
Post-Quantum Attribute-Based Signatures from Lattice
Assumptions

Rachid El Bansarkhani and Ali El Kaafarani

Technische Universität Darmstadt, Germany
elbansarkhani@cdc.informatik.tu-darmstadt.de

University of Oxford, UK.
Ali.ElKaafarani@maths.ox.ac.uk

Abstract. Attribute based signature schemes (ABS) constitute important and powerful prim-
itives when it comes to protecting the privacy of the user’s identity and signing information.
More specifically, ABS schemes provide the advantage of anonymously signing a message once
a given policy is satisfied. As opposed to other related privacy preserving signatures, the ver-
ifier is not able to deduce from the signature, which attributes have been used to satisfy the
(public) signing policy.

In this work, we propose the first lattice-based ABS signature scheme for expressive policies.
More precisely, the scheme that we propose doesn’t follow the traditional approach to build
ABS schemes for expressive policies, i.e. using span programs or secret sharing schemes as
for classical schemes. In fact, our approach is simpler and does not require such complex
subroutines. We first construct a new (t, B)-threshold ABS scheme that allows to anonymously
generate signatures, only if t out of p = |B| attributes are covered by valid credentials. Based
on this scheme, we propose a lattice-based ABS scheme for expressive (∧,∨)-policies. For this,
we construct a new credential aggregation system that is built on top of a modified variant
of Boyen’s signature scheme, which could be of independent interest. Our ABS scheme for
expressive policies yields signature sizes that are linear in the number of attributes similar to
state-of-the-art classical ABS schemes.

Keywords: Lattice-Based Cryptography, Attribute Based Signatures.

1 Introduction

Often we are less concerned with who signed something than with what attributes they have. We
want to be able to verify the authenticity of signers without revealing attributes that can include
their nationality, age, job title or any other identifying/private criterium. Attribute-Based Signa-
tures (ABS) are a promising, versatile primitive that allows signers to anonymously authenticate
messages while enjoying fine-grained control over identifying information, i.e. attributes. They were
first introduced by Maji et al. in a preliminary version [28]. Subsequently, other ABS schemes were
proposed by Li and Kim in [24], Shahandashti and Safavi-Naini in [34], and Li et al. in [23]. In an
ABS scheme, users can only sign messages w.r.t. policies satisfied by a set of attributes which they
possess. The verifiers of a given valid ABS signature are then convinced that a signer with a set of
attributes satisfying the policy in question has signed the message but learn neither the identity of
the signer nor the exact attributes he/she used to produce the signature. Attribute-based signatures
are a generalization of many existing and widely-used anonymous digital signature notions such
as group [7] and ring [33] signatures. Attribute-based signatures have many applications including
trust negotiation, e.g. [13], attribute-based messaging, e.g. [3], and leaking secrets.

Various features have been added to attribute-based signature schemes to meet real-world se-
curity requirements such as decentralization [32], traceability [12,11,16], user-controlled linkability
[10], and controllable-linkability [36].

ABS schemes have different variants according to how expressive the policies they support are.
For instance, we have threshold attribute-based signatures (tABS), proposed by Shahandashti and
Safavi-Naini [34], in which the signing policy is restricted to the threshold type, i.e. a signer who
has valid credentials for t out of n attributes can sign a message w.r.t. the policy ψ = (t, B), where
|B| = n for some setB of pre-specified attributes. Gagné et al. [14] gave a tABS scheme that is pairing
efficient in the sense that they decreased the number of pairing computations. Herranz et al. [19]
gave two tABS schemes with constant-size signatures. ABS schemes supporting more expressive
policies, i.e. any monotonic access structure, were first given by Maji et al. [28]; Policies here take
the form of Boolean formulae, i.e. with OR and AND gates. Okamoto and Takashima [31,32], gave
constructions of ABS supporting non-monotonic access structures, i.e. negation of attributes is also
allowed. Note that any scheme supporting monotonic access structures could support non-monotonic
access structures simply by doubling the universe of attributes.

Other useful features were also added to ABS schemes. Attribute-Based Signatures with User-
Controlled Linkability (ABS-UCL) was introduced in [10]; users can now at discretion choose to
make some of their ABS signatures, directed at a specific verifier, linkable without sacrificing their
privacy.

Decentralized Traceable ABS (DTABS) schemes [11,16] are ABS schemes that don’t rely on
a central authority and furthermore entail traceability, which allows an opener that has a special
tracing key to identify the signer of a signature in the case of misuse/dispute.

Related Work. There has been an interesting progress recently regarding quantum-resistant anony-
mous digital signatures. For instance, lattice-based group signatures were recently proposed in
[18,21,22,27,25]. The proposed schemes improved upon the results presented by Gordon et al. (ASI-
ACRYPT 2010), both in terms of public key and signature sizes. Later on, Boyen proposed in [5] an
attribute-based functional encryption scheme from lattices; It is in fact a key-policy attribute-based
encryption scheme. However, no equivalent attribute based signature schemes for general policies
from lattices have been realized so far. In [8], Cheng et al. proposed Policy-Based Signatures (PBS)
from lattices, where a signer is only allowed to sign messages satisfying a certain policy; here the
underlying signing policy is not public, so it is only applicable in situations where the verifiers have
no say in the policy itself. Another relevant scheme is anonymous attribute tokens (AAT) proposed
by Camenish et al. in [6]. As they define it, an AAT scheme can be seen as an extension of group
signatures where the issuer can assign a list of attributes to a user’s signing key. The user would
then need to selectively reveal some of these attributes to convince the verifier that he/she has valid
credentials (i.e., signing key with attributes) certifying the claimed attribute values, but without
revealing any information about the non-revealed attributes. This clearly provides a lower level of
privacy compared to attribute-based signatures where signers don’t need to reveal anything about
their attributes except that they indeed satisfy a certain policy, i.e. verifiers can’t deduce which
attributes the signer has.
Due to recent developments to consider the transition to quantum resistant cryptographic prim-
itives induced by many well-known institutions such as the National Institute of Standards and
Technology (NIST), the PQCRYPTO project and the National Security Agency (NSA) we con-
struct post-quantum secure attribute based signature schemes from lattice assumptions.

2

1.1 Contribution and Techniques

In this work we present constructions of lattice-based ABS schemes. Our contributions are twofold.
In the first part of this work, we start proposing a new lattice-based threshold ABS scheme, which
allows to anonymously sign t out-of p policies. In the second part, we turn this threshold ABS
scheme into an ABS scheme for expressive policies which we refer to as (∧,∨)-policies. We give a
technical overview of our contributions below.

Threshold ABS As a first main contribution, we construct a novel lattice-based threshold ABS
scheme for a given (t, B)-policy ψB , where the signature size is linear in p = |B|. In this scheme,
a user can output a valid signature on a given message m w.r.t. ψB if and only if he can prove
the possession of t valid credentials for attributes in B ⊆ Attributes. The anonymity nature of ABS
schemes comes from the fact that the signatures reveal neither the identity nor the attributes for
which the signer has valid credentials. For our threshold ABS scheme, we proceed as follows.

1. First, we modify Boyen’s signature scheme that originally has (A, {Ai}`i=1,u) as a public key,
where A,Ai ∈ Zn×mq and u ∈ Znq . In order to obtain a credential system for polynomially many

attributes, the new scheme requires the public part to be extended to (A, {Ai}`i=1,Attributes =
{ui}pi=1). However, we generate the set of eligible attributes in a specific way simplifying the use
of a statistical zero-knowledge argument proof system since the related simulation transcripts
have to be statistically close to those in a real interaction. The attribute authority can then
produce valid credentials for an attribute uj and signer id by sampling zid,j such that Aid ·zid,j =
uj and ‖zid,j‖ ≤ γ. By doing so, the signer obtains valid credentials for a subset of attributes.

2. Second, and in order to anonymously prove to the verifier that a given user has indeed t valid
credentials for attributes in B, we further involve fake credentials did,j for all other attributes

in B such that Aid · did,j = uj , where Aid = [A |A0 +
∑`
i=1 idi ·Ai]. In fact, we define the set

of fake credentials {ϕ(d̄)}ϕ which in turn define the set of eligible attributes {u = Ā · ϕ(d̄)}ϕ
for Ā = [A|A0| . . . |A`], where for instance d̄ = (q̄+ 1, q̄− 1, . . . , q̄+ (2 + `)m/2, q̄− (2 + `)m/2)
for (2 + `)m < q̄ = bq/2c and 2 | (2 + `)m. This ensures that all possible fake credentials are
just permutations of one another exactly as desired for the statistical zero-knowledge argument
proof system.

3. Third, we use a zero-knowledge system to prove the possession of t out of n attributes. Namely, we
modify the statistical zero-knowledge argument of knowledge (sZKAoK) from [27]. In particular,
we prove that Aid · xid,j = uj for uj ∈ B, where xid,j is either a real or a fake credential. This
is accomplished by use of masking terms for all credentials and further permutations in order
to scramble the positions of the credentials in relation to the attributes, such that the verifier
cannot link the credentials to the attributes when verifying the sZKAoK. Via the Fiat-Shamir
transform or the post-quantum secure transformation due to Unruh [35], we obtain a signature
of knowledge.

ABS for Expressive Policies The second part of our contributions is devoted to the construction
of the first ABS scheme for expressive policies which we build on top of our threshold scheme. The
high level technical overview of this transformation is as follows.

1. First, we define the set of eligible attributes as {u = Ā · ϕ(d̄)}ϕ for any d̄ ∈ Λ⊥q (Ā). This
ingredient is very crucial for the generation of fake credentials. Subsequently, we turn any (∧,∨)-

3

policy ψ into its disjunctive normal form (DNF) such that ψ can be rewritten as

ψ = C1 ∨ . . . ∨ Ck,

where Ci constitutes a
∧

-policy for some attributes in B, i.e. we have Ci = U1
i ∧ . . . ∧ U ti for

i ∈ [k]. The boolean variables U ji are set to 1, if the signer possesses valid credentials for the
associated attributes Bi = {ui1 , · · · ,uit}, otherwise 0. Satisfying one of the disjunctive terms
suffices in order to satisfy the policy, i.e. Ci = 1⇔ ψ = 1.

2. Second, we construct an aggregation credential system such that we can generate valid creden-
tials for Ci if and only if the signer possesses a valid credential for each attribute related to Ci.
In fact, we prove that zCi =

∑t
j=1 zij is an aggregate credential for the attributes in Bi, i.e.

Aid · zCi =

t∑
j=1

uij , ‖zCi‖∞ ≤ γ ·
√
dmax << q/4,

where dmax = maxi∈[k] |Bi| .

3. Subsequently, we proceed as with the threshold ABS scheme, since we can generate a valid ag-
gregate credential for any disjunctive term Ci and fake aggregated credentials for the remaining
terms Cj using the set of fake credentials and |Cj | − dmax copies of the vector d̄. This results in
a 1-out-of-k policy. Then, we can use all the same techniques as for the threshold ABS scheme.
The signature size is linear in the number of attributes

∑k
i=1 |Bi| used in the policy.

4. Finally, we also point out how to realize traceability, which is also an important feature in order
to allow the tracing authority to open signatures and trace identities in case of, for example,
misbehavior or misuse of credentials. To achieve this feature, the signer has to further encrypt its
identity id with the public key of the tracing authority and provide a proof for the correctness of
the ciphertext’s format. Furthermore, we present some concepts of how to extend our construc-
tion to the multi-authority setting, which reflects the situation in many real world scenarios. In
fact, the threshold ABS scheme can be extended to a setting with multiple attribute authorities
in a natural way. However, for expressive (∧,∨)-policies, one has to make sure that a disjunctive
term Ci is always related to attributes that are managed by one single attribute authority.

1.2 Organization

This paper is structured as follows. In Section 2, we provide the relevant background of our work.
In Section 3, we present Boyen’s signature scheme and our modification. Subsequently in Section 4,
we give the security model of ABS schemes. In Section 5, we introduce our lattice-based threshold
ABS scheme. Our zero-knowledge argument of knowledge and its features, which are applied to
the threshold ABS scheme, are presented in Section 6. In Section 7, we propose our lattice-based
ABS scheme for expressive policies, which is built from the threshold ABS scheme introduced in
Section 5. Finally, we show in Section 8 how to use our ABS schemes within a setting involving
multiple authorities.

4

2 Preliminaries

2.1 Notation

We denote vectors by lower-case bold letters e.g. x, whereas for matrices we use upper-case bold
letters e.g. A. Integers modulo q are denoted by Zq and reals by R. Furthermore, we denote by [k]
the set of integers {1, . . . , k}.

2.2 Discrete Gaussian Distribution

We define by ρ : Rn → (0, 1] the n-dimensional Gaussian function ρs,c(x) = e−π·
‖x−c‖22
s2 , ∀x, c ∈ Rn .

The discrete Gaussian distribution DΛ+c,s is defined to have support Λ + c, where c ∈ Rn and
Λ ⊂ Rn is a lattice. For x ∈ Λ+ c, it basically assigns the probability DΛ+c,s(x) = ρs(x)/ρs(Λ+ c) .

2.3 Lattices

A k-dimensional lattice Λ is a discrete additive subgroup of Rm containing all integer linear com-
binations of k linearly independent vectors b1, . . . ,bk with k ≤ m and m ≥ 0. More formally, we
have Λ = { B · x | x ∈ Zk }. Throughout this paper we are mostly concerned with q-ary lattices
Λ⊥q (A) and Λq(A), where q = poly(n) denotes a polynomially bounded modulus and A ∈ Zn×mq is

an arbitrary matrix. Λ⊥q (A) resp. Λq(A) are defined by

Λ⊥q (A) = {x ∈ Zm | Ax ≡ 0 mod q}
Λq(A) = {x ∈ Zm | ∃s ∈ Zm s.t. x = A>s mod q} .

By λi(Λ) we denote the i-th successive minimum, which is the smallest radius r such there exist
i linearly independent vectors of norm r (typically l2 norm) in Λ. For instance, λ1(Λ) = min

x6=0
‖x‖2

denotes the minimum distance of a lattice determined by the length of its shortest nonzero vector.
Micciancio and Regev introduced the smoothing parameter in [30]:

Definition 1. For any n-dimensional lattice Λ and positive real ε > 0, the smoothing parameter
ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε .
Lemma 1. ([2, Lemma 2.4]) For any real s > 0 and T > 0, and any x ∈ Rn, we have

P [| 〈x,DZn,s〉 | ≥ T · s ‖x‖] < 2exp(−π · T 2) .

Lemma 2. ([15, Theorem 3.1]) Let Λ ⊂ Rn be a lattice with basis S, and let ε > 0.We have

ηε(Λ) ≤‖ S̃ ‖ ·
√

ln
(
2n
(
1 + 1

ε

))
/π. In particular, for any function ω(

√
log n), there is a negligible

ε(n) for which ηε(Λ) ≤‖ S̃ ‖ ·ω(
√

log n).

2.4 Lattice Problems.

For the SIS problem we consider the full-rank m-dimensional integer lattices Λ⊥q (A) = {x ∈
Zm | Ax ≡ 0 mod q} consisting of all vectors that belong to the kernel of the matrix A. In par-
ticular, SISq,n,β is an average-case problem of the approximate shortest vector problem on Λ⊥q (A)
for β > 0. Given a uniform random matrix A ∈ Zn×m with m = poly(n), the problem is to find a
non-zero vector x ∈ Λ⊥q (A) such that ‖ x ‖< β. For q ≥ β

√
nω(
√

log n) finding a solution to this

problem is at least as hard as probabilistically Õ(β
√
n)-approximating the Shortest Independent

Vector Problem on n-dimensional lattices in the worst-case [15,1].

5

3 Boyen’s Standard Model Signature Scheme

In this section we recap the construction of Boyen’s signature scheme [4] that is proven to be secure
in the standard model. Based on our modification, that we propose in Section 3.1, we will establish
an ABS scheme, where the signature size is logarithmic in the number of users. We give a description

• q = poly(n) • m̄ = O(nk)
• k = dlog qe = O(log n) • m = m̄+ 2nk
• O(1)ω(log n) ≥ ηε(Λ⊥(G)) • id ∈ {0, 1}`

of the underlying signature scheme instantiated with the trapdoor construction [29]. The parameters
are defined as above. Since we are signing identities later in our constructions in order to generate
credentials for specific signers, we will use id as the message to be signed.

Gen(1n): Sample a matrix Ā ∈ Zn×m̄q uniformly at random and select T←↩ DZm̄×nk,ω(
√

logn). Define

A := [Ā | G− ĀT] and sample uniform random matrices A0,Ai ∈ Zn×nkq for i ∈ [`], where G
is the public gadget matrix from [29]. Furthermore, select a uniform random syndrome u ∈ Znq .
Output secret key sk := T and public key pk := (A,A0, . . . ,A`,u).

Sign(sk, id ∈ {0, 1}`): Define Aid = [A |
∑`
i=1 idi · Ai]. Subsequently, sample a signature z ←↩

DΛ⊥u (Aid),s satisfying Aid · z ≡ u mod q by use of the trapdoor T. Output z as the signature.

Verify(pk, id ∈ {0, 1}`, z): If Aid · z ≡ u mod q and ‖z‖ ≤ s
√
m are satisfied, output 1, else 0.

The scheme has been proven to be secure in the standard model as long as SISn,m,β is hard to
solve for β = O(`(nk)3/2) · ω(

√
log n)3.

3.1 Modification of Boyen’s Signature Scheme

In our construction, we let the attribute authority apply a variant of Boyen’s signature scheme
from lattice assumptions. It is closely related to the pairing-based signature scheme of Waters [37].
However, for our anonymous protocol we hide some public parts of the signature and prove in zero-
knowledge the possession of valid signatures. To this end, the identities of the users are encoded as
messages and both the identity and signatures represent the secret credentials of a user. In order to
allow for various attributes, we modify Boyen’s signature scheme in such a way that we extend the
number p = poly(n) of publicly available syndromes.

Gen(1n): Sample a matrix Ā ∈ Zn×m̄q uniformly at random and select T←↩ DZm̄×nk,ω(
√

logn). Define

A := [Ā | G− ĀT] and sample uniform random matrices Ai ∈ Zn×nkq for i ∈ [`]. Furthermore,
select a set of uniform random syndromes u1, . . . ,up ∈ Znq . Output secret key sk := T and
public key pk := (A,A0, . . . ,A`,Attributes = {ui}pi=1).

Sign(sk, id ∈ {0, 1}`,u ∈ Attributes): Define Aid = [A |
∑`
i=1 idi · Ai]. Subsequently, sample a

signature z ←↩ DΛ⊥u (Aid),s satisfying Aid · z ≡ u mod q by use of the trapdoor T. Output z as
the signature.

Verify(pk, id ∈ {0, 1}`,u ∈ Attributes, z): If Aid · z ≡ u mod q and ‖z‖ ≤ s
√
m are satisfied, output

1, else 0.

6

By a straightforward proof, the modified scheme is shown to be still secure in the standard model
as long as SISn,m,β is hard to solve for β = O(`(nk)3/2) · ω(

√
log n)3.

Theorem 1 (Adapted [29]). There exists a PPT oracle algorithm (a reduction) S attacking the
problem for large enough β = O(`(nk)3/2) ·ω(

√
log n)3 such that, for any adversary F mounting an

SU-CMA attack (strongly unforgeable under chosen message attacks) on the signature scheme BS∗

above with p syndromes and making at most Q queries,

AdvSISn,m,β (SF) ≤ 1

p
AdvSU-CMA

BS∗ (F)/(2(`− 1)Q+ 2)− negl(n)

Proof. The proof of this theorem is straightforward strictly following the proof steps of [29]. The
only difference is that the adversary is now given the choice to provide a forgery for any of the u ∈
Attributes. So the advantage of the adversary is higher by a factor of poly(n), which is still negligible.
In particular, the reduction S obtains m̄+nk+p uniform random vectors in Znq as input and parses

them as a matrix A = [Ā | B] ∈ Zn×(m̄+nk)
q and p syndromes u′1, . . . ,u

′
p. The reduction will then

use the adversary F to find z ∈ Zm with ‖z‖ ≤ β − 1 such that Az = ui mod q for any i ∈ [p], i.e.

[A | u1 | . . . | up] ·
[

z
−ei

]
= 0 mod q, where ei ∈ Zp is the i-the unit vector with 1 at position i and

zero elsewhere. Or S will use F to generate z ∈ Zm\{0} such that [A | u1 | . . . | up]·
[
z
0

]
= 0 mod q.

All other proof steps of [29] essentially remain the same. ut

4 Definition and Security Model

In this section, we define the syntax and security of Attribute-Based Signatures.

4.1 Syntax of ABS

An ABS scheme consists of the following algorithms [28]:

• Setup(1λ): On input a security parameter λ, it returns public parameters pp.
• AASetup(pp, aid): It is run by attribute authority AAaid to generate its public/secret key pair

(vkAA, skAA). The authority publishes vkAA and keeps skAA secret.
• AttKeyGen(pp, id, at, skAA): It is run by attribute authority AA who manages attribute at, it gives

the user id the secret key skid,at.
• Sign(pp,m, ψ, skid,A): It takes the message m, the policy ψ, and the signer’s secret key skid,A

and outputs ⊥ if ψ(A) = 0, otherwise, it returns a signature σ.
• Verify(pp, σ, ψ, {vkAAi}i,m): It takes a signature σ, a message m, the signing policy ψ and the

public keys of attribute authorities involved in ψ, i.e. {vkAAi}i. It returns 1 if σ is a valid signature
on the message m w.r.t. the signing policy ψ and 0 otherwise.

4.2 Security Requirements

Besides correctness, the security of an ABS scheme requires:

Unforgeability. This requires that users cannot output signatures on messages w.r.t a signing
policy not satisfied by their set of attributes, even if they pool their attributes together, which
ensures resistance against collusion.

7

Definition 2 (Unforgeability). An ABS scheme is unforgeable if for all security parameters λ ∈
N, for all PPT adversaries the advantage in winning the following game is negligible:

Setup: The challenger runs Setup and gives pp to the adversary.
Play: Throughout the game the adversary can ask for attribute authorities to be created and ask

for their secret keys. He can also ask for honest users to be created and ask for their personal
secret keys. He can also ask for keys for attributes for users and signatures on tuples (m,ψ) of
his choice on behalf of honest users.

Output: The adversary outputs (σ∗,m∗, ψ∗)

We say that the adversary wins the game if σ∗ is a valid signature on m∗ w.r.t. ψ∗, where (m∗, ψ∗)
was not queried to the signing oracle, and there exists no subset of attributes A∗ whose keys have
been revealed to the adversary or managed by corrupt attribute authorities s.t. ψ(A∗) = 1.

Anonymity. This requires that a signature reveals neither the identity of the signer nor the at-
tributes used in the signing engine.

Definition 3 (Anonymity). An ABS scheme is anonymous if for all security parameters λ ∈ N,
for all PPT adversaries the advantage in winning the following game is negligible:

Setup: The challenger runs Setup and gives pp to the adversary.
Phase I: The adversary can fully control all attribute authorities. It can also ask for the secret keys

of signers of his choice; those signers will be referred to as corrupt users. Also, the adversary
can ask for the secret key of any attribute and signatures on tuples (m,ψ) of his choice on behalf
of honest users.

Challenge: The adversary outputs (m, id0,A0, id1,A1, ψ) where ψ(Ai) = 1 for i = 0, 1. We require
that both id0 and id1 are honest users. The adversary gets back a signature σb produced using
(idb,Ab) for b← {0, 1}.

Phase II: Same as in phase I with the additional condition that the adversary cannot corrupt any
of id0 or id1.

Output: The adversary outputs its guess b∗ and wins if b∗ = b.

More formally, we define the advantage of an adversary F in winning the anonymity game as

Advanon
F,ABS(λ) = |Pr[b∗ = b]− 1/2|

5 Threshold Attribute-based Signatures

In this section, we will present a new threshold ABS scheme from lattice assumptions that is built
on top of the signature scheme introduced in Section 3.1. It turns out that this construction can
efficiently be turned into an attribute based signature scheme. In particular, we let the public part
u of (A0, . . . ,A`,u) take over the role of the public attributes. The attribute authority generates
arbitrary many uniform random elements ui, which are produced by means of a universal generator
element (see Section 5.2). Those elements together represent all available attributes such that a
particular user id is assigned a number of attributes ui if he possesses valid signatures zi on those
attributes ui, i.e. Aid · zi = ui mod q and ‖zi‖ ≤ γ. Thus, the public key and attributes are given
by the tuple (A0, . . . ,A`,Attributes = {ui}pi=1).

8

5.1 Construction

SetupT(1λ) : The public parameters are set to n and q and the discrete Gaussian parameter s.
AASetupT(pp, aid) : The attribute authority generates public random matrices

vkAA := {A,A0, . . . ,A` ∈ Zn×mq } as the public key and the associated trapdoor skAA := T

according to the modified Boyen’s signature scheme in Section 3.1, where 2` denotes the number
of users. Furthermore he generates a set of attributes

Attributes = {u1, . . . ,up},

where ui ∈ Znq is uniform random. Each attribute ati is associated to a uniform random element
ui, for instance via a public list of tuples Q[i] = (ati,ui).

AttKeyGenT(pp, id, B ⊆ Attributes, skAA) : A certain user represented as a bit string id ∈ {0, 1}` is
assigned a set of attributes

skid = {(zid,j1 ,uj1), . . . , (zid,jk ,ujk)}

by the attribute authority such that

Aid · zid,j1 = uj1 mod q, ‖zid,j1‖ ≤ γ

is satisfied for uji ∈ B.

SignT(pp,m, ψ, skid): On input the message m, a policy ψ and the secret key, the signer generates
a signature of knowledge

Π = SPoK(public := {m,Attributes,A}, witness := {skid} :

∃ B ⊆ skid s.th. ψ(B) = 1)

Output signature Σ = (m,Π).
VerifyT(pp, Σ, ψ, vkAA,Attributes): On input the policy, the list of attributes, the public verification

matrices vkAA and an ABS signature Σ, which is parsed as Σ = (m,Π), the verifier returns 1 if
Π = SPoK is a valid proof, otherwise he outputs 0.

We note that a user cannot generate signatures on an attribute unless he can solve SIS instances.
And different signers cannot collude in order to generate a signature on an attribute due to differ-
ing public keys Aid. This directly follows from the unforgeability of the underlying signature scheme.

At a high level, our threshold ABS scheme works as follows; for a given policy ψA,t with A ⊆
Attributes, a user id satisfying this policy such that ψA,t(skid) = 1 utilizes t signatures for attributes
in B ⊆ A and generates |A| − t ”dummy” signatures on the remaining ones in A\B. In the non-
interactive zero-knowledge argument of knowledge, we hide the relationship between the signatures
and the attributes. This is done by use of different permutations shuffling the positions, when
constructing the commitments, such that the verifier cannot link any signature to a particular
attribute. He will only be able to observe the sizes and that t out of the signatures are valid.

We now present a description of the SPoK used in our construction. More specifically, we modify
the Stern-like statistical zero-knowledge argument system that has been applied in [27] for group
signature schemes. The soundness property is guaranteed for computationally bounded cheating
provers and the zero-knowledge property is satisfied even for unbounded cheating verifiers. We

9

realize the statistical zero-knowledge argument system by use of the statistical hiding commitment
scheme of Kawachi et al. [20], where the binding property (computational) is based on the worst-case
hardness of SIVPÕ(n).

The sZKAoK construction from [27] is designed to prove the knowledge of a message signature
pair (id, z) ∈ {0, 1}`×Z2m for Boyen’s signature scheme such that ‖z‖∞ ≤ γ and Aid ·z ≡ u mod q.

The public key is given by vkAA := {A,A0, . . . ,A`) ∈ Zn×mq }, where Aid = [A|A0 +
∑`
i=1 idiAi].

To have a unique public key for all users the public matrix Ā = [A|A0| . . . |A`] ∈ Zn×(2+`)m
q has

been introduced such that

Aid · z = Ā · fid (z) ≡ u mod q

fid(z) = fid

(
z(1), z(2)

)
=
(
z(1), z(2), id1 · z(2), . . . , id` · z(2)

)>
∈ Z(2+`)m .

Now, the goal is to prove in zero-knowledge that Ā · fid(z) ≡ u mod q, ‖fid(z)‖ ≤ γ and fid(z) is
of the form as described above, where the entries are either set to zero or z(2) according to the bit
positions of id.

• To this end, the identifier has been extended to a bit vector id∗ = (id1, . . . , id2`) ∈ B2` having
Hamming weight ` for every user. Permutations are applied to finally scramble the real structure
of id∗ such that the verifier still knows that a valid identity is concealed due to the constant
Hamming weight. But he cannot correctly guess which identity has been scrambled.

• Proving that ‖fid(z)‖ ≤ γ is accomplished by use of the Decomposition-Extension Technique
introduced in [26]. In particular, the signature parts z(1), z(2) are split into k = blog γc + 1

vectors z
(1)
i , z

(2)
i ∈ Zm, 1 ≤ i ≤ k of similar shape with entries in {−1, 0, 1} such that

z =

k∑
i=1

γi · (z(1)
i , z

(2)
i)> for

γ1 = dγ/2e, γi = d(γ −
i−1∑
j=0

γj)/2e, γk = 1, 1 < i < k .

The vectors z
(1)
i , z

(2)
i are subsequently extended to vectors z̃

(1)
i , z̃

(2)
i ∈ B3m such that each vector

contains exactly m entries of each of {−1, 0, 1}. Subsequently, we have

Aext ·

(
k∑
i=1

γi · fid∗
(
z̃

(1)
i , z̃

(2)
i

))
= Ā · fid(z) ≡ u mod q for

Aext = [A|0 ∈ Zn×2m|A0|0 ∈ Zn×2m| . . . |A`|0 ∈ Zn×2m|0 ∈ Zn×3m`] ∈ Zn×(2+2`)3m
q .

Similar to the case of id∗, where permutations are applied to scramble the structure, we use
permutations to hide the structure of zi as well.

Using these tools we show how to scramble and mask the different secret vectors.

• Scrambling: All secret vectors (z, id) are extended into vectors either with the same Hamming
weight or same number of entries from each of {−1, 0, 1}. By use of permutations in a Stern-
like fashion the real structure is concealed in such a way that without the knowledge of the

10

permutations each identity could have been the real signer and each vector in B3m could have
been the preimage of the permuteted vectors. We now give an overview of how to apply the
permutations. Let π, φ ∈ S3m and τ ∈ S2`, where τ(id∗) represents a permutation on the bits of
the extended identity id∗. Furthermore, define the permutation

Pπ,φ,τ (y) = (π(x), φ(y0), φ(yτ(1)), . . . , φ(yτ(2`))),

which reorders the blocks yi ∈ Z3m for 1 ≤ i ≤ 2` and shuffles each block with either φ or π.

In order to convince the verifier that fid∗(z̃i) is related to id∗ for z̃i = (z̃
(1)
i , z̃

(2)
i), the verifier

checks for all 1 ≤ j ≤ k that yj = Pπ,φ,τ (fid∗(z̃j)) is a valid vector for v = τ(id∗), i.e. we obtain

yj = (xj ,yj0, v1 · yj0, . . . , v2` · yj0).

• Masking: In order to mask the signature parts fid(z̃i) for 1 ≤ j ≤ k the signer samples uniform

random elements rj ←↩ Z(2+2`)3m
q such that the verifier can check the relation Aext · (

∑k
i=1 γi ·

fid(z̃i)) ≡ u mod q via

Aext ·

(
k∑
i=1

γi · fid (z̃i) + ri

)
− u ≡ Aext ·

(
k∑
i=1

γi · r(i)

)
.

The prover ensures, when building the commitments and responses for the sNIZKoA proof, that the
structure of the secret key material is concealed either by the scrambling or hiding techniques. This
prevents the verifier from learning sensible information out of the proof.

5.2 Ingredients of our Threshold ABS scheme

In the following section we show how to extend the previous construction in order to realize a
threshold ABS scheme from lattice assumptions. More precisely, we introduce further permutations
and ”dummies” to hide the attributes for which the user possesses valid signatures. Based on the
basic scheme, we use 2 further techniques in order to achieve anonymity of the attributes.

In Section 5.1, the attribute authority defines a set of attributes. In our statistical zero-knowledge
proof system, we require the fake credentials to be indistinguishable under uniform random permu-
tations, i.e. a computationally unbounded adversary should not be able to see any difference even
when using all possible permutations. This is for instance possible, if the fake credentials can be
transformed into each other just by means of permutations.

To this end, we construct the set of attributes in the following way. We define a universal generator
d̄ = (q̄+ 1, q̄− 1, . . . , q̄+ (2 + `)m/2, q̄− (2 + `)m/2) for (2 + `)m < q̄ = bq/2c and 2 | (2 + `)m (for
odd (2 + `)m start with q̄ + 0). Then, we choose permutations ϕi ∈ S(2+`)m uniformly at random

and define the set of eligible attributes S = {ui := Ā · ϕi(d̄)}i. Other choices of d̄ are also possible
such as a uniform random vector, however our choice allows to have the maximal set of permuted
vectors d̄, i.e. |{ϕ(d̄)}ϕ∈S(2+`)m

| = ((2 + `)m)!. Since the whole group of permutations S(2+`)m can
always be generated from a single element ϕgen, we can just identify each attribute ui with respect
to a tuple (ui, j, d̄), i.e.

ui = Ā · ϕjgen(d̄) .

In the following statement we prove that the distribution of the so constructed set of attributes
is statistically indistinguishable from the uniform distribution.

11

Lemma 3. Let d̄ be defined as above. For a uniform random permutation ϕ
$← S(2+`)m the distri-

bution of syndromes

u = Ā · ϕ(d̄)

is statistically close to uniform.

Proof. For d̄ = (bq/2c + 1, bq/2c − 1, . . . , bq/2c + (2 + `)m/2, bq/2c − (2 + `)m/2) define the set
S = {ϕ(d̄)}ϕ∈S(2+`)m

, which is independent from Ā and contains b = ((2 + `)m)! elements. We
pick an element out of S uniformly at random with probability P [X = x, x ∈ S] = 1/b. The min-
entropy of the uniform distribution over S is log b > n log q · log(n log q) for m ≥ 2n log q . By the
leftover hash lemma [17] the distribution of u is 1/2O(m)−close to the uniform distribution, since
n ≤ (log b− 2 log(1/ε)−O(1))/ log q for ε = 1/2O(m). ut

For other choices of d̄ one has to determine the set S or the min-entropy for the statement to
hold. In the following statement we show that if the permutation of any preimage of an attribute ui
always maps to another attribute uj , then the lattice Λ⊥(Ā) is invariant to a set of permutations,
i.e. any permutation of a shortest vector is again shortest vector. Such lattices define a tiny subset of
all lattices. Since Ā is uniform random the lattice is with overwhelming probability not permutation
invariant.

Lemma 4. Let everything be defined as above and ϕ ∈ S(2+`)m. Suppose that

1. u1 = Ā · y1

2. u2 = Ā · ϕ(y1)

for all y1 ∈ Λ⊥u1
(Ā), then ϕi(Λ⊥(Ā)) = Λ⊥(Ā) for all i ∈ N.

Proof. Any permutation ϕ defines an orthonormal matrix Pϕ such that ϕ(y) = Pϕ · y. The coset
y1 +Λ⊥(Ā) represents the set of all preimages of u1. Since u2 = Ā ·ϕ(y1 +Λ⊥(Ā)), it follows that
Pϕy1 + Pϕ ·Λ⊥(Ā) = Λ⊥u2

(Ā) and thus Pi
ϕ ·Λ⊥(Ā) = Λ⊥(Ā ·Pi

ϕ) = Λ⊥(Ā) ∀ i . As a consequence

it also follows that if z is a shortest vector, then so are Pi
ϕ(z) for all i. ut

This statement particularly also shows that a user with a real credential, i.e. small vector for a
certain attribute, cannot generate real credentials for other attributes.

• Generation of Fake Credentials: Suppose the user id possesses valid credentials for the at-
tributes C = {uj1 , . . . ,ujk} and the policy is given by ψ = {t out of B ⊆ Attributes, t ∈ N∧(B =
{ui1 , . . . ,uip̄})}, then the user defines two sets A1 = B ∩ C and A2 = B\A1. Furthermore, as-
sume that |A1| = t and hence |A2| = p̄− t.

1. Real Credentials: For A1 the user applies the associated secret credentials from skid and
generates using the Decomposition-Extension technique t sets of vectors {z̃ji ∈ B3m}kj=1 for
i ∈ [t] such that

Aext ·

 k∑
j=1

γj · fid∗(z̃ji)

 = Ā · fid(zi) ≡ ui ∈ A1, i ∈ [t] .

12

For each set of vectors, we generate masking terms {rji}kj=1, i ∈ [t] as described above, such
that the verifier can check

Aext ·

 k∑
j=1

γj ·
(
rji + fid∗(z̃

j
i)
)− ui = Aext ·

 k∑
j=1

γj · rji

 for ui ∈ A1

2. Fake Credentials: For the remaining attributes in A2 the user takes by construction the
predefined representation of attributes

ui = Ā · ϕi(d̄)

for ui ∈ A2 and ϕi = ϕdgen ∈ S(2+`)m with d ∈ [(2 + `)m]. Let d̄i = ϕi(d̄), then decompose d̄

into k vectors {d̄j}kj=1 and define {d̄ji := ϕi(d̄
j)}kj=1 and its extension {dji}kj=1 filled with

zeros such that

Aext ·

 k∑
j=1

γj · dji

 = Ā ·

 k∑
j=1

γj · d̄ji

 ≡ ui ∈ A2, t < i ≤ n

Similar to the case with real credentials, the signer samples {rji}kj=1 for t < i ≤ n such that

Aext ·

 k∑
j=1

γj ·
(
rji + dji

)− ui = Aext ·

 k∑
j=1

γj · rji

 for ui ∈ A2 .

• Scrambling: We apply permutations Pπj ,φj ,τ (·) to all sets of vectors. We show in Section 6 how
to reduce the sNIZAoK related cost of communication. In particular, all the permutations are
completely revealed when the challenge is CH = 2, 3. Via a large enough seed, the verifier can
recover the respective permutations.
In our construction we require one further permutations ξ ∈ Sn, which has the goal to scramble
the positions of the attributes within the commitments. This prevents the verifier from learning
anything about the target attributes inA1, when viewing the set of vectors {Pπj ,φj ,τ (fid∗(z̃

j
i))}kj=1

for i ∈ [t] with small entries in the response part of the signature. This is possible, since he cannot
link these vectors with the attributes. For the sake of illustration, we give a very rough sketch

of the main changes within the commitments ignoring all other parts. Let ri =
(∑k

j=1 γi · r
j
i

)
.

Furthermore, denote by Pj(·) some permutation and denote the real/fake credentials by xji =

fid∗(z̃
j
i) for i ∈ [t] and xji = dji for t < i ≤ n. Then, the commitments ci are of the following form,

where COM denotes a statistically hiding and computationally binding commitment scheme.

c1 = COM(. . . [Aext · r1, . . . ,Aext · rp], ξ, . . .)

c2 = COM({Pj(rjξ(1))}
k
j=1, . . . , {P(n−1)k+j(r

j
ξ(p))}

k
j=1, . . .)

c3 = COM({Pj(xjξ(1) + rjξ(1))}
k
j=1, . . . , {P(n−1)k+j(x

j
ξ(p) + rjξ(p))}

k
j=1, . . .)

By use of the additional permutation ξ, the verifier is prevented from learning, for which at-
tributes the user possesses real credentials. Intuitively, this follows from the fact that when

13

CH = 1, the prover has to build a response such that the verifier can check c2 and c3. Only in
this case, the prover reveals small elements, i.e. he provides permuted set of vectors

{{Pj(rjξ(1))}
k
j=1, {Pj(x

j
ξ(1))}

k
j=1, . . . , {Pj(r

j
ξ(p))}

k
j=1, {Pj(x

j
ξ(p))}

k
j=1},

where the verifier sees permuted vectors xjξ(1) of small elements and neither learns the permu-

tation ξ itself nor the relationship to the attributes.

Example 1. Suppose we have 5 attributes Attributes = {u1, . . . ,u5} and user id has 2 real
credentials z1 and z3. Suppose the policy is given by ψ = {2 out of 5 attributes}. For the
sZKAoK the prover generates a uniform random permutation such as ξ = (3 5 1 4 2), which
leads to the following response for CH = 1:

{{r̄j3, x̄
j
3}kj=1, {r̄

j
5, x̄

j
5}kj=1, {r̄

j
1, x̄

j
1}kj=1, {r̄

j
4, x̄

j
4}kj=1, {r̄

j
2, x̄

j
2}kj=1},

where r̄ji denote the permuted and processed masking terms and x̄ji the scrambled fake/real
credentials, out of which 2 contain small elements.

In case of CH = 2, 3 the verifier indeed obtains all permutations but he only views random
vectors with no relationship to the real credentials, i.e. he either obtains {Pj(rjξ(i))}

k
j=1 or

{Pj(rjξ(i) + xjξ(i))}
k
j=1.

A full description of the protocol is given below in Section 6. In the following section we prove
the security of the scheme.

5.3 Security Proofs

Theorem 2 (Unforgeability). If the non-interactive zero-knowledge (NIZK) system has special
soundness and the modified Boyen’s signature scheme is unforgeable, then our threshold ABS scheme
is unforgeable in the random oracle model.

Proof. We show that if an adversary C against the unforgeability of the ABS exists, then we can
construct an adversary F1 against the soundness of the NIZK system and and adversary F2 against
the unforgeability property of the modified Boyen’s signature scheme (MBSS) for which we have:

AdvUnforg
ABS,C (λ) ≤ Advsound

NIZK,F1
(λ) + AdvUnforg

MBSS,F2
(λ)

First, by the soundness of the NIZK system, the adversary has negligible probability to success-
fully fake proofs for false statements. Second, we will show how to reduce the unforgeability of our
ABS scheme to the unforgeability of the modifed Boyen scheme. The adversary F2 will first get
the verification key of the modified Boyen signature scheme vk = (A,A0, . . . ,A`, {ui}pi=1) from its
game and have access to a signing oracle to obtain signature’s on identities/attributes of his choice.
It then forwards pp = {vk,H} to C , where H is a hash function that is modeled as a random oracle.

The adversary F2 can answer all key generation queries by simply forwarding them to its Sign
oracle. When asked for signing queries, it can simulate the NIZK proofs and forward them to C.
Eventually, C outputs his forgery; by the extractability property of the NIZK, the adversary F2 can
extract the witness which consists of a set of {zi}i, where at least one of these signatures was not
obtained from the signing oracle. The adversary F2 then forwards this signature as its forgery to its
game. ut

14

Theorem 3 (Anonymity). If the NIZK system has statistical zero-knowledge, then our threshold
ABS scheme is anonymous in the random oracle model.

Proof. We will show that the adversary can’t distinguish between the following two games but with
negligible probability.

Game 1. In this game, the challenger sets up everything honestly, i.e. he generates the (vk, sk) of
the modified Boyen scheme and publishes vk. Therefore, he can answer all the key generation and
signing queries sent by the adversary. When he receives the challenge query with honest identities
(id0, id1,m,A0,A1, ψ), he chooses the bit b← {0, 1} at random, produces an ABS signature σb and
forwards it to the adversary.

Game 2. In this game, the challenger does exactly the same things except that when asked to
respond to the challenge query, he simulated a proof that doesn’t involve a witness in it, and
therefore is independent of the bit b.

It is easy to see that, by the statistical zero-knowledge property of the NIZK system, these two
games are indistinguishable and therefore our ABS scheme is anonymous. ut

6 Zero-Knowledge Argument of Knowledge

We now give a full description of the sZKAoK proof system based on the techniques introduced in
Section 5. We note that the protocol can be made non-interactive via the Fiat-Shamir heuristic,
where the challenge is computed as {CHj}cj=1 = H(m, {CMTj}cj=1, pp, vkAA). In order to obtain a
post-quantum secure non-interactive protocol we can use the transformation of Unruh [35], which is
secure in the quantum random oracle model. Though there exist other approaches [9] to transform
some protocols with oblivious commitments into a post-quantum secure setting, the transformation
due to Unruh is universal and can be applied to any sigma protocol that entails the standard prop-
erties honest verifier zero-knowledge and special soundness. For the sake of simplicity, we mainly
consider the Fiat-Shamir transform throughout this work in order to illustrate how our construc-
tions work.
Thus, let k = blog γc + 1 and n the number of attributes in the policy ψ. Furthermore, denote by
xji = fid∗(z̃

j
i) for 1 ≤ i ≤ t the decomposition of the real credentials for attributes in A1 and by

xji = dji for t < i ≤ p the decomposition of the fake credentials for attributes in A2. We modify the
sZAoK of [27]. As a commitment scheme, we can use the one proposed by Kawachi et al. [20].

Commitments

• Generate masking terms {rji ←↩ Z
(2`+2)3m
q }kj=1 for i ∈ [p], j ∈ [k] and rid∗ ←↩ Z2`

q

• Sample permutations τ ←↩ S2`, {φj ←↩ S3m}p·kj=1, {πj ←↩ S3m}p·kj=1 (for each attribute k permu-
tations), ξ ←↩ Sp

The prover P generates commitments CMT = (c1, c2, c3) and sends them to the verifier V.

• c1 = COM([Aext · (
∑k
j=1 γjr

j
1), . . . ,Aext · (

∑k
j=1 γjr

j
p)], τ, {πj}p·kj=1, {φj}

p·k
j=1, ξ)

• c2 = COM({Pπj ,φj ,τ (rjξ(1))}
k
j=1, . . . , {Pπsn+j ,φsn+j ,τ (rjξ(p))}

k
j=1, τ(id∗)), where si = (i− 1)k

15

• c3 = COM({Pπj ,φj ,τ (xjξ(1) + rjξ(1))}
k
j=1, . . . , {Pπsn+j ,φsn+j ,τ (xjξ(p) + rjξ(p))}

k
j=1, τ(id∗ + rid∗)),

where si = (i− 1)k

Challenge: The verifier generates a challenge CH ←↩ {1, 2, 3} uniformly at random.
Response: The response is computed by the prover depending on the outcome of CH. We differ-
entiate 3 cases:

• CH = 1: The response is composed as follows. For i ∈ [p] compute {bji = Pπsi+j ,φsi+j ,τ (rjξ(i))}
k
j=1,

{wj
i = Pπsi+j ,φsi+j ,τ (xjξ(i))}

k
j=1 for si = (i − 1)k. Furthermore, determine pid∗ = τ(id∗) and

bid∗ = τ(rid∗). Output

RSP1 = { {bj1, wj
1}kj=1, . . . , {bjp, wj

p}kj=1, pid∗ , bid∗} .

• CH = 2: For i ∈ [n] compute {vji = xji + rji}kj=1. Determine and vid∗ = id∗+ r∗id. The response
is then given by

RSP2 = {τ, {φj}p·kj=1, {πj}
p·k
j=1, ξ, {v

j
1}kj=1, . . . , {vjp}kj=1, vid∗} .

• CH = 3: The prover needs only to output the response

RSP3 = {τ, {φj}p·kj=1, {πj}
p·k
j=1, ξ, {r

j
1}kj=1, . . . , {rjp}kj=1, rid∗} .

Verification The verifier requires always to check only 2 out of 3 commitments, as otherwise the
availability of responses to all 3 commitments allows to deduce the witness.

• CH = 1:Given RSP1, check that pid∗ ∈ B2` and wj
i is valid with respect to pid∗ for at least t

set of vectors and all j ∈ [k]. Furthermore, verify that

• c2 = COM({bj1}kj=1, . . . , {bjp}kj=1, bid∗)

• c3 = COM({wj
1 + bj1}kj=1, . . . , {wj

p + bjp}kj=1, pid∗ + bid∗)

• CH = 2: On input RSP2 the verifier takes ξ, computes v̄ji = Pπsi+j ,φsi+j ,τ (vjξ(i)) for

si = (i− 1)k and verifies that
• c1 = COM([Aext · (

∑k
j=1 γjv

j
1)− u1, . . . ,Aext · (

∑k
j=1 γjv

j
p)− up], τ, {πj}p·kj=1, {φj}

p·k
j=1, , ξ)

• c3 = COM({v̄j1}kj=1, . . . , {v̄jp}kj=1, τ(vid∗))

• CH = 3: On input RSP3 the verifier takes ξ, computes
r̄ji = Pπsi+j ,φsi+j ,τ (rjξ(i)) for si = (i− 1)k and verifies that

• c1 = COM([Aext · (
∑k
j=1 γjr

j
1), . . . ,Aext · (

∑k
j=1 γjr

j
p)], τ, {πj}p·kj=1, {φj}

p·k
j=1, ξ)

• c2 = COM({r̄j1}kj=1, . . . , {r̄jp}kj=1, τ(rid∗))

We note that it is possible to reduce the communication costs as one can generate all the
permutations from a large enough seed.

16

6.1 Features of Statistical Zero-Knowledge Arguments of Knowledge

In this section, we show how to extend the sZKAoK from [27] in order to cover the new functionality.
In particular, we prove that our construction still maintains the desired properties of statistical zero-
knowledge (even for the position of the real credentials) and special soundness. Thus let COM be a
statistically hiding and computationally binding commitment scheme. In the next sections we will
step by step prove that our construction is a sZKAoK for the language

L(n, k, `,m, γ, p, t) = {public := {A,A0, . . . ,A` ∈ Zn×mq ; u1, . . . ,up},
witness := {id ∈ {0, 1}`, zj1 , . . . , zjt ∈ Z2m} :

(‖zi‖∞ ≤ γ ∧ [A | A0 +
∑̀
j=1

idjAj] · zi = ui mod q

for i ∈ {j1, . . . , jt})}.

We mainly follow the proof techniques of Stern-type protocols.

Theorem 4. For a a statistically hiding and computationally binding commitment scheme COM, the
protocol given in Section 6 is a sZKAoK for the language L(n, k, d, `,m, γ, β, t), where the execution
of each round has perfect completeness, soundness error 2/3, argument of knowledge property and
communication cost O(p`m log β) log q.

The proof of this theorem is given within the following subsections.

6.2 Communication Cost

When using the commitment scheme due to Kawachi et al. [20] the output of COM is n log q bits.
Thus the prover sends 3 commitments at the start of the interaction amounting to 3n log q bits. The
challenger subsequently responds with a 2 bit challenge CH ∈ {1, 2, 3}. Let p denote the number
of attributes and k = blog γc + 1 be the number of basis elements for the interval [0, γ], then the
responses composed by the prover include elements from

Masking Terms

• pk vectors from Z(2`+2)3m
q

• 1 vector from Z2`
q

Permutations

• 1 permutation for n elements
• 1 permutation for 2` elements
• 2pk permutations for (2`+ 2)3m elements.

Thus, the overall communication cost is upper bounded by O(p`m log β) log q bits.

17

6.3 Completeness

The completeness requirement ensures that an honest prover P , that possesses valid credentials
(id∗, zj1 , . . . , zjt) and follows the protocol for a policy ψ = {t out of B ⊆ Attributes}, should be
able to generate a proof for given public input (A,A0, . . . ,A`,u1, . . . ,up) such that it successfully

satisfies the verification checks by V . In fact, he prepares {z̃ji ∈ B3m}kj=1 for i ∈ {j1, . . . , jt} such
that

Aext ·

 k∑
j=1

γj · fid∗(z̃ji)

 = Ā · fid(zi) ≡ ui .

The same is accomplished with fake credentials {dji ∈ Z(2+2`)3m
q }p−tj=1 for i ∈ [p]\{j1, . . . , jt} such

that

Aext ·

 k∑
j=1

γj · dji

 ≡ ui .

We now prove that P correctly computes the responses passing the verification checks for all
CH ∈ {1, 2, 3}.

• CH = 1 Since id∗ ∈ B2` and the set B2` is invariant under permutations, we have pid∗ ∈ B2`

and wj
i is valid with respect to pid∗ for at least t set of vectors and all j ∈ [k], i.e. wj

i ∈
{−1, 0, 1}(2+2`)3m and has zero blocks at the zero-positions of pid∗ .

• CH = 2 The honest prover should be able to generate wj
i and rji such that the following

expressions are true

Aext · (
k∑
j=1

γjw
j
1)− u1 = Aext · (

k∑
j=1

γjr
j
1)

. . .

Aext · (
k∑
j=1

γjw
j
p)− uN = Aext · (

k∑
j=1

γjr
j
N) .

6.4 Statistical Zero-Knowledge Property

The zero-knowledge property is shown as follows. In particular, we construct a simulator S interact-
ing with the verifier for some given public input. The simulator outputs with probability 2/3−negl(n)
a simulated transcript that is statistically close to an honestly generated transcript by the prover
in the real interaction. The simulator predicts the challenge to take values CH1 = 2, 3, CH2 = 1, 3
or CH3 = 1, 2.

• Case A (CH = 2, 3)
• Take xji = dji for i ∈ [p], j ∈ [k] and dji as defined above such that

Aext · (
k∑
j=1

γjx
j
i) = ui mod q

18

• Generate id ∈ Z2`
q

• Sample uniform random rji ←↩ Z
(2+2`)3m
q for i ∈ [p], j ∈ [k] and rid ←↩ Z2`

q

• Sample permutations τ ←↩ S2`, {φj ←↩ S3m}p·kj=1, {πj ←↩ S3m}p·kj=1 (for each attribute k per-
mutations), ξ ←↩ Sp

The simulator S generates commitments CMT = (c′1, c
′
2, c
′
3) and sends them to the verifier V .

• c′1 = COM([Aext · (
∑k
j=1 γjr

j
1), . . . ,Aext · (

∑k
j=1 γjr

j
p)], τ, {πj}p·kj=1, {φj}

p·k
j=1, ξ)

• c′2 = COM({Pπj ,φj ,τ (rjξ(1))}
k
j=1, . . . , {Pπsn+j ,φsn+j ,τ (rjξ(p))}

k
j=1, τ(id)), where si = (i− 1)k

• c′3 = COM({Pπj ,φj ,τ (xjξ(1) + rjξ(1))}
k
j=1, . . . , {Pπsn+j ,φsn+j ,τ (xjξ(p) + rjξ(p))}

k
j=1,

τ(id + rid)), where si = (i− 1)k

If the verifier selects
CH = 1, S outputs ⊥ and aborts.
CH = 2, S outputs

RSP2 = {{xj1 + rj1}kj=1, . . . , {x
j
N + rjN}

k
j=1, id + rid, τ, {πj}p·kj=1, {φj}

p·k
j=1, ξ}

CH = 3, S outputs

RSP3 = {{rj1}kj=1, . . . , {r
j
N}

k
j=1, rid, τ, {πj}

p·k
j=1, {φj}

p·k
j=1, ξ}

• Case B (CH = 1, 3)
• Generate id ∈ B2`
• Sample xji ←↩ B(2+2`)3m for i ∈ {i1, . . . , it}, j ∈ [k], that are valid with respect to id, and

take xji = dji as defined above for i ∈ [p]\{i1, . . . , it}, j ∈ [k] .
• Sample uniform random rji ←↩ Z

(2+2`)3m
q for i ∈ [p], j ∈ [k] and rid ←↩ Z2`

q

• Sample permutations τ ←↩ S2`, {φj ←↩ S3m}p·kj=1, {πj ←↩ S3m}p·kj=1 (for each attribute k per-
mutations), ξ ←↩ Sp

The simulator S generates commitments CMT = (c′1, c
′
2, c
′
3) as in the previous case and sends

them to the verifier V .

If the verifier selects
CH = 1, S outputs

RSP2 = {{Pπj ,φj ,τ (xjξ(1))}
k
j=1, . . . , {PπsN+j ,φsN+j ,τ (rjξ(p))}

k
j=1,

{Pπj ,φj ,τ (rjξ(1))}
k
j=1, . . . , {Pπsp+j ,φsp+j ,τ (rjξ(p))}

k
j=1, τ(id), τ(rid)} .

CH = 2, S outputs ⊥ and aborts.
CH = 3, S outputs

RSP3 = {{rj1}kj=1, . . . , {rjp}kj=1, rid, τ, {πj}
p·k
j=1, {φj}

p·k
j=1, ξ} .

• Case C (CH = 2, 3) The main difference to the previous case is the way c′1 is generated. More
precisely, S computes
c′1 = COM([Aext·(

∑k
j=1 γj(x

j
1+rj1))−u1, . . . ,Aext·(

∑k
j=1 γj(x

j
p+rjp))−up], τ, {πj}p·kj=1, {φj}

p·k
j=1, ξ) .

19

If the verifier selects
CH = 1, S outputs RSP following Case B, CH = 1 .
CH = 2, S outputs RSP following Case A, CH = 2 .
CH = 3, S outputs ⊥ and aborts.

Based on the statistically hiding property of COM(·) the distribution of the commitments and
challenges are statistically close to those in a real interaction. Thus, the probability that S outputs ⊥
and aborts is 1/3− negl(n), otherwise he outputs valid transcripts, that are distributed statistically
close to those in a real interaction. Thus, the so constructed simulator can impersonate an honest
prover with probability 2/3 + negl(n).

6.5 Argument of Knowledge

In the following section we will show that the protocol satisfies the special soundness property for the
language L(n, k, `,m, γ, p, t), i.e. if there exists a prover who is able to simultaneously provide valid
responses to all 3 challenges (i.e. CH = 1, 2, 3) satisfying the same commitment CMT , then there
exists a polynomial-time witness extractorK that outputs (id, zj1 , . . . , zjt ,A,A0, . . . ,A`,u1, . . . ,up) ∈
L(n, k, `,m, γ, p, t) .

The extractor K obtains {RSPj}3j=1, that satisfy CMT . In particular, he obtains:

• RSP1 = { {bj1, wj
1}kj=1, . . . , {bjp, wj

p}kj=1, pid∗ , bid∗} .
• RSP2 = {τ, {φj}p·kj=1, {πj}

p·k
j=1, ξ, {v

j
1}kj=1, . . . , {vjp}kj=1, vid∗} .

• RSP3 = {τ, {φj}p·kj=1, {πj}
p·k
j=1, ξ, {r

j
1}kj=1, . . . , {rjp}kj=1, rid∗} .

Since wj
i′ = wj

ξ(i) for some i, we can reorder vji′ ,b
j
i′ , wj

i′ to vji ,b
j
i , wj

i by use of the inverse ξ−1.

Subsequently, we note that {wj
ξ(i)}

k
j=1 are valid with respect to pid∗ for at least t set of vectors.

It holds that pid∗ + rid∗ = τ(vid∗). Thus, we apply the inverse of P to each set of vectors, i.e.
{xji = P−1

πsi+j ,φsi+j ,τ
(wj

i)}kj=1 for si = (i− 1)k and i ∈ [p]. We deduce id∗ = (id1, . . . , id`, . . . , id2`) =

τ−1(pid∗) and obtain id = (id1, . . . , id`).
Furthermore, we obtain {xji}kj=1, where at least t sets have elements in B(2+2`)3m and are valid with

respect to id∗, i.e. xji = (xji,1,x
j
i,2, id1 · xji,2, . . . , id2` · xji,2), since wj

i are valid with respect to pid∗ .

Furthermore, it holds that vji = xji + rji with xi =
∑k
j=1 γjx

j
i and ‖xi‖ ≤ γ for t set of vectors such

that

Aext · (
k∑
j=1

γjv
j
i)− ui = Aext · (

k∑
j=1

γjr
j
i).

This implies Aext · xi = ui such that zi = f−1
id∗ (xi) is a valid signature for (Aid,ui).

7 Attribute-based Signature Scheme with Expressive Policies

In this section we present our attribute-based signature scheme for expressive policies. This is
accomplished by use of our threshold ABS scheme introduced in Section 5. To this end, we require
a mechanism that aggregates the signatures of a certain user id on different attributes. This is a
crucial tool for the scheme to work. Moreover, we also need to slightly modify the representation

20

of the attributes. Thus, we first develop an attribute aggregation scheme and combine it with the
threshold ABS scheme in order to allow for expressive policies.

An attribute aggregation scheme allows a certain signer possessing signatures on different at-
tributes uj ∈ B ⊆ Attributes to generate a single aggregate signature on all those attributes, i.e. for
the policy ψB =

∧
uj∈B Uj , where Uj ∈ {0, 1}. This allows to hide the number of used attributes

within the zero-knowledge argument. We omit a description of the key generation step as the ag-
gregation scheme is built upon the ABS scheme from Section 5.

Attribute Aggregation Scheme for
∧

-Policies

• AggAttribute(skid, B ⊆ Attributes): On input a set of valid attributes and set of signature at-
tribute pairs skid, the user checks that he possesses for all attributes u ∈ B a valid signature.
Subsequently, he generates a signature

zB =
∑

(zj ,uj)∈skid∧
uj∈B

zj for ψB =
∧

uj∈B
Uj ,

where ψB denotes the associated conjunction policy. The value of the j-th decision variable is
Uj = 1 if the user possesses a valid signature for uj ∈ B, else Uj = 0. If the user does not possess
a valid signature on an attribute in B, he outputs ⊥.

• AggVerify(zB , B ⊆ Attributes): On input the aggregate signature zB and the related set of
attributes B, check that

Aid · zB =
∑
uj∈B

uj , ‖zB‖ ≤
√
|B| · γ .

If satisfied output 1, else 0.

The security of the scheme is based on the fact, that it is hard for a fixed user to generate small
vectors that map to one or more attributes. We therefore give a security model capturing this idea.
We note that different users cannot collude in order to generate valid signatures on attributes due
to differing public keys Aid and signature parts related to

∑`
i=1 idi · Ai are not zero. Thus, we

consider in the following experiment adversaries against a fixed identity. To this end, we allow the
adversary to receive from the attribute authority signatures on attributes of choice. Eventually, he
outputs an aggregate signature on a policy that contains at least one attribute, for which he did not
receive any signature.

Experiment: ExpAggA (n,Attributes)
• (T,A)← KeyGen(1n)
• (z∗B , B

∗ ⊆ Attributes,St)← ASign(T,·),AggAttribute(·,·),AggVerify(·,·)(A,Attributes)
• If all ui ∈ B∗ were queried to Sign, return 0.
• Return 1 if AggVerify(z∗B , B

∗ ⊆ Attributes) = 1, else 0.

Theorem 5. If there exists a PPT adversary that wins the game ExpAggA for a subset of attributes

B ⊆ Attributes, then there exists a PPT algorithm M that solves SISn,m,δ for δ ≤ 2
√
|B| · γ and

|B| ≤ |Attributes|.

21

Proof. Let A ∈ Zn×mq denote the problem instance to algorithm M. The goal of MA is to output
a solution to the SIS problem A · x ≡ 0 mod q, where ‖z‖ ≤ δ. Let p := |Attributes| be the number
of attributes.

Setup. The algorithm M maintains a list Q[·] which is filled at the beginning with Q[i] = (zi ←↩
DZ2m,s,ui = Azi mod q, 0) for i ∈ [p]. The list of attributes is set to Attributes = {Az1, . . . ,Azp}

Signing Queries. If the signing oracle is queried on some uj ∈ Attributes, the algorithm M looks
up in the Q-List for an entry (z,u, ∗) such that uj = u, outputs z and sets (z,u, 1), else M
aborts. He also aborts, if all entries have been set to (zi,ui, 1) for i ∈ [p], because the adversary
has then obtained signatures for all attributes.

Queries to AggAttribute(·, ·). If the oracle AggAttribute(·, ·) has been queried on input a subset

B ⊆ Attributes and a set of tuples {(xj ,uj)}|B|j=1, the algorithm M computes x =
∑|B|
j=1 xj and

outputs x.
Queries to AggVerify(·, ·). If the oracle AggVerify(·, ·) has been queried on input a subset B ⊆

Attributes and a vector x, the algorithm M checks that indeed B ⊆ Attributes, ‖x‖ ≤
√
|B|γ

and Ax =
∑|B|
j=1 uj , where uj ∈ B. If satisfied, he outputs 1, else 0.

Eventually, the adversaryA outputs a valid tuple (z∗, B∗ ⊆ Attributes) such that AggVerify(z∗B∗ , B
∗) =

1 and B∗ contains an attribute, for which A has not queried the signing oracle. Let u∗ denote this
attribute. Then,M computes x = z∗−

∑
uj∈B zj , which is due to the high min-entropy of a discrete

Gaussian not equal to zero and hence represents a valid solution to SIS with A · x = 0 mod q and
‖x‖ ≤ 2

√
|B|γ. ut

This aggregation mechanism can be seen as a further property of Boyen’s signature scheme or
its modified variant. Furthermore, it allows to reduce the communication cost, when proving to
the verifier that the user possesses valid signatures for attributes in

∧
-policies, since the aggregate

signature represents just a single vector. In addition to that, it essentially hides the number of
aggregated signatures, since for the sZKAoK the upper bound can be set such that all aggregate
signatures underlying

∧
-policies satisfy this bound. Based on these tools we can construct ABS

schemes for arbitrary (∧,∨)-policies. In the following section we present our construction that is
built upon the threshold ABS scheme instantiated with the modified variant of Boyen’s signature
scheme (Section 3.1) and its attribute aggregation property.

7.1 Construction

The generic ABS scheme for expressive policies essentially represents an instance of an 1-out-of-l-
threshold ABS scheme introduced in Section 5, i.e. we expand an arbitrary (∧,∨)-policy ψ into its
disjunctive normal form (DNF) ψ = C1 ∨ . . . ∨ Cl for

∧
-policies Ci and show via the aggregation

scheme that a user satisfies ψ, if he possesses a valid aggregate signature for any of the Ci. In fact,
we do not even need to introduce span programs as required in classical ABS schemes. Consequently,
this relieves the signer from standard techniques such as secret sharing schemes.

SetupE(1λ) : The public parameters are set to n and q and the discrete Gaussian parameter s.

AASetupE(pp, aid) : The attribute authority generates `+2 public matrices vkAA := {A,A0, . . . ,A` ∈
Zn×mq } as the public key and the associated trapdoor skAA := T according to the modified

Boyen’s signature scheme in Section 3.1, where 2` denotes the number of users. Furthermore he
generates a set of attributes

Attributes = {u1, . . . ,up},

22

where ui ∈ Znq is uniform random. Each attribute ati is associated to a uniform random element
ui, for instance via a public list of tuples Q[i] = (ati,ui).

AttKeyGenE(pp, id, B ⊆ Attributes, skAA) : A certain user represented as a bit string id ∈ {0, 1}` is
assigned a set of attributes

skid = {(zid,j1 ,uj1), . . . , (zid,jk ,ujk)}

by the attribute authority using its secret key skAA such that

Aid · zid,j1 = uj1 mod q, ‖zid,j1‖ ≤ γ

is satisfied for uj ∈ B.

SignE(pp,m, ψ, skid): On input the message m, a policy ψ and the secret key, the signer id expands
ψ into its DNF

ψ = C1 ∨ . . . ∨ Cl,
where ψCi denotes a

∧
-policy for i ∈ [l]. We have

ψ = 1 ⇐⇒ ∃ Ci s.th. ψCi = 1 .

Each Cl is associated to a set of attributes Bl ⊆ Attributes. Further, suppose that the user
possesses valid credentials for the policy Cj =

∧
uh∈Bj Uh and the associated set of attributes

Bj . The user generates a proof of knowledge

Π = SPoK(public := {m,Attributes,A}, witness := {skid} :

∃ B ⊆ skid ∧ C∗ s.th. ψ(B) = ψC∗(B) = 1)

Output signature Σ = (m,Π).

VerifyE(pp, Σ, ψ, vkAA,Attributes) : On input the policy, the list of attributes, the public verification
matrix A and an ABS signature, which is parsed as Σ = (m,Π), the verifier returns 1 if
Π = SPoK is a valid proof, otherwise he outputs 0.

7.2 Informal Description

We briefly describe, how to anonymously sign a message, in case the user owns signatures on at-
tributes satisfying the policy. The key generation step is exactly the same as for the threshold ABS
scheme from Section 5. However, we need to modify the signing step in order to allow for expressive
(∧,∨)-policies ψ.

1. Slightly different to the threshold ABS scheme we define the set of eligible attributes with respect
to any vector d̄ ∈ Λ⊥(Ā) . Thus, suppose w.l.o.g. that q is prime and the last n columns of Ā
are linearly independent, then we define q̄ = bq/2c and set

d̄ = (q̄ + 1, q̄ − 1, . . . , q̄ +
(2 + `)m− n

2
, q̄ − (2 + `)m− n

2
, r1, . . . , rn)

for 2 | (2 + `)m − n and some random integers ri ∈ Zq . Similar to the threshold ABS scheme
we determine the set of eligible fake credentials F = {ϕi(d̄)}ϕi∈S(2+`)m

and the associated set of

eligible attributes S = {ui := Ā · ϕi(d̄)}ϕi∈S(2+`)m
. The set F contains at least ((2 + `)m− n)!

elements. Thus, by the leftover hash lemma Ā · ϕi(d̄) is statistically close to uniform for a

uniform random element ϕi(d̄)
$← F .

23

2. Expand ψ into its DNF form ψ = C1 ∨ . . . ∨ Cl, where

Cj =
∧

uh∈Bj

Uh

for the associated set of attributes Bj ⊆ Attributes. The boolean variables Uh ∈ {0, 1} are equal
to 1, if the user possesses valid signatures on the corresponding attributes, else 0. Suppose that
the user satisfies ψ for one disjunctive term C∗. Let B∗ denote the associated set of attributes.

3. Determine

dmax = max
i∈[l]
|Bi|,

which denotes the maximum number of attributes per set. Then, the user defines the upper
bound on the size of a valid aggregate signature such that ‖zCi‖ ≤

√
dmax · γ for all i ∈ [l],

where γ denotes an upper bound on the size of a single signature as before. This follows from
Lemma 1 for sums of discrete Gaussians.

4. The user generates real credentials and fake credentials as for the threshold ABS scheme. In
fact, we generate an aggregate signature satisfying C∗ and fake credentials for Ci 6= C∗ and
apply an instance of the 1-out-of-l threshold ABS scheme. For our ABS scheme for expressive
policies to work, we need k ≥ dmax for the fake credentials, which can always be ensured via a
larger bound on the aggregate signature. Thus, suppose this condition holds.

• Real Credential: For C∗ and B∗ the user retrieves the corresponding signatures from skid
and generates

zB∗ =
∑

uj∈B∗
zj .

Let k = blog(γ
√
dmax)c + 1 with k ≥ dmax be the parameter as for the threshold ABS

scheme, otherwise set k = dmax. By use of the Extension-Decomposition technique applied
on zB∗ we obtain one set of vectors {z̃jB∗ ∈ B3m}kj=1 such that

Aext ·

 k∑
j=1

γj · fid∗(z̃jB∗)

 = Ā · fid(zB∗) ≡
∑

uj∈B∗
uj .

The user further generates masking terms {rjB∗ ←↩ Z
(2`+2)3m
q }kj=1 such that the verifier can

check the following expression used in the commitments once he transforms the policy into
the DNF form.

Aext ·

 k∑
j=1

γj ·
(
rjB∗ + fid∗(z̃

j
B∗)
)− ∑

uj∈B∗
uj = Aext ·

 k∑
j=1

γj · rjB∗

 .

• Fake Credentials: For the remaining disjunctive terms Ci 6= C∗ the user generates fake
aggregated credentials, where Bi 6= B∗ defines the set of associated attributes. For at-
tributes uj1 , . . . ,ujs in Bi, he generates the set {d′jn}

k
n=1. To this end, he sets d′j1 =

γ−1
1 dj1 , . . . ,d

′
js

= γ−1
s djs , where djs = ϕjs(d). Here, the inverse is taken modulo q. Since

24

k ≥ dmax, the remaining k − s vectors are defined as d′js+1
= γ−1

s+1d, . . . ,d
′
jk

= γ−1
k d,

where Aext · d ≡ 0 mod q . Then, it follows

Aext ·

(
k∑

n=1

γj · d′jn

)
= Aext ·

(
s∑

n=1

djn

)
= Ā ·

(
s∑

n=1

d̄jn

)
≡

s∑
n=1

ujn mod q .

Analogously, the signer masks the fake credentials by uniform random vectors

{rji ←↩ Z
(2`+2)3m
q }kj=1 for each disjunctive term. The verifier can check for the knowledge of

the credentials

Aext ·

(
k∑

n=1

γj ·
(
rni + d′jn

))
−

s∑
n=1

ujn = Aext ·

(
k∑

n=1

γj · rni

)
,

where
∑k
n=1 γj · rni = ri .

The verifier validates the signature, i.e. the SPoK proof, by calling VerifyE on the signature, policy
and message. We note that the verifier first computes all aggregated attributes ūi =

∑
uj∈Bi uj

associated to Ci for i ∈ [l] and then invokes the threshold verification sub-routine VerifyT. The
security of the ABS scheme follows from the following two theorems.

Theorem 6 (Unforgeability). If the NIZK system has special soundness and the attribute aggre-
gation scheme is unforgeable, then our ABS scheme with expressive policies is unforgeable in the
random oracle model.

Theorem 7 (Anonymity). If the NIZK system has statistical zero-knowledge, then our ABS
scheme with expressive policies is anonymous in the random oracle model.

The proofs of these statements exactly follow the same proof steps as for Theorem 2 and Theo-
rem 3, since the scheme is an instance of the threshold ABS instantiated with the attribute aggrega-
tion scheme (which is basically the modified Boyen’s signature scheme from Section 3.1 exploiting
its aggregation property). We note that the signature size is linear in the number of attributes used
in the policy ψ similar to the threshold ABS scheme.

7.3 Traceability.

It is very straightforward to extend our constructions to allow for traceability by a given tracing
authority. In fact, it is only required to encrypt the identity id∗ by use of the public key of the
tracing authority. This is accomplished, for instance, using the same tools as in [21,22,27] applied for
group signatures. This is a standard technique to realize traceability. The statistical zero-knowledge
argument of knowledge is hence extended by an additional term c = Pe + (0, id∗)>, i.e. the prover
is required to provide a proof for the language

L = { public := {A, {Ai ∈ Zn×mq }`i=1; u1, . . . ,up,P},
witness := {id ∈ {0, 1}`; zj1 , . . . , zjt ∈ Z2m; e ∈ Zd} :

(‖zi‖∞ ≤ γ ∧ [A | A0 +
∑̀
j=1

idjAj] · zi = ui mod q

for i ∈ {j1, . . . , jt}) ∧ (c = P · e + (0, id)> ∧ ‖e‖ ≤ β) }.

25

8 Multi-Authority ABS Schemes

In many scenarios there exists not only one single attribute authority, but a number of different
attribute authorities issuing credentials for various attributes. This also reflects real world scenarios,
where a user is interacting within different domains such as universities or other institutions. How-
ever, some of the attribute authorities may be malicious or are even not aware of the other ones. In
a multi-authority ABS scheme a signature trustee is setting up the various public parameters of the
ABS scheme. This entity is not required to trust any of the attribute authorities. Our construction
can naturally be extended to the multi-authority setting. We give a brief and informal overview of
the key concepts.

• The user obtains key material skjid from attribute authority AAj with public key vkAAj and set of
attributes Attributesj for j ∈ [k].

• For each threshold policy ψj,tj related to authority j with threshold tj the user can either sepa-
rately generate an ABS signature for each policy or combine them within the SPoK, where the
input to the commitment scheme is split into seperate parts

ci = (related to AA1 || . . . || related to AAk)

for each authority. If there is only one threshold policy ψt involving the attributes of various
authorities, then the signer can proceed exactly as in Section 5 with the modification that the
application of the public keys within the computation of c1 occurs in the same order as the
occurrence in ψt so that the verifier is able to check c1.

• For expressive policies ψ one can produce independent ABS signatures on each policy or combine
them into one SPoK, if the policies target each authority separately. However, if the expressive
policy involves the attributes of different authorities, the user has to make sure that the DNF
of ψ, i.e. ψ = C1 ∨ . . . ∨ Cl, contains only disjunctive terms Ci that target the attributes of
only one authority, for instance C1 is a conjunction of attributes from AA3. In this case, we can
directly apply the construction from Section 7, where the order of Ci and related public keys is
reflected in the computation of

c1 = (. . . ,A3 · r3, . . . ,Ak · rk, . . .)

For policies, where any of the
∧

-policies ψCi involve more than one party, it is not immediately
possible to apply one of the proposed constructions, since they require to aggregate all the
related credentials of a policy ψCi .

Acknowledgements

We would like to thank Essam Ghadafi (UCL) for useful discussions. The work presented in this
paper was performed within the context of the project P1 within the CRC 1119 CROSSING.

26

References

1. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). pages 99–108, 1996.
2. W. Banaszczyk. Inequalities for convex bodies and polar reciprocal lattices in rn. Discrete and Com-

putational Geometry, 13(1):217–231, 1995.
3. Rakesh Bobba, Omid Fatemieh, Fariba Khan, Carl A. Gunter, and Himanshu Khurana. Using attribute-

based access control to enable attribute-based messaging. In ACSAC. IEEE CS, pages 403–413, 2006.
4. Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures

and more. pages 499–517, 2010.
5. Xavier Boyen. Attribute-based functional encryption on lattices. Theory of Cryptography: 10th Theory

of Cryptography Conference, TCC 2013, pages 122–142, 2013.
6. Jan Camenisch, Gregory Neven, and Markus Rückert. Fully anonymous attribute tokens from lattices.

Security and Cryptography for Networks: 8th International Conference, SCN 2012, pages 57–75, 2012.
7. David Chaum and Eugène Van Heyst. Group signatures. EUROCRYPT, pages 257–265. Springer-

Verlag, 1991.
8. Shantian Cheng, Khoa Nguyen, and Huaxiong Wang. Policy-based signature scheme from lattices.

Designs, Codes and Cryptography, pages 1–32, 2015.
9. Özgür Dagdelen, Marc Fischlin, and Tommaso Gagliardoni. The Fiat–Shamir Transformation in a

Quantum World, pages 62–81. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
10. Ali El Kaafarani, Liqun Chen, Essam Ghadafi, and James Davenport. Attribute-based signatures with

user-controlled linkability. In CANS, pages 256–269. Springer, 2014.
11. Ali El Kaafarani, Essam Ghadafi, and Dalia Khader. Decentralized traceable attribute-based signatures.

In CT-RSA, pages 327–348. Springer, 2014.
12. Alex Escala, Javier Herranz, and Paz Morillo. Revocable attribute-based signatures with adaptive

security in the standard model. In AFRICACRYPT, pages 224–241. Springer, 2011.
13. Keith B. Frikken, Jiangtao Li, and Mikhail J. Atallah. Trust negotiation with hidden credentials, hidden

policies, and policy cycles. In NDSS, pages 157–172, 2006.
14. Martin Gagné, Shivaramakrishnan Narayan, and Reihaneh Safavi-Naini. Short pairing-efficient

threshold-attribute-based signature. In Pairing, volume 7708, pages 295–313. Springer, 2013.
15. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-

graphic constructions. pages 197–206, 2008.
16. Essam Ghadafi. Stronger security notions for decentralized traceable attribute-based signatures and

more efficient constructions. In Kaisa Nyberg, editor, CT-RSA, pages 391–409. Springer, 2015.
17. Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the

learning with errors assumption. pages 230–240, 2010.
18. S. Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group signature scheme from lattice

assumptions. Advances in Cryptology - ASIACRYPT 2010, pages 395–412, 2010.
19. Javier Herranz, Fabien Laguillaumie, Benôıt Libert, and Carla Ràfols. Short attribute-based signatures

for threshold predicates. In CT-RSA, volume 7178, pages 51–67. Springer, 2012.
20. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure identification schemes based

on the worst-case hardness of lattice problems. pages 372–389, 2008.
21. Fabien Laguillaumie, Adeline Langlois, Benôıt Libert, and Damien Stehlé. Lattice-based group signa-

tures with logarithmic signature size. Advances in Cryptology - ASIACRYPT 2013: 19th International
Conference on the Theory and Application of Cryptology and Information Security, Bengaluru, India,
December 1-5, 2013, Proceedings, Part II, pages 41–61, 2013.

22. Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-based group signature scheme
with verifier-local revocation. Public-Key Cryptography – PKC 2014: 17th International Conference
on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014.
Proceedings, pages 345–361, 2014.

23. Jin Li, Man Ho Au, Willy Susilo, Dongqing Xie, and Kui Ren. Attribute-based signature and its
applications. In ASIACCS, pages 60–69. ACM, 2010.

27

24. Jin Li and Kwangjo Kim. Attribute-based ring signatures. Cryptology ePrint Archive, Report 2008/394,
2008. http://eprint.iacr.org/2008/394.

25. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without trapdoors. Advances
in Cryptology – EUROCRYPT 2016, pages 1–31, 2016.

26. San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. pages 107–124, 2013.

27. San Ling, Khoa Nguyen, and Huaxiong Wang. Group signatures from lattices: Simpler, tighter, shorter,
ring-based. pages 427–449, 2015.

28. Hemanta K Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures. In CT-RSA,
pages 376–392. Springer, 2011.

29. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. pages
700–718, 2012.

30. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian measures.
pages 372–381, 2004.

31. Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based signatures for non-monotone
predicates in the standard model. In PKC, pages 35–52. Springer, 2011.

32. Tatsuaki Okamoto and Katsuyuki Takashima. Decentralized attribute-based signatures. In PKC, pages
125–142. Springer, 2013.

33. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In ASIACRYPT, pages 552–565.
Springer, 2001.

34. Siamak F. Shahandashti and Reihaneh Safavi-Naini. Threshold attribute-based signatures and their
application to anonymous credential systems. In AFRICACRYPT, pages 198–216. Springer, 2009.

35. Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle model. pages
755–784, 2015.

36. Miguel Urquidi, Dalia Khader, Jean Lancrenon, and Liqun Chen. Attribute-based signatures with
controllable linkability. In INTRUST, volume 9565, pages 114–129. Springer, 2015.

37. Brent R. Waters. Efficient identity-based encryption without random oracles. pages 114–127, 2005.

28

