
Binary AMD Circuits from

Secure Multiparty Computation

Daniel Genkin12, Yuval Ishai13, and Mor Weiss1

1 Technion
{danielg3,yuvali,morw}@cs.technion.ac.il

2 Tel Aviv University
3 UCLA

Abstract. An AMD circuit over a �nite �eld F is a randomized arith-
metic circuit that o�ers the �best possible protection� against additive
attacks. That is, the e�ect of every additive attack that may blindly add
a (possibly di�erent) element of F to every internal wire of the circuit
can be simulated by an ideal attack that applies only to the inputs and
outputs.

Genkin et al. (STOC 2014, Crypto 2015) introduced AMD circuits as a
means for protecting MPC protocols against active attacks, and showed
that every arithmetic circuit C over F can be transformed into an equiva-
lent AMD circuit of size O(|C|) with O(1/|F|) simulation error. However,
for the case of the binary �eld F = F2, their constructions relied on a
tamper-proof output decoder and could only realize a weaker notion of
security.

We obtain the �rst constructions of fully secure binary AMD circuits.
Given a boolean circuit C and a statistical security parameter σ, we
construct an equivalent binary AMD circuit C′ of size |C|·polylog(|C|, σ)
(ignoring lower order additive terms) with 2−σ simulation error. That is,
the e�ect of toggling an arbitrary subset of wires can be simulated by
toggling only input and output wires.

Our construction combines in a general way two types of �simple� honest-
majority MPC protocols: protocols that only o�er security against pas-
sive adversaries, and protocols that only o�er correctness against active
adversaries. As a corollary, we get a conceptually new technique for con-
structing active-secure two-party protocols in the OT-hybrid model, and
reduce the open question of obtaining such protocols with constant com-
putational overhead to a similar question in these simpler MPC models.

Keywords: Algebraic Manipulation Detection, AMD Circuits, Secure Multi-
party Computation.

1 Introduction

In this paper we give the �rst construction of boolean circuits which are secure
against attacks that can toggle an arbitrary subset of the wires, in the sense that
every such attack is equivalent to attacking only the inputs and outputs of the
circuit. We begin with a short overview of the problem and related background.

An Algebraic Manipulation Detection (AMD) code [3] over a �nite �eld F is a
randomized coding scheme that o�ers the best possible protection against addi-
tive attacks, namely attacks that can blindly add a �xed (but possibly di�erent)
element from F to every entry of the codeword. Since an attacker can destroy
all information by adding a random �eld element to every symbol, the best one
can hope for is to detect errors with high probability, rather than correct them.

An analogous goal of protecting computations against additive attacks was
recently considered by Genkin et al. [11]. This goal is captured by the notion of
an AMD circuit, a randomized arithmetic circuit which o�ers the best possible
protection against additive attacks that may add a (possibly di�erent) �eld ele-
ment to every wire. Since the adversary can legitimately attack input and output
wires, the best one can hope for is to limit the adversary to these inevitable at-
tacks. That is, in an AMD circuit the e�ect of every additive attack that may
apply to all internal wires in the circuit can be simulated by an ideal attack that
applies only to the inputs and outputs. Combining such AMD circuits with a
standard AMD code, one can also protect the inputs and outputs by employing
small tamper-proof input encoder and output decoder.

The study of AMD circuits in [11] was motivated by the observation that in
the simplest information-theoretic MPC protocols from the literature, that were
only designed to o�er protection against passive (i.e., semi-honest) adversaries,
the e�ect of every active (malicious) adversary corresponds precisely to an addi-
tive attack on the circuit being evaluated. Thus, a useful paradigm for tackling
the di�cult goal of protecting against active attacks is to apply such a simple
passive-secure protocol to an AMD-encoded computation. This paradigm seems
quite promising even from a concrete e�ciency perspective [13,10].

The main result of [11] is that every arithmetic circuit C over F can be trans-
formed into an equivalent AMD circuit of size O(|C|) with O(1/|F|) simulation
error. This provides poor security guarantees over small �elds, and in fact the
construction used to achieve this can be completely broken when applied over the
binary �eld F = F2. (The natural approach of using an arithmetic circuit over
a large extension �eld does not apply here, because the computation of �eld
multiplications is also subject to attacks.) For the binary case, an alternative
construction from [11] relies on the use of a tamper-proof output decoder and
can only realize a weaker notion of security that allows for arbitrary correlations
between the input and the event an attack is detected.

The goal of this work is to remedy this state of a�airs and provide fully
secure AMD circuits over small �elds, with a primary focus on the binary case.
Binary AMD circuits can be viewed as standard (randomized) boolean circuits
(over the full basis) that are subject to arbitrary toggling attacks: the adversary
may choose to toggle the values of an arbitrary subset of the wires. This seems
quite natural even from a pure fault tolerance perspective and can be viewed
as a strict generalization of the classical �random noise� fault model considered
by von Neumann [20], Dobrushin and Ortyukov [7], and Pippenger [18]. Such a
toggling attack model may not be too far from some real-life scenarios like faults
introduced by faulty hardware or cosmic radiation.

2

In the context of applications to MPC, the binary case is important because
it enables us to apply the AMD circuits methodology also to natural protocols
that are cast in the OT-hybrid model. These include the simple passive-secure
version of the GMW protocol [12]. In contrast, the MPC applications in [11] for
the case of dishonest majority could only apply to arithmetic extensions of the
GMW protocol that employ an arithmetic extension of OT denoted by OLE.4

Replacing OLE by OT is particularly attractive in light of e�cient OT extension
techniques [14,17] that do not apply to OLE.

We obtain the �rst constructions of fully secure binary AMD circuits. Given
a boolean circuit C and a statistical security parameter σ, we construct an
equivalent binary AMD circuit Ĉ of size |C|·polylog(|C|, σ) (ignoring lower order
additive terms) with 2−σ simulation error. That is, the e�ect of toggling an
arbitrary subset of wires can be simulated by toggling only input and output
wires.

Our construction combines in a general way two types of �simple� honest-
majority MPC protocols: protocols that only o�er security against passive ad-
versaries, and protocols that only o�er correctness against active adversaries. It
proceeds according to the following steps. First, we use the correct-only MPC
protocol to convert a relatively simple AMD circuit that provides only constant
correctness (i.e., any �potentially harmful� attack is detected with some positive
probability) into one that o�ers full correctness (i.e., attacks are detected except
with 2−σ probability). However, this notion of correctness is not enough, mainly
because it does not rule out correlations between the input and the event an
attack is detected. We eliminate such correlations generically by distributing the
computation using a passive-secure MPC protocol. The analysis of this step cru-
cially relies on a recent lemma due to Bogdanov et al. [1] that uses the degree of
approximating the OR function by real-valued polynomials to upper bound its
best-case advantage in distinguishing between two distributions that are t-wise
indistinguishable.

As a byproduct, we get a conceptually di�erent technique for constructing
active-secure two-party protocols in the OT-hybrid model from these simpler
building blocks. This technique is appealing because in a sense it counters the
common wisdom that �security� is more than a combination of �correctness�
and �secrecy.� Indeed, our construction shows a general way to obtain full secu-
rity (for MPC protocols in the OT-hybrid model) by only combining one MPC
protocol that guarantees correctness and another that only guarantees secrecy,
namely security in the presence of passive attacks. Moreover, the �correct-only
MPC� component can be instantiated by a trivial protocol in which each party
performs the entire computation locally. (To get the asymptotic e�ciency men-
tioned above, we need to apply more sophisticated correct-only MPC protocols
that o�er better e�ciency.) This can be compared with the IPS compiler [16],
which also provides a general way of obtaining active-secure protocols in the

4 An Oblivious Linear-function Evaluation (OLE) over a �eld F takes a �eld element
x ∈ F from Receiver and a pair (a, b) ∈ F2 from Sender and delivers ax+b to Receiver.
In the case of binary �elds, OLE can be realized via a single call to standard (bit-)OT.

3

OT-hybrid model, but requires an honest-majority MPC protocol that provides
active security (which is strictly stronger than relying on active correctness and
passive security).

In addition to its conceptual appeal, our new methodology also sheds new
light on an intriguing open question about the complexity of secure computa-
tion [15]: Are there active-secure two-party protocols that achieve constant com-
putational overhead? In other words, does the asymptotic multiplicative cost of
protecting against active adversaries have to grow with the level of security?
This question is open even when allowing a trusted source of correlated ran-
domness, and in particular it is open in the OT-hybrid model. The best known
protocols [6] have a polylogarithmic overhead in the security parameter (a result
that we can match using binary AMD circuits). Our work reduces this question
to the same open question in arguably simpler models. Indeed, while our con-
struction involves some additional ad-hoc components (on top of the two types
of MPC protocols discussed above) the additional cost they incur depends only
on the input and output sizes, and not on the size of the computation. Further-
more, our construction also employs AMD codes to encode the entire protocol
transcript, but these can be implemented with constant computational overhead
(see Claim 18 and Corollary 1 in Section 6).

1.1 Our Results and Techniques

We now provide more details about our results, and the underlying techniques
(summarized in Figure 1 below). We begin by de�ning the notion of additive
correctness, which allows the evaluation of a function f : Fn → Fk in the presence
of an additive attack5 on the circuit computing f .

De�nition 1 (Additive correctness; cf. full version of [11], De�nition

4.1). Let ε > 0. We say that a randomized circuit Ĉ : Fn → Ft × Fk is an
ε-additively-correct implementation of a function f : Fn → Fk if the following
holds:

� Completeness. For all x ∈ Fn it holds that Pr[Ĉ(x) = (0t, f(x))] = 1.

� Additive correctness. For any additive attack A there exists ain ∈ Fn,
and aout ∈ Fk, such that for every input x it holds that Pr[ĈA(x) /∈ ERR ∪
{(0t, f(x + ain) + aout)}] ≤ ε, where CA is the circuit obtained by subjecting
C to the additive attack A, and ERR = (Ft \ {0t})× Fk.

We say that Ĉ is an ε-additively-correct implementation of a circuit C if Ĉ is an
ε-additively-correct implementation of the function fC computed by C.

Previous works [11,10] constructed additively correct implementations for
arithmetic circuits over any �nite �eld F, with constant overhead, and ε =
O (1/|F|). In particular, for F = F2 the error is constant.

1.1.1 Correctness Ampli�cation via Correct-Only MPC

For any function f , and security parameter σ, we show the �rst 2−σ-additively-
correct implementation of f , with polylogarithmic blowup:

5 For a formal de�nition of additive attacks, see De�nition 3.

4

Theorem 1 (Cf. Theorem 11). For any depth-d arithmetic circuit C : Fn →
Fk, and any security parameter σ, there exists a 2−σ-additively-correct imple-
mentation Ĉ of C, where |Ĉ|= |C|·polylog(|C|, σ) + poly(n, k, d, σ).

To prove Theorem 1, we present a general method of amplifying additive
correctness based on �correct-only� MPC protocols. Such protocols enable a sin-
gle client, aided by m servers, to evaluate an arithmetic circuit C on its input,
while guaranteeing correctness of the computation in the presence of an active
adversary that corrupts a constant fraction of the servers. Moreover, the only
interaction between the client and servers is in the �rst and last rounds.

More speci�cally, for m servers, and some constant c, let π be a d-round
cm-correct MPC protocol, namely correctness holds even if cm servers are cor-
rupted. Let InpEnc,OutDec denote the functions used by the client in the �rst
and last rounds (respectively) to compute its messages to the servers, and its
output (respectively). Let NextMSG denote the function used by the servers
to compute their messages in each round of the protocol. The naive approach
towards implementing the circuit Ĉ using π is to implement every sub-circuit
(namely, each of NextMSG, InpEnc, and OutDec) using an ε-additively-correct
implementation. This naive approach fails because an additive attack may in�u-
ence the computation of all NextMSG functions, which corresponds to actively
corrupting all servers in π, whereas the correctness of the protocol only holds
when at most cm servers are corrupted. Consequently, additive attacks on Ĉ can
be divided into two categories:

1. �Small� Attacks. The sub-circuits of Ĉ that these attacks in�uence corre-
spond to at most cm servers of π, so by the cm-correctness of π, such attacks
cannot a�ect the output.

2. �Large� Attacks. The sub-circuits of Ĉ that these attacks a�ect correspond
to more than cm servers of π. Since each sub-circuit (computing NextMSG) is
implemented using an ε-additively-correct implementation, then except with
probability εcm at least one of these attacks is detected, or their e�ect on
the computations in the sub-circuits is equivalent to additive attacks on the
inputs and outputs of the sub-circuits.

Additionally, we notice that any additive attack on π consists of sub-attacks of
one of three types:

1. Attacks on communication channels. These attacks only a�ect the
messages that parties receive in π, but do not modify the NextMSG functions.
By encoding all messages sent in the protocol using an AMD encoding scheme
(and altering InpEnc,NextMSG,OutDec to operate on AMD codewords) we
can guarantee that such attacks are detected with high probability.

2. Attacks on NextMSG functions. These attacks arbitrary modify the
NextMSG function of the corresponding server, but (as noted above) can be
protected against by replacing all NextMSG functions with their ε-additively-
correct implementations.

3. Attacks on client functions. Since π is correct only as long as the client is
honest, such attacks may arbitrarily a�ect the outputs. Therefore, to guaran-
tee that such attacks are detected except with negligible probability, InpEnc

5

and OutDec should be replaced with their 2−σ-additively-correct implementa-
tion. The crucial point here is that since |InpEnc|+ |OutDec| is polynomial in
the inputs and outputs, but otherwise independent of |C|, then any e�cient
2−σ-additively-correct implementation will do, and the resultant overhead
would still be polylog (m |C|). (We show an example of a 2−σ-additively-
correct implementation in Appendix A.)

Consequently, we implement the circuit Ĉ using π as follows. We �rst re-
place the NextMSG functions of π with the functions NextMSG′ that operate
on AMD codewords, and replace NextMSG′ with its ε-additively correct im-

plementation, ̂NextMSG′, such that
∣∣∣ ̂NextMSG′

∣∣∣ = O
(∣∣NextMSG′

∣∣), and ε is

constant. Additionally, we replace InpEnc (resp., OutDec) with the function
InpEnc′ (resp., OutDec′) which outputs (resp., takes as input) AMD codewords,
and replace InpEnc′,OutDec′ with their 2−σ-additively correct implementations

̂InpEnc, ÔutDec. Thus, |Ĉ|= |̂InpEnc|+|ÔutDec|+
∑m
i=1

∑d
j=1|

̂NextMSGji |. We use
an e�cient correct-only MPC protocol π (e.g., a slightly simpli�ed version of [6])
to guarantee that whenm = σ, the multiplicative computational overhead is only
polylog (σ, |C|). (Since we would like the overhead to be sublinear in σ, we cannot
use a trivial correct-only MPC protocol for evaluating C on input x.) For this

choice of π, |InpEnc|+|OutDec|= poly(n, k), so |̂InpEnc|+|ÔutDec|= poly(n, k).

Similarly,
∑σ
i=1

∑d
j=1|NextMSGji |= |C|·polylog(|C|, σ) + poly(n, k, d, σ), so∑σ

i=1

∑d
j=1|

̂NextMSGji |= |C|·polylog(|C|, σ) + poly(n, k, d, σ). (See section 4 for
a more complete discussion.)

1.1.2 From Correctness to Security via Passive-Secure MPC

Additive correctness (as guaranteed by Theorem 1) does not rule out the possi-
bility that the probability of ERR (due to set �ags) is correlated with the inputs

of Ĉ. Thus, additive attacks on additively-correct circuits may leak information
about the inputs to Ĉ, making additive correctness insu�cient for applications
to secure multiparty computation (as described in, e.g., [11]) that require that
no such correlations exist. This stronger property is achieved by the following
additive security property which, intuitively, guarantees that any additive attack
on Ĉ is equivalent (up to a small statistical distance) to an additive attack on

the inputs and outputs of the function that Ĉ computes. Formally,

De�nition 2 (Additively-secure implementation). Let ε > 0. We say that
a randomized circuit C : Fn → Fk is an ε-additively-secure implementation of a
function f : Fn → Fk if the following holds.
� Completeness. For every x ∈ Fn, Pr [C (x) = f (x)] = 1.
� Additive-attack security. For any additive attack A there exist ain ∈

Fn, and a distribution AOut over Fk, such that for every x ∈ Fn,
SD(CA (x) , f

(
x + ain

)
+Aout) ≤ ε.

As in the case of additive correctness, previous works [11,10] constructed
additively-secure implementations for arithmetic circuits over any �nite �eld
F, with constant overhead, and ε = O (1/|F|). Unfortunately, their results and

6

techniques are of little use in the binary case, since the error is too large. We
present the �rst additively-secure circuits with negligible error probability over
the binary �eld. Formally:

Theorem 2 (Cf. Theorem 14). For any depth-d arithmetic circuit C : Fn →
Fk, and security parameter σ, there exists a 2−σ-additively-secure implementa-
tion Ĉ of C, where |Ĉ|= |C|·polylog(|C|, σ) + poly(n, k, d, σ).

As in Section 1.1.1, the high-level idea is to implement C using an m-party
protocol (in the standard model, namely not in the server-client model), where
the functions computed by the parties are replaced with additively-correct imple-
mentations that operate over AMD encodings. However, since our main concern
now is privacy, and not correctness, we use passive-secure protocols which only
guarantee privacy against a constant fraction c of passively-corrupted parties.
This privacy guarantee allows us to decouple the probability of ERR of the ad-
ditively correct circuits from their inputs, resulting in additively secure circuits.

More speci�cally, the input of the circuit C is shared between the parties
using an additive secret-sharing, and the d-round passive-secure protocol π com-
putes the functionality that reconstructs the input from the shares, evaluates C,
and outputs an additive secret-sharing of the output. The privacy property of π,
together with the secrecy property of the secret-sharing scheme, guarantee that
the joint view of a constant fraction of passively-corrupted parties reveals no in-
formation about the inputs, or outputs, of the computation. As in Section 1.1.1,
Ĉ is obtained from π by �rst replacing all NextMSG functions with the func-
tions NextMSG′ that operate on AMD encodings, and then implementing each

NextMSG′ using a 2−σ-additively-correct implementation ̂NextMSG′ with con-

stant overhead (such as the one from Theorem 1). As Ĉ should emulate C (rather
than output a secret sharing of the output of C), the output is reconstructed
from the outputs of the parties in π by summing their shares, and is then com-
bined with the �ags generated by all the additively-correct implementations,
such that if any of the �ags were set then the output of Ĉ is random.

Using a union-bound over the additive-correctness property of the additively-
correct implementations, except with probability at most |C|·2−σ any additive

attack on the ̂NextMSG′ functions either sets a �ag, or is equivalent to an attack
on the inputs and outputs of NextMSG′. Except for the inputs, and output, of

Ĉ, the inputs and outputs of the NextMSG′ functions are protected by the AMD
encoding scheme, so by the additive soundness of the AMD encoding scheme,
any attack (except for an attack on the inputs, and output, of Ĉ) will set a �ag
with overwhelming probability. Thus, the only additive attacks that do not set
a �ag (with overwhelming probability) are attacks on the inputs and outputs of

Ĉ, which are equivalent to attacks on the inputs and outputs of C. Thus, with
overwhelming probability the execution of π is correct even in the presence of
additive attacks.

It remains to show that the probability of setting a �ag in Ĉ, thus causing the
output to be random, is input independent. We use the fact that the probability

7

that a subset of ̂NextMSG′ implementations set their �ags depends only on their
joint inputs and outputs, and distinguish between two types of attacks.

1. �Small� attacks. These attacks attempt to corrupt less than cm parties.
Therefore, the probability that a �ag is set depends only on the inputs and
outputs of these parties which, by the privacy of π, and the secrecy of the
secret-sharing scheme, is independent of the inputs of Ĉ.

2. �Large� attacks. These attacks attempt to corrupt more than cm parties,
and so we can no longer use the privacy of π. However, notice that in this
case the output of Ĉ is random if and only if at least one additively-correct
implementation set a �ag (regardless of the identity or number of �ags that
were set). That is, the output is random if and only if the OR of the �ags is
1. Using a recent lemma of [1] (stated as Lemma 1 below), the correlation of
the OR with the input is negligible, because the OR is computed over a large
fraction of the �ags.

As for the size of Ĉ, notice that |Ĉ|=
∑m
i=1

∑d
j=1|

̂NextMSGji |. To obtain the
small overhead guaranteed by Theorem 2, we use a cm private (for some con-
stant c > 0), m-party protocol of [6] in which the total circuit size of all
the NextMSG functions is |C|·polylog(|C|,m) + poly(m,n, k, d, log|C|). Setting
m = poly (σ),

∑σ
i=1

∑d
j=1|NextMSGji |= |C|·polylog(|C|, σ)+poly(n, k, d, σ), and

so if all the ̂NextMSGji are generated using Theorem 1, |Ĉ|= |C|·polylog(|C|, σ)+
poly(n, k, d, σ). (See Section 5 for a more detailed analysis.)

1.2 On the Di�erence Between Additive Correctness and Additive
Security

As noted in Section 1.1.2, De�nition 1 is weaker than De�nition 2. In particular,
the correctness guarantee of De�nition 1 is insu�cient for many MPC applica-
tions, since the probability of ERR (due to set �ags) might be correlated with

the inputs, and consequently reveal information regarding the inputs of Ĉ. As
we now show, such correlations exist in many natural constructions of additively
correct implementations (and, in particular, in all additivity correct construc-
tions discussed in this paper as well as the constructions in [11,10]).

As a typical example of correlations between inputs and the probability
of ERR created by additive attacks, consider the simpler case of an AMD
code. Speci�cally, consider the code which encodes a �eld element x ∈ F as
(x, v1, · · · , vσ, r1, · · · , rσ), where v1, · · · , vσ ∈R F are uniformly random, and
ri = vi · x for all 1 ≤ i ≤ σ. To decode (x, v1, · · · , vσ, r1, · · · , rσ), the decoder
veri�es that x · vi = ri for all 1 ≤ i ≤ σ. Consider the additive attack that adds
the same arbitrary constant δ 6= 0 to all the vi's. If x = 0 then ri = 0 for every
1 ≤ i ≤ σ, thus the test 0 · (vi + δ) = 0 passes for all i, and decoding succeeds.
However, if x 6= 0 then every x · vi = ri test fails except with probability 1/|F|.
Since decoding succeeds only if all tests succeed, decoding fails in this case with
probability at least 1− 1/|F|σ.

Overall, this attack leaks information regarding the value of x because if
x = 0 then the decoder aborts with probability zero, whereas if x 6= 0 then the

8

Fig. 1: Additive security from weak additive correctness (both steps use AMD
codes)

decoder aborts with probability almost 1. Similar attacks apply to all additively-
correct constructions presented in this paper, thus requiring the transformation
of Section 5.

2 Preliminaries

In the following, F will denote a �nite �eld, n usually denotes the input length, k
usually denotes the output length, d, s denote depth and size, respectively (e.g.,
of circuits, as de�ned below), and m is used to denote the number of parties.
Vectors will be denoted by boldface letters (e.g., a). If D is a distribution then
X ← D, or X ∈R D, denotes sampling X according to the distribution D. Given
two distributions X,Y , SD (X,Y) denotes the statistical distance between X,Y .

The following lemma regarding k-wise indistinguishable distributions over
{0, 1}n will be used to construct additively-secure circuits.

Lemma 1 (Cf. Claim 3.9 in [1]). Let n, k be positive integers, and X , Y be
k-wise indistinguishable distributions over {0, 1}n. Then

|Pr[(x1, · · · , xn)← X : ∨ni=1xi = 1]− Pr[(y1, · · · , yn)← Y : ∨ni=1yi = 1]| ≤ 2−Ω(k/
√
n).

Additive Attacks. We follow the terminology of [10].

De�nition 3 (Additive attack). An additive attack A on a circuit C is a
�xed vector of �eld elements which is independent from the inputs and internal
values of C. A contains an entry for every wire, and every output gate, of C,
and has the following e�ect on the evaluation of the circuit. For every wire ω
connecting gates a and b in C, the entry of A that corresponds to ω is added
to the output of a, and the computation of the gate b uses the derived value.
Similarly, for every output gate o, the entry of A that corresponds to the wire
in the output of o is added to the value of this output.

9

Notation 3 For a (possibly randomized) circuit C and for a gate g of C, we
denote by gx the distribution of the output value of g (de�ned in a natural way)
when C is evaluated on an input x.

Notation 4 Let C be a (possibly randomized) circuit, and A be an additive
attack on C. We denote by Ac,c′ the attack A restricted to the wire connecting
the gates c, c′ of C. Similarly we denote by Aout the restriction of A to all the
outputs of C.6

Encoding schemes. An encoding scheme E over a set Σ of symbols (called �the
alphabet�) is a pair (Enc,Dec) of algorithms, where the encoding algorithm Enc
is a PPT algorithm that given a message x ∈ Σn outputs an encoding x̂ ∈ Σn̂

for some n̂ = n̂ (n); and the decoding algorithm Dec is a deterministic algorithm,
that given an x̂ of length n̂ in the image of Enc, outputs an x ∈ Σn. Moreover,
Pr [Dec (Enc (x)) = x] = 1 for every x ∈ Σn. We will assume that when n > 1,
Enc encodes every symbol of x separately, and in particular n̂ (n) = n · n̂ (1).
Parameterized encoding schemes. We consider encoding schemes in which
the encoding and decoding algorithms are given an additional input 1t, which is
used as a security parameter. Concretely, the encoding length depends also on
t (and not only on n), i.e., n̂ = n̂ (n, t), and for every t the resultant scheme
is an encoding scheme (in particular, for every x ∈ Σn and every t ∈ N,
Pr [Dec (Enc (x, 1t) , 1t) = x] = 1). We call such schemes parameterized. We will
only consider parameterized encoding schemes, and therefore when we say �en-
coding scheme� we mean a parameterized encoding scheme.

Algebraic Manipulation Detection (AMD) Encoding Schemes. Infor-
mally, AMD encoding schemes over a �nite �eld F guarantee that additive at-
tacks on codewords are detected by the decoder with some non-zero probability:

De�nition 4 (AMD encoding scheme, [3,11]). Let F be a �nite �eld, n ∈ N
be an input length parameter, t ∈ N be a security parameter, and ε (n, t) : N×N→
R+. An (n, t, ε (n, t))-algebraic manipulation detection (AMD) encoding scheme
(Enc,Dec) over F is an encoding scheme with the following guarantees.

� Perfect completeness. For every x ∈ Fn,
Pr [Dec (Enc (x, 1t) , 1t) = (0,x)] = 1.

� Additive soundness. For every 0n̂(n,t) 6= a ∈ Fn̂(n,t), and every x ∈ Fn,
Pr [Dec (Enc (x, 1t) + a, 1t) /∈ ERR] ≤ ε (n, t) where ERR = (F\{0})×Fn, and
the probability is over the randomness of Enc.

Remark 1 It will sometime be useful to represent (Enc,Dec) as families of arith-
metic circuits (instead of polynomial-time algorithms) that are parameterized
by the security parameter t. That is, (Enc = {Encn} ,Dec = {Decn}) are fami-
lies of arithmetic circuits over F, where Encn : Fn → Fn̂ is randomized, and
Decn : Fn̂ → F × Fn is deterministic. (Here, the security parameter t is �hard-
wired� into the circuits.) Somewhat abusing notation, we use Enc,Dec to denote

6 Note that Ac,c′ is a single �eld element whereas Aout is a vector of �eld elements.

10

both the families of circuits, and the circuits Encn,Decn for a speci�c n, omitting
the subscript (when n is clear from the context).

We will sometimes need AMD codes with a stronger robustness guarantee
which, roughly speaking, guarantees additive correctness even in the presence of
additive attacks on the internal wires of the encoding procedure, where the ideal
additive attack on the output is independent of the additive attack:

De�nition 5 (Robust AMD encoding schemes). Let F be a �nite �eld,
n ∈ N be an input length parameter, n̂ ∈ N be an output length parameter,
t ∈ N be a security parameter, and ε (n, t) : N × N → R+. We say that an
encoding scheme (Enc,Dec) over F is an (n, n̂, t, ε (n, t))-robust AMD encoding
scheme, if it is an (n, t, ε (n, t))-AMD encoding scheme in which the additive
soundness property is replaced with the following additive robustness property.
Let Enc : Fn → Fn̂, Dec : Fn̂ → F × Fn, then for any additive attack A on Enc
there exists an ideal attack ain ∈ Fn such that for any b ∈ Fn̂, and any x ∈ Fn,
it holds that Pr

[
Dec

(
EncA (x, 1t) + b, 1t

)
/∈ ERR ∪

{(
0,x + ain

)}]
≤ ε, where

ERR = (F \ {0})× Fn, and the probability is over the randomness of Enc.

Secure Multiparty Computation. We recall a few standard de�nitions that
will be used in subsequent sections.

We view an MPC protocol π as a collection of NextMSG functions. The
protocol proceeds in rounds, where in round j, the description of π contains
a next message function NextMSGji of round j for party Pi, de�ned as follows.

NextMSGji takes as input all the messages mj−1
i that Pi received before round j,

its input xi, and its randomness ri; and outputs the messages that Pi sends in
round j. If j is the last round of π, then for every party Pi, NextMSGji outputs
the output of Pi in π.

The client-server model. The client-server model (see [2,4,5] for a more
detailed discussion) is a re�nement of the standard MPC model in which each
party has one of two possible roles: clients hold inputs and receive outputs; and
servers have no inputs and receive no outputs, but may participate in the com-
putation. Notice that every protocol in the client-server model can be converted
to a protocol in the standard MPC model by asking every party to emulate a
single server and a single client (assuming the protocol has the same number of
clients and servers). See Figure 2.

In the following, we assume that the protocol consists of a single input client,
a single output client, and mS servers. We call such protocols mS-server proto-
cols. We use the simulation-based paradigm, and say that a protocol π in the
client-server model is (s, ε)-secure ((s, ε)-private) if it is secure (up to distance
ε) against all active (passive) adversaries corrupting at most s servers, and no
clients. We assume that the description of a protocol in the client-server model
consists of the following:

1. Input Encoding. A description of a function InpEnc whose input is the
input of the input client, and whose output is the messages that the input
client sends to the servers.

11

Fig. 2: MPC protocol with a single client and m servers

2. Circuit Evaluation. For every server Si, and every round j, a description
of a function NextMSGji which speci�es the messages that Si sends to all the
servers (to the output client) in round j (in the last round).

3. Output Decoding. A description of a function OutDec whose input is the
messages sent to the output client (from the servers) in the last round, and
whose output is the output of π.

We will use a relaxed notion of security, which we call correct-only MPC.
Intuitively, it guarantees output correctness even in the presence of an active
adversary that corrupts a �small� subset of the servers. This notion relaxes the
standard security notion because it does not guarantee input privacy. We for-
malize correct-only MPC as follows, where for a protocol π, and an adversary
Adv, πAdv(x) denotes the outputs (of the clients) in an execution of π on inputs
x in the presence of Adv.

De�nition 6. Let f : X → Y be a function, and π be a single client, mS-server
protocol. We say that π (t, ε)-correctly computes f if for every active adversary
Adv corrupting a set T, |T |≤ t of servers, and every client input x ∈ X, it
holds that Pr

[
f(x) 6= πAdv(x)

]
≤ ε. We say that π t-correctly computes f if it

(t, ε)-correctly computes f for ε = 0.

Remark 2 Notice that any protocol π for t-correctly computing f in the client-
server model can be assumed to be deterministic without loss of generality. This
is because the adversary Adv has no e�ect on the randomness used by the input
clients. Therefore, any π can be de-randomized by �xing its randomness to some
arbitrary value.

Next, we describe a simple replication-based m-server protocol for
(dm/2e − 1)-correctly computing a function f .

Theorem 5. Let F be a �nite �eld. Then for every arithmetic circuit C : Fn →
Fk, and m ∈ N, there exists an m-server protocol for (dm/2e − 1)-correctly com-
puting f . Moreover, the computational complexity (in �eld operations) of π is
|C|·m.

12

Proof. The input client replicates the input x among all the servers, who lo-
cally compute zi ← C(x) and send zi to the output client, who outputs
maj{z1, · · · , zm}. ut

We will use the following theorem regarding the existence of correct-only
MPC protocols.

Theorem 6 (Implicit in [6]). Let σ be a security parameter, m ∈ N, F be a
�nite �eld, and C : Fn → Fk be a depth-d arithmetic circuit. Then there exists
a d-round, m-server protocol π that m/10-correctly computes C, where:

� The total circuit size of the input encoding function InpEnc, and the output
decoding function OutDec, is poly(n, k,m).

� The total circuit size of all the NextMSG functions is |C|·polylog(|C|, σ) +
poly(m, d, n, k, log|C|).

� In each round of π, the messages sent by each party contain in total at most
poly(n, k, log|C|) �eld elements.

3 Circuit Transformations

In this section we describe a few circuit transformations which will be used in
Sections 4 and 5 to construct additively-correct and additively-secure circuits.
At a high level, these transformations replace a given circuit C over �eld F with
a new circuit that operates on AMD encodings. We �rst describe a randomized
gadget that combines and ampli�es error �ags. This gadget will be used in the
following constructions to combine error �ags obtained from AMD decoding of
several codewords.

Construction 1 Let nf ∈ N be an input length parameter, and σ ∈ N be a
security parameter. The �ag combining gadget Fcomb : Fnf → Fσ, on input
f1, · · · , fnf ∈ F, operates as follows.
1. Generates nf random vectors r1, · · · , rnf ∈R Fσ.
2. Outputs f ←

∑nf
i=1 ri · fi.

Observation 7 If
(
f1, · · · , fnf

)
6= 0 then Fcomb

(
f1, · · · , fnf

)
6= 0 except with

probability at most 2−σ.

Next, we describe a circuit transformation Tinter that will be used to replace
intermediate rounds in secure protocols. Intuitively, given a circuit C, the trans-
formed circuit Tinter (C) takes AMD encodings of the inputs of C, decodes them,
uses the �ag combining gadget Fcomb of Construction 1 to combine the error �ags
generated during decoding, evaluates the circuit C, and outputs AMD encodings
of the output, concatenated with the combined error �ag.

Construction 2 Given a circuit C : Fn → Fk, and an AMD encoding scheme
(Enc,Dec) that outputs encodings of length n̂ (n), the circuit Tinter (C) : Fn̂(n) →
Fσ × Fn̂(k), on input (x1, · · · ,xn), operates as follows.

1. For every 1 ≤ i ≤ n, computes (fi,x
′
i)← Dec(xi)

13

2. Computes (y1, · · · , yk)← C(x′1, · · · ,x′n).

3. Computes f ← Fcomb (f1, · · · , fn).

4. Outputs (f ,Enc(y1), · · · ,Enc(yk)).

Finally, we describe a circuit transformation Tfin that will be used to replace
the output generation rounds. This transformation di�ers from the transforma-
tion Tinter of Construction 2 only in the fact that it does not encode the outputs.

Construction 3 Given a circuit C : Fn → Fk, and an AMD encoding scheme
(Enc,Dec) that outputs encodings of length n̂ (n), the circuit Tfin (C) : Fn̂(n) →
Fσ × Fk, on input (x1, · · · ,xn), operates as follows.

1. Performs Steps 1- 3 of Construction 2, and let (y1, · · · , yk), f denote the out-
puts of Steps 2 and 3, respectively.

2. Outputs (f , y1, · · · , yk).

Finally, we will use the following notation.

Notation 8 Given a circuit C : Fn → Fk, and an AMD encoding scheme
(Enc,Dec) that outputs encodings of length n̂ (n), we use (Enc ◦ C) : Fn → Fn̂(k)

to denote the circuit that on input x ∈ Fn, computes (y1, · · · , yk) ← C (x), and
outputs (Enc (y1) , · · · ,Enc (yk)).

4 E�cient Additive Correctness Using Correct-Only

MPC

In this section we construct a 2−σ-additively-correct circuit with polylog(|C|, σ)
overhead. Speci�cally, for every depth-d arithmetic circuit C : Fn →
Fk we construct a 2−σ-additively correct implementation Ĉ, where

∣∣∣Ĉ∣∣∣ =

|C|·polylog(|C|, σ) + poly(n, k, d, σ), thus proving Theorem 1.

Recall that when Ĉ is constructed from a correct-only MPC protocol π then
each attack on Ĉ can be divided into three �parts�. The �rst �part� attacks con-
necting wires between sub-circuits of Ĉ (these are InpEnc,OutDec and NextMSG),
and we protect against such attacks by having these sub-circuits operate on AMD
codewords. The second �part� attacks the NextMSG functions, and we protect
against such attacks by replacing NextMSG with its ε-additively correct imple-
mentation. Thus, every such attack either a�ects only few NextMSG functions,
in which case the correctness of π guarantees that it does not a�ect the outputs;
or it a�ects many NextMSG functions, in which case ε-additive correctness guar-
antees that (except with negligible probability) the attack is either detected,
or corresponds to an additive attack on the inputs and outputs of NextMSG.
(Additive attacks on the inputs and outputs correspond to the �rst type of at-
tacks, namely attacks on the connecting wires, which are detected by the AMD
encoding scheme.) The third and �nal �part� attacks the clients, and we pro-
tect against such attacks by replacing InpEnc,OutDec with their 2−σ-additively-
correct implementations (e.g., Construction 9, Appendix A). This is formalized
in the following construction, and described in Figure 3.

14

Construction 4 Let F be a �nite �eld, C : Fn → Fk be an arithmetic circuit
over F, σ be a security parameter, and π be a d-round, σ-correctm-server protocol
for computing C using only point-to-point channels. We assume (without loss of
generality) that every message sent in π consists of exactly s �eld elements, for
some s ∈ N. Let (Enc,Dec) be an (s, σ, 2−σ)-AMD encoding scheme that outputs

encodings of length n̂ (s). The circuit Ĉ will use the following ingredients.

1. Input Encoding. Let h denote the number of messages sent by the input

client in the �rst round, namely InpEnc : Fn → (Fs)h. Let ̂InpEnc : Fn →
Ft′×

(
Fn̂(s)

)h
denote the 2−σ-additively correct implementation, with t′ �ags,

of the circuit (Enc ◦ InpEnc) : Fn →
(
Fn̂(s)

)h
(as de�ned in Notation 8).

2. Message Generation. For every 1 ≤ i ≤ m, and 2 ≤ j ≤ d− 1, let g (h)
denote the number of messages received (sent) by the i'th server in round j−1

(j).7 That is, NextMSGji : (Fs)g → (Fs)h. Let ̂NextMSGji :
(
Fn̂(s)

)g → Ft ×
Fσ ×

(
Fn̂(s)

)h
denote the ε-additively correct implementation, with t �ags, of

the circuit Tinter

(
NextMSGji

)
:
(
Fn̂(s)

)g → Fσ×
(
Fn̂(s)

)h
(see Construction 2).

3. Output Generation. Let g denote the number of messages received by
the output client in the �nal round, namely OutDec : (Fs)g → Fk. Let

ÔutDec :
(
Fn̂(s)

)g → Ft′′ × Fσ × Fk denote the 2−σ-additively correct im-

plementation, with t′′ �ags, of the circuit Tfin (OutDec) :
(
Fn̂(s)

)g → Fσ × Fk
(see Construction 3).

4. Circuit Construction. The circuit Ĉ, on input x ∈ Fn:

(a) Emulates π, with x as the input of the client, and where ̂InpEnc,
̂NextMSGji and ÔutDec of Steps 1- 3 above (connected in the natural

way) replace InpEnc, NextMSGji and OutDec. That is, for every round
1 ≤ j ≤ d, if server Si sends a message to server Si′ , then the cor-

responding output of ̂NextMSGji is wired to the corresponding input of
̂NextMSGj+1

i′ .

Denote the output of the client in the above execution by z.

(b) For every 1 ≤ i ≤ m, and every 1 ≤ j ≤ d, let f ′ji,1, · · · , f
′j
i,t be the

�rst t outputs of ̂NextMSGji , and let f ji,1, · · · , f
j
i,σ be the next σ outputs

of ̂NextMSGji . (The f
′j
i,w's are the �ags of the ε-correct implementation,

and the f ji,w's are the �ags generated during the AMD decoding.)

(c) Let f ′11 , · · · , f ′1t′ be the �rst t′ outputs of ̂InpEnc. (These are the �ags of
the 2−σ-correct implementation.)

7 We assume each server transfers its internal state from one round to the next by
sending a message to itself.

15

Fig. 3: Components of Construction 4

(d) Let f ′d1 , · · · , f ′dt′′ be the �rst t′′ outputs of ÔutDec and let fd1 , · · · , fdσ be

the next σ outputs of ÔutDec. (The f ′di 's are the �ags of the 2−σ-correct
implementation, and the fdi 's are the �ags generated during the AMD
decoding.)

(e) For every 1 ≤ w′ ≤ σ, compute f ′′w′ ←∑m
i=1

∑d−1
j=2

(∑t
w=1 f

′j
i,w · ri,j,w,w′ +

∑σ
w=1 f

j
i,w · ri,j,t+w,w′

)
+
∑t′′

w=1 f
′d
w ·

r1,d,w,w′ +
∑σ
w=1 f

d
w ·r1,d,t+w,w′ +

∑t′′

w=1 f
′1
w ·r1,1,w,w′ where ri,j,w,w′ ∈R F.

(f) Output z +
∑σ
w=1 f

′′
w · r′w where r′w ∈R Fk.

We now analyze the properties of Construction 4. The following notation will
be useful.

Notation 9 We denote the ingredients of Construction 4 as follows.

� We use InpEnc′ to denote the circuit (Enc ◦ InpEnc) obtained in Step 1.

� For every 1 ≤ i ≤ m, and 2 ≤ j ≤ d − 1, we use NextMSG′ji to denote the

circuit Tinter

(
NextMSGji

)
obtained in Step 2.

� We use OutDec′ to denote the circuit Tfin (OutDec) obtained in Step 3.

The next theorem shows that Construction 4 produces a 2−Ω(σ)-additively-
correct implementation.

Theorem 10. Let σ be a security parameter, C : Fn → Fk be an arithmetic
circuit, and π be an m-party, d-round protocol for (σ, 2−σ)-correctly computing

16

C. Then the circuit Ĉ obtained by applying Construction 4 to C is a 2−Ω(σ)-
additively-correct implementation of C.

Proof. The completeness property of Ĉ immediately follows from Construction 4,
the correctness of π, and the perfect completeness of the underlying AMD code.
We now proceed to proving additive correctness. Let A be an additive attack
on Ĉ, and let Aout denote the attacks on the outputs of Ĉ as speci�ed by A. Let

AInpEnc, AOutDec denote the restrictions of A to the wires of ̂InpEnc and ÔutDec
respectively. Additionally, for every 1 ≤ i ≤ m and every 2 ≤ j ≤ d − 1 let

Aj
i denote the restriction of A to ̂NextMSGji . Let (ain,1,aout,1) and (ain,d,aout,d)

be the ideal additive attacks on the inputs and outputs of ̂InpEnc and ÔutDec
corresponding to AInpEnc, AOutDec. Similarly, for every 1 ≤ i ≤ m and every

2 ≤ j ≤ d − 1, let ain,j
i , and aout,j

i be the ideal additive attacks on the inputs

and outputs of ̂NextMSGji corresponding to Aj
i . De�ne ain = ain,1 and aout =

aout,d + Aout. We claim that for every input x it holds that

Pr[ĈA(x) /∈ ERR ∪ {(0σ, C(x + ain) + aout)}] ≤ 2−Ω(σ)

where ERR = (Fσ \ {0σ})× Fk.
Indeed, let x ∈ Fn be an input to Ĉ, and de�ne Pbad as the event that

ĈA(x) /∈ ERR ∪ {(0σ, C(x + ain) + aout)}, namely

Pr[ĈA(x) /∈ ERR ∪ {(0σ, C(x + ain) + aout)}] = Pr [Pbad] .

Next, denote by Pf the event that

m∧
i=1

d−1∧
j=2

t∧
w=1

(f ′jAi,w,x = f jAi,w,x = 0)
∧ t′∧

w=1

f ′1w = 0
∧ t′′∧

w=1

f ′dw = 0.

Notice that by construction of Ĉ we obtain that

Pr[ĈA(x) /∈ ERR ∪ {(0σ, C(x + ain) + aout)}] ≤ 2−Ω(σ) + Pr [Pbad ∧ Pf] .

We proceed by de�ning the event P 1,1
OK as ̂InpEnc

A
(x) ∈ ERR ∪ {InpEnc(x +

ain,1) +aout,1} and P d,dOK as ÔutDec
A

(yA
x) ∈ ERR∪{OutDec(yA

x +ain,d) +aout,d},
where yA

x is the random variable corresponding to the messages received by the

client from the servers during the last round of π inside ĈA(x). We notice that

by the 2−σ-correctness of ̂InpEnc and ÔutDec it holds that

Pr [Pbad ∧ Pf] ≤ 2−Ω(σ) + Pr
[
Pbad ∧ Pf ∧ P 1,1

OK ∧ P
d,d
OK

]
.

Next, for every round 2 ≤ j ≤ d − 1 and party 1 ≤ i ≤ m, denote by Inji
the set of servers which send messages to the ith server during the jth round,

and denote by ain,j
i,i′ the ideal additive attacks on the inputs of ̂NextMSGji which

17

correspond to the message received by server i from server i′ during the jth
round. Similarly, denote by Outji the set of servers to which the ith server sends

messages during the jth round, and denote by aout,j
i,i′ the ideal additive attacks

on the outputs of ̂NextMSGji which correspond to the message sent by server i to
server i′ during the jth round. In addition, we assume without loss of generality
that the client sends a message to all the servers during the �rst round, and
receives a message from all the servers during the last round. Finally, for every
server 1 ≤ i ≤ m, we denote by aout,1

i the restriction of aout,1 to the messages

that the client sends to the ith server during the �rst round and by ain,d
i the

restriction of ain,d to the messages that the client receives from the ith server

during the dth round. Finally, we denote by ain,2
i the messages received by the

ith server from the client, and we denote by aout,d−1
i′ the messages sent by the

i′th server to the client.
For any 1 ≤ i, i′ ≤ m and 2 ≤ j ≤ d − 1, we say that a tuple (i′, i, j) is

problematic if one of the following three conditions hold.

1. Input Corruption. It holds that ain,2
i + aout,1

i 6= 0 and i′ = j = 1.

2. Intermediate Corruption. It holds that ain,j
i,i′ + aout,j−1

i′,i 6= 0.

3. Output Corruption. It holds that aout,d−1
i′ + ain,d

i′ 6= 0 and i = j = d.

Next, we de�ne the set A = {(i′, i, j) : the tuple (i′, i, j) is problematic} and we
split the proof into two cases.

� Case 1: |A|> σ. Intuitively, in this case a large portion of Ĉ was corrupted.

We show that in this case Ĉ will almost always abort the computation by
setting at least one of the �ags to a non zero value, namely the probability of
an incorrect output (i.e, not in ERR ∪ {(0σ, C(x + ain) + aout)}) is low.
We denote the random variables describing the messages exchanged during the
evaluation of ĈA on input x as follows: for every 1 ≤ i ≤ m and 2 ≤ j ≤ d−2,
ŷA,ji,i′,x corresponds to the message sent by the ith server to the i′th server in

round j; ŷA,1i,x corresponds to the messages sent by the client to the ith server

in the �rst round; and ŷA,d−1
i,x corresponds to the message sent by the ith

server to the client in round d− 1.

Next, for any 1 ≤ i ≤ m and 2 ≤ j ≤ d − 1 de-

note by P i,jOK the event that ̂NextMSGA,j
i

((
ŷA,j−1
i′,i,x

)
i′∈Inji

)
is in ERR ∪{(

0t,NextMSG′ji

((
ŷA,j−1
i′,i,x

)
i′∈Inji

+ ain,j
i

)
+ aout,j

i

)}
, where ERR = ({Ft} \

{0t})× Fo
j
i , and oji is the output length of NextMSG′ji .

Next, notice that for every tuple (i′, i, j) the randomness of ̂NextMSGA,j
i

is independent from the randomness of ̂NextMSGA,j−1
i′ . Thus, it holds

that Pr
[
P i

′,j−1
OK ∧ P i,jOK

]
≥ (1 − ε)2, yielding Pr

[
P i

′,j−1
OK ∧ P i,jOK

]
≤ 1 −

(1 − ε)2. Next, across all the problematic tuples in A we obtain that

18

Pr
[
Pbad ∧ Pf ∧ P 1,1

OK ∧ P
d,d
OK

]
is at most

(
1− (1− ε)2

)σ
+ Pr

[
Pbad ∧ Pf ∧ P 1,1

OK ∧ P
d,d
OK∧(

∃(i′, i, j) ∈ A : (P i
′,j−1

OK ∧ P i,jOK)
)] .

Finally, the fact that P i
′,j−1

OK ∧ P i,jOK for some problematic tuple (i′, i, j) ∈ A
implies that there is a non-zero additive attack on the wires between server i′

(or the client in case j = 1) and server i (again, or the client in case j = d)
during the jth round. Thus, by the additive soundness of (Enc,Dec) we obtain
that except with probability 2−σ, (f ji,1, · · · , f

j
i,σ) 6= 0, namely Pf does not hold.

Consequently,

Pr

[
Pbad ∧ Pf ∧ P 1,1

OK ∧ P
d,d
OK∧(

∃(i′, i, j) ∈ A : (P i
′,j−1

OK ∧ P i,jOK)
)] ≤ 2−Ω(σ).

� Case 2: |A|≤ σ. Notice that having less than σ problematic tuples implies

that for the protocol π inside Ĉ, the additive attackA only corrupted less than
σ parties. In this case we get that except with probability 2−σ, the protocol
π manages to correctly compute C. Thus, in this case

Pr
[
Pbad ∧ Pf ∧ P 1,1

OK ∧ P
d,d
OK

]
≤ 2−Ω(σ).

ut

We show that for an appropriate choice of parameters, Construction 4 is a
2−σ-additively correct implementation. This is formalized in the next Theorem.

Theorem 11. For any depth-d arithmetic circuit C : Fn → Fk, and any secu-
rity parameter σ, there exists a 2−Ω(σ)-additively-correct implementation Ĉ of C
where |Ĉ|= |C|·polylog(|C|, σ) + poly(n, k, d, σ).

We �rst state several results regarding AMD encoding schemes, which will be
used in the proof.

Asymptotically optimal constructions of AMD encoding schemes have been
presented by [8] and [3]. In fact, [3] consider a slightly weaker de�nition of AMD
codes which guarantees that Pr[Dec(Enc(x) + a) /∈ ERR∪ {(0,x)}] ≤ ε, allowing
for ERR on some inputs and correct output on others (see De�nition 7 below).
However, their construction actually possesses the stronger security property of
De�nition 4.

Theorem 12 (Implicit in [3], Corollary 1). For any n, σ ∈ N, and �eld F,
there exists a pair of families of circuits (Enc,Dec) over F that is an (n, σ, 1

|F|σ)-

AMD encoding scheme with encodings of length n+σ. Moreover, the size of Enc
and Dec is Õ(n+ σ).

19

Theorem 13 (Implicit in [10]). There exists a constant ε ∈ (0, 1) such that

for any �eld F and arithmetic circuit C : Fn → Fk there exist a circuit Ĉ :
Fn → F × Fk which is an ε-additively-correct implementation of C. Moreover,∣∣∣Ĉ∣∣∣ = O (|C|).

Proof (of Theorem 11). Apply Construction 4 to C using an AMD code of The-
orem 12, the ε-additively-correct construction from Theorem 13 and the σ-server
protocol π from Theorem 6. To obtain the 2−σ-additively-correct implementa-

tion of ̂InpEnc and ÔutDec used in Steps 1 and 3 of Construction 4, we use an
additively-correct circuit compiler CompIn that on input a circuit C outputs a

circuit Ĉ such that
∣∣∣Ĉ∣∣∣ = σ · |C| (e.g., Construction 9 of Appendix A). Since

π (σ/10)-correctly computes C we obtain that Ĉ is a 2−Ω(σ)-additively-correct
implementation of C.

Next, we proceed to analyze the size of Ĉ. By the construction of Ĉ we

have that |Ĉ|= |̂InpEnc|+|ÔutDec|+
∑σ
i=1

∑d
j=1|

̂NextMSGji |. From Theorem 6 we
obtain that |InpEnc|+|OutDec| is poly(n, k, σ). Thus, when InpEnc and OutDec

are implemented using Construction 9 (Appendix A, |̂InpEnc|+|ÔutDec| is also
poly(n, k, σ). We now proceed to analyze

∑σ
i=1

∑d
j=1|

̂NextMSGji |.
We begin by noticing that in each round of π, each server sends messages

containing a total of poly(n, k, log|C|) �eld elements. Thus, by having NextMSG′

encode every message sent during the execution of π with the AMD codes from
Theorem 12 we obtain that the circuit size of every NextMSG′ function increases
by an additive term which is poly(n, k, log|C|, σ) compared to NextMSG. Next,
since the overall circuit size of all the NextMSG functions is |C|·polylog(|C|, σ)+

poly(σ, d, n, k, log|C|) and since | ̂NextMSG|= O(NextMSG′) we obtain that the

total circuit size of all the ̂NextMSG circuits inside Ĉ is also |C|·polylog(|C|, σ)+
poly(σ, d, n, k, log|C|). ut

Remark 3 The proof of Theorem 11 uses an ad-hoc �feasibility� construction
to achieve polylog (σ) overhead. However, it is possible to improve the simplicity,
and concrete e�ciency, of the construction by replacing the feasibility construc-
tion with simpler gadgets implementing the input encoder and output decoder. We
now outline a more direct construction (which matches the complexity of Theo-
rem 11). We begin by observing that for the protocol of Theorem 6, we can assume
(without loss of generality) that InpEnc(x) = (x, · · · ,x), and OutDec(y1, · · · ,ym)
outputs (0σ,y1) if y1 = · · · = ym, otherwise it outputs a random value in

(Fσ \ {0σ}) × Fk. Next, we implement ̂InpEnc and ÔutDec directly using the
following simple gadgets.

� Implementing ̂InpEnc. We de�ne ̂InpEnc(x) = (Enc(x), · · · ,Enc(x)), where
Enc is the encoding procedure of a 2−σ-robust AMD code (as in De�nition 5).
The stronger robustness property guarantees the existence of a single consis-
tent value such that (with high probability) every server either decodes to it,
or aborts.

20

� Implementing ÔutDec. We modify each server to compute a MAC value of
its outputs. In addition, C is evaluated in the clear: z← C(x), and the output

z is MACed to obtain z̃. Finally, ÔutDec contains a gadget that compares all
MACed outputs of the servers to z̃, and outputs z if the test passes, otherwise
it outputs ERR.8

5 From Additive Correctness to Additive Security via

Passive-Secure MPC

In this section we combine additively-correct circuits with passive-secure MPC
protocols to construct binary additively-secure circuits with a negligible error,
thus proving Theorem 2.

Recall that (as described in Section 1.1.2) we construct the additively-secure

implementation Ĉ of C from a passive-secure MPC protocol π. More speci�cally,
the inputs of parties in π are additive secret-shares of the input of C, and π
evaluates the function that: (1) reconstructs the input from the secret shares;
(2) evaluates C; and (3) outputs an additive secret-sharing of the output.

Consequently, every additive attack on Ĉ can be divided into two �parts�.
The �rst �part� targets the wires connecting di�erent sub-circuits NextMSG of

Ĉ, and we protect against such attacks by having these sub-circuits operate
on AMD codewords. The second �part� modi�es the internal computations of
the NextMSG functions, and we protect against such attacks by replacing each

NextMSG with its 2−σ-additively-correct implementation. Thus, the resultant Ĉ
is a 2−Ω(σ)-additively correct implementation of C, where every attack is with
overwhelming probability either �harmless� (namely, corresponds to an additive
attack on the inputs and output of C), or causes the output to be random. More-
over, as we argued in Section 1.1.2, the probability that the output is random is
independent of the inputs.

We start by de�ning the circuit CAUG, which implements the functionality
computed by π (namely, emulates C on secret shares).

Construction 5 Let C : Fn → Fk be an arithmetic circuit, and m ∈ N. The
circuit CAUG, on inputs (x1, · · · ,xm) ∈ (Fn)

m
, performs the following.

1. Computes x←
∑m
i=1 xi, and y← C(x). (This step reconstructs the input to

C from the secret shares, and evaluates C.)

2. Generates y1, · · · ,ym−1 ∈ Fn uniformly at random, and compute ym ← y −∑m−1
i=1 yi. (y1, · · · ,ym is an additive secret sharing of the output y.)

3. Outputs (y1, · · · ,ym).

Next, we use CAUG to construct the circuit Ĉ, see also Figure 4.

8 To implement ÔutDec without leaking information regarding the outputs of C, we
compare only the MAC tags generated by the servers (and not the actual outputs).
This necessitates an additional evaluation of C (in the clear) to generate the output.

21

Construction 6 Let C : Fn → Fk be an arithmetic circuit over a �nite �eld F,
σ be a security parameter, and π be a d-round, t-private, m-party protocol for
computing the circuit CAUG of Construction 5, using only point-to-point channels.
We assume (without loss of generality) that every message sent in π consists of
exactly s �eld elements, for some s ∈ N. Let (Enc,Dec) be an (s, σ, 2−σ)-AMD
encoding scheme that outputs encodings of length n̂ (s), and Dec outputs σ �ags

during decoding. The circuit Ĉ will use the following ingredients.

1. Protecting the �rst round. For every 1 ≤ i ≤ m, assume that party
Pi sends h messages in the �rst round, namely NextMSG1

i : Fn → (Fs)h.
Let ̂NextMSG1

i : Fn → Ft ×
(
Fn̂(s)

)h
be the 2−σ-additively correct implemen-

tation, with t �ags, of the circuit
(
Enc ◦ NextMSG1

i

)
: Fn →

(
Fn̂(s)

)h
(see

Construction 3).

2. Protecting middle rounds. For every 1 ≤ i ≤ m, and 2 ≤ j ≤ d − 1,
assume that in round j − 1 (j) Pi receives (sends) g (h) messages, namely

NextMSGji : (Fs)g → (Fs)h. Let ̂NextMSGji :
(
Fn̂(s)

)g → Ft × Fσ ×
(
Fn̂(s)

)h
be the 2−σ-additively correct implementation, with t �ags, of the circuit

Tinter

(
NextMSGji

)
:
(
Fn̂(s)

)g → Fσ ×
(
Fn̂(s)

)h
(see Construction 2).

3. Protecting the last round. For every 1 ≤ i ≤ m assume that Pi re-
ceives g messages in the �nal round, namely NextMSGdi : (Fs)g → Fk. Let

̂NextMSGdi :
(
Fn̂(s)

)g → Ft×Fσ ×Fk be the 2−σ-additively correct implemen-

tation, with t �ags, of the circuit Tfin

(
NextMSGdi

)
:
(
Fn̂(s)

)g → Ft × Fk (see

Construction 3).

4. Circuit construction. The circuit Ĉ on input x performs the following.

(a) Generate x1, · · · ,xm−1 ∈ Fn uniformly at random and compute xm ←
x−

∑m−1
i=1 xi.

(b) Emulates π with xi as the input of party Pi, where the ̂NextMSGji
described in Steps 1- 3 (connected in the natural way) replace the
NextMSGji . That it, for every round 1 ≤ j ≤ d − 1, if party Pi sends

a message to party Pi′ , we wire the corresponding output of ̂NextMSGji

to the corresponding input of ̂NextMSGj+1
i′ .

(c) Let zi denote Pi's output in the above execution. Compute z←
∑m
i=1 zi.

(d) For every 1 ≤ i ≤ m, and 2 ≤ j ≤ d, let f ′ji,1, · · · , f
′j
i,t denote the �rst t

outputs of ̂NextMSGji , and f
j
i,1, · · · , f

j
i,σ denote the t+1 to t+σ outputs of

̂NextMSGji . (The f
′j
i,w's are the �ags of the 2−σ-correct implementation,

and the f ji,w's are the �ags generated during the AMD decoding.)

(e) For every 1 ≤ i ≤ m let f ′di,1, · · · , f ′di,t denote the �rst t outputs of

̂NextMSG1
i . (These are the �ags of the 2−σ-correct implementation.)

22

Fig. 4: Components of Construction 6

(f) For every 1 ≤ w′ ≤ σ, compute f ′′w′ ←∑m
i=1

∑d
j=2

(∑t
w=1 f

′j
i,w · ri,j,w +

∑σ
w=1 f

j
i,w · rt+i,j,w

)
+∑m

i=1

∑t
w=1 f

′1
i,w · ri,d,w, where ri,j,w ∈R F.

(g) Output z +
∑m
w=1 f

′′
w · r′w, where r′w ∈R Fk.

We show that any additive attack on Ĉ is either equivalent to an additive
attack on the inputs and output of C, or will sets �ags inside Ĉ to non-zero
values. Moreover, the probability that a �ag is set depends only on the additive
attack, and is almost independent of the input. This is captured by the next
theorem.

Theorem 14. For any depth-d arithmetic circuit C : Fn → Fk, and security pa-
rameter σ, there exists a 2−Ω(σ)-additively-secure implementation Ĉ of C, where
|Ĉ|= |C|·polylog(|C|, σ) + poly(n, k, d, σ). Moreover, Ĉ can be constructed from C
in poly (|C|, σ,m) time.

The proof of Theorem 14, which follows the outline presented in Section 1.1.2,
is deferred to the full version. Here, we only outline the main points and subtle
issues in the proof. We �rst show that with overwhelming probability any addi-
tive attack on Ĉ either sets error �ags in Ĉ, or is equivalent to an additive attack
on its inputs and output. This is proved in two steps: �rst, using the additive

correctness property of the ̂NextMSGji sub-circuits, except with negligible prob-

ability additive attacks on the internal wires of every ̂NextMSGji can be �pushed�
to an additive attack on its inputs and outputs. Second, we examine the additive

attacks obtained in this manner between every pair of adjacent ̂NextMSGj−1
i′ and

̂NextMSGji sub-circuits. If all these attacks cancel out, then the output of Ĉ is

23

correct. Otherwise, the additive-security property of the AMD code protecting

the communication channels between the ̂NextMSG sub-circuits guarantees that

with overwhelming probability an error �ag will be set, causing Ĉ to abort.
Next, we prove that the probability of abort is almost independent of the

inputs of Ĉ. As before, we �rst �push� additive attacks on the ̂NextMSGji sub-
circuits to additive attacks on their inputs and outputs. We then traverse the
layers of Ĉ from the inputs to the output. In each layer j, a �ag can be raised

either by a ̂NextMSGji sub-circuit (which corresponds to the computation per-

formed by a single party Pi), or by the AMD decoding performed in ̂NextMSGji .
In either case, the event that a �ag is set depends only on the view of Pi which,
by the t-privacy of π (and of the additive secret sharing of the input), guarantees

that the distributions of the �ags when evaluating Ĉ on two di�erent inputs x,x′

are t-wise indistinguishable. Since a single set �ag su�ces to cause an abort, the
�OR lemma� (Lemma 1) guarantees that the probability of abort is independent

of the inputs to Ĉ.

6 Constant-Overhead AMD Codes and Their

Applications to Constant-Overhead MPC

In this section we use AMD codes to relate the open question of constructing
actively-secure two-party protocols with constant computational overhead to the
simpler questions of constructing passively-secure honest-majority MPC proto-
cols, and correct-only honest-majority MPC protocols, with constant computa-
tional overhead. This is done by combining our constructions from Sections 4
and 5 with a (relaxed) AMD encoding scheme that has constant overhead.

More formally, we say that a secure implementation of a circuit C (e.g.,
an additively-secure implementation of C, or a secure protocol for evaluat-
ing C) has constant computational overhead if its circuit size is O(|C|) +
poly(log|C|, σ, d, n, k) where σ is the security parameter, d is the circuit depth,
and n, k are the input and output lengths, respectively . (The circuit size of a
protocol π is the total circuit size of all the NextMSG functions of π.)

We �rst construct relaxed AMD encoding schemes with constant overhead,
namely the size of the encoding and decoding circuits is linear in the mes-
sage length. At a high level, relaxed AMD encoding schemes, �rst considered
by [3], have a weaker soundness guarantee: as long as the output is correct with
high probability, (non-zero) additive attacks are allowed to pass unnoticed. This
should be contrasted with (standard) AMD codes, in which every additive attack
is guaranteed to be detected (with high probability).

De�nition 7 (Relaxed AMD encoding scheme [3]). Let F be a �nite �eld,
n ∈ N be an input length parameter, t ∈ N be a security parameter, and ε (n, t) :
N×N→ R+. An (n, t, ε (n, t))-relaxed AMD encoding scheme (Enc,Dec) over F
is an encoding scheme with the following properties.

� Perfect completeness. For every x ∈ Fn,
Pr [Dec (Enc (x, 1t) , 1t) = (0,x)] = 1.

24

� Relaxed additive soundness. For every 0n̂(n,t) 6= a ∈ Fn̂(n,t), and every
x ∈ Fn, Pr [Dec (Enc (x, 1t) + a, 1t) /∈ ERR ∪ {(0,x)}] ≤ ε (n, t) where ERR =
(F \ {0})× Fn, and the probability is over the randomness of Enc.

Roughly speaking, we construct a constant-overhead AMD encoding scheme
by composing a linearly encodable and decodable AMD encoding scheme with
constant additive soundness, with a linearly encodable error-correcting code with
constant rate and relative distance. We will need the following notion of an
[n, k, d]-error-correcting code.

De�nition 8. We say that a pair (Enc : Fk → Fn,Dec : Fn → Fk) of determin-
istic circuits is an [n, k, d]-error-correcting code (ECC) over F if any x,y ∈ Fk
it holds that Pr [Dec(Enc(x)) = x] = 1 and that |{i : (Enc(x))i 6= (Enc(y))i}|≥ d.

The following theorem is due to Spielman [19] (see also [9]):

Theorem 15. There exist constants d1 > 1, and d2 > 0, such that for any
�eld F, and any k ∈ N, there exists a pair of circuits (Enck,Deck) which is a
[bd1kc, k, dd2ke]-ECC over F. Moreover, the size of Enck is O(k).

We can now construct an AMD encoding scheme with constant overhead.

Construction 7 Let n be a positive integer, F be a �nite �eld, and (Encn,Decn)
be an [n′, n, d]-ECC over F. In addition, let (Encamd : F → Fk,Decamd : Fk →
F × F be a (1, t, ε(t))-AMD encoding scheme. Consider the circuits Enc : Fn →
Fn+k·n′

and Dec : Fn+k·n′ → F× Fn which are de�ned as follows.

� The circuit Enc on input x ∈ Fn performs the following:

1. Computes x′ ← Encn(x) and for all 1 ≤ i ≤ n′ computes x̂i ← Encamd(x
′
i).

2. Outputs (x, x̂).

� The circuit Dec on input (x, x̂) performs the following:

1. Computes x′ ← Encn(x).

2. For all 1 ≤ i ≤ n′ computes (fi, y
′
i)← Decamd(x̂i) and f ′i ← x′i − y′i.

3. In case there exists an 1 ≤ i ≤ n′ such that fi 6= 0 or f ′i 6= 0, outputs
(1, 0n). Otherwise, outputs (0,x).

Theorem 16. For any positive integer n, the pair of circuits Enc,Dec of Con-
struction 7 is an (n, t, ε(t)d)-relaxed AMD encoding scheme.

Proof. The correctness property follows directly from the construction. We now
prove the relaxed additive soundness property. Let x ∈ Fn be an input to Enc,
and A = (a,b) ∈ Fn × Fkn′

be an additive attack on the outputs of Enc. We
consider two possible cases.

1. a=0. In this case, the additive attack does not at-
tempt to alter the value x passed from Enc to Dec, so
Pr [Dec (Enc (x, 1t) + (a,b), 1t) /∈ ERR ∪ {(0,x)}] = 0.

25

2. ai 6= 0 for some 1 ≤ i ≤ n. In this case, let I =
{i : (Encn(x + a))i 6= (Encn(x))i}. For an additive attack to successfully
cause Dec to output some x̃ 6= x, it must be the case that x′Ai =
y′Ai for every i ∈ I, where x′Ai = (Encn(x + a))i, and y′Ai =
Decamd(x̂i + bi) = Decamd ((Encamd((Encn(x))i)) + bi) (the right equality
follows from the de�nition of x̂). For every i ∈ I, if bi = 0 then by
the correctness of (Encamd,Decamd), Decamd (Encamd((Encn(x)i)) + bi) =
Decamd (Encamd((Encn(x))i)) = (Encn(x))i 6= (Encn(x + a))i (the right-
most equality holds since i ∈ I), so Dec outputs ERR (with prob-
ability 1); otherwise the additive soundness of (Encamd,Decamd) guar-
antees that fi 6= 0 only with probability ε(t). Moreover, the relative
distance property of the ECC guarantees that |I|≥ d. Consequently,
Pr [Dec (Enc (x, 1t) + (a,b), 1t) /∈ ERR ∪ {(0,x)}] ≤ ε(t)d. ut

Instantiating Construction 7 with the ECC of Theorem 15, we obtain the
following result.

Theorem 17. For any positive integer n there exists an (n, t, 2−Ω(n))-relaxed
AMD encoding scheme with encoding and decoding circuits of size Θ(n).

Theorem 17 can be used to relate the open question of constructing actively-
secure two-party protocols with constant computational overhead to the sim-
pler questions of constructing passively-secure honest-majority MPC protocols,
and correct-only honest-majority MPC protocols, with constant computational
overhead. We �rst show that actively secure 2-party MPC protocols in the OT-
hybrid model, with constant computational overhead, can be constructed from
additively-secure circuits with constant computational overhead. Formally,

Claim 18 Assume that any boolean circuit C admits an additively-secure imple-
mentation Ĉ with constant computational overhead. Then there exists an actively
secure 2-party protocol π for evaluating C in the OT-hybrid model with constant
computational overhead.

Proof (sketch). The work of [11] observed that the e�ect of an active attack on an
arithmetic version of the passively-secure GMW protocol [12] πGMW (in the OLE-
hybrid model) corresponds to an additive attack on the underlaying circuit being
evaluated. This observation holds in the binary case as well (where π′ is executed

in the OT-hybrid model). Thus, given an additively-secure implementation Ĉ of
C with constant computational overhead, one can construct an actively secure
2-party protocol π for evaluating C in the OT-hybrid model, with constant
computational overhead, simply by running πGMW on Ĉ. ut

The following corollary reduces the task of constructing actively-secure 2-
party protocols in the OT-hybrid model, with constant computational overhead,
to the following simpler tasks:

1. Constructing passively-secure 2-party protocols in the OT-hybrid model with
constant computational overhead.

26

2. Constructing correct-only (as per De�nition 6) 2-party protocols in the OT-
hybrid model with constant computational overhead.

Corollary 1. If there exist both correct-only MPC protocols, and passively se-
cure MPC protocols, with constant computational overhead, then there is a secure
2-party protocol in the OT-hybrid model with constant computational overhead.

Proof (sketch). Let π1, π2 be correct-only, and passively secure, protocols (resp.)
with constant computational overhead. The protocol π for evaluating a circuit
C is obtained by applying Claim 18 to the circuit Ĉsec constructed below.

1. Construct an additively-correct implementation Ĉcorr of C (as per De�ni-
tion 1) with constant computational overhead using π1, Construction 4, and
the relaxed AMD codes of Theorem 17.

2. Construct an additively-secure implementation Ĉsec of C (as per De�nition 2)
with constant computational overhead using π2, Construction 6, and the re-
laxed AMD codes of Theorem 17.

By repeating the analysis of Constructions 4 and 6 while replacing the protocol
from [6] with π1, π2, we obtain that π has constant computational overhead.
Regarding the security of π, the only di�erence from the analysis in Sections 4
and 5 is that π employs a relaxed AMD encoding scheme (whereas Construc-
tions 4 and 6 used (standard) AMD encoding schemes). However, since AMD
codes are used in these constructions only to protect the communication chan-
nels of π1, π2, then relaxed additive soundness su�ces for the analysis since it
guarantees that no attack can alter the values of these messages. ut

Acknowledgments

The �rst author is a member of the Check Point Institute for Information Security
and was supported by ERC starting grant 259426; by the Blavatnik Interdisciplinary
Cyber Research Center; by the Israeli Centers of Research Excellence I-CORE program
(center 4/11); by the Leona M. & Harry B. Helmsley Charitable Trust; and by NATO's
Public Diplomacy Division in the Framework of "Science for Peace".

The second author was supported by ERC starting grant 259426, ISF grant 1709/14,
BSF grant 2012378, a DARPA/ARL SAFEWARE award, NSF Frontier Award
1413955, NSF grants 1228984, 1136174, 1118096, and 1065276. This material is based
upon work supported by the Defense Advanced Research Projects Agency through the
ARL under Contract W911NF-15-C-0205. The views expressed are those of the author
and do not re�ect the o�cial policy or position of the Department of Defense, the
National Science Foundation, or the U.S. Government.

The third author was supported by ERC starting grant 259426 and a Check Point In-

stitute for Information Security grant for graduate students and post-doctoral fellows.

References

1. Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson.
Bounded indistinguishability and the complexity of recovering secrets. In CRYPTO
2016, pages 593�618, 2016.

27

2. Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudorandom
secret-sharing and applications to secure computation. In TCC 2005, pages 342�
362. Springer, 2005.

3. Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs.
Detection of algebraic manipulation with applications to robust secret sharing and
fuzzy extractors. In Eurocrypt 2008, pages 471�488. Springer, 2008.

4. Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In CRYPTO 2005, pages 378�394, 2005.

5. Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In
CRYPTO 2006, pages 501�520. Springer, 2006.

6. Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty
computation and the computational overhead of cryptography. In Eurocrypt 2010,
pages 445�465. Springer, 2010.

7. R. Dobrushin and E. Ortyukov. Upper bound on the redundancy of self-correcting
arrangements of unreliable functional elements. Problems of Information Trans-

mission, 23(2):203�218, 1977.
8. Yevgeniy Dodis, Jonathan Katz, Leonid Reyzin, and Adam Smith. Robust fuzzy

extractors and authenticated key agreement from close secrets. In CRYPTO 2006,
pages 232�250. Springer, 2006.

9. Erez Druk and Yuval Ishai. Linear-time encodable codes meeting the gilbert-
varshamov bound and their cryptographic applications. In ITCS 2014, pages 169�
182. ACM, 2014.

10. Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. E�cient multi-party
computation: From passive to active security via secure SIMD circuits. In CRYPTO
2015, pages 721�741, 2015.

11. Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer.
Circuits resilient to additive attacks with applications to secure computation. In
STOC 2014, pages 495�504, 2014. Full version in Cryptology ePrint Archive:
Report 2015/154.

12. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In STOC 1987,
pages 218�229. ACM, 1987.

13. Dai Ikarashi, Ryo Kikuchi, Koki Hamada, and Koji Chida. Actively private and
correct MPC scheme in t ≤ n/2 from passively secure schemes with small overhead.
IACR Cryptology ePrint Archive, 2014:304, 2014.

14. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers e�ciently. In CRYPTO 2003, pages 145�161, 2003.

15. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography
with constant computational overhead. In STOC 2008, pages 433�442, 2008.

16. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on
oblivious transfer - e�ciently. In CRYPTO 2008, pages 572�591, 2008.

17. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension
with optimal overhead. In CRYPTO 2015 Part I, pages 724�741, 2015.

18. Nicholas Pippenger. On networks of noisy gates. In FOCS 1985, pages 30�38.
IEEE, 1985.

19. Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes.
IEEE Trans. Information Theory, 42(6):1723�1731, 1996.

20. J. von Neumann. Probabilistic logics and synthesis of reliable organisms from
unreliable components. In C. Shannon and J. McCarthy, editors, Automata Studies,
pages 43�98. Princeton University Press, 1956.

28

A Additive Correctness Without a Decoder: Feasibility

In this section we construct a 2−Ω(σ) additively-correct circuit compiler CompIn

which on input a circuit C outputs a circuit Ĉ such that
∣∣∣Ĉ∣∣∣ = σ · |C|.

We present a method of amplifying security of additively-correct construc-
tions through repetition. The natural approach is for the compiled circuit Ĉ to
contain σ copies of an ε-additively-correct implementation Ĉε that are all eval-
uated on the input x. This approach raises two issues. First, an additive attack
A on Ĉ consists of σ additive attacks A1, · · · ,Aσ on the σ copies of Ĉε. For each
copy Ĉε,i, the additive-security of Ĉε guarantees that there exists an �ideal� ad-

ditive attack on the inputs and outputs of Ĉε,i such that except with probability

ε, the output of Ĉε,i under the additive attack Ai equals its output under the
corresponding ideal additive attack. However, if di�erent copies are evaluated
under di�erent additive attacks then the corresponding ideal additive attacks
may also be di�erent. This in e�ect causes di�erent copies to be evaluated on
di�erent inputs. To overcome this, before compiling C we �rst modify it to take
inputs encoded using a robust AMD encoding scheme. Since such codes guaran-
tee additive correctness with an ideal additive attack that is independent of the
additive attack on the outputs of the encoder, this guarantees the existence of
a single additive attack that simultaneously corresponds to the additive attacks
on all copies.

The second issue is that Ĉ should verify that all copies have the same output,
and this should be performed in the presence of additive attacks. Therefore,
before compiling C we �rst transform it into a circuit that MACs its output.
Thus, the test comparing the MACs of two inconsistent outputs will fail, even if
it is performed under an additive attack. These alterations of C are summarized
in the following construction of CAUG.

Construction 8 (CAUG, CMAC) Let C : Fn → Fk be an arithmetic circuit over
a �nite �eld F, σ ∈ N be a length parameter, and (Enc,Dec) be an (n+σ, l, σ, ε)-
robust AMD encoding scheme (as in De�nition 5). The circuit CAUG : Fl →
Fσ × Fk × (Fσ)

k
, on input x′ ∈ Fl, performs the following.

1. Compute (f, (u,x)) ← Dec(x′), where f ∈ F, u = (u1, · · · , uσ) ∈ Fσ, and
x ∈ Fn. (Intuitively, x is the input to the original circuit, and u will be used
to MAC the outputs.)

2. Computes z← C(x), where z ∈ Fk.
3. For all 1 ≤ i ≤ k, computes (z′i,1, · · · , z′i,σ) ← (u1 · zi, · · · , uσ · zi). (This step

MACs each output coordinate zi.)

4. Outputs
(
f · s, z, (z′1,1, · · · , z′1,σ), · · · , (z′k,1, · · · , z′k,σ)

)
where s ∈R Fσ.

The circuit CMAC : Fn × Fσ → Fk × (Fσ)
k
is obtained from C in a similar

manner, except that its input is (u,x) (�in the clear�), and so it does not perform
the input decoding of Step 1 above, and does not output a list of �ags.

29

Construction 9 Let F be a �nite �eld, σ ∈ N be a security parameter, n ∈ N
be an input length parameter, and k, k′ ∈ N be output length parameters. Let C :
Fn → Fk be an arithmetic circuit over F, and (Enc,Dec) be an (n+ σ, l, σ, 2−σ)-
additively robust AMD encoding scheme. Let CMAC and CAUG denote the circuits
obtained by applying Construction 8 to C. Notice that the inputs to CMAC are
x ∈ Fn and a MAC key u ∈ Fσ, and its output is in Fk+σk, whereas the inputs to
CAUG are robust-AMD encodings of u,x, and its output is in Fσ+k+σk. Let ĈAUG

be an ε-additively-correct implementation of CAUG with t �ags. The randomized
circuit Ĉ : Fn → Fσ × Fk, on input x ∈ Fn, operates as follows.
1. Generates a random MAC key u ∈ Fσ. (u will be used to MAC the outputs

of C in CAUG.)

2. Computes zMAC ← CMAC (x,u), and we denote zMAC =
(z, (z̃1,1, · · · , z̃1,σ) , · · · , (z̃k,1, · · · , z̃k,σ)). (This step evaluates C once di-
rectly, and MACs the outputs.)

3. Computes (x′,u′)← Enc ((x,u)). (This step encodes the inputs to CAUG.)

4. For all 1 ≤ i ≤ σ, computes (fi,yi) ← ĈAUG,i (x′,u′), where

ĈAUG,1, · · · , ĈAUG,σ denote σ separate copies of ĈAUG.

5. For all 1 ≤ i ≤ σ, interprets yi as(
(f ′i,1, · · · , f ′i,σ), z′i, (z

′
i,1,1, · · · , z′i,1,σ), · · · , (z′i,k,1, · · · , z′i,k,σ)

)
. (The output

of each copy ĈAUG,i is interpreted as σ �ags f ′i,1, · · · , f ′i,t indicating whether
the decoding of x′,u′ succeeded, a k-length output, and σ MACs for every
output coordinate.)

6. For all 1 ≤ i, j ≤ σ, computes f ′′i,j ←
∑k
l=1(z̃l,i − z′j,l,i)ri,j,l where all the

ri,j,l are generated uniformly from F. (This step compares the MACed out-
puts computed by the ε-additively-correct implementations in Step 3, with the
MACed output computed directly in Step 2. Speci�cally, f ′′i,j compares the i'th
MAC of the j'th copy, to the i'th MAC of Step 2.)

7. For all 1 ≤ i ≤ σ, computes f ′′i ←
∑σ
j=1 f

′′
i,jri,j +

∑σ
j=1 r

′
i,jf
′
j,i, where all the

ri,j and r
′
i,j are generated uniformly from F. (This step checks that all copies

agree on the i'th MAC, and in addition, that the decoding of the inputs in all
copies succeeded.)

8. For all 1 ≤ i ≤ σ compute gi ←
∑σ
j=1(

∑t
u=1 fj,ur̃i,j,u + f ′′j r̃

′
i,j,u) where all

the r̃i,j and r̃′i,j are generated uniformly from F. (This step checks that the
computation in the i'th ε-additively-correct implementation succeeded, and in
addition, that the input decoding in all copies succeeded, and they all agree on
all MACs.)

9. Output ((g1, · · · , gσ), z).

In the full version of the paper we prove the following:

Theorem 19. For any �eld F, arithmetic circuit C : Fn → Fk and security
parameter σ, the circuit Ĉ obtained by applying Construction 9 to C is a 2−Ω(σ)-
additively-correct implementation of C. Moreover, |Ĉ|= poly(σ, |C|).

30

	Binary AMD Circuits from Secure Multiparty Computation

