Multivariate Cryptography with Mappings of Discrete Logarithms and Polynomials

Duggirala Meher Krishna∗ Duggirala Ravi†

Abstract

In this paper, algorithms for multivariate public key cryptography and digital signature are described. Plain messages and encrypted messages are arrays, consisting of elements from a fixed finite ring or field. The encryption and decryption algorithms are based on multivariate mappings. The security of the private key depends on the difficulty of solving a system of parametric simultaneous multivariate equations involving polynomial or exponential mappings. The method is a general purpose utility for most data encryption, digital certificate or digital signature applications.

1 Introduction

The role of cryptographic algorithms is to provide information security [9, 25, 39, 41, 42, 43]. In general, proper data encryption and authentication mechanisms with access control are the preferred means for a trusted secure system [41, 42]. The most popular public key cryptosystems are the RSA [38], NTRU Encrypt algorithm [20, 21, 22, 23], elliptic curve cryptography (ECC) [24, 34, 40, 45], the algorithms based on diophantine equations and discrete logarithms [30, 15], and those based on multivariate quadratic polynomials [6, 26]. The RSA, the NTRU and the ECC are assumed to be secure algorithms unless there are new breakthroughs in integer factoring (for RSA), or in lattice reduction (for NTRU), or in elliptic curve discrete logarithm techniques (for ECC) [11, 19].

In this paper, algorithms for public key cryptography as well as digital signature based on multivariate mappings are described, with plain and encrypted message arrays consisting of elements from a fixed commutative

∗Department of Electronics and Communication Engineering (ECE), Gayatri Vidya Parishad College of Engineering (Autonomous), Madhurawada, VISAKHAPATNAM – 530 048, Andhra Pradesh, India. E-mail : duggiralamheerkrishna@gmail.com
†Department of Computer Science and Engineering (CSE), Gayatri Vidya Parishad College of Engineering (Autonomous), Madhurawada, VISAKHAPATNAM – 530 048, Andhra Pradesh, India. E-mail : ravi@gypce.ac.in; duggirala.ravi@yahoo.com; duggirala.ravi@rediffmail.com; and drdravi2000@yahoo.com
and finite ring or field. The keys can be built up starting from independently chosen small degree polynomial or easy exponential mappings, resulting in fast key generation and facilitating easy changes of keys as often as required. The security depends on the difficulty of solving parametric simultaneous multivariate equations involving polynomial or exponential mappings [8, 10, 16, 17, 32, 33, 12, 14] in the case of straightforward attacks, and on the difficulty of finding the private keys in the case of key recovery attacks.

2 Multivariate Mappings

2.1 Notation

In the sequel, let \(\mathbb{Z} \) be the set of integers, and let \(\mathbb{N} \) be the set of positive integers. For a positive integer \(n \geq 2 \), let \(\mathbb{Z}_n \) be the ring of integers with addition and multiplication \(\text{mod} \ n \), and \(\mathbb{Z}_n^* \) be the commutative group of invertible elements in \(\mathbb{Z}_n \), with respect to multiplication operation in \(\mathbb{Z}_n \). Let \(\mathbb{F} \) be a finite field, consisting of \(p^n \) elements for some positive integer \(n \) and prime number \(p \), and let \(\mathbb{F}^* \) be the multiplicative group of nonzero elements in \(\mathbb{F} \). Let \(\mathbb{G} \) be a finite cyclic group of order \(n \geq 2 \). Let \(\mathbb{E} \) be either \(\mathbb{F} \) or \(\mathbb{Z}_n \) or \(\mathbb{G} \). If \(\mathbb{E} = \mathbb{G} \), where \(\mathbb{G} \) is equipped with only the group operation, then \(\mathbb{G} \) is isomorphic to \(\mathbb{Z}_n \), where the group operation in \(\mathbb{G} \) is identified with the addition operation of \(\mathbb{Z}_n \). The addition operation of \(\mathbb{Z} \) is a primary operation, and the multiplication operation, that can be treated as a secondary operation [31] over the additive group \(\mathbb{Z} \), is defined uniquely such that the distribution laws hold true, with 1 as the multiplicative identity, rendering \(\mathbb{Z} \) as the commutative ring, and the same holds for \(\mathbb{Z}_n \). Let \(\mathbb{E}[x_1, \ldots, x_m] \), for \(m \in \mathbb{N} \), be the algebra of multivariate polynomials in \(m \) formal variables \(x_1, \ldots, x_m \) with coefficients in \(\mathbb{E} \). Now, if \(\mathbb{G} = \mathbb{F}^* \), for a finite field \(\mathbb{F} \), then the group operation in \(\mathbb{G} \) coincides with the multiplication operation in \(\mathbb{F} \) and \(\mathbb{G}[x_1, \ldots, x_m] = \mathbb{F}[x_1, \ldots, x_m] \). If \(m = 1 \), then \(\mathbb{E}[x_1, \ldots, x_m] \) is denoted by \(\mathbb{E}[x] \), with \(x = x_1 \). A variable with its name expressed in bold face assumes values from a product space, which is a product of finitely many copies of the same set, and each component of the variable, expressed in the corresponding case without boldness and a positive integer subscript, assumes values from the constituent component space, succinctly as, for example, \(\mathbf{x} = (x_1, \ldots, x_m) \in \mathbb{E}^m \), for some \(m \in \mathbb{N} \).

2.2 Polynomials over \(\mathbb{Z}_n \)

Let \(n = \prod_{i=1}^{r} p_i^{l_i} \), where \(r \) and \(l_i \) are positive integers, and \(p_i \) are distinct prime numbers, for \(1 \leq i \leq r \). Let \(q_i = p_i^{-l_i} \) \(n = \prod_{j \neq i}^{r} p_j^{l_j} \), and let \(m_i \in \mathbb{N} \) be such that \(m_i q_i \equiv 1 \mod p_i^{l_i} \), for \(1 \leq i \leq r \). Then, \(\mathbb{Z}_n = \oplus_{i=1}^{r} m_i \mathbb{Z}_n^{l_i} \).

Now, a polynomial \(f(x) \in \mathbb{Z}_n[x] \) can be expressed as \(\sum_{i=1}^{r} m_i q_i f_i(x) \), for some unique polynomials \(f_i(x) \in \mathbb{Z}_n^{l_i}[x] \), for \(1 \leq i \leq r \). For some
onto \mathbb{Z} and index i, where $1 \leq i \leq r$, if $p_i \mid f(x)$, then $\gcd(f(x) \mod p_i^{l_i}, p_i) = \gcd(f_i(x), p_i) = p_i \neq 1$. Thus, $\gcd(f(x), n) = 1$, for every $x \in \mathbb{Z}_n$, if and only if $\gcd(f_i(x), p_i) = 1$, for every $x \in \mathbb{Z}_n^{l_i}$, for every index i, where $1 \leq i \leq r$. Similarly, f is a surjective (hence bijective) mapping from \mathbb{Z}_n onto \mathbb{Z}_n, if and only if f_i is a surjective (hence bijective) mapping from $\mathbb{Z}_n^{l_i}$, onto $\mathbb{Z}_n^{l_i}$, or equivalently, $f_i(x) \mod p_i$ is a bijective mapping from $\mathbb{Z}_n^{l_i}$ into itself and, when $l_i \geq 2$, $f_i'(x) \not\equiv 0 \mod p_i$, for all $x \in \mathbb{Z}_n^{l_i}$, where f_i' is the formal algebraic derivative of f_i, for every index i, where $1 \leq i \leq r$ [28].

Now, if $g(x) \in \mathbb{Z}_n[x]$, where $g(x) = \sum_{i=1}^{r} m_i q_i g_i(x)$, for some $g_i(x) \in \mathbb{Z}_n^{l_i}[x]$, for $1 \leq i \leq r$, then $f(x)g(x) = \sum_{i=1}^{r} m_i q_i f_i(x) g_i(x)$. Thus, (A) $f(x)$ is a unit in $\mathbb{Z}_n[x]$, if and only if $f_i(x)$ is a unit, i.e., $f_i(x) \mod p_i \in \mathbb{Z}_n^{l_i}$, for every index i, where $1 \leq i \leq r$, (B) $f(x)$ is reducible in $\mathbb{Z}_n[x]$, if and only if $f_i(x)$ is reducible in $\mathbb{Z}_n^{l_i}[x]$, for some index i, where $1 \leq i \leq r$, and (C) $f(x)$ is irreducible in $\mathbb{Z}_n[x]$, if and only if $f_i(x)$ is irreducible in $\mathbb{Z}_n^{l_i}[x]$, or equivalently, $f_i(x) \mod p_i$ is irreducible in $\mathbb{Z}_p[x]$, for every index i, where $1 \leq i \leq r$. Thus, for any positive integer k, $\mathbb{Z}_n[x_1, \ldots, x_n]$ can be expressed as $\oplus_{i=1}^{r} m_i q_i \mathbb{Z}_n^{l_i}[x_1, \ldots, x_n]$.

2.3 Modular Exponentiation over \mathbb{Z}_n

The modular exponentiation operation is extensively studied in connection with the RSA cryptosystem [9, 25, 38, 39, 41, 42, 43]. In this section, the modular exponentiation is extended to the situation, wherein the exponents are functions. The security of the RSA system depends on the difficulty of factorization of a positive integer into its prime factors. However, simplification of computations as well as porting of variables from base level to exponentiation level by a homomorphism requires availability of prime factors in advance for both encryption and decryption, while working with multivariate mappings involving functions as exponents. In the sequel, let φ be the Euler phi function [9, 25, 39, 43]. Let $n = \prod_{i=1}^{r} p_i^{l_i}$, where $r \in \mathbb{N}$, $l_i \in \mathbb{N}\{1\}$ and p_i are distinct prime numbers, for $1 \leq i \leq r$. Let $\mathcal{E}\mathcal{X}\mathcal{P}(\mathbb{Z}_n; [x_1, \ldots, x_m])$ be the smallest set of expressions, closed with respect to addition and multiplication, and containing expressions of the form $a(x_1, \ldots, x_m)^b(x_1, \ldots, x_m)$, where $a(x_1, \ldots, x_m) \in \mathbb{Z}_n[x_1, \ldots, x_m]$, and either

1. as a formal expression, $b(x_1, \ldots, x_m)$ does not depend on (x_1, \ldots, x_m) and evaluates to any fixed positive integer, or

2. $a(x_1, \ldots, x_m)$ evaluates to elements in \mathbb{Z}_n^*, for all values of (x_1, \ldots, x_m) in some domain of interest, which is a subset of \mathbb{Z}_n^m, and $b(x_1, \ldots, x_m)$ is of the form $c(h(x_1), \ldots, h(x_m))$, for some expression $c(z_1, \ldots, z_m) \in \mathcal{E}\mathcal{X}\mathcal{P}(\mathbb{Z}_{\varphi(n)}; [z_1, \ldots, z_m])$ and ring homomorphism h from \mathbb{Z}_n into $\mathbb{Z}_{\varphi(n)}$.

3
The condition in (1) above implies that $\mathbb{Z}_n[x_1, \ldots, x_m] \subseteq \mathcal{E}\mathcal{X}\mathcal{P}(\mathbb{Z}_n; [x_1, \ldots, x_m])$. Thus, the integers in \mathbb{Z} and those in \mathbb{Z}_n, for various modulus positive integers $n \geq 2$, need to be distinguished clearly as separate elements. The expressions in $\mathcal{E}\mathcal{X}\mathcal{P}(\mathbb{Z}_n; [x_1, \ldots, x_m])$ are turned into mappings, by identifying appropriate domains of values and interpretation for variables and operations in the respective domains [12, 14, 31, 32]. For $x \in \mathbb{Z}^m$ and $s \in \mathbb{N}\setminus\{1\}$, such that $s \mid n$, let $x \mod s = (x_1 \mod s, \ldots, x_m \mod s)$. Let $f(x) \in \mathbb{Z}_n[x_1, \ldots, x_m]$ be such that $f(x)$ evaluates to elements in \mathbb{Z}_n^*, for $x \in X$, for some $X \subseteq \mathbb{Z}_n^m$, and let $f_i(x) \in \mathbb{Z}_{\phi_i}^m [x_1, \ldots, x_m]$, for $1 \leq i \leq r$, be such that $f(x) = \sum_{i=1}^r m_i q_i f_i(x \mod \phi_i)$. Now, for $x \in X$ and $k \in \mathbb{Z}$, the following holds: $(f(x))^k = (f(x))^{k \mod \phi(n)} = \sum_{i=1}^r m_i q_i (f_i(x \mod \phi_i))^{k \mod \phi(n)}$. Let $g(y) \in \mathbb{Z}_n[y_1, \ldots, y_n]$ and $g_i(x) \in \mathbb{Z}_{\phi_i}^m [z_1, \ldots, z_n]$ be such that the following holds: $g_i(y \mod \phi_i) = g(y) \mod \phi_i$, for $1 \leq i \leq r$. Thus, $f(y)(x) = \sum_{i=1}^r m_i q_i f_i (y \mod \phi_i) (x \mod \phi_i)$, for independent vectors $x \in X$ and $y \in \mathbb{Z}_n^{\phi(n)}$. Now, $\phi_i = (p_i - 1)p_i^{-1}$, where $l_i \geq 2$, for $1 \leq i \leq r$. Let $w_i = (p_i - 1)p_i^{-1}$, and let $h_i : \mathbb{Z}_{\phi_i} \to \mathbb{Z}_{\phi_i}$ be the map defined by $h_i(x) = (p_i - 1)w_i x \mod p_i^{-1}$, for $1 \leq i \leq r$. Then, h_i is a ring homomorphism, for $1 \leq i \leq r$. Now, let $h((\sum_{i=1}^r m_i q_i z_i) = h_i(z_i)$, for $z_i \in \mathbb{Z}_{\phi_i}$ and $1 \leq i \leq r$. Then, the map h is a ring homomorphism from the ring $\mathbb{Z}_{\phi_1} \otimes \cdots \otimes \mathbb{Z}_{\phi_r}$ into the ring of direct product $\prod_{i=1}^r \mathbb{Z}_{\phi_i}$. If the base level and exponentiation level interpretation maps are I_{base} and I_{exponent} respectively, then I_{exponent} can be chosen to be $h \circ I_{\text{base}}$, applied from right to left in the written order, preserving the respective ring operations in the base level and exponentiation level subexpressions. If $l_i = 1$, for some index i, where $1 \leq i \leq r$, then exponentiation along ϕ_i component can be carried by interpreting \mathbb{Z}_{ϕ_i} to be a finite field, and porting values of base level expressions to exponentiation level expressions by discrete logarithm mapping, as discussed in section 2.4.

2.4 Modular Exponentiation over \mathbb{F}

Let \mathbb{F} be a finite field containing p^n elements and $n = p^n - 1$, for some prime number p and positive integer n. Let $\mathcal{E}\mathcal{X}\mathcal{P}(\mathbb{F}; [x_1, \ldots, x_m])$ be the smallest set of expressions, closed with respect to addition and multiplication, and containing expressions of the form $a(x_1, \ldots, x_m)^{b(x_1, \ldots, x_m)}$, where $a(x_1, \ldots, x_m) \in \mathbb{F}[x_1, \ldots, x_m]$ and either

1. as a formal expression, $b(x_1, \ldots, x_m)$ does not depend on (x_1, \ldots, x_m) and evaluates to any fixed positive integer, or
Thus, the group homomorphism
\[I \]
\[a \]
function defined by \(\log \) is an endomorphism of \(G \). The condition in (1) above implies that \(F \) is a primitive element \(a \) in some domain of interest, which is a subset of \(G^m \), where \(G = \mathbb{F}^* \), and \(b(x_1, \ldots, x_m) \) is of the form \(c(h(x_1), \ldots, h(x_m)) \), for some expression \(c(z_1, \ldots, z_m) \in \mathcal{E}\mathcal{X}\mathcal{P}(\mathbb{Z}_n; [z_1, \ldots, z_m]) \) and group isomorphism \(h \) from \(G \) into \(\mathbb{Z}_n \).

The condition in (1) above implies that \(F[x_1, \ldots, x_m] \subseteq \mathcal{E}\mathcal{X}\mathcal{P}(\mathbb{F}; [x_1, \ldots, x_m]) \). For a primitive element \(a \in \mathbb{F}^* \), let \(\log_a : \mathbb{F}^* \to \mathbb{Z}_n \) be the discrete logarithm function defined by \(\log_a(g) = x \), exactly when \(a^x = g \), for \(g \in \mathbb{F}^* \) and \(x \in \mathbb{Z}_n \). Thus, the group homomorphism \(h \) can be taken to be \(\log_a \). If the base level and exponentiation level interpretation maps are \(\mathcal{I}_{\text{base}} \) and \(\mathcal{I}_{\text{exponent}} \), respectively, then \(\mathcal{I}_{\text{exponent}} \) can be chosen to be \(\log_a \circ \mathcal{I}_{\text{base}} \), applied from right to left in the written order. For porting a subexpression involving an addition operation in \(\mathbb{F} \), such as, for example, \(f(x) \in \mathbb{F}[x_1, \ldots, x_m] \), where \(f(x) \neq 0 \), for \(x \in G^m \), where \(G = \mathbb{F}^* \), occurring in a base level expression to an exponentiation level, the base level subexpression is replaced by a supplementary variable \(z \), which is ported to first exponentiation level by the discrete logarithm mapping. In the subsequent levels of exponentiation, the interpretation is performed by applying ring homomorphisms, as discussed in section 2.3.

3 Parametric Injective Mappings

Let \(E \) be either \(\mathbb{F} \) or \(\mathbb{Z}_n \). Let \(G \subseteq E \) be the domain of interpretation for the variables occurring in the mappings. For \(l \in \{0\} \cup \mathbb{N} \) and \(m \in \mathbb{N} \), a parametric multivariate injective mapping \(\eta(z_1, \ldots, z_l; (x_1, \ldots, x_m)) \) from \(G^m \) into \(E^m \) is a multivariate injective mapping, which is an expression from either \(E[x_1, \ldots, x_m, z_1, \ldots, z_l] \) or \(\mathcal{E}\mathcal{X}\mathcal{P}(E; [x_1, \ldots, x_m, z_1, \ldots, z_l]) \) with interpretation conventions as discussed in sections 2.3-2.4, as appropriate, for \((x_1, \ldots, x_m) \in G^m \) and \((z_1, \ldots, z_l) \in Z \subseteq E^l \), and its parametric inverse \(\eta^{-1}(z_1, \ldots, z_l; (y_1, \ldots, y_m)) \) is such that, for every fixed \((z_1, \ldots, z_l) \in Z \), the following holds: if \(\eta(z_1, \ldots, z_l; (x_1, \ldots, x_m)) = (y_1, \ldots, y_m) \), then \((x_1, \ldots, x_m) = \eta^{-1}(z_1, \ldots, z_l; (y_1, \ldots, y_m)) \), for every \((x_1, \ldots, x_m) \in G^m \) and \((y_1, \ldots, y_m) \in E^m \). For example, let \(n \) be the set cardinality of \(G = \mathbb{F}^* \), \(a \in \mathbb{F}^* \) be a fixed primitive element, which is made known in the public key, and \(\eta(z_1, \ldots, z_l; x) = f(z_1, \ldots, z_l) x^{g[\log_a(z_1), \ldots, \log_a(z_l)]} \), where \(f(z_1, \ldots, z_l) \in \mathcal{E}\mathcal{X}\mathcal{P}(\mathbb{F}; [z_1, \ldots, z_l]) \) and \(g(t_1, \ldots, t_l) \in \mathcal{E}\mathcal{X}\mathcal{P}(\mathbb{Z}_n; [t_1, \ldots, t_l]) \) are such that \(f(z_1, \ldots, z_l) \neq 0 \), for \(z_1, \ldots, z_l \in \mathbb{F}^* \), and \(\gcd(g(t_1, \ldots, t_l), n) = 1 \), for \(t_1, \ldots, t_l \in \mathbb{Z}_n \). Then, \(\eta(z_1, \ldots, z_l; x) \) is a parametric bijective mapping from \(\mathbb{F}^m \) into \(\mathbb{F}^* \), with \(z_1, \ldots, z_l \in \mathbb{F}^* \) as parameters, and \(\eta^{-1}(z_1, \ldots, z_l; x) = \lfloor [f(z_1, \ldots, z_l)]^{-1} x \rfloor / [g[\log_a(z_1), \ldots, \log_a(z_l)]]^{-1} \mod n \).

3.1 Parametrization Methods

Let, for some positive integers \(k, l \) and \(m \), \(g_i(z_1, \ldots, z_l), 1 \leq i \leq k \), be a partition of unity of \(E^l \), i.e., \(\sum_{i=1}^k g_i(z_1, \ldots, z_l) = 1 \) and \(g_i(z_1, \ldots, z_l) \).
$g_j(z_1, \ldots, z_i) = 0, i \neq j, 1 \leq i, j \leq k$, for every $(z_1, \ldots, z_i) \in \mathbb{E}^l$. Let $\zeta_i(z_1, \ldots, z_i; x), 1 \leq i \leq k$, be parametric multivariate injective mappings from \mathbb{F}^n into \mathbb{E}, that may or may not depend on the parameters z_1, \ldots, z_i. Let $\phi_i(z_1, \ldots, z_i)$ and $\chi_i(z_1, \ldots, z_i)$ be expressions such that $\phi_i(z_1, \ldots, z_i)$ evaluates to invertible elements in \mathbb{E}, for all $(z_1, \ldots, z_i) \in \mathbb{E}^l, 1 \leq i \leq k$. Then, the expression $\eta(z_1, \ldots, z_i; x) = \sum_{i=1}^{k} g_i(z_1, \ldots, z_i)\phi_i(z_1, \ldots, z_i)\zeta_i(z_1, \ldots, z_i; x) + \chi_i(z_1, \ldots, z_i)$ is a parametric multivariate injective mapping, with its parametric inverse $\eta^{-1}(z_1, \ldots, z_i; x) = \sum_{i=1}^{k} g_i(z_1, \ldots, z_i)\zeta_i^{-1}(z_1, \ldots, z_i; y_i), \text{ where } y_{ij} = [\phi_i(z_1, \ldots, z_i)]^{-1}, 1 \leq j \leq m, x = (x_1, \ldots, x_m)$, and $y_i = (y_{i1}, \ldots, y_{im}), 1 \leq i \leq k$. For public key cryptography hashing keys, it is possible to construct parametric multivariate injective mappings in section 4.1 with any expressions $\phi_i(z_1, \ldots, z_i)$ that evaluate to only invertible elements, $1 \leq i \leq k$, having only a small number of terms. For digital signature hashing keys, it is possible to construct parametric multivariate injective mappings in section 4.1 with any expressions $\phi_i(z_1, \ldots, z_i)$ that evaluate to only invertible elements, $1 \leq i \leq k$, having only a small number of terms. For digital signature hashing keys, it is possible to construct parametric multivariate injective mappings in section 4.1 with any expressions $\phi_i(z_1, \ldots, z_i)$ that evaluate to only invertible elements, $1 \leq i \leq k$, having only a small number of terms.

3.2 Partition of Unity of \mathbb{F}

Let $f(z) \in \mathbb{E}XP(\mathbb{F}; [z])$, which is called a discriminating function, and let K_f be the codomain of f, i.e., $K_f = \{f(x) : x \in \mathbb{F}\} = \{a_i : 1 \leq i \leq k\}$, for some positive integer k. Let $\ell_i(x) = \left[\prod_{j \neq i}^{k} (a_i - a_j)\right]^{-1} \prod_{j \neq i}^{k} (f(x) - a_j), 1 \leq i \leq k$. Then, $\ell_i(x) = 1, \text{ for } x \in E_i = \{z \in \mathbb{F} : f(z) - a_i = 0\}$, and $\ell_i(x) = 0, \text{ for } x \in \mathbb{F} \setminus E_i, 1 \leq i \leq k$. Thus, $\{E_i : 1 \leq i \leq k\}$ is a partition of \mathbb{F}, and $\ell_i(x)$ is the characteristic function of the equivalence class $E_i, 1 \leq i \leq k$. Now, the set $\{g_i(x_1, \ldots, x_i) = \ell_i(h(x_1, \ldots, x_i)) : 1 \leq i \leq k\}$, where $h(x_1, \ldots, x_i) \in \mathbb{E}XP(\mathbb{F}; [z_1, \ldots, z_i])$, is a partition of unity of \mathbb{F}.

Examples. (A) Let the vector space dimension of \mathbb{F} be n as an extension field of \mathbb{Z}_p, and let $f(z) = \sum_{i=1}^{n} a_i z^{p^{i-1}}$, where $a_i \in \mathbb{F}, 1 \leq i \leq n$, be a noninvertible linear operator from \mathbb{F} into \mathbb{F}, with \mathbb{Z}_p as the field. For every linear operator T from \mathbb{F} into \mathbb{F} with \mathbb{Z}_p as the field, there exist scalars $c_i \in \mathbb{F}, 1 \leq i \leq n$, such that $Tz = \sum_{i=1}^{n} c_i z^{p^{i-1}}$ [29]. Now, each equivalence class is an affine vector subspace of the form $\{y + z : f(x) = 0, x \in \mathbb{F}\}$, for some $y \in \mathbb{F}$. Thus, if r is the rank of f as linear operator from \mathbb{F} into \mathbb{F} with \mathbb{Z}_p as the field, then the nullity of f is $n - r$, each equivalence class has p^{n-r} elements, and there are $k = p^r$ equivalence classes. For the number of equivalence classes to be small, the rank r of f must be small, such as $r = 1$ or $r = 2$. (B) Let $f(z) = z^r$, where r is a large positive integer dividing $p^a - 1$. Now, the equivalence classes are $\{0\}$ and the cosets of the congruence relation $x \sim y$ if and only if $(x^{-1}y)^r = 1$, for $x, y \in \mathbb{F} \setminus \{0\}$. Since $K_f = \{0\} \cup \{z^r : z \in \mathbb{F} \setminus \{0\}\}$, there are $k = 1 + (p^a - 1)/r$ equivalence classes.
3.3 Partition of Unity of \mathbb{Z}_p\

Let $s \in \mathbb{N}$ be a divisor of $(p - 1)$ and $k = 1 + \frac{(p-1)}{l}$. Now, $p^{l-1} \geq l$, for any $l \in \mathbb{N}$ and prime number p. Let $h(x) = x^{p^{l-1}}$, for $x \in \mathbb{Z}_p$. Then, $(h(x))^{k-1} = 1$, for $x \in \mathbb{Z}_p^*$, and $h(x) = 0$, for $x \in \mathbb{Z}_p \setminus \mathbb{Z}_p^*$. Thus, the set \(\{x^{p^{l-1}} : x \in \mathbb{Z}_p^* \} \) contains k distinct elements. Let $x, y \in \mathbb{Z}_p^*$ be such that $h(x) \neq h(y)$. If $h(x) = 0$ or $h(y) = 0$, then $(h(y) - h(x)) \in \mathbb{Z}_p^*$. Now, let \(x, y \in \mathbb{Z}_p^* \). If \((x^{-1}y)^{p^{l-1}} = 1 + bp^l \), for some $b \in \mathbb{Z}_p^*$ and $t \in \mathbb{N}$, then, since $1 + bp^l \sum_{i=1}^{k-1} \frac{(k-1)!}{i!(k-1-i)!} p^{(i-1)t} = (1 + bp^l)^{k-1} = ((x^{-1}y)^{p^{l-1}})^{k-1} = 1 \mod p^l$, it follows that either $t \geq l$ or $(k-1) + \sum_{i=2}^{k-1} \frac{(k-1)!}{i!(k-1-i)!} p^{(i-1)t} = 0 \mod p^l$. However, since $k = 1 + \frac{p-1}{l}$, and therefore, $1 \leq k-1 \leq p - 1$, it follows that $(k-1) + \sum_{i=2}^{k-1} \frac{(k-1)!}{i!(k-1-i)!} p^{(i-1)t} = k - 1 \mod p$. Thus, if $x, y \in \mathbb{Z}_p^*$ and $h(x) \neq h(y)$, then \((x^{-1}y)^{p^{l-1}} - 1 \neq 0 \mod p \), and hence if $x, y \in \mathbb{Z}_p^*$ and $h(x) \neq h(y)$, then \((h(y) - h(x)) \in \mathbb{Z}_p^* \). If $a_j \in \mathbb{Z}_p^*$, $1 \leq j \leq k$, are such that \(\{x^{p^{l-1}} : x \in \mathbb{Z}_p^* \} = \{a_j : 1 \leq j \leq k \} \), then \(\{a_i - a_j \} \in \mathbb{Z}_p^* \), for $i \neq j$, $1 \leq i$, $j \leq k$, and the Lagrange interpolation polynomials $g_j(x) \in \mathbb{Z}_p[x]$ can be obtained for the equivalence classes $E_j = \{x^{p^{l-1}} - a_j : x \in \mathbb{Z}_p^* \}$. Thus, corresponding to every homomorphism of \mathbb{Z}_p^* into \mathbb{Z}_p^*, a partition of unity of \mathbb{Z}_p can be obtained.

3.4 Multivariate Polynomials that Evaluate to only Invertible Elements

Let $f(z) \in \mathbb{F}[z]$ be a polynomial which is not surjective as a mapping from \mathbb{F} into \mathbb{F}. Then, there exists an element $c \in \mathbb{F}$, such that $f(z) - c \neq 0$, for every $z \in \mathbb{F}$. For $a \in \mathbb{F} \setminus \{0\}$ and $g(z_1, \ldots, z_i) \in \mathbb{F}[z_1, \ldots, z_i]$, $a(f(g(z_1, \ldots, z_i)) - c) \neq 0$, for every \((z_1, \ldots, z_i) \in \mathbb{F}^i \).

Examples. (A) Let $f(z)$ be a product of irreducible polynomials in $\mathbb{F}[z]$ of degree 2 or more each. Then, c can be chosen to be 0. (B) Let the vector space dimension of \mathbb{F} be n as an extension field of \mathbb{Z}_p, and let $f(z) = \sum_{i=1}^n a_i z^i$, where $a_i \in \mathbb{F}$, $1 \leq i \leq n$, be a noninvertible linear operator from \mathbb{F} into \mathbb{F}, with \mathbb{Z}_p as the field. Then, for any basis $\{a_1, \ldots, a_n\}$ for \mathbb{F}, with \mathbb{Z}_p as the field, there exists an index j, $1 \leq j \leq n$, such that $\sum_{i=1}^n a_i z^i - a_j \neq 0$, for every $z \in \mathbb{F}$, and c can be taken to be a_j. (C) Let $r \geq 2$ be a positive integer divisor of $p^n - 1$, and let $f(z) = z^r$. Then, there exists an element $c \in \mathbb{F} \setminus \{0\}$, such that $e(p^{n-1})/r \neq 1$. Now, since $e(p^{n-1})/r \neq 0$ and $e(p^{n-1})/r \neq 1$, it follows that $f(z) - c \neq 0$, for every $z \in \mathbb{F}$.

If $f(z) \in \mathbb{F}[z]$ is such that $f(z) \neq 0$, for every $z \in \mathbb{F}$, then $[f(z)]^{-1} = \sum_{i=1}^k a_i^{-1} \ell_i(z)$, where $\{a_i : 1 \leq i \leq k\} = \{f(z) : z \in \mathbb{F}\}$, and $\ell_i(z) = \left[\prod_{j \neq i} (a_i - a_j) \right]^{-1} \cdot \prod_{j \neq i} (f(z) - a_j)$, $1 \leq i \leq k$. Thus, for digital signature hashing keys in section 4.1, the appropriate choices for a nonvanishing function $f(z) \neq 0$, $z \in \mathbb{F}$, are those similar to the choice of discriminating
functions discussed at the end of section 3.2.

Let \(n = \prod_{i=1}^{r} p_{i}^{l_{i}} \), where \(r \in \mathbb{N} \), \(l_{i} \in \mathbb{N} \) and \(p_{i} \) are distinct prime numbers, for \(1 \leq i \leq r \), and \(f(z) \in \mathbb{Z}_{n}[z] \). From section 2.2, it can be recalled that, \(f(z) \in \mathbb{Z}_{n}^{*} \), for \(z \in \mathbb{Z}_{n} \), if and only if for every \(i \), where \(1 \leq i \leq r \), \(f(z) \mod p_{i} \in \mathbb{Z}_{p_{i}}^{*} \), for \(z \in \mathbb{Z}_{n} \).

3.5 Univariate Bijective Mappings without Parameters

Examples in \(\mathbb{F}[x] \) Bijective mappings in \(\mathbb{F}[x] \), also called permutation polynomials, are extensively studied as Dickson polynomials [13] in the literature. A comprehensive survey on Dickson polynomials can be found in [1, 18, 28, 35, 36]. Some recent results are presented in [2, 3, 4]. If \(f(z) \in \mathbb{F}[z] \) is a permutation polynomial, then, for every \(a \in \mathbb{F} \{0\} \), \(b \in \mathbb{F} \) and nonnegative integer \(i \), the polynomial \(af(z^{p^{i}}) - b \) is a permutation polynomial. Some easy examples are described in the following.

Examples. (A) Let \(\mathbb{F} \) be a finite dimensional extension field of \(\mathbb{Z}_{p} \) of vector space dimension \(n \). Any polynomial \(f(z) = \sum_{i=1}^{n} a_{i} z^{p^{i}-1} \), where \(a_{i} \in \mathbb{F} \), \(1 \leq i \leq n \), that is an invertible linear operator from \(\mathbb{F} \) onto \(\mathbb{F} \), with \(\mathbb{Z}_{p} \) as the field, is a permutation polynomial.

(B) Let \(r \) be a positive integer divisor of \(n \), and \(f(z) = z^{r} - a z \), where \(a \sum_{i=1}^{r} p^{i(r-1)} \neq 1 \). Then, for every \(z \in \mathbb{F} \{0\} \), \(z^{r-1} - a \neq 0 \), since \(z^{r-1} = z^{p^{i(r-1)} + (r-1)r} = 1 \), and therefore, the null space of \(f(z) \), as a linear operator from \(\mathbb{F} \) into \(\mathbb{F} \) with \(\mathbb{Z}_{p} \) as the field, is \(\{0\} \). Thus, \(f(z) \) is a permutation polynomial. (C) Let \(r \) be a positive integer relatively prime to \((p^{n} - 1) \). Then, the polynomial \(f(z) = z^{r} \) is a permutation polynomial.

Examples in \(\mathbb{Z}_{p}[x] \) Let \(l \in \mathbb{N} \) and \(p \) be a prime number. For any positive integer \(n \), Dickson polynomials that are permutation polynomials, having nonvanishing derivatives over the finite field containing \(p^{n} \) elements, are found in [1, 2, 3, 4, 18, 28, 35, 36]. For a small prime number \(p \), two methods for construction of permutation polynomials \(f(x) \in \mathbb{Z}_{p}[x] \), such that \(f(x) \neq 0 \mod p \), are described below. As a set, \(\mathbb{Z}_{p} \) is taken to be the set of integers \(i \), where \(0 \leq i \leq p - 1 \). For \(p = 2 \), the only permutation polynomials are \(f(x) = x \) and \(f(x) = x - 1 \), and in both cases, \(f'(x) = 1 \mod 2 \). Now, let \(p \geq 3 \) be a small prime number, such that the computations below are not difficult for implementation. Let \(\ell_{i}(x) = \left[\prod_{j=0}^{p-1} (i-j) \right]^{-1} \cdot \prod_{j=0}^{p-1} (x-j) = -\prod_{j=0}^{p-1} (x-j) \), for \(i \in \mathbb{Z}_{p} \). Now, \(\ell'(x) = -\sum_{j=0}^{p-1} \prod_{k=0}^{p-1} (x-k) \), for \(i \in \mathbb{Z}_{p} \), which implies that \(\ell'(j) = -\sum_{k=0}^{p-1} (j-k) \), for \(j \neq i \) and \(\ell'(i) = -\sum_{k=0}^{p-1} (i-k) \), for \(i \leq p - 1 \) of \(\mathbb{Z}_{p} \), either of the two procedures described below constructs a permutation polynomial in \(f(x) \in \mathbb{Z}_{p}[x] \), such that \(f(i) = a_{i} \) and \(f'(i) \neq 0 \mod p \), for \(i \in \mathbb{Z}_{p} \).
Let \(\sum_{i=0}^{p-1} a_i \ell_i(x) = b_0 + \sum_{i=1}^{p-1} b_i x^i \), for some \(b_i \in \mathbb{Z}_p \), for \(0 \leq i \leq p-1 \), and let \(g(x) = c_1 + \sum_{i=2}^{p-1} c_i x^{i-1} \), for some \(c_i \in \mathbb{Z}_p \), for \(1 \leq i \leq p-1 \), be such that \(g(x) \equiv 0 \mod p \), for every \(x \in \mathbb{Z}_p \). Let \(\rho_i = i^{-1} c_i \) and \(\sigma_i = b_i - \rho_i \), for \(1 \leq i \leq p-1 \). Let \(f(x) = b_0 + \sum_{i=1}^{p-1} (\rho_i x^i + \sigma_i x^p) \). Then, \(f(x) \equiv b_0 + \sum_{i=1}^{p-1} b_i x^i \mod p \), for every \(x \in \mathbb{Z}_p \), and \(f'(x) \equiv \rho_i + \sum_{i=2}^{p-1} i \rho_i x^{i-1} \equiv c_1 + \sum_{i=2}^{p-1} c_i x^{i-1} \mod p \), for every \(x \in \mathbb{Z}_p \), satisfying the stated requirement.

Method 2

Let \(b_i, c_i, \sigma \in \mathbb{Z}_p \), for \(0 \leq i \leq p-1 \), be such that \(b_0 = a_0 \) and \(b_j + c_j = a_j \), for \(1 \leq j \leq p-1 \), and let \(f(x) = \sum_{i=0}^{p-1} (b_i + x^{p-1} b_i - \sigma i) \ell_i(x) + \sigma x^p \). It can be immediately verified that \(f(i) \equiv a_i \mod p \), for \(0 \leq i \leq p-1 \), and \(f'(x) = \sum_{i=0}^{p-1} (b_i + x^{p-1} c_i - \sigma i) \ell'_i(x) + p \sigma x^{p-1} + (p-1) x^{p-2} \sum_{i=0}^{p-1} c_i \ell_i(x) \), where \(p \geq 3 \). Thus, the parameters \(c_0, \sigma, b_j \) and \(c_j \), for \(1 \leq j \leq p-1 \), need to be chosen such that \(f'(x) \not\equiv 0 \mod p \), for all \(x \in \mathbb{Z}_p \). Now, \(f'(x) + \sigma x = \sum_{i=0}^{p-1} (b_i + c_i x^{p-1}) \ell'_i(x) + \sigma x^p \), and \(f'(x) + \sigma = \sum_{i=0}^{p-1} (b_i + c_i x^{p-1}) \ell'_i(x) + p \sigma x^{p-1} + (p-1) x^{p-2} \sum_{i=0}^{p-1} c_i \ell_i(x) \). Thus, \(f'(0) + \sigma = \sum_{i=1}^{p-1} i^{-1} b_i \mod p \) and \(f'(j) + \sigma = \sum_{i=0}^{p-1} a_i (j-i)^{-1} + c_j j^{-1} - j^{-1} c_j \mod p \), for \(1 \leq j \leq p-1 \), which implies that every element in the sequence of numbers \((f'(i) + \sigma) \mod p \), for \(0 \leq i \leq p-1 \), is independent of the choice of \(\sigma \), and the condition that \(f'(i) \not\equiv 0 \mod p \), for \(0 \leq i \leq p-1 \), is equivalent to that \(\sigma \not\in \{ (f'(i) + \sigma) \mod p : 0 \leq i \leq p-1 \} \). For \(p \geq 3 \), \(\sum_{i=0}^{p-1} i \equiv \sum_{i=0}^{p-1} i^{p} \equiv 1 \mod p \), and since \(\mathbb{Z}_p \) is the splitting field of the polynomial \(x^p - x = \prod_{i=0}^{p-1} (x - i) \), the elementary symmetric polynomials \(s_r(t_1, t_2, \ldots, t_n) \), which are homogeneous of degree \(r \) in \(n \) variables, for the particular instances of parameters \(n = p \) and \(t_i = i-1 \), for \(1 \leq i \leq p \), as defined in [27], are all congruent to \(0 \mod p \), for \(1 \leq r \leq p-2 \). Thus, \(\sum_{i=0}^{p-1} i^r \equiv \sum_{i=0}^{p-1} i^{p} \equiv 0 \mod p \), for \(1 \leq r \leq p-2 \) and \(p \geq 3 \), which implies that for a nonzero polynomial \(g(x) \in \mathbb{Z}_p[x] \) of degree at most \(p-2 \), \(\sum_{i=0}^{p-1} g(i) \equiv 0 \mod p \). Now, \(p \sum_{i=0}^{p-1} i^{p-1} \equiv 0 \mod p \), and, for \(\ell \in \mathbb{N} \), such that \(p+1 \leq \ell \leq 2p-2 \), \(l \sum_{i=0}^{p-1} i^{l-1} \equiv l \sum_{i=0}^{p-1} i^{l-1-(p-1)} \equiv l \sum_{i=0}^{p-1} i^{l-p} \equiv 0 \mod p \), since \(1 \leq l \leq p-2 \). Thus, for a nonzero polynomial \(h(x) \in \mathbb{Z}_p[x] \) of degree at most \(2p-2 \), \(\sum_{i=0}^{p-1} h'(i) \equiv 0 \mod p \). The coefficients \(c_i \), for \(0 \leq i \leq p-1 \), must be so chosen that the additional requirement that \(f(x) + \sigma x \) is a polynomial of degree at most \(2p-2 \) can also be fulfilled. Now, let \(\lambda_i \in \mathbb{Z}_p \), for \(0 \leq i \leq p-1 \), be chosen, such that the cardinality of the set \(\Lambda = \{ \lambda_i : 0 \leq i \leq p-1 \} \) is at most \(p-1 \) and \(\sum_{i=0}^{p-1} \lambda_i = 0 \). Then, \(c_j - c_0 \) are found from the condition \(f'(j) + \sigma = \sum_{i=0}^{p-1} a_i (j-i)^{-1} - j^{-1} (c_j - c_0) = \lambda_j \), for \(1 \leq j \leq p-1 \), and hence, \(f'(0) + \sigma = - \sum_{i=0}^{p-1} i^{-1} b_i = \lambda_0 \), for all choices of \(c_0 \). Now, let \(\sigma \) be chosen from \(\mathbb{Z}_p \setminus \Lambda \), where the latter set is nonempty, since the cardinality of \(\Lambda \) is at most \(p-1 \), by the choices of \(\lambda_i \), for \(0 \leq i \leq p-1 \). Finally, \(c_0 \) is chosen, and \(b_j \) and \(c_j \), for \(1 \leq j \leq p-1 \), are determined by the aforementioned conditions.
For a small prime number \(p \), positive integers \(l \) and \(r \), such that \(l \geq 2 \) and \(1 \leq r \leq l \), a bijective mapping \(f(x) \in \mathbb{Z}_p^r[x] \) and \(y \in \mathbb{Z}_p^r \), the following procedure computes \(x_r \in \mathbb{Z}_p^r \), such that \(f_r(x_r) \equiv y \mod p^r \), assuming \(x_1 \in \mathbb{Z}_p \) is known, such that \(f_1(x_1) \equiv y \mod p \), where \(f_r(x) = f(x) \mod p^{r-1} \), applying the \(\mod p^r \) operation only to the coefficients. Let \(2 \leq r \leq l \), where \(l \geq 2 \), \(s \in \mathbb{N} \) be such that \(\left[\frac{r}{r} \right] \leq s \leq r - 1 \) and \(y_r = y \mod p^r \in \mathbb{Z}_p^r \), and \(x_s = f_s^{-1}(y_s \mod p^s) \in \mathbb{Z}_p^s \) has been computed. Let \(\hat{x}_s \in \mathbb{Z}_p^s \) be such that \(\hat{x}_s \equiv x_s \mod p^s \). Since \(f_s(\hat{x}_s) \equiv y_s \mod p^s \), it follows that \(f_s(\hat{x}_s) = y_s + p^s g_s(x_s, y_s) \), for some polynomial \(g_s(x_s, y_s) \), and therefore, \(f_r(\hat{x}_s + [f'_r(\hat{x}_s)]^{-1} \cdot (y_r - f_r(\hat{x}_s))) \equiv f_r(\hat{x}_s) + f'_r(\hat{x}_s) \cdot [f'_r(\hat{x}_s)]^{-1} \cdot (y_r - f_r(\hat{x}_s)) \equiv f_r(x_s) + (y_r - f_r(x_s)) \equiv y_r \mod p^r \). Thus, \(f_r^{-1}(y_r) = \hat{x}_s + [f'_r(\hat{x}_s)]^{-1} \cdot (y_r - f_r(\hat{x}_s)) \mod p^r \). If \(r = l \), then the \(f^{-1}(y) \) is just computed for \(y \in \mathbb{Z}_p^l \), and the procedure can be stopped; otherwise, the previous steps are repeated, replacing the current value of \(y \) by \(\min\{2r, l\} \).

Examples in \(\mathbb{F}^* \) [\(\mathbb{F}; [z] \)] Let \(\mathbb{F} \) be a finite field of \(p^n \) elements, for some prime number \(p \) and \(n \in \mathbb{N} \), such that \(p^r \geq 3 \), and \(n = p^n - 1 \). Let \(t \geq 2 \) be a positive integer divisor of \(p^n - 1 \), and let \(H_t = \{ x^t = 1 : x \in \mathbb{F}^* \} \). Let \(f(x) \in \mathbb{Z}[x] \) be such that \(f(x) \mod t \) yields a polynomial mapping from \(\mathbb{Z}_p^t \) onto itself. It may be recalled that, as a set, \(\mathbb{Z}_p^t \) is assumed to consist of integers \(i \), where \(0 \leq i \leq t - 1 \). Let \(a \) be a primitive element in \(\mathbb{F}^* \). Now, for \(x \in H_t \), since \(x^t = 1 \), applying \(\log_a \) on both sides, \(t \log_a x = 0 \mod n \), which implies that \(\log_a x \) is an integer multiple of \(\frac{n}{t} = \frac{p^n - 1}{t} \), for every \(x \in H_t \), and, since the cyclic subgroup generated by \(a^\frac{n}{t} \) is \(H_t \), it follows that \(\log_a \) is a bijective mapping of \(H_t \) onto \(\frac{n}{t} \cdot \mathbb{Z}_n = \{ (\frac{i}{t}) \mod n : 0 \leq i \leq t - 1 \} \). Now, \(f(\log_a(x)) \mod n \), for \(x \in H_t \), is an injective mapping, when restricted to \(H_t \), which can be modified appropriately, by changing its constant term, if necessary, to obtain a polynomial \(g \), which results in a bijective mapping from \(\frac{n}{t} \cdot \mathbb{Z}_n \) into itself, with respect to \(\mod n \) operation. Then, the mapping \(\eta(x) = a^{g(\log_a x)} \), for \(x \in \mathbb{F}^* \), is such that its restriction to \(H_t \) is a bijective mapping from \(H_t \) onto itself.

3.5.1 Hybrid Single Variable Permutation Polynomials with Hashing

Method 1 Let \(\ell_i(x) \in \mathbb{F}[x], 1 \leq i \leq k \), where \(k \in \mathbb{N} \), \(k \geq 2 \), be indicator functions of a partition \(\{ S_i : 1 \leq i \leq k \} \) of \(\mathbb{F} \). Let \(\sigma \) be a permutation on \(\{ 1, \ldots, k \} \), such that the set cardinalities of \(S_i \) and \(S_{\sigma(i)} \) are equal, for \(1 \leq i \leq k \). Let \(g_i \) be a mapping from \(\mathbb{F} \) into \(\mathbb{F} \), such that \(g_i(S_i) = S_{\sigma(i)} \), for \(1 \leq i \leq k \). Thus, \(g_i \) is one-to-one when restricted to \(S_i \), for \(1 \leq i \leq k \). Let \(\eta(x) \in \mathbb{F}[x] \) be a permutation polynomial, and \(\chi(x) = \sum_{i=1}^{k} \ell_i(x) \eta(g_i(x)) \). Then, \(\chi(\mathbb{F}) = \bigcup_{i=1}^{k} \eta(g_i(S_i)) = \bigcup_{i=1}^{k} \eta(S_{\sigma(i)}) \), and since \(\{ S_{\sigma(i)} : 1 \leq i \leq k \} \) is a partition of \(\mathbb{F} \), \(\chi(x) \) is surjective (hence bijective) polynomial from \(\mathbb{F} \) onto \(\mathbb{F} \). For inverting \(\chi(x) = y \), for fixed \(y \in \mathbb{F} \), let \(\xi = \eta^{-1}(y) \). Now, there exists exactly one index \(i \), where \(1 \leq i \leq k \), such that \(\xi \in S_{\sigma(i)} = g_i(S_i) \), and therefore, the unique element \(x \in S_i \), such that \(x = g_i^{-1}(\xi) \), satisfies
\(\chi(x) = y. \) If \(f_i, \) for \(1 \leq i \leq k, \) are mappings from \(\mathbb{F} \) into \(\mathbb{F}, \) such that
\[f_i(g_i(x)) = x, \quad x \in S_i, \] then \(\chi^{-1}(y) = \sum_{i=1}^{k} \ell_{\sigma(i)}(\eta_i^{-1}(y))f_i(\eta_i^{-1}(y)), \) for \(y \in \mathbb{F}. \) The case of bijective mappings in \(\mathcal{EP}(\mathbb{F}; [x]) \) can be similarly discussed. In the following examples, the corresponding examples in section 3.2 are revisited.

Examples. (A) Let \(T(x) = \sum_{i=1}^{n} a_i x^{n-i}, a_i \in \mathbb{F}, 1 \leq i \leq n, \) be of rank \(t, \) where \(t \) is a small positive integer, such as \(t \in \{1, 2\}, \) as described in the first example in section 3.2 and let \(V = \{x \in \mathbb{F} : T(x) = 0\}. \) Then, there exist \(k = p^t \) representative elements \(b_i \in \mathbb{F}, \) \(1 \leq i \leq k, \) such that \(\{T(b_i) : 1 \leq i \leq k\} = T(\mathbb{F}), \) and \(S_i = V + b_i = \{x + b_i : x \in V\}, 1 \leq i \leq k. \) Let \(f_i(x) = c_i x^{n-i}, \) where \(c_i, x \in \mathbb{F}, 0 \leq j \leq n, \) be such that \(V \subseteq f_i(V), \) for \(1 \leq i \leq k. \) Thus, in the notation of the above discussion, the permutation polynomial \(f_i(x) - b_i + g_i(x), \) can be chosen to be \(g_i(x), \) for \(x \in \mathbb{F} \) and \(1 \leq i \leq k. \) (B) Let \(f(z) = z^t, \) where \(t \) is a large positive integer dividing \(p^n - 1, \) as described in the second example of section 3.2. Let \(a_i = 0 \) and \(a_i \in \mathbb{F}^*, \) for \(2 \leq i \leq k, \) where \(k = 1 + \frac{(p^n-1)}{t}, \) be such that \(\{f(a_i) : 1 \leq i \leq k\} \) is the codomain of \(f. \) Let \(\sigma \) be a permutation on \(\{1, \ldots, k\}, \) such that \(\sigma(1) = 1, \) and let \(H_i = \{y \in \mathbb{F} : f(y) = 1\}. \) Then, \(S_i = a_i H_i = \{a_i + v : v \in H_i\}, \) for \(1 \leq i \leq k. \) Let \(h_i(x), x \in H_i, \) be a bijective mapping discussed in the previous section, for \(2 \leq i \leq k. \) Thus, representing elements \(c_i \in \mathbb{F}^* \) can be found easily, such that the mapping \(g_i(x) = c_i h_i(a_i^{-1}x) \) satisfies \(g_i(S_i) = S_{\sigma(i)}, \) for \(x \in S_i, \) and \(2 \leq i \leq k. \)

Method 2 Let \(G \) be \(\mathbb{F}^* \) or \(\mathbb{F}. \) Let \(f \) and \(h \) be mappings from \(G \) into itself, such that \(f \) is bijective and \(h(f(x)) = h(x), \) for \(x \in G. \) For instance, if \((A) \) \(f \) is such that the cyclic group generated by it, as a subgroup of bijective mappings from \(G \) into \(G, \) with composition as the group operation, is of small order \(\rho \geq 2, \) (B) \(g : G^\rho \to \mathbb{F} is a symmetric function, which can be an expression in \(\mathcal{EP}(\mathbb{F}; [z_1, \ldots, z_{\rho}]), \) symmetric in all the \(\rho \) variables, (C) \(f_i(x) = x \) and \(f_i(x) = f(f_{i-1}(x)), \) for \(1 \leq i \leq \rho, \) and (D) \(h(x) = g(x, f_1(x), \ldots, f_{\rho-1}(x)), \) for \(x \in G, \) then \(f_{i}(x) = x \) and \(h(f(x)) = h(x), \) for \(x \in G. \) Let \(\sigma \) be a permutation on \(\{1, \ldots, \rho\}, \) and \(\{S_i : 1 \leq i \leq k\}, \) where \(2 \leq k \leq \rho, \) be a partition of \(\mathbb{F}, \) and let \(\ell_i(x), x \in \mathbb{F}, \) be the indicator function of \(S_i, \) for \(1 \leq i \leq k. \) Let \(\eta \) be a bijective mapping from \(G \) into \(G, \) and \(\zeta(x) = \sum_{i=1}^{k} \ell_i(h(x))\eta(f_{\sigma(i)}(x)), x \in G. \) Let \(x, y \in G \) be such that \(\zeta(x) = \zeta(y), \) and let \(i, j \in \{1, \ldots, k\} \) be such that \(\ell_i(h(x)) = 1 \) and \(\ell_j(h(y)) = 1. \) Then, \(\eta(f_{\sigma(i)}(x)) = \eta(f_{\sigma(j)}(y)), \) and since \(\eta \) is bijective, it follows that \(f_{\sigma(i)}(x) = f_{\sigma(j)}(y). \) If \(\sigma(i) \leq \sigma(j), \) then \(x = f_{\sigma(j)-\sigma(i)}(y), \) and since \(h(f(y)) = h(y), \) it follows that \(f(x) = h(y), \) \(\sigma(i) = \sigma(j) \) and \(i = j, \) and therefore, \(x = y. \) Thus, \(\zeta^{-1}(y) = \sum_{i=1}^{k} \ell_i(h(h^{-1}(y)))f_{\sigma(i)}^{-1}(h^{-1}(y)), \) for \(y \in G. \)

3.6 Multivariate Injective Mappings without Parameters

3.6.1 Multivariate Injective Mappings from \(G^m \) into \(\mathbb{E}^m \)

In this subsection, an iterative algorithm to construct a multivariate injective mapping from \(G^m \) into \(\mathbb{E}^m, \) for \(m \in \mathbb{N}, \) is described. The algorithm utilizes
parametric univariate bijective mappings discussed in the previous sections. In later subsections, some variations involving hashing are described.

1. Let $f_i : G \to G$ and $g_i : E \to E$, for $1 \leq i \leq m$, be bijective mappings.

2. Let $h_i(z_1, \ldots, z_{m-1}; x)$ be parametric injective mappings from G into E, for $1 \leq i \leq m$, $x \in G$ and $z_1, \ldots, z_{m-1} \in E$ being parameters, constructed, for example, as described in section 3.1.

3. Let $\zeta_i(x) = h_i(\zeta_{i+1}(x), \ldots, \zeta_m(x), x_1, \ldots, x_{i-1}; f_i(x))$ and $\eta_i(x) = g_i(\zeta_i(x))$, for $x = (x_1, \ldots, x_m) \in G^m$ and $1 \leq i \leq m$. Let $\eta(x) = (\eta_1(x), \ldots, \eta_m(x))$.

For finding $x = (x_1, \ldots, x_m) \in G^m$, such that $\eta(x) = y$, for any fixed $y = (y_1, \ldots, y_m) \in E^m$, let $\epsilon_i = g_i^{-1}(y_i)$ and $\delta_i = h_i^{-1}(\epsilon_{i+1}, \ldots, \epsilon_m, x_1, \ldots, x_{i-1}; \epsilon_i)$, for $1 \leq i \leq m$. Then, $x_i = f_i^{-1}(\delta_i)$, for $1 \leq i \leq m$. Now, for $E = F$ and $G = F^*$, if g_i and h_i, for $1 \leq i \leq m$, are bijective mappings and parametric bijective mappings, respectively, from F^* into F^*, then the above procedure can be applied to obtain multivariate bijective mappings from G^m into G^m.

These mappings are required in appealing for a security that is immune to threats resulting from Gröbner basis analysis. It can be observed that one level of exponentiation suffices for the purpose.

3.6.2 Hybrid Multivariate Injective Mappings with Hashing

For Method 1 of the previous subsection, in the first example, in place of $T(x)$, $x \in F$, $T(a(x))$, $x \in F^m$, and in the second example, in place of $f(z)$, $z \in F$, $f(\beta(x))$, $x \in F^m$, are chosen, where $a : F^m \to F$ is a non constant affine mapping in the first example, and $\beta(x) = c \prod_{i=1}^m x_i^{s_i}$, for some nonnegative integers s_i, which, when positive, are relatively prime to $p^n - 1$, and, when zero, for the corresponding subscript index i, the variable x_i does not occur in the product, for $1 \leq i \leq m$, such that $\beta(x)$ is nonconstant, in the second example. Similarly, Method 2 hashing of the previous subsection can also be extended to multivariate mappings, replacing x with x. For instance, if $G = F^*$, a is a primitive element in F^* and n is the set cardinality of F^*, then $f(x)$ can be chosen to be $a^{\log_a x}$, $a^{\log_a x}$, and $\Phi(y) = (\phi_1(y), \ldots, \phi_m(y))$ is a bijective mapping from Z_n^m into itself, such that the cyclic subgroup generated by Φ, with respect to function composition, has a group order ρ, while g can be chosen to be an expression from $E \mathcal{T}P(F; [z_1, \ldots, z_{m-1}, \ldots, z_1, \rho, \ldots, z_{m,\rho}])$, which is symmetric in the ρ vectors $(z_{1,1}, \ldots, z_{m,\rho})$, for $1 \leq i \leq \rho$. If $g = \pi^t$, for a symmetric mapping π obtained by taking product of terms as appropriate and a large positive integer divisor t of n, then since $t \Phi(y)$ is a bijective mapping from tZ_n^m into itself, the order of the cyclic subgroup generated by $t \Phi(y)$, as a subgroup of the group of bijective mappings from tZ_n^m into itself, can be
ensured to be only a small divisor of \(\rho \), resulting in a more efficient method of hashing, even for a very large and perhaps unknown \(\rho \). It can be observed that \(g \) can be chosen to depend only on a few scalar components from each vector, while maintaining symmetry in all its vector parameters, with each vector consisting of \(m \) scalars components, and that the main objective in Method 2 hashing is to produce a hashing function \(h \) that evaluates to the same value, even if \(f \) is applied on its arguments.

4 Public Key Cryptography and Digital Signature

Let the number of elements in the plain message (or plain signature message) be \(\mu \), and the number of elements in the encrypted message (or encrypted signature message) be \(\nu \), where \(\mu, \nu \in \mathbb{N} \) and \(\mu \leq \nu \). Let \(E \) be \(\mathbb{F} \) or \(\mathbb{Z}_n \), and \(G \subseteq E \) be the set from which plain message elements are sampled. If the number of plain and encrypted (or plain and signed) messages are the same, then a multivariate bijective mapping \(P : G^\mu \rightarrow G^\mu \) is chosen and advertised in the public key lookup table \(T \), while \(P^{-1} \) is saved in the back substitution table \(B \). Let \((\xi_1, \ldots, \xi_\mu) \in G^\mu \) be plain message. For public key cryptography, the encrypted message is \((\epsilon_1, \ldots, \epsilon_\mu) = P(\xi_1, \ldots, \xi_\mu)\), and the decryption is \(P^{-1}(\epsilon_1, \ldots, \epsilon_\mu)\). For digital signature, the signed message is \((\epsilon_1, \ldots, \epsilon_\mu) = P^{-1}(\xi_1, \ldots, \xi_\mu)\), and recovered message is \(P(\epsilon_1, \ldots, \epsilon_\mu)\).

In the remaining part of the section, it is assumed that \(1 \leq \mu \leq \nu - 1 \). Let \(\nu = \mu + \lambda \), for some positive integer \(\lambda \). Let \(\kappa \) be the number of padding message elements in the hashing keys. Let \(x = (x_1, \ldots, x_\mu) \in G^\mu \) be the plain message, \(y = (y_1, \ldots, y_\nu) \in E^\nu \) be the encrypted or signed message, and \(\omega = (\omega_1, \ldots, \omega_\nu) \in G^\nu \) be a padding message. The multivariate mappings in the rest of this section are expressions from either \(E[x_1, \ldots, x_\mu, \sigma_1, \ldots, \sigma_\mu] \) or \(E \times \mathcal{P}(E; [t_1, \ldots, t_m, \sigma_1, \ldots, \sigma_\mu]) \), for some appropriate variable names \(t \) and \(\sigma \), and subscript numbers \(m \) and \(n \), depending on the context of occurrence and arity of the mappings.

4.1 Hashing Keys

The following subroutine generates the hashing keys required by the algorithms of sections 4.2 and 4.3.

Subroutine for Generation of Hashing Keys The table generated is the private key hash table \(H \), containing the hashing keys.

1. The following inputs to the subroutine are taken: positive integers \(\mu, \kappa, L, \lambda \), and a binary flag SIGN, where \(L \) is the number of hashing keys, \(L \leq \lambda \), and SIGN is set to the binary value true, if this subroutine is called for digital signature, and set to false for public key cryptography.

2. The private key hash table \(H \) is initialized to empty set. The input parameters are saved in the private key hash table \(H \). Let \(\nu = \mu + \lambda \).

3. Let \(f_1(x, \omega) \), for \(1 \leq l \leq L \), be selected and saved in the private key hash table \(H \). If \(L < \lambda \), let \(Q_i(x, \omega) \), for \(1 \leq i \leq \lambda - L \), be selected and saved in the private key hash table \(H \). The chosen functions are required to evaluate to elements in \(G \), for \((x, \omega) \in G^{\mu + \nu}\). Let \(F(x, \omega) = (f_1(x, \omega), \ldots, f_L(x, \omega)) \).
4. Now, a parametric multivariate injective mapping \(\eta(y_1, \ldots, y_{L-1}; z) \), \(z = (z_1, \ldots, z_{\lambda}) \), is selected such that \(\eta^{-1}(y_1, \ldots, y_{L-1}; z) \) can be computed easily (discussed in section 3). The multivariate mappings required to compute both \(\eta(y_1, \ldots, y_{L-1}; z) \) and \(\eta^{-1}(y_1, \ldots, y_{L-1}; z) \) are saved in the private key hash table \(H \). If \(\text{SIGN} \) is set to \text{true}, then this procedure is called for generating digital signature hashing keys, and hence, let \(g_i(y_1, \ldots, y_{\lambda}) = \eta_i^{-1}(y_1, \ldots, y_{L-1}; (y_{L-1}, \ldots, y_{L})), 1 \leq i \leq L \), which are also saved in the private key hash table \(H \).

5. Let \(Q_{\lambda-L+i}(x, \omega) = \eta_{i}(Q_{i}(x, \omega), \ldots, Q_{\lambda-L}(x, \omega); F(x, \omega)) \), \(1 \leq i \leq L \), which are saved in the private key hash table \(H \). Thus, for \((x, \omega) \in G^{\mu+\kappa} \), \(F(x, \omega) = \eta^{-1}(Q_{i}(x, \omega), \ldots, Q_{\lambda-L}(x, \omega); (Q_{\lambda-L+i}(x, \omega), \ldots, Q_{\lambda}(x, \omega))) \). The parametric multivariate injective mapping \(\eta(y_1, \ldots, y_{L-1}; z) \) are required to be so chosen that (i) it is easily expressible as a multivariate mapping, for public key cryptography, and (ii) \(\eta^{-1}(y_1, \ldots, y_{L-1}; z) \) and \(g_i(y_1, \ldots, y_{\lambda}) \), \(1 \leq i \leq \lambda \), are easily expressible as multivariate mappings, for digital signature, and for signature authentication, the multivariate mappings \(Q_{i}(x, \omega) \), \(1 \leq i \leq \lambda \), must occur as public key mappings, which need to be easily expressible, as well.

4.2 Public Key Cryptography (PKC)

The input is the private key hash table \(H \), containing the hashing keys.

Public Key Cryptography Key Generation Algorithm The tables generated are as follows: (1) the private key back substitution table \(B \), containing information for decryption of public key encrypted message, and (2) the public key lookup table \(T \), containing the multivariate mappings for encrypting plain message.

1. The subroutine for generation of hashing keys (described in section 4.1) is called, which takes input parameters, viz., positive integers \(\mu, \kappa, L, \lambda, \) and a binary flag \(\text{SIGN} \), which is set to \text{false} by the calling function, generates the multivariate mappings \(f_i(x, \omega), 1 \leq i \leq L \), and \(Q_{i}(x, \omega), 1 \leq i \leq \lambda \), sets \(\nu = \mu + \lambda \), and saves them in the private key hash table \(H \). The private key back substitution table \(B \) is initialized to empty set.

2. A parametric multivariate injective mapping \(\zeta(z_1, \ldots, z_{\lambda}; x) \) is selected such that the parametric inverse multivariate mapping \(\zeta^{-1}(z_1, \ldots, z_{\lambda}; y) \) can be computed easily (discussed in section 3). The information required to compute \(\zeta(z_1, \ldots, z_{\lambda}; x) \) and \(\zeta^{-1}(z_1, \ldots, z_{\lambda}; y) \) is saved in the private key back substitution table \(B \). Let \(Q_{\lambda+i}(x, \omega) = \zeta(f_i(x, \omega), \ldots, f_{L}(x, \omega); x), 1 \leq i \leq \mu \).

3. An invertible affine linear transformation \(T : E^\nu \to E^\nu \) is selected, and its inverse transformation \(T^{-1} \) is saved in the back substitution table \(B \).

4. Let \((P_1(x, \omega), \ldots, P_{\nu}(x, \omega)) = T(Q_1(x, \omega), \ldots, Q_{\nu}(x, \omega)) \) be the encryption multivariate mappings, which are advertised in the public key lookup table \(T \), along with \(\mu, \nu, \kappa, E \) and \(G \).

Encryption Let \((\xi_1, \ldots, \xi_{\nu}) \) be the plain message. The encryptor chooses padding message \(\omega_1, \ldots, \omega_{\nu} \in F \), computes \(\epsilon_i = P_i(\xi_1, \ldots, \xi_{\nu}, \omega_1, \ldots, \omega_{\nu}), 1 \leq i \leq \nu \), and transmits \((\epsilon_1, \ldots, \epsilon_{\nu}) \) to the receiver.
The input items required for decryption are read from the private key hash table \(H \) and the private key back substitution table \(B \). The decryption algorithm is as follows:

1. Let \((\epsilon_1, \ldots, \epsilon_\nu) \in E^\nu\) be the received encrypted message.
2. Let \((v_1, \ldots, v_\nu) = T^{-1}(\epsilon_1, \ldots, \epsilon_\nu)\). Thus, \(v_i = Q_i(\xi_1, \ldots, \xi_{\omega}, \omega_1, \ldots, \omega_{\nu}) \), \(1 \leq i \leq \nu \), where \((\xi_1, \ldots, \xi_{\omega})\) is the plain message (to be decrypted in the subsequent steps), and \((\omega_1, \ldots, \omega_{\nu})\) is the padding message, which will not be decrypted. Let \(y_i = v_i, 1 \leq l \leq \lambda \).
3. Let \((z_1, \ldots, z_{\lambda}) = \eta^{-1}(y_1, \ldots, y_{\lambda-\nu}; (y_{\lambda-\nu+1}, \ldots, y_\nu))\). It is clear that \(z_i = f_i(\xi_1, \ldots, \xi_{\omega}, \omega_1, \ldots, \omega_{\nu}), 1 \leq i \leq L \).
4. The plain message is \((\xi_1, \ldots, \xi_{\omega}) = \zeta^{-1}(z_1, \ldots, z_{\lambda}; (v_{\lambda+1}, \ldots, v_\nu))\).

4.3 Digital Signature (DS)

The input is the private key hash table \(H \), containing the hashing keys.

Digital Signature Key Generation Algorithm The tables generated are as follows: (1) the private key digital signature table \(S \), containing information for signing the plain message, (2) the public key signature verification table \(V \), containing the multivariate mappings for recovery of plain message, and (3) the public key signature authentication table \(A \), containing the multivariate mappings for verifying the authentication of the plain message.

1. The subroutine for generation of hashing keys (described in section 4.1) is called, which takes input parameters, \(v, \omega, \mu, \kappa, L, \lambda \), and a binary flag \(\text{SIGN} \), which is set to true by the calling function now, generates the multivariate mappings \(f_i(x, \omega), g_i(z_1, \ldots, z_{\lambda}), 1 \leq i \leq L \), and \(Q_i(x, \omega), 1 \leq i \leq \lambda \), such that \(f_i(x, \omega) = g_i(Q_i(x, \omega), \ldots, Q_{\lambda}(x, \omega)) \), for \((x, \omega) \in \mathbb{F}^{\nu+\kappa}, 1 \leq l \leq L \), sets \(\nu = \mu + \lambda \), and saves them in the private key hash table \(H \). The private key signature table \(S \) is initialized to empty set.
2. A parametric multivariate bijective mapping \(\zeta(z_1, \ldots, z_{\lambda}; \mathbf{x}) \) from \(\mathbb{G}^\nu \) into \(\mathbb{G}^\mu \) is selected such that the parametric inverse \(\zeta^{-1}(z_1, \ldots, z_{\lambda}; \mathbf{x}) \) can be computed easily (discussed in section 3). The information required to compute \(\zeta(z_1, \ldots, z_{\lambda}; \mathbf{x}) \) and \(\zeta^{-1}(z_1, \ldots, z_{\lambda}; \mathbf{x}) \) is saved in the private key signature table \(S \).

3. Let \(P_i(y_1, \ldots, y_{\nu}) = \zeta_i(g_1(y_1, \ldots, y_{\lambda}), \ldots, g_\lambda(y_1, \ldots, y_{\mu}); (y_{\mu+1}, \ldots, y_{\nu})) \), \(1 \leq i \leq \mu \), be the signature verification multivariate mappings which are advertised in the public key signature verification table \(V \), along with \(\mu, \nu, \kappa, \cdots \). Let \(\mathbb{E} \) and \(\mathbb{G} \), and let the plain message authentication multivariate mappings be \(S_i(x, \omega) = Q_i(x, \omega), 1 \leq i \leq \lambda \), which are advertised in the public key signature authentication table \(A \), along with \(\mu, \nu, \kappa, \cdots \). The signature verification table \(V \) is advertised as a public key, with read permissions for the intended receiver to access. There are two possibilities for signature authentication verification: (i) a public authority, that is responsible for providing signature authentication ascertainment and for possible issuance of a certification to that effect, is identified, which is referred to herein as a trusted authentication verifier (TAV), in which case, the padding message is transmitted to the intended receiver, possibly encrypting it by a public or
shared key encryption algorithm, whereas the decryption key for the padding message and the signature authentication table A are shared by the signer with only the TAV, or (ii) there is no TAV, in which case, the signature authentication table A and the signature verification table V are made available, with read access permissions, to the intended receiver as a public key.

Digital Signing Algorithm Let (ξ_1, \ldots, ξ_μ) be the plain message. The parameters required for digital signing are read from the private key hash table H and the private key signature table S. The digital signing algorithm is as follows:

1. The signer chooses padding message $(\omega_1, \ldots, \omega_\kappa) \in G^\kappa$, either generating them randomly, or based on previous correspondences.
2. The signer computes the hash values $z_l = f_l(\xi_1, \ldots, \xi_\mu, \omega_1, \ldots, \omega_\kappa)$, $1 \leq l \leq L$, the authentication header entries $\epsilon_i = Q_i(\xi_1, \ldots, \xi_\mu, \omega_1, \ldots, \omega_\kappa)$, $1 \leq i \leq \lambda$, and the signed message entries $(\epsilon_{\lambda+1}, \ldots, \epsilon_\nu) = \zeta^{-1}(z_1, \ldots, z_L; (\xi_1, \ldots, \xi_\mu))$.
3. The signature message is $(\epsilon_1, \ldots, \epsilon_\nu)$, which is transmitted to the intended receiver, while the padding message $(\omega_1, \ldots, \omega_\kappa)$ is either transmitted to the intended receiver together with the signature, either on demand or for free, or communicated to a trusted authentication verifier (TAV), with which the signer registers the signature authentication table A.

Digital Signature Verification Algorithm The input items required for signature verification are public key signature verification table V, and the signature authentication table A or a method for ascertaining by a trusted authentication verifier (TAV). The signature verification algorithm is as follows:

1. Let $(\epsilon_1, \ldots, \epsilon_\nu)$ be the received signature message. The padding $(\omega_1, \ldots, \omega_\kappa)$ may have also been optionally received.
2. Let $\xi_i = P_i(\epsilon_1, \ldots, \epsilon_\nu)$, $1 \leq i \leq \mu$. The plain signature message is (ξ_1, \ldots, ξ_μ). The public key signature verification table V contains the information required in this step.
3. If the signature authentication table A is available, then the authentication of the plain message can be verified by testing whether $S_i(\xi_1, \ldots, \xi_\mu, \omega_1, \ldots, \omega_\kappa) = \epsilon_i$, $1 \leq i \leq \lambda$; otherwise, a public authority TAV, that is responsible for signature authentication ascertainment, may be approached.

5 Security Analysis

The classical analysis of multivariate simultaneous equations can be applied only to polynomial equations $[31, 32, 33, 44, 12, 14]$, and the Gröbner basis analysis $[8, 16, 17]$ cannot be extended to mappings involving functions as exponents. For a security that is immune to threats from Gröbner basis analysis, parametric injective mappings from G^μ into E^ν, with κ parameters, for $G = F^*$, $E = F$ and $\mu, \nu, \kappa \in \mathbb{N}$, where $1 \leq \mu \leq \nu$ and F is a finite field, with component mappings taken as expressions from $EAXP(F; [x_1, \ldots, x_\mu, \omega_1, \ldots, \omega_\kappa])$, restricting values of x_i and ω_j to F^*, for $1 \leq i \leq \mu$ and $1 \leq j \leq \kappa$, with one level of exponentiation as described in section 2.4, are adequate.
6 Conclusions

In this paper, a new public key data encryption method is proposed, where the plain and encrypted messages are arrays. The method can also be used for digital certificate or digital signature applications. The key generation algorithm is particularly simple, easy and fast, facilitating changes of keys as frequently as required, and fast algorithms for polynomial multiplication and modular arithmetic [7, 37], whenever appropriate, can be adapted in the encryption and decryption algorithms.

References

