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Abstract. The confidentiality notion of security against selective opening attacks considers adver-
saries that obtain challenge ciphertexts and are allowed to adaptively open them, thereby revealing
the encrypted message and the randomness used to encrypt. The SO notion is stronger than that
of CCA security and is often required when formally arguing towards the security of multi-user
applications. While different ways of achieving correspondingly secure schemes are known, as they
generally employ expensive asymmetric building blocks like lossy trapdoor functions or lossy en-
cryption, such constructions are routinely left aside by practitioners and standardization bodies.
So far, formal arguments towards the SO security of schemes used in practice (e.g., for email
encryption) are not known.
In this work we shift the focus from the asymmetric to the symmetric building blocks of PKE and
prove the following statement: If a PKE scheme is composed of a key encapsulation mechanism
(KEM) and a blockcipher-based data encapsulation mechanism (DEM), and the DEM meets spe-
cific combinatorial properties, then the PKE scheme offers SO security, in the ideal cipher model.
Fortunately, as we show, the required properties hold for popular modes of operation like CTR,
CBC, CCM, and GCM. This paper not only establishes the corresponding theoretical framework of
analysis, but also contributes very concretely to practical cryptography by concluding that selective
opening security is given for many real-world schemes.

1 Introduction

Public key encryption in the multi-user setting. The most important security notion for public key
encryption is indistinguishability under chosen ciphertext attacks (IND-CCA). The modeled setting is
as follows: One user generates a key pair, a second users encrypts one out of two messages to her, and
the adversary shall find out which one it was. Here, importantly, the adversary controls the distribution
of the two messages and may request decryptions of ciphertexts of its choice.

The definition of selective opening (SO) security is more general as it takes into account the fact
that the public key setting allows for more than two parties. Concretely, in the SO setting one user
generates a key pair, many users encrypt messages to her key (of course using fresh and independent
random coins), and the adversary’s goal is to derive any information about any of the messages. Again the
adversary controls the message distribution (individually for each participant, but also joint distributions
are possible) and may have arbitrary ciphertexts decrypted. On top of that the adversary is allowed to
‘open’ any subset of ciphertexts, i.e., to corrupt the encrypters, for instance by breaking into their
computers, and thereby reveal the messages they encrypted and the random coins they used. (In some
applications, like in secure multi-party computation, users even deliberately reveal their messages and
randomness to make their computations publicly verifiable.) Selective opening security is provided if in
this situation the confidentiality of the remaining ‘unopened’ ciphertexts is still provided. Intuitively, as
all the encryptions occur independently of each other, IND-CCA should imply SO security. Unfortunately,
formal analysis reveals that this is not the case.

Notions of Selective Opening security. Formalising suitable notions of SO security has proven to be highly
non-trivial. Since encrypted messages may depend on each other, opening some ciphertexts might readily
leak information on messages encrypted in other (unopened) ciphertexts. Thus, it is not even clear what
it means for unopened messages to remain confidential. Two flavours of SO security have been studied
in prior work: notions based on indistinguishability (IND) and notions based on simulatability (SIM).
? An extended abstract of this paper appears in the proceedings of ASIACRYPT 2016. This is the full version.
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For IND based notions an adversary may open arbitrary ciphertexts and is challenged to tell apart the
originally encrypted messages from fresh messages that occur as likely as the original messages. One
usually restricts the distribution on the messages to be efficiently conditionally resamplable to ensure an
efficient security game (weak-IND-SO). We obtain the security experiment for full-IND-SO if arbitrary
distributions may occur in the experiment.

In contrast, SIM based notions do not suffer from such a restriction. In a nutshell, a scheme is SIM-
SO secure if for every SO adversary there exists a simulator that can compute the same output without
seeing any ciphertexts. Importantly, such simulators may corrupt senders to learn the messages they
(virtually) encrypted.

Both flavours may be considered for passive (CPA) and active (CCA) adversaries whereby, in contrast
to the CPA setting, a CCA adversary has access to a decryption oracle (with the usual restrictions).
While any of IND-SO-CPA/CCA and SIM-SO-CPA/CCA implies standard IND-CPA/CCA security, the
converse does not hold in general. Only partial results are known for the reverse direction, as discussed
below. We give more details on the relations amongst the notions of selective opening security at the end
of Section 2.

Motivation and contribution. Considering that users in practice may be exposed to the threats modeled
in the SO context, and given that the classical indistinguishability notions are formally weaker than
notions of SO security, the following question is immediate: Are users ‘safe’ if they trust in a PKE
scheme designed towards the goal of ‘only’ indistinguishability? At least in theory, if the security proof of
the scheme considers exclusively indistinguishability, information about encrypted messages is potentially
exposed to the adversary in SO-like attack scenarios. This observation calls for a thorough SO analysis
of all encryption schemes covered by international standards. The facts that all PKE schemes that so
far were formally confirmed to be SO secure require heavy building blocks like lossy trapdoor functions
(except for one work discussed in Previous work) and that practitioners systematically avoid such building
blocks for reasons of efficiency suggest that likely most practical schemes would not withstand SO attacks.
Fortunately, however, in this paper we show that virtually all practical PKE constructions provably do
meet SO security.

Our approach is complementary to that of prior works: Instead of analysing the asymmetric building
blocks of constructions, we observe that SO security is tightly linked to the security of the symmetric
building blocks (i.e., symmetric encryption). We particularly show that in the KEM/DEM paradigm
for hybrid encryption certain properties of blockcipher-based DEMs suffice to render the overall PKE
scheme SO secure (in the ideal cipher model for the blockcipher) independently of the properties of the
KEM.

In a nutshell, our result is: We introduce a specific property called simulatability for blockcipher-based
DEMs that is met by virtually all DEMs used in practice and guarantees that if a corresponding DEM is
combined with any IND-CCA secure KEM then the overall hybrid PKE scheme achieves SIM-SO-CCA
security (in the ideal cipher model). Intuitively, simulatable DEMs can be thought of as some form of
non-committing encryption in the realm of symmetric cryptography, while non-committing encryption
is usually considered in the public-key setting.

Previous work. The SO problem dates back to [12] where the selective decommitment problem was studied
for commitment schemes. SO notions for encryption first appeared in [3,6]. The first IND-SO-CPA secure
encryption scheme in the standard model was given in [3] and is based on lossy encryption (cf. [28]).

Also deniable encryption [7] and techniques from non-committing encryption [8,21] already allow for
constructing SO secure PKE ([11]). Lots of separation and implication results for SO and standard no-
tions were studied in [5,2,6,25]. While it was known that IND-CPA implies weak-IND-SO-CPA when
messages are drawn pair-wise independently (cf. [12,5]), the implication does not hold for arbitrary (effi-
ciently conditionally resamplable) distributions as recently reported [24]. The result makes use of heavy
machinery as public-coin differing-inputs obfuscation and correlation intractable hash functions. How-
ever, IND-CPA implies weak-IND-SO-CPA for low-dependency distributions such as Markov chains [19].
Further, SIM-SO secure constructions in the standard model usually (cf. [27]) suffer in efficiency from
bit-wise encryption to ensure efficient openability. See [23] for current research. SIM-SO-CCA secure
PKE schemes are constructed in [18] employing extended HPSs and cross-authentication codes. This line
of research continued in [27] identifying special properties of a KEM, allowing to construct SIM-SO-CCA
secure PKE, when combined with strengthened cross-authentication codes.

2



Note that we only consider SO security under sender corruption. Only recently, security under receiver
corruption gained some attention [20] while already defined in [1].

Work analysing the SO security of standardised widely-used encryption schemes appeared only re-
cently (in the random oracle model). Concretely, Heuer et al. [22] consider Hashed ElGamal encryption
(standardised under the name of DHIES) and RSA-OAEP. Unfortunately, the considered versions of
these PKE schemes assume messages that are not longer than the output lengths of the used random
oracle, i.e., less than 128 bytes. This severely limits the results of [22] for practical considerations.

Paper organization. The structure of this paper is as follows: In the preliminaries (Section 2) we recall
basic cryptographic notions, including the definition of SO security. We identify certain combinatorial
properties of DEMs, present our main result and highlight the proof ideas in Section 3. Further, we

– show that most widely-used DEMs (in particular those standardised by NIST: CTR, CBC, CCM,
and GCM) meet these properties. (Section 4)

– prove that any DEM satisfying standard security notions and these properties in combination with
any KEM that meets a standard security notion, results in a SIM-SO-CCA secure PKE scheme in
the ideal cipher model. (Section 5)

We conclude in Section 6.

2 Preliminaries

For n ∈ N let [n] := {1, . . . , n}. We distinguish the following operators for assigning values to variables:
We use symbol ‘←’ when the assigned value results from a constant expression (including the output of
a deterministic algorithm), we write ‘←U ’ when the value is sampled uniformly at random from a finite
set, and we write ‘←$’ when the assigned value is the output of a randomised algorithm. If f is a function
or a deterministic algorithm that maps elements from a set A to a set B we use notations f : A→ B and
A → f → B interchangeably. If f is a randomised algorithm we correspondingly write A → f →$ B,
or simply f →$ B in case the algorithm takes no input. If A × B → f → C is a function then for any
a ∈ A we write fa = f(a; ·) for the partially applied function B → fa → C; b 7→ f(a, b). If R denotes
the randomness space of a (randomised) algorithm A→ f →$ B, we may write A×R→ f → B for its
deterministic version. If A → f → B is a function or a deterministic algorithm we let [f ] := f(A) ⊆ B
denote the image of A under f ; if A → f →$ B has randomness space R we correspondingly let
[f ] := f(A×R) ⊆ B denote the set of all its possible outputs. When the union A∪B of two sets A,B is
a disjoint union, i.e., if A∩B = ∅, we annotate this with A∪· B. For a bitstring x of length at least l we
write msbl(x) for its left-most l bits and lsbl(x) for its right-most l bits (‘most/least significant bits’).

Our security definitions are based on games played between a challenger and an adversary. These
games are expressed using program code and terminate when a ‘Stop’ command is executed; the argument
of the latter is the output of the game. We write Pr[G⇒ 1] for the probability that game G terminates
by running into a ‘Stop with 1’ instruction.

We next define partial permutations and blockciphers. In our proofs, the former play an important
role for the abstraction of the latter.

Definition 1 (Permutation, partial permutation, blockcipher). For a finite domain D we denote
the set of all permutations on D with P(D) and the set of all partial permutations on D with PP(D).
Precisely, a relation R ⊆ D × D is a

::::::
partial

:::::::::::
permutation if αRβ, α′Rβ ⇒ α = α′ and αRβ, αRβ′ ⇒

β = β′; relation R is a
::::::::::
permutation if in addition |R| = |D| holds. A

:::::::::
blockcipher with key space K and

domain D is a family (Ek)k∈K of permutations Ek ∈ P(D).

We associate with a partial permutation R ∈ PP(D) the partial functions D → R+ → D and
D → R− → D that evaluate R left-to-right and right-to-left, respectively. For instance, if (α, β) ∈ R
then R+(α) = β and R−(β) = α. We write Dom(R) and Rng(R) for the domain and range of R+, i.e.,
for the sets {α ∈ D | ∃β : (α, β) ∈ R} and {β ∈ D | ∃α : (α, β) ∈ R}, respectively. If α /∈ Dom(R) and
β /∈ Rng(R) we denote with R← R∪{(α, β)} the operation of ‘programming’ R such that R+(α) = β and
R−(β) = α for the updated R, which is again a partial permutation. Note that any partial permutation
can be completed to a (full) permutation by adding sufficiently many such pairs (α, β) to it. More

3



importantly, if a partial permutation is selected according to the uniform distribution over some subset
of PP(D), it can be extended to a permutation uniformly distributed in P(D) by adding random such
pairs (α, β) to it.

Our definition of keyed hash functions subsumes both message authentication codes and universal
hash functions.

Definition 2 (Keyed hash function). A
::::
keyed

:::::
hash

::::::::
function for a message space M consists of a

key space K, a tag space T , and an efficient function khf of the form K ×M→ khf → T .

We proceed with specifying the syntax and functionality of DEMs. As a corresponding notion of
authenticity we define integrity of ciphertexts [4]. In a nutshell, a DEM offers this feature if no adversary
with access to an encapsulation oracle can find a fresh ciphertext that corresponds to a valid message, i.e.,
is not rejected by the decapsulation algorithm. Relevant in our work is in particular the corresponding
one-time notion where the adversary can pose at most one encapsulation query.

Definition 3 (DEM). A
::::
data

::::::::::::
encapsulation

:::::::::::
mechanism (DEM) for a message space M consists of a

finite key space K, a ciphertext space C, and a pair of efficient algorithms DEM = (D.Enc,D.Dec) of the
form

K ×M→ D.Enc→ C K × C → D.Dec→M∪· {⊥} ,
where symbol ‘⊥’ may be used to indicate errors. Correctness requires that for all k ∈ K and m ∈ M, if
D.Enc(k,m) = c then D.Dec(k, c) = m.

Definition 4 (INT-CTXT secure DEM). A data encapsulation mechanism is (τ, qd, ε)-OT-INT-
CTXT secure if all τ -time adversaries A that interact in the OT-INT-CTXT experiment from Figure 1
and issue at most qd queries to the D.Dec oracle have an advantage of at most ε, where we define

AdvOT-INT-CTXT
A := Pr[OT-INT-CTXT⇒ 1] .

This definition can be generalised to (τ, qe, qd, ε)-INT-CTXT security by removing line 04 from the ex-
periment and bounding the number of queries to the D.Enc oracle by qe.

Game OT-INT-CTXT
00 C ← ∅
01 k ←U K
02 AD.Enc,D.Dec

03 Stop with 0

Oracle D.Enc(m)
04 If |C| > 0: Abort
05 c← D.Enc(k,m)
06 C ← C ∪ {c}
07 Return c

Oracle D.Dec(c)
08 If c ∈ C: Abort
09 m← D.Dec(k, c)
10 If m 6= ⊥:
11 Stop with 1
12 Return ⊥

Fig. 1. Security game for defining OT-INT-CTXT security of DEMs. We write ‘Abort’ as an abbreviation for
‘Stop with 0’. Observe that line 04 ensures that the D.Enc oracle is queried at most once.

In most applications a DEM is combined with a KEM to obtain (hybrid) PKE [10]. We recall the
concepts of KEMs and PKE below, and include an indistinguishability definition for KEMs.

Definition 5 (KEM). A
:::
key

::::::::::::
encapsulation

:::::::::::
mechanism (KEM) for a finite key space K consists of a

public-key space PK, a secret-key space SK, a ciphertext space C, and a triple of efficient algorithms
KEM = (K.Gen,K.Enc,K.Dec) of the form

K.Gen→$ PK × SK PK → K.Enc→$ K × C SK × C → K.Dec→ K ∪· {⊥} ,

where symbol ‘⊥’ may be used to indicate errors. The randomness space of K.Enc is typically denoted
with R. Correctness requires that for all (pk, sk) ∈ [K.Gen], if (k, c) ∈ [K.Enc(pk)] then K.Dec(sk, c) = k.

Definition 6 (IND-CCA secure KEM). A KEM is (τ, qd, ε)-IND-CCA secure if all τ -time adver-
saries A = (A1,A2) that interact in the IND-CCAb experiments from Figure 2 and issue at most qd queries
to the K.Dec oracle have an advantage of at most ε, where we define

AdvIND-CCA(A) := |Pr[IND-CCA0 ⇒ 1]− Pr[IND-CCA1 ⇒ 1]| .
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Game IND-CCAb
00 C ← ∅
01 (pk, sk)←$ K.Gen
02 st ←$ AK.Dec

1 (pk)
03 (k∗0 , c∗)←$ K.Enc(pk)
04 k∗1 ←U K
05 C ← C ∪ {c∗}
06 b′ ←$ AK.Dec

2 (st, c∗, k∗b )
07 Stop with b′

Oracle K.Dec(c)
08 If c ∈ C: Abort
09 k ← K.Dec(sk, c)
10 Return k

Fig. 2. Security games for defining IND-CCA security of KEMs. We write ‘Abort’ as an abbreviation for ‘Stop
with 0’.

Definition 7 (PKE). A scheme for
::::::::
public-key

::::::::::
encryption (PKE) for a message space M consists of

a public-key space PK, a secret-key space SK, a ciphertext space C, and a triple of efficient algorithms
PKE = (P.Gen,P.Enc,P.Dec) of the form

P.Gen→$ PK × SK PK ×M→ P.Enc→$ C SK × C → P.Dec→M∪· {⊥} ,

where symbol ‘⊥’ may be used to indicate errors. The randomness space of P.Enc is typically denoted
with R. Correctness requires that for all (pk, sk) ∈ [P.Gen] and m ∈ M, if c ∈ [P.Enc(pk,m)] then
P.Dec(sk, c) = m.

Construction 1 (Hybrid encryption) Take a DEM for a message spaceM and a KEM for the key
space of the DEM. Then the algorithms in Figure 3 form the hybrid PKE scheme. The randomness space
of P.Enc coincides with the randomness space of K.Enc.

Proc P.Gen(r)
00 (pk, sk)← K.Gen(r)
01 Return (pk, sk)

Proc P.Enc(pk,m, r)
02 (k, c1)← K.Enc(pk, r)
03 c2 ← D.Enc(k,m)
04 Return 〈c1, c2〉

Proc P.Dec(sk, 〈c1, c2〉)
05 k ← K.Dec(sk, c1)
06 If k = ⊥: Return ⊥
07 m← D.Dec(k, c2)
08 Return m

Fig. 3. Hybrid construction of PKE from a KEM and a DEM. We write 〈c1, c2〉 for the encoding of two ciphertext
components into one. For clarity we make the randomness used by P.Gen and P.Enc explicit.

We present now the main security definition of this paper: confidentiality under selective opening
attacks. Our model is based on works of [6,18] Find a discussion of its details below.

Definition 8 (SIM-SO-CCA secure PKE). Consider the experiments from Figure 4. For a function
ε : N→ R≥0 we say that a PKE scheme is (τ, τ ′, qd, ε)-SIM-SO-CCA secure if for all τ -time adversaries
A = (A1,A2) that interact in the r-SO-CCA experiment and issue at most qd decryption queries there
exists a (roughly) τ -time simulator S = (S1,S2) that interacts in the i-SO-CCA experiment such that
for all τ ′-time predicates {0, 1}∗ → Pred→$ {0, 1} and all n ∈ N the advantage AdvSIM-SO-CCA

A,S,Pred (n) is at
most ε(n), where we define

AdvSIM-SO-CCA
A,S,Pred (n) := |Pr[r-SO-CCAAn ⇒ 1]− Pr[i-SO-CCASn ⇒ 1]| .

We give rationale on this formalisation of SO security. The notion compares the information an ad-
versary can deduce about a set of challenge messages in two settings: a real setting (game r-SO-CCA)
and an idealised setting (game i-SO-CCA). The real experiment starts with the generation of a key
pair. The adversary receives the public key and specifies a message distribution, represented by a ran-
domised circuit D. Messages m1, . . . ,mn are sampled according to this distribution and encrypted using
fresh randomnesses r1, . . . , rn, and the ciphertexts are given to the adversary which derives some infor-
mation out about the hidden messages. The adversary is supported by two oracles: one that decrypts

5



Game r-SO-CCAAn
00 I ← ∅; C ← ∅
01 (pk, sk)←$ P.Gen
02 (D, st)←$ AP.Dec

1 (pk, n)
03 (m1, . . . ,mn)←$ D
04 For i← 1 to n:
05 ri ←U R
06 ci ← P.Enc(pk,mi, ri)
07 C ← C ∪ {ci}
08 out←$ AOpen,P.Dec

2 (st, c1, . . . , cn)
09 Stop w/ Pred(D,m1, . . . ,mn, I, out)

Oracle Open(i)
10 I ← I ∪ {i}
11 Return (mi, ri)

Oracle P.Dec(c)
12 If c ∈ C: Abort
13 m← P.Dec(sk, c)
14 Return m

Game i-SO-CCASn
15 I ← ∅

16 (D, st)←$ S1(n)
17 (m1, . . . ,mn)←$ D

18 out←$ SOpen
2 (st, |m1|, . . . , |mn|)

19 Stop w/ Pred(D,m1, . . . ,mn, I, out)

Oracle Open(i)
20 I ← I ∪ {i}
21 Return mi

Fig. 4. Security experiments for defining SIM-SO-CCA security of PKE. With D we denote a randomised circuit
that induces a distribution over Mn. The randomness space of P.Enc is denoted with R. Oracle Open may be
called for all i ∈ [n]. We write ‘Abort’ as an abbreviation for ‘Stop with 0’. We show the lines of i-SO-CCA aligned
to the ones of r-SO-CCA for easier comparison.

arbitrary ciphertexts and one that opens honest ciphertexts by revealing the corresponding message and
the randomness used to encrypt it (this is meant to model sender corruption).

The ideal experiment is similar but with all the artifacts of public key encryption removed: there is
no key generation, no ciphertext generation, and no decryption oracle. Beyond that, the adversary (in
this context called ‘simulator’) performs as above: it specifies a message distribution, adaptively requests
openings, and derives some information out about unopened messages.

Clearly, in the ideal setting the confidentiality of unopened messages is granted (only their lengths
leak in line 18, but this is unavoidable for any practical PKE scheme and implicitly also happens in
line 08). We thus deem a public key encryption scheme secure under selective opening attacks if the
adversary in the real setting cannot draw more conclusions about unopened messages than can be drawn
in the ideal setting. Formally, it is required that for every A for r-SO-CCA there exists a corresponding
S for i-SO-CCA that derives the same information. This is tested by distinguishing predicate Pred, which
also takes further environmental information into account, for instance the recorded opening history I.
We proceed with some remarks on the model.

In prior works that give simulation-based definitions of SO security there does not seem to be concen-
sus on the order of quantification of S and Pred. While most papers (cf. [22,27]) allow for the simulator to
depend on the distinguishing predicate, the work of [6] implicitly defines a stronger notion that requires
the existence of a simulator that is universal. (Interestingly, many papers that exclusively consider the
weaker notion actually do construct universal simulators.) We adopt the stronger notion and require the
simulator to work for any distinguisher.

In the upcoming sections we construct several PKE schemes that are secure under selective opening
attacks. The corresponding proofs will idealise a central building block of the schemes, concretely a
blockcipher. By consequence, ideal-cipher oracles have to be added to Figure 4. There are various options
how and where to do this: It is clear that adversary A should have access to the ideal cipher, but what
about S, what about Pred, and what about D? It seems that each configuration somehow makes sense
and gives rise to an individual variant of SIM-SO-CCA security.1 Each such notion might have particular
strengths and weaknesses, so declaring any of them right or wrong is arbitrary. Ultimately, when proving

1 A similar situation emerges with NIZK proofs in the random oracle model: In the corresponding ZK definition,
shall the distinguisher have access to the random oracle or not? See [30] for a formal treatment and a comparison
of the many possible notions.
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the SO security of our schemes, we decided to go for a model where, besides the relevant algorithms of
the encryption scheme itself, only adversary A gets access to the ideal cipher.

Notions of SO security under active Attacks. As mentioned in the introduction, three notions for SO
security under active attacks exist: {weak-IND, full-IND, SIM}-SO-CCA. Non of them has emerged as
a de-facto standard notion, yet. Clearly, weak-IND-SO-CCA suffers from the unnatural restriction to
efficiently conditionally resamplable message distributions and security implications for practical appli-
cations are unclear. While full-IND-SO-CCA would provide security for arbitrary underlying message
distributions, as of today, no even a full-IND-SO-CPA secure scheme is known.2

We note that SIM-SO-CCA — capturing semantic security — does not suffer from any of the above
disadvantages (there is no resampling involved) and seems to offer a strong security guarantee.

Little to no research has been conducted relating the SO-CCA notions; [25] shows that IND-CCA
does not imply weak-IND-CCA in general.

3 Simulatable DEMs and our Main Result

In this section we present our main result on hybrid public key encryption. We define a combinatorial
property of a DEM called simulatability and show that any KEM and any DEM satisfying standard
security notions, if the DEM is in addition simulatable, when composed yield a SIM-SO-CCA secure
PKE, in the ideal cipher model [9,17,26].

3.1 Simulatable DEMs

Many practical DEMs are constructed from blockciphers, possibly in combination with further symmetric
building blocks like universal hash functions or MACs. We formalise next what it means for a DEM to
make use of a blockcipher in a black-box way. Virtually all blockcipher-based DEMs, and in particular
those specified by the major standardisation bodies, are of this type. In our definition, K denotes the key
space of the blockcipher and K′ denotes the cartesian product of the key spaces of the remaining crypto-
graphic primitives used by the scheme. For instance, in an encrypt-then-MAC construction, K′ would be
the key space of the message authentication code; if the construction requires no further keyed primitive,
K′ would be the trivial set containing a single element.

Recall from Definition 1 that P(D) and PP(D) denote the sets of all permutations and partial
permutations, respectively, on domain D.

Definition 9 (Oracle DEM). An
:::::
oracle

:::::
data

::::::::::::
encapsulation

:::::::::::
mechanism(oDEM) for a domain D and

a message spaceM consists of a finite key space K′, a ciphertext space C, and efficient algorithms O.Enc
and O.Dec that have oracle access to a permutation on D (in both directions) and are of the form

K′ ×M→ O.Encπ → C K′ × C → O.Decπ →M∪· {⊥} ,

where symbol ‘⊥’ may be used to indicate errors. Correctness requires that for all π ∈ P(D), k′ ∈ K′,
and m ∈M, if O.Encπ(k′,m) = c then O.Decπ(k′, c) = m.

Definition 10 (Permutation-driven DEM). A DEM for message space M with keyspace K′′ =
K×K′ is

:::::::::::::::::::::::
(K,D)-permutation-driven if there exists an oracle DEM for D andM with algorithms K′×M→

O.Encπ → C and K′ × C → O.Decπ →M∪· {⊥} and a blockcipher (Ek)k∈K on domain D such that for
all k′ ∈ K′ and m ∈M and c ∈ C we have

D.Enc((k, k′),m) = O.EncEk (k′,m) and D.Dec((k, k′), c) = O.DecEk (k′, c) . (1)

According to this definition, for any specific permutation-driven DEM multiple corresponding oracle
DEMs, i.e., O.Enc and O.Dec algorithms, might exist. In practice, however, a single canonic specification
of these algorithms will stick out. This holds, as we will see, in particular for the standardised DEMs
2 Note that resampling from any message distribution might require solving some computationally hard problem
as reported in [6].
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studied in Section 4. For the sake of a concise notation, in this paper we thus assume that suitable O.Enc
and O.Dec algorithms are always uniquely given.

We next define a combinatorial property called simulatability that holds for an oracle DEM if, in
principle, the encapsulation algorithm could commit to a ciphertext before seeing the corresponding
message; intuitively, this is only possible if the permutation in the oracle is ‘flexible enough’, i.e., can be
‘programmed’. We formalise this idea by splitting the encapsulation routine into two components, Fake
and Make. First Fake outputs a ciphertext c without seeing the message m (but it does see the length
of m), then Make, on input m, is meant to find a possible (partial) permutation instance π̃ under which
indeed m would be encapsulated to c. To be useful in our later selective opening related proofs where we
want to embed π̃ into an ideal cipher, π̃ is further required to be uniformly distributed (conditioned on
the formulated requirements).

Definition 11 (Simulatable oracle DEM). Consider an oracle DEM for a domain D and a message
space M that has an encapsulation algorithm of the form K′ ×M→ O.Encπ → C. Consider algorithms
Fake and Make of the form

K′ × N→ Fake→$ C ×Σ and Σ ×M→ Make→$ PP(D) ,

where Σ is a state space shared between the two algorithms. We say that the oracle DEM is
::::::::::::
ε-simulatable

(by Fake and Make) if for all k′ ∈ K′ and m ∈ M, for the random variable (defined over the coins of
Fake and Make)

Πm
k′ = {π̃ : (c, st)←$ Fake(k′, |m|); π̃ ←$ Make(st,m)}

we have

(1) partial permutation Πm
k′ can be extended to a uniformly distributed permutation on D, i.e., by ‘filling

up’ Πm
k′ with random pairs one obtains a permutation uniformly distributed in P(D);

(2) the ciphertext output by Fake deviates from the one that would be output by O.Enc if invoked with an
extension of the partial permutation output by Make with probability at most ε. More precisely, for
any uniformly distributed extension π ∈ P(D) of Πm

k′ we have Pr[c 6= O.Encπ(k′,m)] ≤ ε (where the
probability is also taken over the random extension of Πm

k′ to π);
(3) the joint running time of Fake(k′, |m|) and Make(st,m) does not exceed the running time of

O.Enc(k′,m), not counting the latter’s oracle queries.

In informal discussions, when we say that a data encapsulation mechanism is
:::::::::
simulatable we mean that

it is permutation-driven and Fake,Make algorithms exist for which it is ε-simulatable with a negligibly
small value ε.

Concerning the above definition it is important to understand that the random coins of Fake and
Make, and the coins used to extend the partial permutation in items (1) and (2), belong to the same
probability space. See Appendix A for an equivalent yet more verbose definition that makes this aspect
more explicit.

In line with a comment made above, for all practical DEMs that are simulatable, corresponding
specifications for the Fake and Make algorithms emerge canonically. For the sake of notational clarity,
from now on we thus assume uniqueness.

Proving Simulatability. We discuss a general technique for proving the simulatability of an oracle DEM.
The Fake and Make algorithms are typically explicitly provided in the proof. Fake’s strategy is to mimic
the behaviour of O.Enc by executing it and answering blockcipher queries with random elements from D.
Make constructs a partial permutation π̃ that fits this random assignment by starting with the empty
relation π̃ = ∅ and iteratively adding pairs (α, β) ∈ D×D to π̃ that help meeting the O.Encπ̃(k′,m) = c
goal, always taking care that also the απ̃β, α′π̃β ⇒ α = α′ and απ̃β, απ̃β′ ⇒ β = β′ requirements
from Definition 1 are not violated (Make aborts if simultaneously reaching these conditions turns out to
be impossible). Simulatability requirement (1) is achieved by ensuring that for each addition of (α, β)
to π̃ either α or β are uniformly distributed, conditioned on the prior state of π̃. Proving the bound
from condition (2) typically requires a combinatorial argument that assesses the probability of collisions.
Requirement (3) follows by inspection of the specifications of Fake and Make.
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Game r-SO-CCAAn
00 For all k ∈ K: Ek ← ∅
01 I ← ∅; C ← ∅
02 (pk, sk)←$ K.Gen
03 (D, st)←$ AP.Dec,E

1 (pk, n)
04 (m1, . . . ,mn)←$ D
05 For i← 1 to n:
06 ri ←U R
07 (k′′i , ci,1)← K.Enc(pk, ri)
08 (ki, k′i)← k′′i
09 ci,2 ← O.EncE(ki;·)(k′i,mi)
10 ci ← 〈ci,1, ci,2〉
11 C ← C ∪ {ci}
12 out←$ AOpen,P.Dec,E

2 (st, c1, . . . , cn)
13 Stop w/ Pred(D,m1, . . . ,mn, I, out)

Oracle Open(i)
14 I ← I ∪ {i}
15 Return (mi, ri)

Oracle P.Dec(〈c1, c2〉)
16 If 〈c1, c2〉 ∈ C: Abort
17 k′′ ← K.Dec(sk, c1)
18 If k′′ = ⊥: Return ⊥
19 (k, k′)← k′′

20 m← O.DecE(k;·)(k′, c2)
21 Return m

Oracle E+(k, α)
22 If α /∈ Dom(Ek):
23 β ←U D \ Rng(Ek)
24 Ek ← Ek ∪ {(α, β)}
25 Return E+

k (α)

Oracle E−(k, β)
26 If β /∈ Rng(Ek):
27 α←U D \Dom(Ek)
28 Ek ← Ek ∪ {(α, β)}
29 Return E−k (β)

Fig. 5. Game r-SO-CCA adapted towards the analysis of a PKE scheme constructed following the KEM/DEM
paradigm using a permutation-driven DEM with corresponding oracle DEM algorithms O.Enc and O.Dec, in the
ideal cipher model. We write ‘Abort’ as an abbreviation for ‘Stop with 0’. We further abbreviate the pair E+,E−

of ideal cipher oracles with just E.

3.2 Selective Opening Security from Simulatable DEMs

Our main result is on the SO security of public-key encryption obtained by combining an arbitrary KEM
with a permutation-driven DEM. Our analysis is conducted in the ideal cipher model for the blockcipher
underlying the DEM. We give an informal version of our main theorem and an outline of the proof. We
caution that some technical preconditions are omitted in the statement as we give it here. See Section 5
for the full theorem statement and proof.

Theorem 1 (informal). Combine any KEM and any permutation-driven DEM to obtain a PKE
scheme. If the KEM is IND-CCA secure, the DEM is OT-INT-CTXT secure and the corresponding
oracle DEM is simulatable, then the combined PKE scheme is SIM-SO-CCA secure, in the ideal cipher
model.

We proceed with the proof outline. The goal is to show that for every adversary A = (A1,A2) for
the r-SO-CCA game there exists a simulator S = (S1,S2) for the i-SO-CCA game that deduces the same
information. In Figure 5 we reproduce the r-SO-CCA game from Figure 4 with the hybrid construction of
the encryption scheme, the oracle DEM underlying the DEM, and the ideal cipher model made explicit.
(In the i-SO-CCA game there is nothing to be adapted.) We correspondingly equip adversary A and the
DEM algorithms with oracles E+ and E− that implement an ideal blockcipher on domainD. In particular,
for each key k, oracles E+(k; ·) and E−(k; ·) are inverses of each other. For a concise notation, we typically
just write E for the pair consisting of E+ and E−. We implement ideal cipher E via lazy sampling and keep
track of made assignments using a game internal family (Ek)k∈K of partial permutations Ek ∈ PP(D).
Note that we do not also provide the KEM algorithms with access to E, meaning we assume the KEM
does not use the same blockcipher as the DEM. See Section 5 for a discussion.

When it comes to constructing S from A, the strategy is to let the former run the latter as a
subroutine: Simulator S converts the own input to an input for A, uses the output of A as the own
output, and answers, and in some cases relays, oracle queries posed by A. We give the footprint of
a universal such simulator that leverages on the simulatability of the (permutation-driven) DEM in
Figure 6. For the sake of clarity, we simplified the specifications of algorithms S1 and S2 quite a bit,
removing many technicalities. While we briefly discuss the missing parts below, for the full details of the
simulator and a formal analysis we refer to Section 5.

We walk the reader through the design principles of our simulator. What above we refered to as
‘deduces the same information’ formally requires that the inputs D,m1, . . . ,mn, I, out of the Pred invo-
cations in the r-SO-CCA and i-SO-CCA games be similar. This is achieved by letting S simulate for A the

9



S1(n)
00 For all k ∈ K: Ek ← ∅
01 C ← ∅
02 (pk, sk)←$ K.Gen
03 D←$ AP.Dec,E

1 (pk, n)
04 Return D

SOpenS
2 (|m1|, . . . , |mn|)

05 For i← 1 to n:
06 ri ←U R
07 (k′′i , ci,1)← K.Enc(pk; ri)
08 (ki, k′i)← k′′i
09 (ci,2, sti)←$ Fake(k′i, |mi|)
10 ci ← 〈ci,1, ci,2〉
11 C ← C ∪ {ci}
12 out←$ AOpenA,P.Dec,E

2 (c1, . . . , cn)
13 Return out

Oracle OpenA(i)
14 mi ← OpenS(i)
15 π̃ ←$ Make(sti,mi)
16 Eki ← Eki ∪ π̃
17 Return (mi, ri)

Oracle P.Dec(〈c1, c2〉)
as in Figure 5

Oracle E+(k, α)
as in Figure 5

Oracle E−(k, β)
as in Figure 5

Fig. 6. Simplified version of simulator S = (S1,S2), constructed from adversary A = (A1,A2). We write OpenS
and OpenA for the opening oracles provided to S2 and A2, respectively. For simplicity we do not annotate the
state information passed from A1 to A2 and from S1 to S2.

environment of r-SO-CCA in a way such that: S1 forwards the message distribution D obtained from A1
without modification (this also ensures that the distributions of m1, . . . ,mn match), S2 keeps the in-
dex sets I corresponding to A2’s and its own Open queries consistent (by forwarding the queries), and
S2 forwards A2’s output out without modification. The lines in Figure 6 corresponding to these steps
are 03,04 and 14 and 12,13, respectively.

Running A as a subroutine leads to useful results only if A is exposed to an r-SO-CCA-like environ-
ment. Effectively this means that S has to ‘fill all the blank lines’ of the i-SO-CCA game in Figure 4.
Concretely this involves (a) generating and providing a public key for A1, (b) providing ciphertexts
to A2 that correspond to messages m1, . . . ,mn, (c) providing adequate randomness when processing
opening queries of A2, and (d) handling decryption queries of A1 and A2. Further, ideal cipher queries
of A1 and A2 have to be taken care of. The latter is straight-forward when deploying lazy sampling, i.e.,
using the mechanisms of the r-SO-CCA version from Figure 5. Also (a) and (d) are easy to deal with:
The public key pk provided to A1 is a regular KEM key generated by S1 (lines 02,03); in particular,
secret key sk is known to S and can be used to process decryption queries. Concerning (b), creating
ciphertexts c1, . . . , cn for A2 consists, in principle, of two parts: letting the KEM establish session keys
and encapsulating messages with the DEM. Component S2 of our simulator does the former according
to the specification, i.e., by invoking algorithm K.Enc with fresh randomness (lines 06,07), while for the
latter, as it cannot invoke D.Enc (or, more precisely, O.Enc) for not knowing the messages it needs to
encapsulate, it leverages on the simulatability of the DEM and obtains the corresonding ciphertext from
an execution of the Fake algorithm (line 09). How S2 deals with (c) is now immediate: for each created
ciphertext it knows the randomness used, so it can release it in an opening query (line 17). Note, however,
that knowledge of this randomness brings A2 into the position to verify the DEM ciphertext components
generated by Fake (e.g., by decapsulating or re-encapsulating them); correspondingly, the Open oracle in
addition runs the Make algorithm and embeds the partial permutation proposed by it into ideal cipher E
(lines 15,16). By the definition of simulatability of a DEM, this fixes the ideal cipher such that overall
consistency is established.

As announced earlier, in Figure 6 we leave out some details of our simulator. These are related to
situations in which S cannot uphold a proper environment for A and has to abort its execution. This is
the case when Fake and Make fail to properly simulate O.Enc (the definition of simulatability considers a
small probability of failure), or if the partial permutation output by Make cannot be embedded into the
ideal cipher (line 16). The latter condition can result from various actions of adversary A, for instance
(explicitly) from queries to the E oracles, or (implicitly) from evaluations of E during the processing of
a decryption query. In the full proof given in Section 5 we show that if the KEM is IND-CCA secure and
the DEM is OT-INT-CTXT secure, then the probability is small that any of these conditions is met.
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(Very briefly speaking, we use the KEM notion for bounding the probability of explicit queries, and we
use the DEM notion for bounding the probability of implicit ones.)

4 Simulatability of practical DEMs

We prove that all blockcipher-based DEMs that were standardised by NIST are permutation-driven
and simulatable. Concretely we analyse the CTR and CBC modes of operation (SP 800-38A [13]), a
CBC variant with ciphertext stealing (CTS) (Addendum to SP800-38A [16]), the CCM mode (SP 800-
38C [14]), and the GCM mode (SP 800-38D [15]). More precisely, as for our results on selective opening
security only those DEMs are relevant that offer ciphertext integrity (cf. Definition 4), instead of plain
CTR, CBC, and CBC/CTS encryption we actually analyse their encrypt-then-MAC variants, where we
assume arbitrary strongly unforgeable MACs. Further, as CCM and GCM are authenticated encryption
schemes with associated data (AEAD [29]), we turn them into DEMs by using them with a fixed nonce N0
and an empty associated data string A0.

As the four named modes follow different design principles, some of which might be incompatible
with simulatability, analysing all of them is more than just a matter of diligence. For instance, GCM is
an encrypt-then-MAC and CCM is a MAC-then-encrypt design. Further, while CTR mode encrypts by
XORing blockcipher outputs into the message, CBC mode encrypts by pushing message blocks through
the cipher, and CCM combines both approaches.

In the following we specify the mentioned DEMs in their oracle DEM form, assuming that the
underlying blockcipher (Ek)k∈K is over domain D = {0, 1}`. We show their simulatability by proposing
and analysing corresponding Fake and Make algorithms, following the general strategy suggested at the
end of Section 3.1.

4.1 CTR-then-MAC

We analyse the DEM obtained by first encrypting the provided message with the CTR0 mode of operation
of a blockcipher (counter mode with fixed initial counter value) and then appending a deterministic MAC
tag to the ciphertext.

We specify the O.Enc and O.Dec algorithms of CTR0-DEM in Figure 7, where we assume that
G : [1 .. V ] → D denotes a fixed injective function (a ‘counter generator’) for some sufficiently large
value V . The MAC is represented by a keyed hash function K′ × {0, 1}∗ → khf → {0, 1}T . The message
space of CTR0-DEM isM = {0, 1}∗ and the ciphertext space is C = {0, 1}≥T .

O.Encπ(k′,m)
00 Write |m| as (l − 1)`+ l∗

01 Split m into m1 . . .ml−1m
∗
l

02 ml ← m∗l ‖0`−l
∗

03 For i← 1 to l:
04 ui ← G(i)
05 vi ← π(ui)
06 ci ← mi ⊕ vi
07 c∗l ← msbl∗(cl)
08 c̄← c1 . . . cl−1c

∗
l

09 t← khf(k′, c̄)
10 c← c̄t
11 Return c

O.Decπ(k′, c)
12 If |c| < T : Return ⊥
13 Split c into c̄t
14 If t 6= khf(k′, c̄):
15 Return ⊥
16 Write |c̄| as (l − 1)`+ l∗

17 Split c̄ into c1 . . . cl−1c
∗
l

18 cl ← c∗l ‖0`−l
∗

19 For i← 1 to l:
20 ui ← G(i)
21 vi ← π(ui)
22 mi ← ci ⊕ vi
23 m∗l ← msbl∗(ml)
24 m← m1 . . .ml−1m

∗
l

25 Return m

Fig. 7. CTR0-DEM. Lines 00 and 16 uniquely identify quantities l and l∗ such that l ∈ N≥1 and 0 ≤ l∗ < `, and
|m| = (l− 1)`+ l∗ and |c̄| = (l− 1)`+ l∗, respectively. Correspondingly, line 01 assumes |m1| = . . . = |ml−1| = `
and |m∗l | = l∗, and line 17 assumes |c1| = . . . = |cl−1| = ` and |c∗l | = l∗. Further, line 13 assumes |t| = T .
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Lemma 1. CTR0-DEM is ε-simulatable with ε = (dL/`e2 − dL/`e)/2`+1, where L is the maximum
message length (in bits).

Proof. Consider algorithms Fake and Make from Figure 8. The idea of Fake is to compute intermediate
ciphertext c̄ on basis of uniformly distributed blockcipher outputs (see how line 01 of Fake replaces l-many
iterations of line 06 of O.Enc), but to compute the MAC tag on c̄ faithfully. Note that the correct length
of c̄ is known to Fake as it coincides with the length ofm. Inspection shows that, givenm, algorithm Make
finds a minimal partial permutation π̃ such that Fake and Make jointly mimic the behaviour of O.Enc
(see here how lines 15–18 of Make arrange the entries of π̃ such that they are consistent with lines 05–06
of O.Enc). In some invocations of the algorithms, the described process might fail (lines 16, 17), namely
when partial permutation π̃ would become inconsistent (i.e., the updated π̃ would stop being an element
of PP). In such cases Make aborts, outputting the empty partial permutation π̃ = ∅.

We next show that the conditions from Definition 11 are met. Observe that, as Fake picks values
c1, . . . , cl uniformly and independently of each other, the same holds for the values v1, . . . , vl computed
in line 15. That is, in each iteration of line 18 a value vi is added to Rng(π̃) that is uniform conditioned
on the then current state of Rng(π̃). Thus condition (1) holds. To establish the correctness bound of
condition (2) we analyse the probability that Make aborts. By the injectivity of function G the ui-values
from line 14 are pairwise distinct, so the abort condition of line 16 is never met. Further, as values vi
computed in line 15 are uniformly distributed and independent of each other, the abort condition of line 17
is met with probability ε = (0+ . . .+(l−1))/|D| = ((l2− l)/2)/|D| (accumulated over all iterations of the
loop). Plugging in the maximum value l = dL/`e gives the bound claimed in the statement. Condition (3)
is clear. ut

Fake(k′, |m|)
00 Write |m| as (l−1)`+ l∗

01 c1, . . . , cl ←U D
02 c∗l ← msbl∗(cl)
03 c̄← c1 . . . cl−1c

∗
l

04 t← khf(k′, c̄)
05 c← c̄t
06 st ← (c1, . . . , cl)
07 Return c, st

Make(st,m)
08 π̃ ← ∅
09 Write |m| as (l − 1)`+ l∗

10 Parse st as (c1, . . . , cl)
11 Split m into m1 . . .ml−1m

∗
l

12 ml ← m∗l ‖0`−l
∗

13 For i← 1 to l:
14 ui ← G(i)
15 vi ← mi ⊕ ci
16 If ui ∈ Dom(π̃): Abort
17 If vi ∈ Rng(π̃): Abort
18 π̃ ← π̃ ∪ {(ui, vi)}
19 Return π̃

Fig. 8. Fake and Make for CTR0-DEM. We write ‘Abort’ as an abbreviation for ‘Return ∅’.

4.2 CBC-then-MAC

We consider the DEM obtained by encrypting the message with CBC0 mode (cipher block chaining with
initialisation vector zero) and appending a MAC tag to the ciphertext. As a variant we also look at
CBC0-CTS (CBC0 with ‘ciphertext stealing’) that supports a complementary message space.

We specify the O.Enc and O.Dec algorithms of CBC-DEM in Figure 9 and of CBC-CTS-DEM in
Figure 10. Similarly as for CTR0-DEM, the MAC is represented by a keyed hash function of the form
K′ × {0, 1}∗ → khf → {0, 1}T . The message space of CBC-DEM consists of all messages that have
a length that is a multiple of the blocklength `, i.e., M =

⋃
λ≥`,`|λ{0, 1}λ; the ciphertext space is

C =
⋃
λ≥`,`|λ{0, 1}λ+T . In contrast, CBC-CTS-DEM supports all message lengths that are not a multiple

of `, with a minimum value of `+1; formally,M =
⋃
λ≥`,`-λ{0, 1}λ and C =

⋃
λ≥`,`-λ{0, 1}λ+T . Together,

CBC-DEM and CBC-CTS-DEM can handle messages of any length not smaller than `.3

3 Instead of specifying different algorithms for different classes of message length, one could also join them
together to a single, more general algorithm. This is usually done in standards [16], but we abstain from doing
so in this document to avoid rather obstructing case distinctions in the analysis.
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O.Encπ(k′,m)
00 Write |m| as l`
01 Split m into m1 . . .ml

02 c0 ← 0`
03 For i← 1 to l:
04 ui ← mi ⊕ ci−1
05 ci ← π(ui)
06 c̄← c1 . . . cl
07 t← khf(k′, c̄)
08 c← c̄t
09 Return c

O.Decπ(k′, c)
10 If |c| < T : Return ⊥
11 Split c into c̄t
12 If t 6= khf(k′, c̄):
13 Return ⊥
14 Write |c̄| as l`
15 Split c̄ into c1 . . . cl
16 c0 ← 0`
17 For i← 1 to l:
18 ui ← π−1(ci)
19 mi ← ui ⊕ ci−1
20 m← m1 . . .ml

21 Return m

Fig. 9. CBC-DEM (for multi-block messages). Lines 00 and 14 identify quantity l ∈ N≥0 such that |m| = l` and
|c̄| = l`, respectively. Correspondingly, line 01 assumes |m1| = . . . = |ml| = ` and line 15 assumes |c1| = . . . =
|cl| = `. Further, line 11 assumes |t| = T .

O.Encπ(k′,m)
00 Write |m| as l`+ l∗

01 Split m into m1 . . .mlm
∗
l+1

02 ml+1 ← m∗l+1 ‖0`−l
∗

03 c0 ← 0`
04 For i← 1 to l + 1:
05 ui ← mi ⊕ ci−1
06 ci ← π(ui)
07 c∗l ← msbl∗(cl)
08 c̄← c1 . . . cl−1c

∗
l cl+1

09 t← khf(k′, c̄)
10 c← c̄t
11 Return c

O.Decπ(k′, c)
12 If |c| < T : Return ⊥
13 Split c into c̄t
14 If t 6= khf(k′, c̄):
15 Return ⊥
16 Write |c̄| as l`+ l∗

17 Split c̄ into c1 . . . cl−1c
∗
l cl+1

18 ul+1 ← π−1(cl+1)
19 m∗l+1 ← msbl∗(ul+1)⊕ c∗l
20 cl ← c∗l ‖ lsb`−l∗(ul+1)
21 c0 ← 0`
22 For i← 1 to l:
23 ui ← π−1(ci)
24 mi ← ui ⊕ ci−1
25 m← m1 . . .mlm

∗
l+1

26 Return m

Fig. 10. CBC-CTS-DEM (for messages that require padding). Lines 00 and 16 uniquely identify quantities l
and l∗ such that l ∈ N≥1 and 1 ≤ l∗ < `, and |m| = l`+ l∗ and |c̄| = l`+ l∗, respectively. Correspondingly, line 01
assumes |m1| = . . . = |ml| = ` and |m∗l+1| = l∗, and line 17 assumes |c1| = . . . = |cl−1| = ` and |c∗l | = l∗ and
|cl+1| = `. Further, line 13 assumes |t| = T .

Lemma 2. CBC-DEM is ε-simulatable where ε = ((L/`)2 − (L/`))/2`, and CBC-CTS-DEM is ε-
simulatable with ε = (bL/`c2 + bL/`c)/2`, where L is the maximum message length (in bits).

Proof. The proof is similar to the one of Lemma 1. Consider algorithms Fake and Make from Figure 11.
The idea of Fake is to compute intermediate ciphertext c̄ on basis of uniformly distributed blockcipher
outputs (see how line 01 of Fake replaces l-many iterations of line 05 of O.Enc), but to compute the
MAC tag on c̄ faithfully. Note that the correct length of c̄ is known to Fake as it coincides with the
length of m. Inspection shows that, given m, algorithm Make finds a minimal partial permutation π̃ such
that Fake and Make jointly mimic the behaviour of O.Enc (see here how lines 13–16 of Make arrange
the entries of π̃ such that they are consistent with lines 04–05 of O.Enc). In some invocations of the
algorithms, the described process might fail (lines 14, 15), namely when partial permutation π̃ would
become inconsistent. In such cases Make aborts, outputting the empty partial permutation π̃ = ∅.

We next show that the conditions from Definition 11 are met. Observe that, as Fake picks values
c1, . . . , cl uniformly and independently of each other, in each iteration of line 16 a value ci is added to
Rng(π̃) that is uniform conditioned on the then current state of Rng(π̃). Thus condition (1) holds. To
establish the correctness bound of condition (2) we analyse the probability that Make aborts. With values
c1, . . . , cl−1 also the values u2, . . . , ul computed in line 13 are uniformly distributed and independent of
each other, so the abort condition of line 14 is met with probability (0+. . .+(l−1))/|D| = ((l2−l)/2)/|D|
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(accumulated over all iterations of the loop). The same bound holds for line 15. Plugging in the maximum
value l = L/` gives the bound claimed in the statement. Condition (3) is clear.

Algorithms Fake and Make for CBC-CTS-DEM are given in Figure 12. The analysis is similar. Here,
however, we have l = bL/`c and for lines 16 and 17 the accumulated probabilities of abort amount to
(0 + . . .+ l)/|D| each. ut

Fake(k′, |m|)
00 Write |m| as l`
01 c1, . . . , cl ←U D
02 c̄← c1 . . . cl
03 t← khf(k′, c̄)
04 c← c̄t
05 st ← (c1, . . . , cl)
06 Return c, st

Make(st,m)
07 π̃ ← ∅
08 Write |m| as l`
09 Parse st as (c1, . . . , cl)
10 Split m into m1 . . .ml

11 c0 ← 0`
12 For i← 1 to l:
13 ui ← mi ⊕ ci−1
14 If ui ∈ Dom(π̃): Abort
15 If ci ∈ Rng(π̃): Abort
16 π̃ ← π̃ ∪ {(ui, ci)}
17 Return π̃

Fig. 11. Fake and Make for CBC-DEM. We write ‘Abort’ as an abbreviation for ‘Return ∅’.

Fake(k′, |m|)
00 Write |m| as l`+ l∗

01 c1, . . . , cl+1 ←U D
02 c∗l ← msbl∗(cl)
03 c̄← c1 . . . cl−1c

∗
l cl+1

04 t← khf(k′, c̄)
05 c← c̄t
06 st ← (c1, . . . , cl+1)
07 Return c, st

Make(st,m)
08 π̃ ← ∅
09 Write |m| as l`+ l∗

10 Parse st as (c1, . . . , cl+1)
11 Split m into m1 . . .mlm

∗
l+1

12 ml+1 ← m∗l+1 ‖0`−l
∗

13 c0 ← 0`
14 For i← 1 to l + 1:
15 ui ← mi ⊕ ci−1
16 If ui ∈ Dom(π̃): Abort
17 If ci ∈ Rng(π̃): Abort
18 π̃ ← π̃ ∪ {(ui, ci)}
19 Return π̃

Fig. 12. Fake and Make for CBC-CTS-DEM. We write ‘Abort’ as an abbreviation for ‘Return ∅’.

4.3 CCM

We analyse the CCM mode of operation (‘CTR mode with CBC-MAC’) with fixed nonce and associated
data field; we call this mode CCM0-DEM. CCM is parameterised by an authentication tag length T , a
formatting function F : N×A×M→ D+ (whereN andA denote the nonce space and the associated data
space, respectively), and a counter generation function G : N×[0 .. V ]→ D, where V is a sufficiently large
value. While only one set of instantiations of F and G is suggested in SP 800-38C (and if it is chosen the
resulting version of CCM is the one used in wireless encryption standard IEEE 802.11), the specification
is explicitly modular in the sense that it works with any F and G that meet certain conditions. Amongst
others, the conditions listed in [14] imply that for all N ∈ N the function G(N ; ·) is injective and that for
all (N,A,m) ∈ N ×A×M and z0 . . . zr = F (N,A,m) we have that z0 /∈ G(N, [0 .. V ]). Now, if we fix any
nonce N0 and any associated data string A0 (e.g., the all-zero string for N0 and the empty string for A0)
and define the restrictions F0 : M→ D+; m 7→ F (N0, A0,m) and G0 : [0 .. V ] → D; i 7→ G(N0, i), then
the algorithms of the resulting oracle DEM associated with CCM are given in Figure 13. The message
space of CCM0-DEM isM = {0, 1}∗ and the ciphertext space is C = {0, 1}≥T .
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O.Encπ(k′,m)
00 z0 . . . zr ← F0(m)
01 y0 ← π(z0)
02 For i← 1 to r:
03 xi ← zi ⊕ yi−1
04 yi ← π(xi)
05 u0 ← G0(0)
06 v0 ← π(u0)
07 t← yr ⊕ v0
08 t∗ ← msbT (t)
09 Write |m| as (l − 1)`+ l∗

10 Split m into m1 . . .ml−1m
∗
l

11 ml ← m∗l ‖0`−l
∗

12 For j ← 1 to l:
13 uj ← G0(j)
14 vj ← π(uj)
15 cj ← mj ⊕ vj
16 c∗l ← msbl∗(cl)
17 c← c1 . . . cl−1c

∗
l t
∗

18 Return c

O.Decπ(k′, c)
19 If |c| < T : Return ⊥
20 Write |c| as (l− 1)`+ l∗+T
21 Split c into c1 . . . cl−1c

∗
l t
∗

22 cl ← c∗l ‖0`−l
∗

23 For j ← 1 to l:
24 uj ← G0(j)
25 vj ← π(uj)
26 mj ← cj ⊕ vj
27 m∗l ← msbl∗(ml)
28 m← m1 . . .ml−1m

∗
l

29 z0 . . . zr ← F0(m)
30 y0 ← π(z0)
31 For i← 1 to r:
32 xi ← zi ⊕ yi−1
33 yi ← π(xi)
34 u0 ← G0(0)
35 v0 ← π(u0)
36 t← yr ⊕ v0
37 If t∗ 6= msbT (t): Return ⊥
38 Return m

Fig. 13. CCM0-DEM. Lines 09 and 20 uniquely identify quantities l and l∗ such that l ∈ N≥1 and 0 ≤ l∗ < `, and
|m| = (l−1)`+l∗ and |c| = (l−1)`+l∗+T , respectively. Correspondingly, line 10 assumes |m1| = . . . = |ml−1| = `
and |m∗l | = l∗, and line 21 assumes |c1| = . . . = |cl−1| = ` and |c∗l | = l∗ and |t∗| = T .

Lemma 3. CCM0-DEM is ε-simulatable with ε ≤ bL/`c2/2`−2, where L is the maximum message length
(in bits).

Proof. Consider algorithms Fake and Make from Figure 14. The idea of Fake is to compute the visible
ciphertext components on basis of uniformly distributed blockcipher outputs while completely ignoring
the blockcipher invocations of CCM’s internal CBC-MAC computation (see how line 07 and l-many
iterations of line 15 of O.Enc (in Figure 13) are replaced by lines 00 and 03 of Fake, while lines 01 and 04
of O.Enc have no counterpart). Inspection shows that, given m, algorithm Make finds a minimal partial
permutation π̃ such that Fake and Make jointly mimic the behaviour of O.Enc (see here how lines 24–27,
30–33, 35–38, 43–46 of Make arrange the entries of π̃ such that they are consistent with lines 01, 04,
06/07, 14/15 of O.Enc). In some invocations of the algorithms, the described process might fail (in lines
25/26, 31/32, 36/37, 44/45), namely when partial permutation π̃ would become inconsistent. In such
cases Make aborts, outputting the empty partial permutation π̃ = ∅.

Fake(k′, |m|)
00 t←U D
01 t∗ ← msbT (t)
02 Write |m| as (l−1)`+ l∗

03 c1, . . . , cl ←U D
04 c∗l ← msbl∗(cl)
05 c← c1 . . . cl−1c

∗
l t
∗

06 st ← (t, c1, . . . , cl)
07 Return c, st

Make(st,m)
20 π̃ ← ∅
21 Write |m| as (l − 1)`+ l∗

22 Parse st as (t, c1, . . . , cl)
23 z0 . . . zr ← F0(m)
24 y0 ←U D
25 If z0 ∈ Dom(π̃): Abort
26 If y0 ∈ Rng(π̃): Abort
27 π̃ ← π̃ ∪ {(z0, y0)}
28 For i← 1 to r:
29 xi ← zi ⊕ yi−1
30 yi ←U D
31 If xi ∈ Dom(π̃): Abort
32 If yi ∈ Rng(π̃): Abort
33 π̃ ← π̃ ∪ {(xi, yi)}

34 u0 ← G0(0)
35 v0 ← yr ⊕ t
36 If u0 ∈ Dom(π̃): Abort
37 If v0 ∈ Rng(π̃): Abort
38 π̃ ← π̃ ∪ {(u0, v0)}
39 Split m into m1 . . .ml−1m

∗
l

40 ml ← m∗l ‖0`−l
∗

41 For j ← 1 to l:
42 uj ← G0(j)
43 vj ← mj ⊕ cj
44 If uj ∈ Dom(π̃): Abort
45 If vj ∈ Rng(π̃): Abort
46 π̃ ← π̃ ∪ {(uj , vj)}
47 Return π̃

Fig. 14. Fake and Make for CCM0-DEM. We write ‘Abort’ as an abbreviation for ‘Return ∅’.
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We next show that the requirements from Definition 11 are met. To see that condition (1) holds,
observe that in Make the values y0, yi, v0, and vj are uniformly distributed and independent of each
other at the point they are added to Rng(π̃) in lines 27, 33, 38, 46. To establish the correctness bound
of condition (2) we assess the probability that Make aborts. Using a similar analysis as in the proof of
Lemma 1 we obtain the following (accumulated) probabilities: The abort conditions in lines 25 and 26
are never met; for lines 31 and 32 the probabilities are (1 + . . .+ r)/|D| each; by the properties of CCM’s
functions F0 and G0, for lines 36 and 37 the probabilities are r/|D| and (r + 1)/|D|; for line 44 the
probability is lr/|D|; finally, for line 45 the probability is ((r + 2) + . . .+ (r + l + 1))/|D|. If we assume
reasonable behaviour of function F0 and let r = l, we obtain quantity 4l2/|D| as an upper bound for the
sum of these probabilities. This establishes the claimed bound. Condition (3) is clear. ut

4.4 GCM

The GCM mode of operation (‘Galois/Counter Mode’) is a nonce-based AEAD parameterised by an
authentication tag length T . To deploy GCM as a DEM we use it with a fixed nonce and an empty
associated data field and call this version GCM0-DEM. Internally, GCM combines CTR mode encryption
with a Wegman-Carter MAC. The former uses an injective counter generation function G : [0 .. V ] →
D\{0`}, where V is a sufficiently large value, and the latter is built around a polynomial-based universal
hash function named GHASH defined over finite field GF(2`). For our purposes it suffices to represent the
MAC by a keyed hash function of the form D×{0, 1}∗ → khf → D. The algorithms of GCM0-DEM, in the
abstraction of an oracle DEM, are specified in Figure 15. The supported message space isM = {0, 1}∗,
and the ciphertext space is C = {0, 1}≥T .

O.Encπ(k′,m)
00 Write |m| as (l − 1)`+ l∗

01 Split m into m1 . . .ml−1m
∗
l

02 ml ← m∗l ‖0`−l
∗

03 For i← 1 to l:
04 ui ← G(i)
05 vi ← π(ui)
06 ci ← mi ⊕ vi
07 c∗l ← msbl∗(cl)
08 c̄← c1 . . . cl−1c

∗
l

09 u← 0`
10 v ← π(u)
11 h← khf(v, c̄)
12 u0 ← G(0)
13 v0 ← π(u0)
14 t← h⊕ v0
15 t∗ ← msbT (t)
16 c← c̄t∗

17 Return c

O.Decπ(k′, c)
18 If |c| < T : Return ⊥
19 Write |c| as (l− 1)`+ l∗+T
20 Split c into c̄t∗
21 u← 0`
22 v ← π(u)
23 h← khf(v, c̄)
24 u0 ← G(0)
25 v0 ← π(u0)
26 t← h⊕ v0
27 If t∗ 6= msbT (t): Return ⊥
28 Split c̄ into c1 . . . cl−1c

∗
l

29 cl ← c∗l ‖0`−l
∗

30 For i← 1 to l:
31 ui ← G(i)
32 vi ← π(ui)
33 mi ← ci ⊕ vi
34 m∗l ← msbl∗(ml)
35 m← m1 . . .ml−1m

∗
l

36 Return m

Fig. 15. GCM0-DEM. Lines 00 and 19 uniquely identify quantities l and l∗ such that l ∈ N≥1 and 0 ≤ l∗ < `, and
|m| = (l−1)`+l∗ and |c| = (l−1)`+l∗+T , respectively. Correspondingly, line 01 assumes |m1| = . . . = |ml−1| = `
and |m∗l | = l∗, line 20 assumes |t∗| = T , and line 28 assumes |c1| = . . . = |cl−1| = ` and |c∗l | = l∗.

Lemma 4. GCM0-DEM is ε-simulatable with ε ≤ (dL/`e2 + 4dL/`e)/2`−1, where L is the maximum
message length (in bits).

Proof. The structure of GCM0-DEM is quite similar to the one of CTR0-DEM: both modes first encrypt
the message using CTR mode, then they append a MAC tag to the ciphertext. Two potentially interesting
differences are that (a) in GCM0-DEM, the MAC key is derived by enciphering the value 0` under the
blockcipher, and (b) in GCM0-DEM, the MAC tag is a GHASH value that is blinded with a blockcipher
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Fake(k′, |m|)
00 Write |m| as (l−1)`+ l∗

01 c1, . . . , cl ←U D
02 c∗l ← msbl∗(cl)
03 c̄← c1 . . . cl−1c

∗
l

04 t←U D
05 t∗ ← msbT (t)
06 c← c̄t∗

07 st ← (c1, . . . , cl, t)
08 Return c, st

Make(st,m)
20 π̃ ← ∅
21 Write |m| as (l − 1)`+ l∗

22 Parse st as (c1, . . . , cl, t)
23 Split m into m1 . . .ml−1m

∗
l

24 ml ← m∗l ‖0`−l
∗

25 For i← 1 to l:
26 ui ← G(i)
27 vi ← mi ⊕ ci
28 If ui ∈ Dom(π̃): Abort
29 If vi ∈ Rng(π̃): Abort
30 π̃ ← π̃ ∪ {(ui, vi)}
31 c∗l ← msbl∗(cl)
32 c̄← c1 . . . cl−1c

∗
l

33 u← 0`
34 v ←U D
35 If u ∈ Dom(π̃): Abort
36 If v ∈ Rng(π̃): Abort
37 π̃ ← π̃ ∪ {(u, v)}
38 h← khf(v, c̄)
39 u0 ← G(0)
40 v0 ← h⊕ t
41 If u0 ∈ Dom(π̃): Abort
42 If v0 ∈ Rng(π̃): Abort
43 π̃ ← π̃ ∪ {(u0, v0)}
44 Return π̃

Fig. 16. Fake and Make for GCM0-DEM. We write ‘Abort’ as an abbreviation for ‘Return ∅’.

output (as is standard for Wegman-Carter MACs). Despite these differences, extending the proof of
Lemma 1 to the GCM setting is straight-forward. The corresponding Fake and Make algorithms are
given in Figure 16 and do not require further explanation.

We show that the requirements from Definition 11 are met. To see that condition (1) holds, observe
that in Make the values vi, v, and v0 are uniformly distributed and independent of each other at the
point they are added to Rng(π̃) in lines 30, 37, 43. To establish the correctness bound of condition (2)
we assess the probability that Make aborts. The analysis is particularly simple: the conditions in lines
28, 35, 41 are never met by construction, and the conditions in lines 29, 36, 42 are met with a total
probability of (0 + . . .+ (l + 1))/|D|. This establishes the claimed bound. Condition (3) is clear. ut

5 A Formal Treatment of Our Main Result

We anticipated the main result of this paper in Section 3: Any (hybrid) PKE scheme constructed from a
KEM and a permutation-driven DEM offers SIM-SO-CCA security in the ideal cipher model, if the KEM
provides confidentiality (IND-CCA), the DEM provides authenticity (OT-INT-CTXT), and the DEM is
simulatable. Prerequisites like IND-CCA and OT-INT-CTXT on the KEM and DEM, respectively, are
standard for proofs of the IND-CCA security of hybrid encryption, so the important finding is that the
added constraint of simulatability suffices to lift security to the stronger notion of SO security.4

We discussed an informal version of our result in Section 3.2. Recall from the included proof sketch
that an important subgoal was bounding the probability of the ideal cipher being evaluated on input
a key established by the KEM before a corresponding Open query is posed. (If the cipher is evaluated
earlier, the partial permutation found by Fake and Make cannot be smoothly embedded into it any
more.) In the following we argue that without putting further restrictions on the KEM, bounding this
probability to any small value is in general impossible. Indeed, assume for a moment a KEM where
K.Enc, before outputting a key k and a ciphertext c, evaluates the blockcipher used by D.Enc on input
key k and a value d0, where the latter is any fixed element d0 ∈ D in the cipher’s domain, and assume
K.Enc completely ignores the result. Even though this blockcipher evaluation is completely pointless and
should not affect security of the overall design, for such a KEM our arguments would not work. Below,
in the formal version of our theorem statement, we correspondingly restrict the set of considered KEMs
to those that do not evaluate the blockcipher at all. This admittedly is a limitation of our result, but we
believe it is a mild one. Indeed, all practical KEMs we are aware of do not (internally) invoke blockcipher
operations at all. This holds in particular for Hashed ElGamal, PSEC-KEM, Cramer-Shoup KEM, and
RSA-KEM. In the following theorem statement, if E is a blockcipher, we say a KEM is

:::::::::::::
E-independent

if no KEM algorithm evaluates E+ or E−.
We proceed with the statement and proof of our main theorem.

4 We note that a typical proof of IND-CCA security of hybrid PKE requires the DEM to also offer some kind of
confidentiality (e.g., OT-IND-CCA). A corresponding notion appears only implicitly in our theorem statement,
as it follows from the DEM’s simulatability (in the ideal cipher model).
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00 I ← ∅
01 For all k ∈ K: Ek ← ∅
02 I ← ∅; C ← ∅
03 (pk, sk)←$ K.Gen
04 (D, st)←$ AP.Dec,E

1 (pk)
05 (m1, . . . ,mn)←$ D
06 For i← 1 to n:
07 ri ←U R
08 (k′′i , ci,1)← K.Enc(pk; ri)
09 (ki, k′i)← k′′i
10 If ki ∈ K[i−1] ∪ supp(E): Abort
11 (ci,2, sti)←$ Fake(k′i, |mi|)
12 ci ← 〈ci,1, ci,2〉
13 out←$ AOpen,P.Dec,E

2 (st, c1, . . . , cn)
14 Stop with Pred(D,m1, . . . ,mn, I, out)

Oracle Open(i)
15 I ← I ∪ {i}
16 If ki ∈ K[i−1] ∪ supp(E): Abort
17 π̃ ←$ Make(sti,mi)
18 Eki ← π̃
19 If ci,2 6= O.EncE(ki;·)(k′i,mi): Abort
20 Return (mi, ri)

Oracle P.Dec(〈c1, c2〉)
21 If 〈c1, c2〉 ∈ C[n]: Abort
22 If c1 ∈ C[n]\I,1: Return ⊥
23 k′′ ← K.Dec(sk, c1)
24 If k′′ = ⊥: Return ⊥
25 (k, k′)← k′′

26 m← O.DecE(k,·)(k′, c2)
27 Return m

Oracle E+(k, α)
28 If k ∈ K[n]\I : Abort
29 If α /∈ Dom(E+

k ):
30 β ←U D \ Rng(E+

k )
31 Ek ← Ek ∪ {(α, β)}
32 Return β

Oracle E−(k, β)
33 If k ∈ K[n]\I : Abort
34 If β /∈ Dom(E−k ):
35 α←U D \ Rng(E−k )
36 Ek ← Ek ∪ {(α, β)}
37 Return α

Fig. 17. Experiment in which adversary (A1,A2) is run in, when embedding simulator S into the ideal game. Code
in grey boxes is run by the ideal game. For J ⊆ [n] we denote CJ ,1 := {cj,1 | j ∈ J } and KJ := {kj | j ∈ J }.
Further, we denote supp(E) := {k ∈ K | Ek 6= ∅}. This experiment corresponds to the last game G6 in the
sequence of games in the proof of Theorem 2.

Theorem 2. Let DEM be a (K,D)-permutation-driven DEM with corresponding oracle DEM oDEM and
blockcipher E. Let KEM denote an E-independent KEM for the key space of the DEM. Let PKE denote
the hybrid PKE scheme obtained when instantiating Construction 1 in Figure 3 with KEM and DEM.

Let DEM be (τ, qd, εctxt)-OT-INT-CTXT secure and KEM be (τ, qd, εcca)-IND-CCA secure.
If oDEM is εsim-simulatable, then PKE is (τ, τ ′, qd, qic, ε)-SIM-SO-CCA secure where ε can be upper-

bounded by

ε(n) ≤ n ·
(

3 · εcca + εctxt + εsim + 2 · n+ qic + qd
|K|

)
and E is modeled as an ideal cipher.

See Section 1 for a proof sketch including the high-level ideas. We proceed with a detailed proof of
Theorem 2.

Proof. For J ⊆ [n] let CJ ,1 (resp. KJ ) denote the set {cj,1 | j ∈ J } (resp. {kj | j ∈ J }). We denote the
set of keys k ∈ K where partial permutation Ek is not empty as supp(E) := {k ∈ K | Ek 6= ∅}.

Fix any SIM-SO-CCA adversary A and consider the simulator S as given in Figure 17. Note that
lines 01 – 04 correspond to the code of S1 from Figure 6, and lines 06 – 13 correspond to the code of S2.
The code is enhanced by bookkeeping and abort events, while the explicit invocation of S1, S2 and their
input/output behaviour is merged into the ideal game. Instructions in grey boxes are performed by the
ideal game. Note that, technically, two a-priori distinct sets I are maintained: Simulator S2 keeps track
of A’s opening queries in a set IA while the ideal games tracks opening queries in another set IS . As
the simulator keeps both sets synchronised throughout its execution, we do not distinguish these set and
write I.

We show that S, when run in the ideal game, can simulate the real game for A. To this end we
proceed in a sequence of experiments tracing A’s advantage of distinguishing two consecutive games.
The sequence interpolates between the real game (G0 = r-SO-CCA, cf. Figure 5) and a simulated real
game (cf. Figure 17) provided by the simulator when run in the ideal game (G6 = i-SO-CCA, cf. Figure 4).
The whole sequence of experiments is given in Figure 18. Lines ending with a range of games Gi – Gj
(resp. Gi if j = i) are only executed when a game within the range is run.
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Without loss of generality we assume that A does not make the same opening query twice.
We proceed with detailed descriptions of experiments used in the proof of Theorem 2.

Experiments G0 − G6
00 For all k ∈ K: Ek ← ∅
01 I ← ∅; C ← ∅
02 bad← 0 //G4
03 (pk, sk)←$ K.Gen
04 (D, st)←$ AP.Dec,E

1 (pk)
05 (m1, . . . ,mn)←$ D
06 For i← 1 to n:
07 ri ←U R
08 (k′′i , ci,1)← K.Enc(pk; ri)
09 (ki, k′i)← k′′i
10 If ki ∈ K[i−1] ∪ supp(E): Abort //G2 – G6

11 ci,2 ← O.EncE(ki;·)(k′i,mi) //G0 – G2
12 (ci,2, sti)←$ Fake(k′i, |mi|) //G3 – G6
13 π̃ ←$ Make(sti,mi) //G3 – G5
14 Eki ← π̃ //G3 – G5
15 If ci,2 6= O.EncE(ki;·)(k′i,mi): //G3 – G5
16 Abort //G3 – G5
17 ci ← 〈ci,1, ci,2〉
18 out←$ AOpen,P.Dec,E

2 (st, c1, . . . , cn)
19 If bad: Abort //G4
20 Stop with Pred(D,m1, . . . ,mn, I, out)

Oracle Open(i)
21 I ← I ∪ {i}
22 If ki ∈ K[i−1] ∪ supp(E): Abort //G6
23 π̃ ←$ Make(sti,mi) //G6
24 Eki ← π̃ //G6
25 If ci,2 6= O.EncE(ki;·)(k′i,mi): Abort //G6
26 Return (mi, ri)

Oracle P.Dec(〈c1, c2〉)
27 If 〈c1, c2〉 ∈ C[n]: Abort
28 If c1 ∈ C[n]\I,1: //G1 – G6
29 Return ⊥ //G1 – G6
30 k′′ ← K.Dec(sk, c1)
31 If k′′ = ⊥: Return ⊥
32 (k, k′)← k′′

33 m← O.DecE(k,·)(k′, c2)
34 Return m

Oracle E+(k, α)
35 If k ∈ K[n]\I : //G4 – G6
36 bad← 1 //G4
37 Abort //G5 – G6
38 If α /∈ Dom(E+

k ):
39 β ←U D \ Rng(E+

k )
40 Ek ← Ek ∪ {(α, β)}
41 Return β

Oracle E−(k, β)
42 If k ∈ K[n]\I : //G4 – G6
43 bad← 1 //G4
44 Abort //G5 – G6
45 If β /∈ Dom(E−k ):
46 α←U D \ Rng(E−k )
47 Ek ← Ek ∪ {(α, β)}
48 Return α

Fig. 18. Experiments G0 – G6 used in the proof of Theorem 2. We write ‘Abort’ as an abbreviation for ‘Stop
with 0’.

Game G0. The r-SO-CCA game as given in Figure 5.

Game G1. Lines 28 and 29 are added: Any decryption query of the form 〈c1, c2〉 is answered with ⊥ if
c1 ∈ C[n]\I,1. That is, there exists i ∈ [n] such that c1 = ci,1 and A did not query Open(i).

Claim. There exists an adversary Bcca that (τ, qd, εcca)-breaks the IND-CCA security of KEM and an
adversary Bctxt that (τ, qd, εctxt)-breaks the OT-INT-CTXT security of DEM with |Pr[G0 ⇒ 1]−Pr[G1 ⇒
1]| ≤ n · (εcca + εctxt).

Proof. Games G0 and G1 proceed identically, until A submits a ciphertext 〈c1, c2〉 to decryption where
c1 ∈ C[n]\I and P.Dec(sk, 〈c1, c2〉) 6= ⊥. We fix some i ∈ [n] and analyse the probability that A submits a
ciphertext 〈c1, c2〉 where c1 ∈ C{i}\I and P.Dec(sk, 〈c1, c2〉) 6= ⊥ we denote this event by ‘〈ci,1, c2〉9 ⊥’.

As a first step, we replace k′′i as output by the ith invocation of K.Enc with a uniformly random
key. The price we pay is an additional summand of εcca in the bound on Pr[〈ci,1, c2〉 9 ⊥] as shown
by the following reduction run by adversary Bcca: It uses its decapsulation oracle to answer decryption
queries from A1. Receiving (c∗, k∗b ), Bcca parses (kb, k′b) ← k∗b and computes all ciphertexts faithfully
except for ci ← 〈c∗,O.EncE(kb;·)(k′b,mi)〉. Decryption queries 〈c1, c2〉 by A2 are answered employing the
decapsulation oracle for c1 6= c∗ and using key k∗b otherwise.

The reduction perfectly simulates G1 until A queries Open(i) which the reduction cannot answer.
However, to bound the probability of event ‘〈ci,1, c2〉 9 ⊥’ happening, it suffices to make sure that the
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reduction ‘works’ as long as the event can occur. Observe that ‘〈ci,1, c2〉9 ⊥’ cannot happen after query
Open(i).

We now show how to break the OT-INT-CTXT security of the DEM if ‘〈ci,1, c2〉9 ⊥’ happens. We
construct Bctxt. The reduction performed by Bctxt runs K.Gen and starts A1(pk). Decryption queries are
answered using sk. Once A1 outputs D, Bctxt samples messages but submits mi to the D.Enc oracle of
its OT-INT-CTXT game to obtain a data encapsulation c∗2 ← D.Enc(k′′$ ,m∗) under a random key k′′$ .
Additionally, Bctxt runs K.Enc to obtain (k, c∗1) and sends (c1, . . . , ci−1, 〈c∗1, c∗2〉, . . . , cn) to A. Adversary
Bctxt answers all further decryption queries on its own, unless the ciphertext is of the form 〈c∗1, c2〉 where
it submits c2 to the decapsulation oracle of the OT-INT-CTXT experiment. If it receives ⊥, it returns ⊥
to A2.

Clearly, Bctxt wins the OT-INT-CTXT game when A submits a ciphertext that causes ‘〈ci,1, c2〉9 ⊥’
to happen.

We obtain Pr[〈ci,1, c2〉9 ⊥] ≤ εcca + εctxt. The claim follows from the union-bound over all i ∈ [n].
ut

The next game hop ensures that (if it is not aborted) the ith invocation of the oracle data encapsu-
lation, i.e., O.EncE(ki;·), has access to an empty partial permutation Eki

. This is a preparational step to
ensure that later, when O.Enc is replaced with Fake and Make, the partial permutation output by Make
can be embedded into Eki .

Game G2. Line 10 is added. That is, G2 aborts if the ith iteration of O.Enc would have oracle access to
a non-empty permutation E(ki; ·). 5

Claim. There exists an adversary Bcca that (τ, qd, εcca)-breaks the IND-CCA security of KEM with
|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ n · (εcca + (n+ qic + qd) / |K|).

Proof. We bound Pr[ki ∈ K[i−1] ∪ supp(E)] for fixed i ∈ [n]. Again, we use KEM’s IND-CCA security
to replace k′′i output by the ith invocation of K.Enc with a uniform key. We construct adversary Bcca. It
receives pk and starts A1(pk). Decryption queries are answered using the decapsulation oracle. When A1
halts, Bcca requests its IND-CCA challenge (c∗, k∗b ) — let (kb, k′b)← k∗b — and runs the For loop 07. In
the ith iteration Bcca halts and returns 1 iff kb ∈ K[i−1] ∪ supp(E). Clearly, the reduction is perfect until
Bcca halts and we have |Pr[ki ∈ K[i−1] ∪ supp(E)]− Pr[k$ ∈ K[i−1] ∪ supp(E)]| ≤ εcca where k$ ←$ K.

Note that each decryption query or query to the ideal cipher oracles adds at most one element
to supp(E), hence |K[i−1] ∪ supp(E)| ≤ n + qic + qd. Thus, we obtain Pr[k$ ∈ K[i−1] ∪ supp(E)] ≤
(n+ qic + qd) / |K| and Pr[ki ∈ K[i−1] ∪ supp(E)] ≤ εcca + (n+ qic + qd) / (|K|). The claim follows from
the union-bound over i ∈ [n]. ut

Game G3. The faithful data encapsulation is replaced by algorithms Fake and Make. More precisely,
for each iteration of the For loop (line 06) we replace the invocation O.DecE(ki;·)(k′i,mi) (line 11) with
running Fake(k′i, |mi|) and Make(mi) back to back (lines 12,13). Eki

gets assigned partial permutation π̃
as output by Make (cf. line 14) and a check is performed whether Eki has been programmed ‘consistently’;
if not, experiment G3 aborts (lines 15, 16).

Claim. |Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ n · εsim.

Proof. Fix i ∈ [n]. Due to the modifications in games G1 and G2 partial permutation Eki
is empty at

the time of invoking O.Enc. Hence, once we replace O.Enc by Fake and Make, the partial permutation
as output by Make can always be embedded into Eki . Particularly, partial permutations Eki accessed by
O.Enc and π̃ output by Make are identically distributed when randomly extended to a full permutation
on D. We conclude that the abort in line 16 happens with probability at most εsim as oDEM is εsim-
simulatable. The claim follows from the union-bound over all i ∈ [n]. ut

Recall from the proof outline that, eventually, Make shall be run as part of the Open procedure. The
upcoming modifications ensure that partial permutation Eki remains empty until Open(i) is queried.
5 As of now, in the ith iteration of the For loop, we have K[i−1] ⊆ supp(E) as the invocation of O.EncE(ki;·) adds
elements to Eki . Later, in game G6, we do not invoke code that (implicitly) adds elements to Eki and rely on
set K[i−1] to detect collisions amongst the (blockcipher) keys.
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Game G4. Line 02 is added to initialise a flag ‘bad’ as 0. Lines (35, 36) are added to the E+ oracle, lines
(42, 43) are added to the E− oracle and line 19 is added. That is, if E+ or E− is queried on (ki, z) for
any z and i /∈ I, ‘bad’ is set to 1 and the game aborts

::::
after the execution of A2 (in line 19).

Claim. There exists an adversary Bcca that (τ, qd, εcca)-breaks the IND-CCA security of KEM with
|Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1]| ≤ n · (εcca + (qic + qd)/|K|).

Proof. Fix i ∈ [n] and let ‘k ∈ K{i}\I ’ denote the event that E+ or E− is queried on (k, z) where
k ∈ K{i}\I . (That is, the condition in lines 35 or 42 holds, even for K{i}\I). Again, we replace key
k′′i output in the ith invocation of K.Enc with a uniform key (k$, k

′
$) ← k′′$ . The reduction run by Bcca

proceeds as in the proof to bridge G0 and G1. Here, Bcca halts after A2’s execution and outputs 1 iff
bad = 1. Clearly |Pr[k ∈ K{i}\I ]− Pr[k ∈ {k$} \ I]| ≤ εcca for uniform k$ ←$ K.

The reduction is perfect unless A2 queries Open(i) which cannot be answered. Note that after query
Open(i), ‘bad’ cannot be set to 1 asK{i}\I = ∅. Similarly to before, it suffices to guarantee the correctness
of the simulation as long as the abort in line 19 can potentially happen.

Note that k$ is uniform from A’s view: Only ciphertext 〈ci,1, ci,2〉 might contain information on k$
but ci,1 is independent of k$ as it is sampled after K.Enc output ci,1 and data encapsulation ci,2 is
independent of k$ as we run Fake(k′i,mi) to compute ci,2. Thus, Pr[k ∈ {k$} \ I] ≤ (qic + qd)/|K| and
collecting the probabilities and applying the union-bound gives the desired bound. ut

Game G5. Lines 37 and 44 are added. Instead of aborting after the execution of A2 if bad = 1, game G5
aborts as soon as bad (as introduced in game G4) is set to 1. Now obsolete lines 02, 19, 36 and 43 are
removed for clarity.

Claim. Pr[G4 ⇒ 1] = Pr[G5 ⇒ 1].

Proof. The claim follows from observing that game G5 aborts in lines 37 or 44 if and only if game G4
aborts in line 19. ut

Game G6. An abort event is added in line 22. The invocation of Make, the embedding of a partial
permutation and the consistency check are moved from the For loop in lines 13 – 16 to the Open oracle
(lines 23 – 24).

Claim. Pr[G5 ⇒ 1] = Pr[G6 ⇒ 1].

Proof. The abort event in line 22 is solely added for clarity but never met: Assume that line 22 would
cause an abort, then the condition in line 10, or lines 35/42 would have been satisfied earlier. Hence,
for all i ∈ [n]: a) in game G5 partial permutation Eki

← π̃ as output by Make in line 13 is information-
theoretically hidden from A until it queries Open and b) in game G6 partial permutation Eki

remains
empty until A queries Open. Thus, embedding partial permutation π̃ into Eki always succeeds. Further,
moving the invocation of Make, the embedding and checking to the Open oracle is completely oblivious
to A. ut

We observe that the code as given in game G6 in Figure 18 matches the code of the simulator as given
in Figure 17.

The claim of Theorem 2 follows by collecting the probabilities. ut

6 Conclusion

The most promising practical approach to public key encryption is through the hybrid KEM/DEM
paradigm. Suitable KEMs include Hashed ElGamal, PSEC-KEM, Cramer-Shoup KEM, and RSA-KEM,
and candidates for the DEM part are readily derived from the highly efficient encryption modes CTR,
CBC, CCM, GCM standardized by NIST (to reach CCA security, the former two should be enhanced
with a MAC, e.g., CMAC or HMAC). To compress the contribution of this paper into a single line:
We effectively show that if any of these KEMs is combined with any of these DEMs in the sense of
hybrid encryption, then the obtained PKE scheme offers a strong notion of selective opening security.
Our result holds in the (heuristic) ideal cipher model for the underlying blockcipher. We thus recommend
using modern blockciphers like AES as they come closest to meeting such requirements.
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A more thorough Definition of Simulatability

We give a more careful characterization of the properties (1) and (2) from Definition 11. While the
original Fake and Make algorithms were randomised, here, for clarity, we switch to their deterministic
counterparts with explicit randomness spaces.

Definition 12 (Simulatable oracle DEM). For (deterministic) algorithms Fake and Make of the
form

K′ × N×R1 → Fake→ C ×Σ and Σ ×M×R2 → Make→ PP(D)

and R = R1 ×R2 define composed algorithm

K′ ×M×R→ FakeMake→ PP(D)× C

and its two projections

K′ ×M×R→ FakeMake1 → PP(D) and K′ ×M×R→ FakeMake2 → C

such that for all k′ ∈ K′, m ∈M, r1 ∈ R1, r2 ∈ R2 we have that

Fake(k′, |m|, r1) = (c, st) ∧Make(st,m, r2) = π̃

implies that FakeMake(k′,m, r1r2) = (π̃, c) and that

FakeMake1(k′,m, r1r2) = π̃ and FakeMake2(k′,m, r1r2) = c .

For a partial permutation π̃ ∈ PP(D) let Π̃ := {π ∈ P(D) | π̃ ⊆ π} denote the set of all extensions of π̃
to permutations π on D.

We say that an oracle DEM is
:::::::::::
ε-simulatable by Fake and Make if for all all k′ ∈ K′ and m ∈ M we

have that:

(1) Letting π̃ ←$ FakeMake1(k′,m) and uniformly picking a permutation from Π̃ yields a uniformly
distributed element of P(D).

(2) It holds that
Pr[(π̃, c)←$ FakeMake(k′,m);π ←U Π̃; c 6= O.Encπ(k′,m)] ≤ ε ,

where the probability is taken over the choice of π and the randomness of FakeMake.
(3) As in Definition 11.
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