

We call an ordinary input sequence a “string” if it
contains only ordinary input characters (N-values);
we call it a generalized input sequence or a “chain”
if it may also contain stop symbols but does not

12

end with a stop symbol. The definition of a chain
is merely for notational convenience, as a real im-
plementation would not have access to stop symbols,
and would use the equivalent ABSORBSTOP interface.

For further notational conciseness, we introduce
two useful notations.

Definition Let
Q(K) = Q.AB(K).SQ(0) .

Thus, Qo(K) is the state of the Spritz system after
key setup with key K and the system enters “squeez-
ing mode”.

Definition Let

Z(Q,r) = Q.5q(r) .

Thus, Z(Q,r) is the output produced by starting in
state @@ and squeezing out r bytes. In particular,

Z(Qo(K),r) = Qo-AB(K).SQ(r)

is the r-byte Spritz string produced for key K.

Pseudorandom state from key It should be in-
feasible for an adversary to distinguish between the
behavior of the procedure Qgr(), which produces a
state generated uniformly at random, and the behav-
ior of the procedure Qo(Kr()), which randomly picks
an L-byte key K using the procedure K, () and then
returns Qo (K).

By “infeasible” we mean that an adversary that
only uses enough computing resources sufficient to
test an e fraction of Ky, (although it could use some
other approach) will have an advantage over distin-
guishing by random guessing of at most e.

Collision resistant key setup It should be infea-
sible for an adversary given a randomly chosen state
@ = Qr() to find two distinct chains K and K’ such
that

Q(K) = Q(K).

That is, the adversary should have a negligible chance
of finding a pair of chains that result in the same

state when when Spritz absorbs them and prepares
for squeezing.

See [I8, 9] for examples of such state collisions
for RCA4.

Here “infeasible” means that adversary that runs
in time ¢ has a chance O(t?/#(N)) of finding such a
state collision, for some integer d. We allow d > 2
here in this definition, to account for the effective
reduction in state-space caused by CRUSH.

(One would like this definition to work for @ = Qg
as well. However, this variation doesn’t actually
work as a definition, since there exist programs which
merely print K and K’ in this case (collisions exist!).
Perhaps it is enough to say that “in real life” one
should never see an example of such a collision. See
Rogaway [27] for an excellent discussion of these is-
sues.)

One-wayness from key (pre-image resistance):
It should infeasible for an adversary given @ =
Qo(K) for a randomly chosen key K = Kp() to
find a key K’ € K, (possibly equal to K) such that
Q = Qo(K").

That is, it should not be possible to determine an
encryption key from the Spritz state produced from
key setup.

Here “infeasible” means that an adversary does not
have significantly more chance of success inverting
the key-to-state mapping of Spritz than he would in-
verting a random 2-to-1 mapping ¢ from a set S
of size #(N) to itself where only one in N¢ elements
of § are allowed as pre-images, and where c¢ is the
capacity of Spritz.

Output-collision-resistance: It should be infea-
sible for an adversary given a random state @Q =
Qr() and an integer input 7 > 0 to find two distinct
chains K and K’ such that

That is, an adversary should have a negligible chance
of finding two chains for which Spritz produces the
same r-byte output. Of course, this definition only
makes sense if the running time of the adversary is

13

constrained to be o(N("/?)), so we make this restric-
tion.

Pseudorandomness: The SQUEEZE output
should appear random (and uncorrelated with the
key).

That is, Z(Qo(K),r) for a randomly chosen key
K € Kr should be indistinguishable to an adversary
from an r-byte string chosen randomly from the set
of all r-byte strings.

Resistance to related-key attacks: The Spritz
SHUFFLE procedure is designed to prevent related-
key attacks, as it is designed to “randomize” the state
prior to any SQUEEZE.

We do not propose here a definition of security
against related-key attacks.

Resistance to length-extension attack The se-
curity of the given MAC construction depends on
the details of how ABSORB and SQUEEZE are imple-
mented. For example, it is vulnerable to a length-
extension attack [21], Sec. 9.64, p. 355] if one can de-
termine MAC(K, M’, r) from MAC(K, M, r), where
M’ is an extension of M (that is, M followed by ad-
ditional characters).

Spritz is not vulnerable to a length-extension at-
tack, since SHUFFLE is called before any output from
SQUEEZE is produced, preventing the output from be-
ing used to determine the internal state just after M
was absorbed.

6 Design Process

This section describes the design process and our ra-
tionale for various design decisions.

At a high level, the design splits into two parts:
the design of the input process (ABSORB), and the
design of the output process (SQUEEZE). The design
of ABSORB is described in Section [7} the design of
SQUEEZE is described in Section

The design of the ABSORB is motivated by the
sponge construction of Bertoni et al. [7]. Absorbing
input only affects a portion of Spritz state; there is a
reserve “capacity” that is untouched by the input.

The design of the SQUEEZE procedure first deter-
mined a set of seven robust candidates for the Up-
DATE procedure that updates registers ¢, j, and k.
Then four strong candidates for OUTPUT to produce
an output byte z from the registers and the permuta-
tion S were determined. This resulted in twenty-eight
candidates for DRIP; statistical evaluation provided
guidance on the final selection.

We first describe here our use of postfix notation
for expressing alternatives, say a few words about our
use of chi-squared tests for uniformity of distribution,
and comment on the issue of “bad keys” and bad
starting states.

Postfix notation We used the following post-
fix (reverse polish) notation for expressions. We
have register names i, j, k, w, z;constants1, 2,
.. .; addition modulo N represented as p (binary op-
erator); and S for array access (unary operator). (We
used “p” for “+” so postfix expressions are usable as
identifiers in programs.) For example:

i8jssps = S[S[i] + S[S[4]]] -

Statistical tests Our statistical tests are mostly
tests for uniformity of distribution: we arrange a set
of trials, and categorize each trial’s outcome as one
of g possible outcomes, for some value g. We expect
that the test (for a good cipher) will yield an empiri-
cal distribution that is uniform, or extremely close to
uniform. Large deviations from uniformity are inter-
preted as conclusive evidence that the cipher design
is flawed.

A simple test might look at just the distribution
of Spritz output values, so ¢ = N. A more elaborate
test might examine pairs of successive output values,
so ¢ = N2. Similar tests for correlations between var-
ious register values, various output values, and values
in the S table form the heart of our statistical testing.

We measure deviation from uniformity using Pear-
son’s chi-squared statistic:

q—1

X2 = Z(Ou - Eu)Z/Eu

u=0

(3)

where u ranges over the ¢ possible outcomes, O,, de-
notes the number of outcomes observed of type u,

14

and F, denotes the expected number of outcomes of
type u (which is E,, = T'/q where T is the total num-
ber of trials). Our experiments are consistent with
the guidance that E, should always be at least five.

Our chi-squared statistics should asymptotically be
well approximated by the chi-squared distribution
with an appropriate number df of degrees of free-
dom. We consider here as an approximation for our
chi-squared statistic the chi-squared distribution with
g — 1 degrees of freedom. We thus use df = ¢ — 1
when ¢ = N? and df = N? — 1 when ¢ = N3.
Our chi-squared statistic might in some cases be bet-
ter approximated by a chi-squared distribution with
somewhat fewer degrees of freedom, but we do not
attempt to optimize df here, and use df = ¢ — 1 con-
sistently to provide us with a good approximation via
the chi-squared distribution. We’ll use the expected
value of this chi-squared distribution to provide us
with an estimate of the expected value of our chi-
squared statistic, and use the standard deviation of
this chi-squared distribution to provide us with an
estimate of the standard deviation of our chi-squared
statistic.

We consider a uniformity test to fail if its chi-
squared statistic is greater than four standard de-
viations above its expected value (more precisely:
greater than four four standard deviations of the ap-
proximating chi-squared distribution above the ex-
pected value of the approximating chi-squared distri-
bution).

Testing small-N versions The RC4/Spritz de-
sign nicely supports various values of V. Statistical
tests for small N detects biases more easily. The lit-
erature on RC4 (e.g. Paul and Maitra’s book [25])
shows that many biases show up as probabilities that
are roughly (1/N)? away from their expected values.
Since a deviation of size € requires about 1/e? sam-
ples to detect, testing designs with small values of N
dramatically reduces the amount of testing required.
We test designs with N as small as 16; a design that
fails at NV = 16 is deemed not suitable for use with
larger N. That said, our final design has also been
tested extensively at N = 256.

Short cycles and bad keys Many of our tests
involve generating a pseudorandom sequence from
a given starting state, and then computing a chi-
squared statistic based on output values. However,
we wish to be sensitive to the possibility of the
existence of bad starting states that cause Spritz to
enter short cycles or otherwise exhibit poor behavior.
Therefore our experiments also test a large number
of different randomly chosen starting states. We
summarize the results by computing the chi-squared
statistic corresponding to the combined distribution
of all pseudorandom sequences generated for these
starting states. In this way, the existence of bad
starting states will be made readily apparent, as
those starting states will make a large contribution
to the chi-squared statistic of the combined distri-
bution. (For many experiments, we additionally
considered the maximum chi-squared statistic of the
individual starting states, but since the chi-squared
statistic of the combined distribution better captures
statistical abnormalities present across different
starting states, we found this to be a better overall
measure.)

See Paul and Maitra [25] Section 5.1] for further
discussion of “Finney cycles” (a set of bad starting
states for RC4).

7 ABSORB design

The ABSORB procedure accepts a sequence of input
data, and effects a corresponding transformation of
the state.

If the data sequence is not too long (at most
N/4 bytes), then the transformation is one-to-one
(collision-free). That is, it is not the case that there
exists a starting state and two (short) inputs such
that the effect of ABSORB on the given starting state
under the two inputs results in the same final state.

ABSORBNIBBLE design Because of the sponge-like
framework adopted for Spritz, a portion of the state
(called the “Reserve” or the “capacity”) is left un-
touched by any ABSORB operations.

15

Moreover, because S is a permutation and not just
an array of bytes, ABSORB must proceed by swapping
elements of S.

To keep the elements of S chosen for swapping from
ranging over all of S, we decompose an input byte b
into its two nibbles x and y, and can then use x and
y to compute indices for elements to swap. More pre-
cisely, the two elements swapped for an input nibble z
are S[a] (where a is the number of elements absorbed
previously, since initialization or the last SHUFFLE),
and S[N/2 + z], and similarly for y.

These ABSORB operations never modify the last
112 bytes of S; the “capacity” of Spritz is 896 bits
(112 bytes) plus the size of the registers.

We note that an observer examining the state of
S both before and after a nibble is absorbed can de-
termine exactly the value of the nibble that was ab-
sorbed, since each ABSORBNIBBLE changes exactly
one value in Pile, and the value is determined by see-
ing which position in Quarry was changed.

ABSORBSTOP design ABSORBSTOP performs
identically to ABSORBNIBBLE, except that it per-
forms no swapping. The counter a giving the number
of absorbed nibbles is nonetheless advanced.

(We note for the record that an alternate, but much
less efficient, way to implement ABSORBSTOP would
be simply as a call to SHUFFLE.)

7.1 SHUFFLE procedure design

This section discusses the design of SHUFFLE.

Roughly speaking, SHUFFLE follows the oft-made
suggestion that RC4 key-setup should be followed by
discarding a certain number of output bytes (which
is effectively what WHIP does). However, SHUFFLE
also includes two calls to CRUSH, which makes the
SHUFFLE state-transformation many-to-one. Finally,
we note that SHUFFLE is not only invoked whenever
Spritz switches from “absorbing mode” to “squeezing
mode”; it is also invoked after every N/4 bytes of
input are absorbed.

7.1.1 WHIP design

Calling WHIP(r) procedure is intended to be effec-
tively equivalent to calling DRIP() a total of r times
in a row, and throwing away the output. It “stirs the
pot” without producing any output.

This near-equivalence can be seen by noting that
Drip calls UPDATE and then OUTPUT, whereas the
WHIP loop body has only a call to UPDATE. The
equivalence is not exact, since OUTPUT also modifies
Spritz state: it modifies register z.

We note that WHIP need not start with ¢ = 0; it
starts with whatever value ¢ had previously.

The calls to WHIP in SHUFFLE specify r = 2N:
two passes over S are made. The rationale choosing
r = 2N are as follows:

e Mironov [22] recommends that RC4 should be
modified to discard “at least 512 bytes”. This
corresponds to r = 2N when N = 256. His the-
ory suggests that some biases may not disappear

until at least the third or fourth pass.

The construction of Spritz does not have any
mixing going on before the call to SHUFFLE; so
Mironov’s recommendation might be interpreted
as discarding at least 768 bytes in the context of
of Spritz, since Spritz doesn’t have the initial
pass that the RC4 KSA does.

SHUFFLE has three calls to WHIP, so the “effec-
tive argument” is really r = 6N. (The call to
CRUSH between the two calls to WHIP may have
some effect on the “effective r7.)

Our experiments (see Section gives evidence
that our choice of r = 2N for each call provides
strong mixing and removal of biases.

7.1.2 CRUSH design

CRUSH implements a many-to-one mapping of states
to states, by considering the N elements of S as N/2
pairs, and sorting each pair into increasing order.
Thus, CRUSH implements a 2™¥/2 to 1 mapping.

The rationale for including CRUSH in Spritz is to
prevent an adversary who somehow learns a Spritz
state (say by stealing a Spritz device while it is still

16

in use) from “working backwards” to determine the
key K. Once the adversary works backward to the
CRuUsH call, he is faced with trying to decide which
of the 2V/2 predecessor states is the right one to con-
tinue working on.

CRUSH thus provides a “firewall” against this kind
of backwards reasoning attack. (See Biham et al. [g]
and Khazaei et al. [I4] for such attacks on RC4.)
CRUSH therefore provides some “forward security.”

The “information loss” effected by CRUSH may be
viewed from different perspectives, depending on the
application and context in which Spritz is used.

In an encryption context (say with 16-byte keys),
the number of reachable states (N16) is small com-
pared to the total number #(N) of states, and it
would be very surprising if there exists two such
reachable states that CRUSH caused to collide, as-
suming that WHIP acts pseudorandomly. One would
expect, with very high probability, that each encryp-
tion key will produce a distinct pseudorandom output
stream. (More precisely, this probability is negligible
until the number of possible keys starts approach-
ing the square root of the number of states divided
by 228 and even with 80-byte (640-bit) keys we are
nowhere near this threshold.)

The fact that the calls to CRUSH in SHUFFLE sit
between calls to WHIP means that the state input
to CRUSH has already been “randomized” (support-
ing the argument in the previous paragraph), and it
means that the pattern in the output of CRUSH (that
is, that each pair of elements in S is now in sorted
order), is diffused and lost by the following WHIP.

In a hashing context, inputs may be long, so that
state collisions are in any case unavoidable. The rel-
evant question would be whether the use of CRUSH
provides any leverage for an adversary to defeat
the collision-resistance property desired for the hash
function. Because of the WHIPs preceding the calls
to CRUSH, and because the capacity of Spritz puts
severe restrictions on the manipulations an advesary
can make to the state by supplying input to be ab-
sorbed, we conjecture that CRUSH provides no effec-
tive help to an adversary trying to defeat hash func-
tion collision-resistance.

When Spritz is initialized with secret parameters
(e.g., a key for encryption or for a MAC), one may be

concerned about timing attacks, where an adversary
might be able to gain information about the secret
by observing the time taken to perform key setup.
For example, if the Spritz state doesn’t fit in the ma-
chine’s cache, the running time may depend on the
exact pattern of access to the entries of S. Similarly,
the conditional branching in CRUSH may cause tim-
ing variations. With some machines, implementing
CRusH as follows will help, as both branches of the
if statement will have equal running time.

CRruUSH()

1 forv=0to N/2-1

2 x = S[v]

3 y = S[N—1-1]

4 ifx>y

5 S =y

6 SIN-1—9v] ==z
7 else

8 S] =z

9 SIN—-1—-v] =y

The loss of timing information from CRUSH may
actually not be a concern in most applications. One
may consider a “leaky” version of Spritz that leaks
N/2 bits from each call to CRUSH, leaking which
branch of the if was taken in each loop iteration. Be-
cause each call to CRUSH is surrounded by two calls
to WHIP, the information leaked is conjectured to be
of little use to an adversary. The exception would be
for the adversary who is “working backwards” to find
the initial state, given the state at some later time;
in this case the available timing information has re-
moved the protection provided by CRUSH.

SHUFFLE actually calls CRUSH twice, so an adver-
sary trying to work backwards through SHUFFLE is
facing an (apparent) 2V to one mapping.

The use of a many-to-one map like CRUSH means
that Spritz provides a protection that is not pro-
vided by ordinary sponge constructions: if the com-
plete state of the system is compromised (a possibility
not contemplated in the sponge framework), then the
presence of CRUSH means that the adversary can no
longer easily “reason backwards” to infer the key.

We note that in the sponge function paper [7], in
addition to random permutations, random transfor-

17

mations are considered. But the in-degree of a node
in the range of such a random transformation is still a
small constant, compared to the exact in-degree 2V/2
achieved by CRrRUSH. Therefore, Spritz is qualita-
tively rather different from the transformation-based
sponge constructions previously studied.

7.2 SHUFFLE, WHIP, and CRUSH

We evaluated the quality of the mixing provided by
SHUFFLE and WHIP by examining the correlations
between the bytes of random keys that were ab-
sorbed, and the bytes of the subsequent SHUFFLE or
WHipP output. We found that two WHIP passes did
not eliminate all correlations, but that three passes
did a very good job. SHUFFLE, which contains six
WHIP passes, as well as two calls to CRUSH also did
an excellent job of eliminating such correlations.

In addition to studying the correlations between
inputs and outputs, we also studied the correlations
between various pairs of output bytes in S, when ran-
dom keys were absorbed and then the state was shuf-
fled. SHUFFLE was again found to perform well at
eliminating such correlations. (Details to be provided
in expanded version of this paper.)

8 SQUEEZE design

We systematically and automatically generated a
large number of SQUEEZE candidate designs, then fil-
tered them for desired structural properties and lack
of detectable statistical biases. Then the simplest
remaining candidate was chosen as our proposal for
Spritz.

A structured search We begin our description of
how Spritz (specified above) was designed.

We consider only designs having the following gen-
eral form. Here E;, Ej, and E, represent expressions
(to be determined) of the registers i, j, k, z and the
array S in the current state. This framework does not
show the call to SHUFFLE (if a > 0) present in the fi-
nal formulation, as it is not relevant to the statistical
properties we are now considering. This formulation
allows for additional flexibility not only in terms of

the expressions used, but also in the use of the new
register k, as well as allowing the previous output
value z to be used in an expression.

Drip()

1 UppATE()
2 return OUTPUT()

UPDATE()

1 1=i4+w

2 j=E;

3 k=E,

4 Swapr(S[i], S[j])
OutpuT()

1 z=F,

2 return z

We thus consider only designs involving variant
choices for E;, Ey, and E,.

We retain the RC4 design decision that register ¢
cycles modulo N, in order to ensure faster mixing
of the state array S. The increment to i is, however,
now a value w that need only be relatively prime to NV
to ensure that ¢ cycles through all values modulo N.

Which such expressions F;, Ej are good crypto-
graphically?

Section describes our approach to the design of
the UPDATE procedure, while Section describes
our approach to the design of the OUTPUT procedure.

8.1 UPDATE procedure design

This section explains our design of the UPDATE pro-
cedure.

8.1.1 Another register

The “sponge-like” formulation of Spritz and its po-
tential applications put a heavier burden on the Up-
DATE function design. For example, when Spritz is
used as a hash function it should be infeasible to find
hash function collisions.

We retain the RC4 design principle that register i
should just cycle modulo NV, so that each position of
S may be swapped at least once in each round. But

18

the increment w is now an arbitrary value relatively
prime to N.

At a high level, the purpose of UPDATE is to com-
pute a pseudorandom value j so that S[i] and S[j]
may be swapped. The value of j should not only be
pseudorandom, but hidden from an observer of the
output, so that the observer may not track the evo-
lution of S.

When Spritz is used as a hash function, however,
it is important that the output depend on every por-
tion of the input. The RC4 swapping strategy risks
moving an element of S into an earlier position where
it may not be touched for a while, and its value may
not affect the evolution of S quickly enough.

We thus adopt the design principle that UPDATE
should not only swap S[i] with S[j], but should also
ensure that Spritz state evolution depends on those
two values swapped.

One could try to achieve this goal by having the
update rule for j depend upon both S[i] and S[j], via
an update rule such as j = S[i] + S[j]. There are,
however, two bytes of information in S[i] and Sj],
and only one byte of information may be stored in j.
Many pairs S[i],S[j] will have identical effects on j,
resulting in the possibility of easily-found collisions.

We conclude that a single hidden register j is insuf-
ficient for our purposes, and we add a new register k
to the design of Spritz.

8.1.2 Initial criteria

We list some simple syntactic criteria for F; and Ej:

invertibility The expressions E; should contain ex-
actly one occurence of variable j, to ensure that
the expression j = Ej is invertible (reversible).
Similarly for Fj: it should contain k.

must have S We only consider expressions that in-
volve at least one application of S. We further-
more require that the update rule for j depends
on SJi], and similarly, that the update rule for k
depends on S[j].

no SS We only consider expressions that do not ap-
ply S twice in a row.

no doubling We do not consider expressions that
add a value to itself.

no constants We do not use numerical constants.

length We do not consider expressions for j and k
whose combined length (in postfix) exceeds 14.

We automatically generated all (E;, Ej) candidate
pairs satisfying the above criteria. This resulted in
a total of 147 candidate pairs, the simplest having a
combined length of 10 (see Appendixfor a complete
list of the candidate pairs).

Based on this list of candidate pairs, we proceeded
by systematically removing candidate pairs not pro-
viding desirable properties explained in the following
sections.

8.1.3 “Swap-proof” candidates

We require more generally that the update rules
should be “swap-proof”: it should not be possible
to swap two S values accessed during two successive
DRiP calls and leave the evolution of j and k unaf-
fected. This more general condition helps keep an ad-
versary from constructing collisions by swapping two
values in S that are updated on consecutive calls to
DRip. Testing this condition was done by extensive
simulations; noting if performing such swaps could
leave the evoluation of j and k unaffected.

Among the 147 candidate pairs, 122 were found
not to be “swap-proof” by the above described test,
leaving just 25 candidate pairs.

8.1.4 Initial statistical testing

For the purpose of constructing a good output func-
tion F,, it is desirable that the values of j and k
obtained by evaluating th