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Abstract. Separating public key encryption from one way func-
tions is one of the fundamental goals of complexity-based cryp-
tography. Beginning with the seminal work of Impagliazzo and
Rudich (STOC, 1989), a sequence of works have ruled out cer-
tain classes of reductions from public key encryption (PKE)—or
even key agreement—to one way function. Unfortunately, known
results—so called black-box separations—do not apply to settings
where the construction and/or reduction are allowed to directly ac-
cess the code, or circuit, of the one way function. In this work, we
present a meaningful, non-black-box separation between public key
encryption (PKE) and one way function.

Specifically, we introduce the notion of BBN− reductions (similar
to the BBNp reductions of Baecher et al. (ASIACRYPT, 2013)),
in which the construction E accesses the underlying primitive in a
black-box way, but wherein the universal reduction R receives the
efficient code/circuit of the underlying primitive as input and is
allowed oracle access to the adversary Adv. We additionally require
that the functions describing the number of oracle queries made to
Adv, and the success probability of R are independent of the run-
time/circuit size of the underlying primitive. We prove that there is
no non-adaptive, BBN− reduction from PKE to one way function,
under the assumption that certain types of strong one way functions
exist. Specifically, we assume that there exists a regular one way
function f such that there is no Arthur-Merlin protocol proving that
z /∈ Range(f), where soundness holds with high probability over “no
instances,” y ∼ f(Un), and Arthur may receive polynomial-sized,
non-uniform advice. This assumption is related to the average-case
analogue of the widely believed assumption coNP 6⊆ NP/poly.
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1 Introduction

Complexity-based cryptography seeks to formalize generic assumptions, such as
the existence of one way functions or trapdoor functions, and then determine
which cryptographic primitives can be constructed from these assumptions. For
example, it has been shown that the existence of one way functions implies the
existence of pseudorandom generators [24], pseudorandom functions [20], digitial
signatures [26,31] and symmetric key encryption. For other primitives, such as
public key encryption, it is believed that stronger assumptions are necessary.
Indeed, a gap between symmetric key and public key encryption schemes also
emerges in practice: Practical symmetric key encryption schemes, such as AES,
are far more efficient and have proven to be less susceptible to attack, than
practical public key encryption schemes, such as RSA. Understanding whether
this gap in security and efficiency is inherent seems tied to determining whether
public key encryption requires stronger complexity assumptions than one way
functions. Unfortunately, even formalizing this question is difficult: We cannot
hope to prove that one way function does not imply public key encryption in
the logical sense, i.e. OWF 6→ PKE, since if public key encryption exists then
the logical statement OWF → PKE is always true. Therefore, one approach has
been to ask whether there exists a black-box reduction of public key encryption
to one way function, wherein the construction and security proof (reduction)
only access the one way function in an input/output manner, but cannot make
use of its code. The answer turns out to be negative as shown by the semi-
nal work of Impagliazzo and Rudich [25] (who proved that even key agreement
cannot be black-box reduced to one way function) and, in fact, their oracle
separation technique was subsequently used to rule out black-box reductions be-
tween various primitives such as collision resistant hash functions to one way
functions [34], oblivious transfer to public key encryption [18] and many more.
But what about non-black-box reductions between these primitives, where the
construction/reduction may use the code of the underlying primitive?

Pass et al. [29] initiated a systematic study of this question, ruling out a
type of non-black-box reduction called a Turing-reductions—where the code of
the underlying primitive is used in an arbitrary manner, but the adversary is used
in a black-box manner only—under the assumption that one way functions with
very strong properties exist. Briefly, languages coupled with an efficiently sam-
plable distribution over the no instances are considered to be in Heur1/ polyAM if
there exists an AM (constant-round) protocol that accepts the language, with the
relaxation that soundness only needs to hold with high probability over the no
instances. For efficiently computable f , Pass et al. [29] consider the distributional
language Range(f) = {z : ∀x ∈ {0, 1}∗, f(x) 6= z} along with the distribution
f(Un) over the “No” instances. Their assumption is that there exists an efficiently
computable function f such that Range(f) /∈ Heur1/ polyAM. Pass et al. [29] jus-
tify their assumption by arguing that it is a natural average-case analogue of
the widely believed assumption coNP 6⊆ AM. Based on this assumption, [29] rule
out various Turing reductions including, reductions from one-way permutations
to one-way functions. Additionally, based on other newly introduced complexity
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assumptions, Pass et al. [29] prove separations among various other primitives.
However, none of their results address the case of constructing key agreement (or
even public key encryption) from one way function. Separating key agreement
from one way function is especially significant, since it implies a separation of
public key cryptography from private key cryptography. Indeed, resolving this
question is one of the fundamental goals of complexity-based cryptography.

In order to make progress towards this goal, we seek to formalize a mean-
ingful, non-black-box separation between one way function and public key en-
cryption (PKE). To the best of our knowledge, the only known separations to
date between one way function and public key encryption (PKE) are oracle
separations. Such separations instantiate the one way function with a random
oracle and so do not apply to settings where the construction and/or reduc-
tion are allowed to access the code of the one way function. We first define
Turing reductions and discuss why it seems hard to rule out all Turing reduc-
tions from PKE to one-way function based on the assumption that there exist
(classes of) one-way functions f for which Range(f) /∈ Heur1/ polyAM. We then
introduce and motivate a new, more restricted type of non-black-box reduction,
BBN− reductions, which are related to the BBNp reductions considered in the
taxonomy of Baecher et al. [3]. Looking ahead, our main theorem will rule out
non-adaptive, BBN− reductions from public key encryption to one-way functions
based on the assumption that there exists a regular one-way-function f such that
Range(f) /∈ Heur1/ polyAM

poly, where AMpoly is the non-uniform analogue of AM
(i.e. A is allowed to receive polynomial-sized, non-uniform advice).

1.1 Turing Reductions and the Difficulty of Ruling Them Out

We begin by recalling the definition of a type of non-black-box reduction known
in the literature as a Turing reduction. The formal definition below will be useful
when we define our new class of non-black-box reductions (BBN− reductions)
and compare to the notion of a Turing reduction.

Turing reductions. A Turing reduction from a primitive Q to a primitive P
is a pair of oracle PPT Turing machines (E,R) such that the following two
properties hold:

Construction. For every efficient implementation f of primitive P, E(f) im-
plements Q.

Reduction. For every efficient implementation f of P, and every (inefficient)
adversary Adv who breaks E(f) with probability ε = ε(n), on security pa-
rameter n, we have that RAdv(1n, 1ε, f) breaks f with probability 1/t(max(n, 1/ε(n)))
and RAdv(1n, 11/ε, f) makes at most v(max(n, 1/ε(n))) oracle queries to Adv,
for polynomials t, v.

Difficulty of ruling out Turing reductions. To rule out Turing reductions
from PKE to one-way function based on the assumption that there exist effi-
ciently computable f for which Range(f) /∈ Heur1/ polyAM, one must construct
an AM protocol proving z /∈ Range(f) (i.e. that z is “invalid”) for any efficiently
computable f , assuming there exists a Turing reduction from PKE to one-way
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function. The following is the natural way to do this: Let R be the assumed
Turing reduction from PKE to one-way function. The protocol does the follow-
ing: A emulates the reduction RAdv(f, z), using the all-powerful M to respond
to queries made to the adversary Adv. Queries made to Adv will be of the form
(pk, e) where pk is a public key and e is a ciphertext and in return, M should re-
turn the message m encrypted in e, along with a proof (e.g. the coins for Gen and
Enc showing that this is a correct decryption). If the emulation of RAdv outputs
a value x such that f(x) = z, then A rejects; otherwise, A accepts. Intuitively,
the reason this should work, is that if R is a “good” reduction, then R should
invert w.h.p. for most z ∼ f(Un), whereas if z /∈ Range(f), no matter what R
does, it cannot invert.

Of course, there is a huge hole in the above argument: The reduction R may
send queries to Adv, that “look like” valid transcripts (pk, e), but actually do not
correspond to the output of Gen, Enc on any valid input and randomness. So,
we must allow M to claim to A that (pk, e) is invalid, but to prevent M∗ from
cheating, we must also demand a proof of invalidity. But note that whatever
protocol we use to prove that (pk, e) is invalid should not work for proving
z /∈ Range(f) for general one way functions f , since this would contradict our
assumption. On the other hand, since the AM protocol must work for every
construction of PKE from one-way function, it is not clear how to restrict the
class of functions.

Nevertheless, there is a difference between the two settings: When proving
z /∈ Range(f), M∗ knows the “statement,” i.e., the value of z. On the other hand,
during the proof of the statement z /∈ Range(f), A samples (pk, e) by running
the randomized reduction R(f, z) and outputting its queries to Adv. Moreover,
if M∗ cannot distinguish transcripts (pk, e) sampled using the reduction R, from
(pk, e) sampled honestly using Gen and Enc, then M∗ cannot “cheat.” At first
glance, it seems that, indeed, the two distributions must be close, since if R’s
output is far from the output of Gen and Enc, then Adv can always reject (and
thus is useless for inverting f). However, there is a subtle issue here: For Adv to
be useful for breaking f , we only need that the output queries of R(f, f(Un))
(over random variable f(Un)) is close to the output of Gen and Enc; whereas in
order to force M∗ to behave honestly, we need that the output queries of R(f, z),
with fixed input z, are close to the output of Gen and Enc. Thus, in order to force
honest behavior from M∗, we would need to show that with high probability over
choice of z ∼ f(Un), the queries output by R(f, f(Un)) are distributed closely
to the queries outputted by R(f, z). In other words, the queries made by R(f, z)
should be (close to) independent of z. But this seems highly implausible since in
order for R to invert z, given oracle access to Adv, a successful R should embed z
in the transcripts (pk, e) it submits to Adv, and so the queries to Adv will clearly
depend on z!

Unfortunately, we do not know how to get around this problem for the case
of general Turing reductions. However, for the restricted class of non-adaptive,
BBN− reductions, which we introduce next, we will show how to overcome this
apparent contradiction.
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BBN− reductions. A BBN− reduction from a primitive Q to a primitive P
is a pair of oracle PPT Turing machines (E,R) such that the following two
properties hold1:

Construction. For every implementation f of primitive P, Ef implements Q.
Reduction. There exist polynomials t(·), v(·) such that: For every efficient im-

plementation f of P, and every (inefficient) adversary Adv who breaks Ef

with probability ε = ε(n), on security parameter n, we have that RAdv(1n, 1ε, f)
breaks f with probability 1/t(max(n, ε(n))) and RAdv(1n, 11/ε, f) makes at
most v(max(n, ε(n))) oracle queries to Adv.

We remark that an implementation of a primitive is any specific scheme that
meets the requirements of that primitive (e.g., an implementation of a publickey
encryption scheme provides samplability of key pairs, encryption with the public-
key, and decryption with the private key).

In the above definition, the construction E makes only black-box calls to
f , but the reduction RAdv(f) receives the description of f as input and so is
non-black-box. Allowing only R access to the code of f already thwarts known
techniques (e.g., oracle separations) for proving impossibility results. We also
require that the functions describing the number of oracle queries made to Adv,
and the success probability of R are independent of the run-time/circuit size of
f .

1.2 Necessity of the Restrictions

The notion of BBN− reductions is supposed to capture the setting where the
construction is “black-box” in the underlying primitive, but the proof is “non-
black-box” in the underlying primitive but “black-box” in the adversary. This
is a natural subclass of Turing reductions, in which the construction/reduction
may both be “non-black-box” in the underlying primitive, but the reduction is
“black-box” in the adversary.

However, a careful reader will notice that we placed additional restrictions
when defining BBN− reductions (this was why we called our notion “BBN minus”
in that the polynomials t(·), v(·) are independent of the particular function f and
so specifically, the polynomials t(·), v(·) must be independent of the run-time (i.e.
circuit size) of f . Specifically, consider the following alternative definition, which
we call BBN’:
An Alternative Definition BBN’:

Construction. For every implementation f of primitive P, Ef implements Q.
Reduction. For every efficient implementation f of P, and every (inefficient)

adversary Adv who breaks Ef with probability ε = ε(n), on security parame-
ter n, we have that RAdv(1n, 1ε, f) breaks f with probability 1/t(max(n, ε(n)))
and RAdv(1n, 11/ε, f) makes at most v(max(n, 1/ε(n))) oracle queries to Adv,
for polynomials t, v.

1 We may also consider families of primitives—e.g. families of one-way functions F
with uniform generation algorithms. Here, the generation algorithm is represented
as a Turing Machine and each function f ∈ F is represented as a circuit.
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In the following, we argue that the more restrictive notion of BBN− is nec-
essary in the following sense: If there exists a Turing reduction from PKE to
OWF, then there also exists a BBN’ reduction from PKE to OWF. Therefore,
ruling out BBN’ reductions from PKE to OWF also implies ruling out Turing
reductions from PKE to OWF. Since our goal is to relax the notion of Turing
reduction in a meaningful way, in order to make progress on this fundamental
question, it is necessary to restrict t(·), v(·) as in the definition of BBN−.

Theorem 1 (Informal) If there exists a Turing reduction from PKE to (uni-
form) OWF, then there also exists a BBN’ reduction from PKE to OWF.

We sketch the proof of the above theorem.

Proof of Theorem 1 (Sketch): Assume there exists a Turing reduction
(E,R) from PKE to one way function, then (using the reduction from one way
function to weak one-way function), there also exists a Turing reduction (E,R)
from PKE to weak-one-way-function, where an efficient adversary can invert the
one way function with probability at most 1 − 1/ poly(n), where n is security
parameter (i.e. input/output length). We will use this to build a BBN’ reduction
(E′,R′) from PKE to one way function.2 We first define E′: We completely ignore
oracle f and set E′ := E(funiv), where funiv is the “weak” universal one-way
function described in [19]. Namely, on input Turing machine f ′ and string x,

funiv(f
′, x) outputs f ′||f ′|x|

2

(x), where f ′
|x|2

(x) denotes the output of f ′ after
running on input x for |x|2 number of steps. Now, we define the reduction R′:
On input (f, y), where f has (polynomial) running time nc on inputs of length n,

and oracle access to adversary Adv breaking E′
f
, R′Adv(f, y) does the following:

Define the new one-way-function f ′ that runs in time ñ2 on inputs of length ñ
in the following way: f ′ parses its input as x||a, where x has length ñ1/c and
outputs f(x) = y in time ñ2. R′ then runs RAdv on inputs (funiv, (f

′, y||a)),
where a is a dummy string of length nc − n. Note that the input/output length
RAdv gets run on is now nc. Since R is a good Turing reduction, R inverts funiv
with 1 − 1/ poly(n) probability, which means that R will return an element in
f−1univ((f

′, y)) with non-negligible probability. Using this information R′ can then
recover an element in f−1(y) with non-negligible probability. However, note that
the functions describing the number of times R runs the adversary Adv and the
success probability of R depend on the input/output length of (funiv, (f

′, y||a)),
which is nc and thus depends on the run time of f . This means that the functions
describing the number of times R′ runs Adv and the success probability of R′
depends on the runtime of f .

2 Note that the argument also holds in the case that the Turing reduction works for a
family F of one way functions f with a uniform generation algorithm. Specifically,
if Gen is a uniform, public-coin, generation algorithm that samples a circuit f ∈ F ,
then we can construct a single one way function f̃ that on input randomness r and
input x, first runs Gen(r) to select f , then evaluates y = f(x) and then outputs
(r, y).
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1.3 Our Main Result

We are now ready to state our main theorem:

Theorem 2 (Informal) Under the assumption that there exists a regular one-
way function f such that the distributional language Range(f) /∈ Heur1/ polyAM

poly,

there is no non-adaptive, BBN− reduction from PKE to one way function.

In the above, Heur1/ polyAM
poly is the same as the class Heur1/ polyAM, except

that A is allowed to receive polynomial-sized, non-uniform advice. Note that our
result is restricted to non-adaptive reductions R which make v(max(n, 1/ε(n)))
parallel oracle queries to the adversary Adv.

We conjecture that using techniques of Akavia et al. [2], Theorem 2 can be
proven under the assumption that there exists a regular one-way function f
such that the distributional language Range(f) /∈ Heur1/ polyAM (i.e. without
requiring the non-uniform advice). The requirement for regularity of f in the
assumption comes from our use of the randomized iterate (see [21]) whose hard-
ness amplification properties only hold for (nearly) regular functions f . Recently,
the analysis of the randomized iterate was extended to a more general class of
functions called “weakly-regular” functions [37]. We conjecture that our results
hold for this broader class of functions as well. Extending our results to general
one-way functions seems tied to the development of security-preserving hardness
amplification techniques for general one-way functions. We leave these as opens
problem for future work.

1.4 Our Techniques

A key insight of our work is the relationship between our newly introduced notion
of BBN− reductions and the problem of instance compression. Instance compres-
sion [23,7,11,14] is the fundamental complexity-theoretic problem of taking an
instance of a hard problem and compressing it into a smaller, equivalent instance,
of the same or different problem.3 The relationship between BBN− reductions
and instance compression is the following: The reduction R takes as input an
instance (y, c), where y is a random image of c, and submits queries to Adv,
which take the form of transcripts (pk, e) where pk is the public key and e is a
ciphertext. Since the public key encryption scheme uses the underlying one-way
function in a black-box manner, the size of the transcript (pk, e) must be a fixed
polynomial in the security parameter n (i.e. the input-output size of the one-way
function). Thus, as long as R (on input security parameter n) does not query Adv
with security parameter ñ that is too large and depends on the circuit size (i.e.
runtime) of c, then it must be the case that the total length of the messages sent

3 [23] showed that strong instance compression algorithms imply a non-black-box con-
struction of public key encryption from one-way function. It was later shown that,
under standard complexity assumptions, instance compression for certain NP-hard
problems is impossible [14,11], indicating that the approach of [23] is unlikely to
succeed.
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from R to Adv is independent of the size of the circuit c. In order to force R to
have this behavior, we instantiate Adv in such a way that queries submitted by R
with security parameter which is too large are “useless” due to the restrictions of
the BBN− reduction. Now, in the AM protocol proving statement z /∈ Range(f),
instead of using (z, f) itself as the input to R, we construct a new one-way func-
tion instance (c, y) (with the same input-output length) using k = k(n) instances
(x1, y1), . . . , (xk, yk). I.e., (c, y) ← Φ(x1, y1), . . . , (xk, yk), where Φ is some ran-
domized function, each (xi, yi) is an input-output pair of f , and one of the yi’s is
set to the common input z. The requirement on (c, y)← Φ(x1, y1), . . . , (xk, yk) is
that inverting c (i.e. finding x such that c(x) = y) implies inverting yi (i.e. find-
ing xi such that f(xi) = yi) with probability 1/ poly(k). By choosing k = k(n)
to be a sufficiently large polynomial, it is possible to ensure that there is not
enough room for all individual instances y1, . . . , yk to be embedded in the in-
teraction with Adv. Thus, the reduction R itself which takes as input (c, y) and
produces queries to Adv can be viewed as an instance compression algorithm.
Using techniques of Drucker [11] (similar to techniques that appeared previously
in [30,33]), we will now be able to circumvent the problem with the naive at-
tempt to rule out Turing reductions discussed above, which was that with high
probability over z ∼ f(Un), the distribution over R(f, f(Un)) will be far from
the distribution over R(f, z). We elaborate further below on the necessary steps
of our proof and in the discussion below, we point out where each restriction we
place on the class of reductions is being used:

Eliminating security parameter blow-up. We construct an adversary Adv
that has the following property: When the one-way function has input/output
length ñ, Adv flips a coin and returns ⊥ with probability 1 − 1/ñ. Note that
this means that we can replace any reduction R that on security parameter n
makes queries to Adv with extremely large security parameter (i.e. input/output
length) greater than ñ := 2 · t(max(n, 1/ε(n))) · v(max(n, 1/ε(n))), with another
reduction R′ that simulates all answers of Adv to queries with security parameter
greater than ñ with ⊥ without actually making the query. The probability that
the view of R and R′ differs is at most v(max(n, 1/ε(n)))·1/(2·t(max(n, 1/ε(n)))·
v(max(n, 1/ε(n)))) and thus R′ should still succeed with probability at least
1/2t(ε(n)). This means that the length of the total output of R′ to Adv depends
only on n, but not on the size (runtime) of c and so R′ is indeed a compression
function, when we choose appropriate circuit c. Here we use the restriction that
t(), v(), ε() are all independent of the runtime of c.

Designing a circuit-oblivious adversary. The adversary Adv = (Adv1,
Adv2, Adv3) will have the property that Adv1,Adv3 are efficient algorithms,
whereas Adv2 is inefficient but does not require access to the one-way function c.
Looking ahead, M will be used to implement Adv2 only. The fact that Adv2 does
not require access to c is crucial, since otherwise, the size of the interaction would
be at least |c| and there would be no compression. The techniques of [5,25,35]
are crucial for constructing such Adv. Allowing the construction only black-box
access to the underlying one-way function is necessary for this step in the proof,
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since Adv2 will essentially emulate the adversary from the black-box separation
of OWF and PKE of [5,25,35]. See Section 3.

Applying instance compression techniques. For a fixed f , denote by Φ((x1, y1),
. . . , (xk, yk)) the randomized mapping that derives (c, y) from (x1, y1), . . . , (xk, yk),
where yi = f(xi) and view R ◦ Φ as a compression algorithm. For z ∼ f(Un),
we would like to embed (xi, yi) = (x, z), where f(x) = z, for a random position
i ∈ [k]. Call this randomized mapping Φz. Using techniques of Drucker [11], we
will choose Φ so that with high probability over z ∼ f(Un), the distribution over
the output of R ◦ Φz, denoted T (z), where a fixed z is embedded in a random
position and the remaining inputs are random, is statistically close to the dis-
tribution over the output of R ◦ Φ, denoted T when all (xi, yi) are sampled at
random. Here also it is crucial to allow the construction only black-box access
to the underlying one-way function since otherwise the length of the transcript
could depend on the size of c, instead of just the input-output length. We also
use here the fact that R’s success probability is independent of the size/run-time
of c. This is because the closeness in distributions that we are able to show us-
ing techniques of [11], will be significantly larger than 1/|c|. If R only achieved
success probability smaller than 1/|c| to begin with, then switching the distribu-
tions as discussed above would lead to a “useless” R, which might never succeed
in inverting the one-way function.

Designing an AM verifier—first stage. Unfortunately, even in the “no
case,” when z ∼ f(Un), A will not be able to sample directly from T (z) since it
will not know a preimage x such that z = f(x). Instead, A will sample from a

simulated distribution, denoted by T̃ (z). We use techniques of Haitner et al. [21]

to show that T̃ (z) and T (z) are somewhat close.

Designing an AM prover. On input an instance z, where z is not in the image
of f , we must provide an AM prover who uses R to prove that z is not in the
image. This will yield a contradiction to the existence of R. To construct the AM
proof, we use the fact that T̃ (z) and T are somewhat close to allow A to run
a rejection sampling protocol with the help of M. This allows A to essentially
output transcripts to M that are sampled as in the “honest” distribution T .
Using techniques of Bogdanov and Trevisan [8] and Akavia et al. [2], we can then
provide A with non-uniform advice in the form of statistics on the distribution
T , which allows him to force M∗ to respond to queries honestly

Designing an AM verifier—second stage. The above steps guarantee that
on input (c, y), the reduction RAdv (with M assisting A in the simulation of Adv)
succeeds in recovering x such that c(x) = y with noticeable probability. However,
we must now show that given x, A can also recover x∗ such that f(x∗) = z with
noticeable probability. Since the circuit c output by Φ is a slight modification of
the k-th randomized iterate, defined by Haitner et al. [21], we can now leverage
hardness amplification properties of the k-th randomized iterate to show that
A recovers x∗ with 1/ poly probability for most z ∼ f(Un) We must also be
careful since the argument above guarantees that x can be recovered when the
adversary is stateless. It is possible that a stateful M∗ can respond in such a
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way that A recovers x such that c(x) = y, but cannot recover x∗ such that
f(x∗) = z. The key to ruling out such a case is that, because of the nature of
public key encryption wherein ciphertexts encrypt either a 0 or a 1, for almost
all transcripts output to M∗, there is actually a single “correct” response and
we force M∗ to respond with this “correct” response with very high probability
over the transcripts outputted by the reduction.

1.5 Related Work

In their seminal work, Impagliazzo and Rudich [25] ruled out black-box reduc-
tions from key agreement to one-way function. Their oracle separation technique
was subsequently used to rule out black-box reductions between various primi-
tives such as collision resistant hash functions to one way functions [34], oblivious
transfer to public key encryption [18] and many more. The oracle separation tech-
nique cannot be used to rule out non-black-box reductions, since the underlying
primitive is modeled as an oracle with an exponentially large description size.

The meta-reduction technique (cf. [10,27,16,13,28,17,1,32,6,15]) has been use-
ful for ruling out Turing reductions—reductions where the construction is arbi-
trary, but the reduction must use the adversary in a black-box manner. Often
these techniques are used to give evidence that a construction of primitive P
along with a security proof of the above form is impossible under “standard
assumptions” (e.g. falsifiable assumptions or non-interactive assumptions). This
differs from our setting of separating one-way function from public key encryp-
tion, since in this case we can construct public key encryption from most well-
studied, concrete assumptions for which we can construct one-way functions
(such as factoring, Diffie-Hellman assumptions, and lattice assumptions).

The power of non-black-box usage of the adversary in security reductions
has been well-studied since the seminal work of Barak [4]. In this case it is
well-known that non-black-box technqiues are more powerful than black-box
techniques. However, in our work, we are interested in non-black-box use of the
underlying primitive, as opposed to non-black-box use of the adversary. Several
recent works have dealt with the systematic study of the power of non-black-box
reductions in such settings. These include the aforementioned work of Pass et
al. [29] as well as a work of Brakerski et al. [9], which, among other results,
addresses the question of whether zero knowledge proofs can help to construct
key agreement from one-way function. However, the results of Brakerski et al.
hold only in an oracle setting, where an oracle is added to simulate the power
of a zero-knowledge proof. Baecher et al. [3] gave a taxonomy of black-box and
non-black-box reductions. Indeed, the term BBN that we use is borrowed from
Baecher et al. [3], who used BBN to indicate reductions wherein the construction
uses the primitive in a Black-box manner, the reduction uses the adversary in
a Black-box manner, but the reduction uses the primitive in a Non-black-box
manner. Our notion of BBN− differs from the notion of Baecher et al. [3] in that
we require the reduction R to be universal, but allow R to receive the description
of the code/circuit of f as input. Moreover, we allow the query complexity and
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success probability of R to depend on the success probability of the adversary
Adv, but require it to be independent of the run-time/circuit size of f .

2 Preliminaries and Background

Notation. We use capital letters for random variables, standard letters for vari-
ables and calligraphic letters for sets. We adopt the convention that when the
same random variable appears multiple times in an expression, all occurrences
refer to the same instantiation. Given a distribution X and an event E, we de-
note by X | E the conditional distribution over X, conditioned on the event E
occurring. Let X be a random variable taking values in a finite set U . If S is a
subset of U , then x ∼ S means that x is selected according to the uniform distri-
bution on S. We write Un to denote the random variable distributed uniformly
over {0, 1}n and U[0,1] to denote the continuous random variable distributed uni-
formly over [0, 1]. In general, for a finite set S, we denote by US the uniform
distribution over S.

Two distributions X and Y over U are ε close, denoted ∆(X,Y ) ≤ ε, if
1
2

∑
x∈U |PrX [x]− PrY [x]| ≤ ε. For a set S ⊆ U , we denote by PrX [S] :=∑

x∈S PrX [x], i.e. the weight placed on S by the distribution X.
For functions f : {0, 1}n → {0, 1}n and y ∈ {0, 1}n, we denote by f(Un)

the distribution induced by f operating on Un and we denote by f−1(y) the
set f−1(y) := {x ∈ {0, 1}n : f(x) = y}. For a distribution X with (implicit)
sampling algorithm Samp, that takes n coins, we denote by X(r) for r ∈ {0, 1}n,
the output x of Samp(r). For an element x in the support of X, we denote by
X−1(x) the set of random coins r ∈ {0, 1}n such that X(r) = x.

Let C = {Ck,n} be a parametrized collection of uniformly generated polynomially-
sized circuits, indexed by n ∈ N and k = k(n) = poly(n). For a fixed (n, k) pair,
let Ck,n denote the random variable representing the choice of circuit ck,n ∼ Ck,n,
where Ck,n is a family of one-way functions. We require that with probability 1,
Ck,n implements a one-way function.

Definition 1 (BBN− reduction from PKE to OWF). A BBN− reduction
from public key encryption (PKE) to one-way function (OWF) is a pair of oracle
PPT Turing machines (E,R) with the following properties:

Construction. With all but negligible probability over Ck,n, ECk,n(1n) imple-
ments a PKE scheme.

Reduction. There exist polynomials t(·), v(·) such that: For every (inefficient)
adversary Adv who, with probability ε1 = ε1(n) = 1/ poly(n) over ck,n ∼
Ck,n, breaks Eck,n(1n) with probability ε2 = ε2(n) = 1/ poly(n), we have:

Pr
ck,n∼Ck,n

[
Pr

[
RAdv(1n, 1

1
ε2 , ck,n, ck,n(Un)) ∈ c−1k,n(ck,n(Un))

]
≥ 1

t(max(n, 1
ε2(n)

))

]
≥ ε1,

and RAdv(1n, 11/ε, ck,n, y) makes at most v(max(n, 1/ε2(n))) oracle queries
to the adversary Adv.
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Definition 2 (BBN− reduction from PKE to (1 − δ/2)-weak one way
function). A BBN− reduction from public key encryption (PKE) to (1−δ)-weak
one-way function (for q = poly(n)) is a pair of oracle PPT Turing machines
(E,R) with the following properties:

Construction. With all but negligible probability over Ck,n, ECk,n(1n) imple-
ments a PKE scheme.

Reduction. There exists a polynomial v(·) such that: For every (inefficient)
adversary Adv who, with probability ε1 = ε1(n) = 1/ poly(n) over ck,n ∼
Ck,n, breaks Eck,n(1n) with probability ε2 = ε2(n) = 1/ poly(n), we have:

Pr
ck,n∼Ck,n

[
Pr

[
RAdv(1n, 11/ε2 , ck,n, ck,n(Un)) ∈ c−1k,n(ck,n(Un))

]
≥ 1− δ/2

]
≥ ε1,

and RAdv(1n, 11/ε2 , ck,n, y) makes at most v(max(n, 1/ε2(n))) oracle queries
to the adversary Adv.

Definition 3 (Non-adaptive Reductions R). The reduction R = (R1,R2) is
non-adaptive if it interacts with the adversary Adv in the following way:

– On input (1n, 11/ε2 , ck,n, y) and random coins, R1 produces a transcript tr
consisting of v(max(n, 1/ε2(n))) parallel queries to Adv, as well as the in-
termediate state st.

– On input tr, Adv returns responses d1, . . . , dv(max(n,1/ε2(n))). R2(st, d1, . . . ,
dv(max(n,1/ε2(n)))) returns either x such that ck,n(x) = y or returns ⊥.

For fixed (tr, st) pair, we also denote the output of R2 with respect to an oracle
Adv and a fixed (tr, st) output by R1, by RAdv(c, y, tr, st; r) or RAdv(c, y, tr, st)
(depending on whether the coins of R2 are explicit or implicit). Note that in the
above, r denotes the coins used by R2 only (and not the coins of R1 or Adv).

Constant-round interactive protocols with advice. An interactive proto-
col with advice consists of a pair of interactive machines 〈P, V 〉, where P is
a computationally unbounded prover and V is a PPT verifier which receive a
common input x and advice string a. Feigenbaum and Fortnow [12] define the
class AMpoly as the class of languages L for which there exists a constant c, a
polynomial p and an interactive protocol 〈P, V 〉 with advice such that for every
n, there exists an advice string a of length p(n) such that for every x of length n,
on input x and advice a, 〈P, V 〉 produces an output after c rounds of interaction
and, for small constant ε′:

– If x ∈ L, then Pr[〈P, V 〉 accepts x with advice a] ≥ 1− ε′.
– If x /∈ L, then for every prover P ∗, Pr[〈P ∗, V 〉 accepts x with advice a] ≤ ε′.

It was shown by [12] that AMpoly is equal to NP/poly. Thus, coNP ⊆ AMpoly

implies coNP ⊆ NP/poly, which gives Σ3 = Π3 [36]. We use the terms M,
“prover” and P (resp. A, “verifier” and V ) interchangeably.
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Definition 4. A distributional language (L,D) is in Heur1/ polyAM
poly if for

every inverse polynomial q, there exists an AM (i.e., constant-round public-coin)
protocol (P, V ) where A receives advice of length polynomial in the input length
such that, for small constant ε′:

– Completeness: If x ∈ L, Pr[〈P, V 〉(x) = 1] ≥ 1− ε′.
– Soundness: For every n ∈ N and every machine P ∗, with probability 1 −
q(n), and x ∈ {0, 1}n sampled from Dn conditioned on x /∈ L satisfies
Pr[〈P ∗, V 〉(x) = 1] ≤ ε′.

Our protocols will use the AM protocol RandSampm (the multi-query variant of
RandSamp) with the following properties as a subroutine. RandSamp has been
used extensively in the literature; the formalization below is due to [22].

Lemma 3 Let w = g(r) for a poly(n)-time computable, randomized function g
and random coins r. Assume w has bit length n̂. Then there exists an AM protocol
RandSampm with an efficient verifier V that gets as input a security parameter
1n, δ′ = 1/poly(n) (as the approximation and soundness parameter), s1, . . . , sm
(as size of f−1(w1), . . . , f−1(wm)) such that for all i ∈ [m], si ∈ (1±λ)|f−1(wi)|
(for λ = poly(1/m, 1/(n̂ ·m), δ′) and returns (r1, . . . , rm) such that:

– Completeness: There is a prover strategy (the honest prover) s.t. V aborts
with probability at most δ.

– Soundness: For any prover P ∗ either
• 〈P ∗, V 〉 aborts with probability 1− δ′ OR
• ∆((Uf−1(w1), . . . , Uf−1(wm)), (r1, . . . , rm))) ≤ δ′ + Pr[〈P ∗, V 〉 aborts].

The following fact will be useful when protocol RandSampm is employed:

Fact 4 Let X,Y be random variables distributed over the set S ∪ {⊥} such that
Pr[Y = ⊥] = 0 and ∆(X,Y ) ≤ Pr[X = ⊥] + δ′. Then for any event T ⊂ S it
holds that:

Pr[X ∈ T ] = Pr
x∼X

[x 6= ⊥ ∧ x ∈ T ] ≤ Pr[Y ∈ T ] + δ′.

and so

Pr
x∼X|(x 6=⊥)

[x ∈ T ] ≤ (Pr[Y ∈ T ] + δ′) · 1

Prx∼X [x 6= ⊥]
.

Definition 5 (Enhanced Randomized Iterate). Let f : {0, 1}n → {0, 1}n,
let H be a family of pairwise-independent length-preserving hash functions over
strings of length n and let Ĥ be a family of p′ · pq(ñ) + p(ñ)-wise independent
length-preserving hash functions (where p′, pq(ñ), p(ñ) are polynomials in n that
will be defined later) over strings of length n. Define the k-th enhanced random-

ized iterate F : {0, 1}n ×Hk−1 × Ĥ2 → {0, 1}n as

F (x, h, ĥ1, ĥ2) = ĥ2(f(hk−1(f(hk−2(· · · (f(ĥ1(x))) · · · ))))).

We denote by Hj (resp. Ĥb, b ∈ {1, 2}) random variables uniformly distributed

over H (resp. Ĥ).
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Let ck,n = ck,n(·, h = h1, . . . , hk−1, ĥ1, ĥ2) denote the circuit which has

h, ĥ1, ĥ2 hardwired and on input x computes y = F (x, h, ĥ1, ĥ2). Let Ck,n denote

the set of circuits ck,n obtained when taking h1, . . . , hk−1 ∈ H, ĥ1, ĥ2 ∈ Ĥ. Let

Ck,n be the random variable defined as Ck,n = ck,n(·, H1, . . . ,Hk−1, Ĥb, Ĥb).

Lemma 5 ([21]) For i ∈ [k], let cik,n = cik,n(·, h = h1, . . . , hi−1, ĥ1) denote the

circuit which has h, ĥ1 hardwired and on input x computes yi = Yi(ck,n, x) =

F i(x, h, ĥ1). Let the random variable Cik,n denote the distribution over circuits

ci := cik,n as above.

Then for any set L ⊆ {0, 1}n × Cik,n with

Pr[(Cik,n(Un), Cik,n) ∈ L] ≥ δ,

it holds that

Pr[(f(Un), Cik,n) ∈ L] ≥ δ2

i
.

We now describe a transformation (folklore, formalized by Haitner et al. [21]),
of an arbitrary one-way function into a length-preserving one-way function.

Lemma 6 Let f : {0, 1}n → {0, 1}`(n) be a (T = T (n), ε = ε(n))-OWF and
let H be an efficient family of 2−2n-almost pairwise-independent hash functions
from {0, 1}`(n) to {0, 1}2n. We define f as

f(xa, xb, h) = (h(f(xa)), h),

where xa, xb ∈ {0, 1}n and h ∈ H. Then f is a length-preserving (T − nO(1), ε+
2−n+1)-one-way function.

If the original function f is regular, then the output function f is nearly
regular: There is some fixed s such that with all but negligible probability over
y ∼ f(U2n, H), the number of pre-images of y is exactly s. It turns out that
nearly regular functions are sufficient for all of our results.

3 The circuit-oblivious adversary Adv

Let Ef = (Genf ,Encf ,Decf ) be a public key encryption scheme making ora-
cle calls to one-way function f . Assume polynomial pq(n) is an upperbound on

the total number of queries made by Genf , Encf , Decf on input security pa-
rameter n and message of length n. We consider the following two distributions
corresponding to sampling the function f from two different distributions.

In the following, Fn denotes the set of all functions from {0, 1}n → {0, 1}n.
Note that when c ∼ Ck,n is fixed, we write Ec to denote the distribution EC ,

with a fixed oracle c (whereas C denotes a random variable).
We next describe a modification (folklore and formally proved in [35]) of the

well-known Eve algorithm, which is tailored for breaking public key encryption
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Distribution EC

To sample from this distribution:

– c ∼ Ck,n; m ∼ {0, 1}.
– (pk, sk) ∼ GenC(·)(1n); e ∼

Enccpk(m).
– Output (c,m, sk,pk, e).

Distribution EO

To sample from this distribution:

– O ∼ Fn; m ∼ {0, 1}.
– (pk, sk) ∼ GenO(·)(1n); e ∼

EncOpk(m).
– Output (O,m, sk,pk, e).

in the random oracle model. The advantage of this Eve = (Eve1,Eve2,Eve3)
algorithm is that Eve1,Eve3 are polynomial-time and Eve2 is inefficient but does
not require oracle access to O.

Eve runs on transcripts of the form (pk, e), where pk is the public key and
e is the ciphertext. Eve’s goal is to correctly decrypt e. Sotakova [35] proves the
existence of an Eve with the following properties:

Eve1 is an efficient oracle algorithm which takes input pk and outputs QEve:

– InitializeQEve := ∅. Choose p̂ random strings r1, . . . , rp̂ and messagesm1, . . . ,mp̂.
– For 1 ≤ i ≤ p̂, run EncOpk(mi; ri). Add all queries and responses to QEve. Let
p(n) = poly(n) be the total number of queries made. p(·) depends only on
pq(n) and the desired success probability 1− δ/8.

Eve2 takes (pk,QEve) as input and outputs [(Ii, ri)]i∈[p′(n)] (note that Eve2 does
not have oracle access):

– Return p′ number of elements {(I1, r1), . . . , (Ip′ , rp′)} chosen uniformly at

random from the set S(pk,QEve) := {(I, r) | GenI(r) = (∗,pk)∧EveI1 (pk) =
QEve ∧ |I| = pq(n) + p(n)}. 4

Eve3 is an efficient oracle algorithm which takes [(Ii, ri, e)]i∈[p′] as input and
outputs a bit d.

– For i ∈ [p′], run GenIi(ri) to generate a (ski,pki)-pair and compute d̃i :=

DecIi,Osk (e). By this notation we mean that whenever Dec queries the oracle,
if the query is in I, respond according to I. Otherwise, respond according
to O.

– Given the resulting set of decryptions {d̃1, . . . , d̃p′}, let num0 denote the num-
ber of decryptions equaling 0 and num1 denote the number of decryptions
equaling 1. Let b = 0 if num0 > num1 and b = 1 otherwise.

– If V := num0/p
′ ∈ [3/8 + (` − 1)/4p′′, 3/8 + (` + 1)/4p′′], return d := 0.

Otherwise, return d := b.

We define parameters p′, p′′, ` in the full version. The exact setting will depend
on properties of the given BBN− reduction R.

We next turn to proving success of the adversary.

4 I is an ordered set of pq(n) + p(n) length n strings. Whenever Gen or Eve1 make a
query, if the query has not been made before, the next string is used to respond to
the query. If the query has previously been made, the same string is returned.
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Lemma 7 ([35], restated) For (O,m, sk,pk, e) ∼ EO, EveO(pk, e) outputs m
with probability at least 1− δ/8.

The basic intuition is the following: Given the first message pk sent from
receiver to the sender, w.h.p, the set QEve will contain all queries made by the
sender when computing the second message (the ciphertext e) with probability
greater than some threshold 1/pth(n). Now, we sample a view for the receiver
consistent with (pk,QEve), which will contain a secret key sk and use this secret
key sk to decrypt the real ciphertext e sent by the real sender. Loosely speak-
ing, sk should only decrypt e “incorrectly” if there is a query q to the random
oracle that is answered inconsistently in the sampled receiver’s view and the
real sender’s view. However, note that any individual query q that is made in
the sampled receiver’s view but is not contained in QEve, is made by the real
sender with probability less than 1/pth(n). Now, since we choose pth far larger
than the number of queries contained in the receiver’s view, it is unlikely that
there are any queries in the sampled receiver’s view that were also made by the
sender, but do not appear in QEve. Thus, w.h.p, there are no queries q answered
inconsistently in the sampled receiver’s view and real sender’s view and thus
with high probability, the sampled sk decrypts e correctly.

We now describe the actual adversary Adv = (Adv1,Adv2,Adv3):

– Adv1: On input pk, and oracle access to c, Adv1 computes QEve ← Evec1(pk),
where Eve’s queries are answered according to c (instead of the random oracle
O). Adv1 outputs QEve.

– Adv2: On input (pk,QEve), Adv2 runs Eve2(pk,QEve) and outputs [(Ii, ri)]i∈[p′(n)].
– Adv3: On input [(Ii, ri, e)]i∈[p′(n)], Adv3 runs Evec3([(Ii, ri, e)]i∈[p′(n)]) where
Eve’s queries are answered according to c (instead of the random oracle O).
Adv3 flips a coin and outputs ⊥ with probability 1− 1/n. With probability
1/n, Adv outputs the same bit d that is outputted by Evec3.

We purposely “weaken” the adversary, by defining Adv such that it outputs
⊥ with probability 1 − 1/n—where n is the input/output length of the one-
way function—in order to argue that queries made by the reduction, R, to Adv
with security parameter n set too large are “useless.” See Section 1.4 for further
discussion. We next turn to proving success of the adversary:

Lemma 8 For (c,m, sk,pk, e) ∼ EC , d computed by Advc(pk, e) is equal to m
with probability at least 1− δ/4.

Intuitively, Lemma 8 holds since Advc makes at most p(n) +p′ ·pq(n) queries

and so since ĥ1, ĥ2 are p(n)+p′·pq(n)-wise independent, the view of the adversary
is nearly the same when interacting with a random oracleO or with the randomly
sampled circuit C. For the full proof, see the full version.

Now, using Markov’s inequality and the fact that Adv3 tosses a coin inde-
pendently of all its other coins to decide whether to output ⊥ at the final stage
with probability 1− 1/n, we have that:
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Corollary 9 With probability ε1 := 1− δ/2 over choice of c ∼ C, we have that
for (m, sk,pk, e) ∼ Ec, the output of Advc(pk, e) is equal to m with probability is
at least ε2 := δ/4n.

4 The mapping Φ

Instead of sampling c ∼ Ck,n, x ∼ Un, and outputting (c, x, y := c(x)), we can
alternatively sample (x1, y1), . . . , (xk, yk) ∼ (Un, f(Un)) and r ∼ {0, 1}∗, set
(x, c, y) := Φ((x1, y1), . . . , (xk, yk); r), for Φ defined below:

The randomized mapping Φ((x1, y1), . . . , (xk, yk))

– Sample x ∼ Un, ĥ2 ∼ Ĥ.
– Sample h1, . . . , hk−1 ∼ H, such that hi(y

i) = xi+1, for i ∈ [k − 1]; ĥ1 ∼ Ĥ
such that ĥ1(x) = x1.

– Return the tuple (x, c, y) where c = ck,n(·, h1, . . . , hk−1, ĥ1, ĥ2) and y = c(x).

It is straightforward to see that the two sampling methods described above
induce the same distribution. We additionally introduce the notation Φ2 to de-
note the second and third coordinates of the output of Φ (i.e. (c, y)).

5 Useful Distributions

For public key encryption scheme EO = (GenO,EncO,DecO), relative to random
oracle O, the following distribution (Figure 2) corresponds to sampling a partial
random oracle and running Gen.

To sample from distribution PKn:

– Sample a set I of p′ · qp(n) + p(n) random strings of length n. Sample ran-
domness r ∼ {0, 1}∗.

– Compute (pk, sk) := GenI(1n; r), where queries are answered using I.
– Compute QEve := AdvI1 (pk), where queries are answered using I.
– Output (pk,QEve).

Fig. 2: The distribution PKn.

We assume that security parameter n can be determined given the gener-
ated pk. We slightly abuse notation and for a fixed (pk,QEve), we denote by
PK−1(pk,QEve) the set of pairs (I, r) that yield output (pk,QEve) when sam-
pling from PKn, for appropriate n.
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For each of the following distributions χ, we refer by χ2 to the marginal
distribution over the final coordinate, the transcript t̃r. For marginal distribu-
tions (e.g. the marginal distribution over the second, third and sixth coordi-
nates) we use full-length tuples with ∗ symbols in the “don’t care” positions
(e.g. (∗, c, y, ∗, ∗, i, ∗, ∗) ∼ T or PrT [(∗, c, y, ∗, ∗, i, ∗, ∗)]). To denote the distribu-
tion χ, conditioned on one of the tuple coordinates fixed to some value v, we
write χ | v, where it is understood from context which coordinate is fixed (e.g.
T | c means that the second coordinate is fixed to constant c). Note that if χ is a
distribution over tuples with t number of coordinates, then χ | v is a distribution
over tuples with t− 1 number of coordinates.

Henceforth, we fix a particular BBN− reduction R with parameters (v(·), t(·))
and use the particular adversary Adv with success probability (ε1 = 1−δ/4, ε2 =
δ) defined in Section 3. We denote by v′(·), t′(·) the following polynomials:
v′(n) := v(max(n, 1/ε2(n)) and t′(n) := t(max(n, 1/ε2(n))).

We next define the distributions T and T̃ in Figures 3 and 4.

To sample from distribution T :

– i ∼ [k]; x1, . . . , xk ∼ Un. Set y1 := f(x1), . . . , yk := f(xk) Choose r, r′ ∼
{0, 1}∗.

– Set (x, c, y) := Φ((x1, y1), . . . , (xk, yk); r), where c :=

c(·, h1, . . . , hk−1, ĥ1, ĥ2), ci := ci(·, h1, . . . , hi−1, ĥ1).
– Compute (st, tr) = R1(c, y; r′), where tr = ((pk1, e1), . . . , (pkv′(n), ev′(n))).

– For each j ∈ [v′(n)], set QjEve = Advc1(pkj).

– Ouput (x, c, y, ci, yi, i, st, t̃r), where t̃r =

((pk1,Q1
Eve, e1), . . . , (pkv′(n),Q

v′(n)
Eve , ev′(n))).

Fig. 3: The distribution T .

Let numT be the number of random coins to sample from T . Let NT := 2numT .

To sample from distribution T̃ :

– i ∼ [k], h1, . . . , hk−1 ∼ H, ĥ1, ĥ2 ∼ Ĥ, r′ ∼ {0, 1}∗. Choose x∗ ∼ Un,
yi := f(x∗).

– Set y := F k−ii (yi, hi+1, . . . , hk−1, ĥ2). Set the circuit c :=

c(·, h1, . . . , hk−1, ĥ1, ĥ2) and ci = c(·, h1, . . . , hi−1, ĥ1).
– Compute (st, tr) = R1(c, y; r′), where tr = ((pk1, e1), . . . , (pkv′(n), ev′(n))).

– For each j ∈ [v′(n)], set QjEve = Advc1(pkj).

– Ouput (c, y, ci, yi, i, st, t̃r), where t̃r = ((pk1,Q1
Eve, e1), . . . , (pkv′(n),Q

v′(n)
Eve , ev′(n))).

Fig. 4: The distribution T̃ .

We additionally define the distribution T i∗ (resp. T̃ i∗) for i∗ ∈ [k] as the

distribution T (resp. T̃ ), conditioned on i := i∗, and the distribution T (z)

(resp. T̃ (z)) for z ∈ Range(f) as the distribution T (resp. T̃ ), conditioned on
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yi := z. Even when z /∈ Range(f), we still use the notation T̃ (z). This refers to
a distribution which is sampled with the same sampling algorithm as the one
used for T̃ , except yi := z is always fixed to a constant value (not necessarily in
the range of f). Let numT̃ be the number of random coins to sample from T (z).
Let NT̃ := 2numT̃ .

6 The AM Protocol

We begin with a high-level overview of the protocol: Recall that we fix a par-
ticular BBN− reduction R with parameters (v(·), t(·)) and use the particular
adversary Adv with success probability (ε1 = 1 − δ/4, ε2 = δ) defined in Sec-
tion 3. Additionally, recall that we denote by v′(·), t′(·) the following polynomials:
v′(n) := v(max(n, 1/ε2(n)) and t′(n) := t(max(n, 1/ε2(n))) and that we assume
WLOG (see discussion in Section 1.4) that R never makes calls to Adv with
security parameter ñ > 2 · t′(n) · v′(n). On input z, A constructs many (c, y)
pairs and runs many copies of the BBN− reduction RAdv(c, y), using Merlin to
help simulate the adversary Adv.

Our AM protocol uses the HidProt and CBC protocols of Akavia et al. [2]
(see also the full version for more details.) and the RandSamp protocol (See

Lemma 3) as subroutines. Parameters δ̃ := (ε′)2/2, λ := 1/k1/11 are both of

order 1/ poly(n). For t̃r sampled from T̃ (z)2, HidProt will be used to determine

the size of the sets T̃ (z)−12 (t̃r) and T −12 (t̃r). For (pkw,QwEve) ∈ t̃r, CBC (along
with the non-uniform advice provided to A) will be used to determine the size α
of the set PK−1(pkw,QwEve). Given α, RandSamp will be used to sample preim-
ages from the set PK−1(pkw,QwEve), thus simulating the adversary’s (Adv2’s)
response. Note that soundness of HidProt and CBC only hold under specific con-
ditions (see the full version for more details.). Indeed, a key technical part of
the proof is showing that the necessary conditions hold. The purpose of the
testing for goodness subroutine is the following: We show in the analysis that
w.h.p when z ∼ f(Un), the distribution T̃ (z) is “good,” i.e. somewhat close to
the distribution T , so the rejection sampling procedure can be employed. On
the other hand, if T̃ (z) is not “good” (i.e. very far from T ), then A can safely
output ACCEPT. Our AM protocol is presented in Figure 5. We next state our
main technical result.

Theorem 10 Assume that there exists a non-adaptive, BBN− reduction (E,R)
from PKE to (1 − δ/2)-weak one way function. Then for any efficiently com-
putable, length-preserving, (nearly) regular function f , the above non-uniform
AM protocol Πf has completeness 1 − ε′ and soundness 1 − ε′ (for small con-

stant ε′), for the distributional language Range(f), where soundness holds with
probability 1− 7δ over z ∼ f(Un).

We note that if f is not length-preserving, it can be made length-preserving,
while (nearly) preserving regularity, via the transformation described in Lemma 6.
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To rule out non-adaptive, BBN− reductions from PKE to one way function,
recall that there is a non-adaptive, black-box reduction from OWF to (1− δ/2)-
weak OWF, where the parameters of the reduction depend only on the input-
output size and on δ. but not on the description size of the function. Therefore,
if there exists a non-adaptive BBN− reduction (E,R) from PKE to OWF, then
for every polynomial q there also exists a non-adaptive, BBN− reduction (E,R)
from PKE to (1 − δ/2)-weak OWF, where δ = 1/7q. By Theorem 10 (and the
extension to non-length-preserving f discussed above) this means that that for
every efficiently computable, regular function f and every polynomial q, there
exists a non-uniform AM protocol for proving z /∈ Range(f), where soundness
holds with probability 1 − 7δ = 1 − 1/q over z ∈ f(Un). This contradicts our
assumption that there exists an efficiently computable, (nearly) regular function
f such that Range(f) /∈ Heur1/ polyAM

poly.

Theorem 11 Under the assumption that there exists an efficiently computable,
regular function f such that Range(f) /∈ Heur1/ polyAM

poly, there is no non-

adaptive, BBN− reduction from PKE to one way function.

It remains to prove Theorem 10, which we defer to the full version.
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The AM Protocol Πf

Common Input: z ∈ {0, 1}n. M is proving to A that z /∈ Range(f).
Non-Uniform Advice: The values [µw` ]w∈[v′(n)],`∈[p2(n)/δ̃], where µw` =

ET2 [b(log1+λ
|PK−1(PKw,QwEve)|

1+` δ̃λ
p2(n)

)c], and (PKw,QwEve) is the random variable

corresponding to the w-th pair in T̃R.

1. A↔ M:
(a) Let M := 2k8 and let p1(n) = p2(n) · (p∗(n) + 1). Set ctr, ctr1 = 0.
(b) Testing for Goodness:

i. A samples t̃r1, . . . , t̃rp1(n) ∼ T̃ (z)2.

ii. A,M run HidProtp1(n)(t̃r1, . . . , t̃rp1(n)), returning sizes [(ρi, τi)]i∈p1(n).
iii. For j ∈ [p1(n)], A does the following local computation:

A. Set ζ ′i := ρi/NT , γ
′
i := τi/NT̃ (approximating PrT2 [t̃r],

PrT̃ (z)2
[t̃r]).

B. If the number of i ∈ [p1(n)] such that ζ ′i > 2M/3 · γ′i or γ′i >

2M/3 · ζ ′i is at least 3p1(n)
2k1/6

, A outputs ACCEPT.
(c) Rejection Sampling:

i. A samples [(cj , yj , c
i
j , y

i
j , ij , stj , t̃rj)]j∈p1(n) ∼ T̃ (z).

ii. A,M run HidProtp1(n)(t̃r1, . . . , t̃rp1(n)), returning set sizes
[(ρj , τj)]j∈[p1(n)]. For j ∈ [p1(n)], set ζ ′j := ρj/NT , γ

′
j := τj/NT̃ .

iii. A sets j = 0 and repeats the following local computation until j =
p1(n) + 1:
A. Set j = j + 1, ctr1 = ctr1 + 1.
B. If ζ ′j/Mγ′j ≤ 1, sample u ∼ U[0,1] and check whether u < ζ ′j/Mγ′j .

C. If yes, set ctr1 = 0, ctr := ctr + 1, cctr := c, t̃rctr := t̃rj and
j = ctr · (p∗(n) + 1), where t̃rctr := [(pkwctr,QwEve,ctr, ewctr)]w∈[v′(n)].

D. If ctr1 = p∗(n)+1, set ctr1 = 0, ctr := ctr+1, cctr := ⊥, t̃rctr := ⊥.
(d) Simulating Adv2:

i. A,M run CBC([pkwj ,QwEve,j ]j∈[p2(n)],w∈[v′(n)]), using non-uniform ad-
vice [µw` ]w∈[v′(n)],`∈[p2(n)/δ̃], returning set sizes [αwj ]j∈[p2(n)],w∈[v′(n)].

ii. A,M simulate Adv2(pkwj ,QwEve,j) by running p2(n) parallel copies

of RandSampp
′(n)·v′(n)([(pkwj ,QwEve,j , αwj )p

′(n)]j∈[p2(n)],w∈[v′(n)]),
returning values [Iwj,m, rwj,m]m∈p′(n),j∈[p2(n)],w∈[v′(n)].

2. Generating A’s Output: A does the following local computation:
(a) For 1 ≤ j ≤ p2(n), 1 ≤ w ≤ v′(n), compute dwj :=

Adv
cj
3 ([Iwj,m, rwj,m, ewj,m]m∈p′(n)).

(b) For each 1 ≤ j ≤ p2(n), run R2(stj , d
1
j , . . . , d

v′(n)
j ), returning outputs

x1, . . . , xp2(n).
(c) Evaluate each cj(xj). If during the evaluation some x∗ such that f(x∗) =

z is queried to f , output REJECT. Otherwise, output ACCEPT.

Fig. 5: AM protocol for proving that z is not in the image of f .
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