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Abstract

In this paper we study the feasibility of using homomorphic tallying in the
Estonian Internet voting system. The paper analyzes the security benefits provided
by homomorphic tallying, the costs introduced and the required changes to the
voting system. We find that homomorphic tallying has several security benefits,
such as improved ballot secrecy, public verifiability of the vote tallying server and
the possibility for observers to recalculate the tally without compromising ballot
secrecy. The use of modern elliptic curve cryptography allows homomorphic tallying
to be implemented without a significant loss of performance.

1 Introduction

Currently, as of the 2015 Parliamentary Elections, Estonian i-voters cast their votes
by encrypting the candidate number using the RSA-OAEP encryption scheme and the
National Electoral Committee’s (NEC) 2048-bit RSA public key. The 256-byte ciphertext
is digitally signed using the voter’s ID card and sent to the Vote Forwarding Server (VFS),
where the digital signature is verified, the signed vote is timestamped and the signed and
timestamped vote is forwarded to the Vote Storage Server (VSS) for storage. In the
tallying phase, the VSS removes digital signatures from votes and exports ciphertext-only
votes to removable media. The media is connected to the offline Vote Tallying Server
(VTS) and ciphertexts are sent to the Hardware Security Module (HSM) for decryption.
The candidate numbers obtained are tallied and the voting result is announced.

In this paper we study a homomorphic tallying scheme where the current RSA vote
encryption scheme is replaced with an additively homomorphic ElGamal encryption
scheme and the casting and tallying of votes is modified as follows. The voter casts his
vote by producing as many ElGamal ciphertexts as there are candidates in the candidate
list. All ciphertexts are encryptions of 0, except for the ciphertext that corresponds to
the candidate for whom the voter wants to vote. This ciphertext is an encryption of 1.
Every ciphertext is supplemented with cryptographic proof proving that the ciphertext
is an encryption of a Boolean value – 0 or 1. This prevents the voter from casting
more than one vote for a candidate. The ciphertexts are supplemented with one more
proof, proving that the sum of the corresponding plaintexts is 1. This prevents the
voter from voting for more than one candidate. The voter signs his district number,
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the ordered ciphertexts and proofs, and sends the digitally signed vote to the VFS. In
addition to verifying the digital signature, the VFS also checks cryptographic proofs inside
the vote to verify that the voter has voted only for one candidate (without being able
to distinguish the particular candidate). The vote is timestamped and forwarded to the
VSS for storage. In the tallying phase, the VSS removes digital signatures from the
votes and multiplies all the ciphertexts corresponding to the same candidate. Due to
the homomorphic property of the underlying encryption scheme, the multiplication of
ciphertexts produces a single ciphertext that contains the number of votes cast for a
particular candidate. The aggregated ciphertexts are written onto removable media. The
media is connected to the VTS, the VTS sends ciphertexts to the HSM for decryption
and shows the number of votes cast for the candidate.

The homomorphic tallying scheme described above is not new. The scheme was
introduced in 1997 by Cramer et al. [1] and has been used in the Helios open-audit voting
system [2] for years. The contribution of this paper is an analysis of the deployment of
homomorphic tallying in the context of Estonian Internet voting, where the performance
of the protocol is improved by the use of elliptic curve cryptography.

The paper is structured as follows. Section 2 lists the security benefits of homomorphic
tallying compared to the current i-voting scheme used in Estonia, Section 3 describes
implementation details along with the benchmark of 256-bit elliptic curves, Section 4
provides efficiency-related statistics from past elections, Section 5 analyzes required
changes to the i-voting system, Section 6 discusses the benefits of homomorphic tallying
over mix-net-based schemes and Section 7 concludes the paper.

2 Security Benefits

Switching to the homomorphic tallying scheme provides several security benefits. In this
section we discuss the benefits in order of significance.

2.1 Public Verifiability of VTS and HSM

In the homomorphic tallying scheme the task of the VTS is simple: to obtain aggregated
ciphertext decryptions from the HSM and display the number of votes cast for a candidate.
Since the aggregated ciphertexts and corresponding plaintexts cannot be linked back to
individual voters, the data can be made public and anyone can verify the correctness
of the VTS and the HSM. In order to achieve that, the HSM along with plaintext must
return cryptographic proof of a correct decryption. Thus, in case of homomorphic tallying
the functionality of the VTS is simplified and the correctness of the VTS and the HSM1

can be publicly verified.

2.2 Enabler for End-to-End Verifiability

If the correctness of the VTS and the HSM can be publicly verified, then the only
major verifiability feature still missing is to verify if the aggregated ciphertexts submitted
to the VTS are produced from correctly produced and signed ciphertexts, effectively
providing counted-as-cast verifiability2. This step could also be made publicly verifiable
by publishing the signed votes; however, this approach introduces two security risks.

1The proof of correct decryption could be used also in the current scheme, but since the individual
decryptions must be kept secret, the proof can be verified only by the VTS.

2The verification of ballot box integrity, i.e., proof that all of the cast votes are counted, also needs to
be provided.
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• Vote-buying risk. By observing published votes, a vote-buyer would be able to
verify whether or not the vote-seller’s vote is revoked or included in the final tally.
By publishing the vote verification QR code [3], the voter would be able to present
a cryptographic proof about the candidate for whom he voted.

• Vote privacy risk. The votes are encrypted using cryptographic algorithms that
may be broken after a few decades. For this reason, access to encrypted votes should
be limited and the ciphertexts should be destroyed as soon as the results are tallied3.

Considering these risks, access to signed votes should be limited. Limited public
verifiability can be achieved if at least some members of the public (e.g., election observers)
are allowed to perform the verification on their hardware. The verification can be
performed on the premises of the NEC, where organizational measures are used to prevent
data leakage.

2.3 Stronger Ballot Secrecy

Homomorphic tallying improves ballot secrecy, since individual votes are never decrypted.
Although at the moment tallying is implemented so that individual vote decryptions are
kept secret, there is still a moment where the VTS and the HSM obtain plaintext that
can be linked back to the voter. In case of homomorphic tallying the VTS and the HSM
operate on aggregated ciphertexts that cannot be linked to individual voters.

2.4 No Invalid Votes

In the past three elections an invalid vote was observed in the tallying phase [4]. The vote
contained unexpected plaintext. This gave rise to a variety of speculations on whether the
invalid vote was caused by a software bug or whether the vote was intentionally spoiled by
encrypting an invalid value [5, Section 3.1]. In case of homomorphic tallying such invalid
votes can be identified by the VFS and rejected. If at any time the decision is made to
allow casting an empty ballot, an additional “empty ballot” candidate can be introduced
or the ciphertext sum proof can be replaced with proof that the sum of ciphertexts is
either 0 or 1, thus allowing a voter to cast a vote for no candidate.

2.5 Enabler for Threshold Decryption

The use of the ElGamal cryptosystem allows for efficient distributed key generation and
decryption [6]. Currently, the election RSA private key is stored in a single HSM that can
be activated by M out of N hardware keys issued to NEC members. The use of a private
key split between independent parties would significantly improve ballot secrecy, although
it would require overcoming additional organizational challenges. The use of homomorphic
tallying also decreases the load on the HSM, since the number of decryptions required
depends on the number of candidates and not on the number of votes cast.

3It is possible to argue that since votes are sent to the election server over a public Internet connection,
different parties are able to capture and store the encrypted traffic forever, which makes this unconditional
ballot secrecy requirement unachievable in any case.
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3 Implementation Details

3.1 Additive Homomorphic Cryptosystem

As noted before, the ElGamal encryption scheme in additive homomorphic setting, also
known as exponential or lifted ElGamal, is used. The ElGamal ciphertext consists of
the tuple (c1, c2) = (gr, hrgi), where g is the group generator, h is the public key, r is
encryption randomness and i is the integer value to be encrypted. To recover a message
from the decrypted plaintext, a discrete logarithm must be solved, but since the message
space is small (bound by the maximum number of votes that a single candidate can
receive), the time required to recover the message is insignificant.

To improve efficiency and decrease the size of the vote, ElGamal over an elliptic curve
group is used. Since it is desirable to have a security level of 128 bits that should stay
secure at least until 2030 [7], a 256-bit prime order curve (equivalent to a 3072-bit RSA)
must be selected. This means that a compressed point on the curve will require 33 bytes
(the last byte encoding the sign of the Y coordinate), and thus the full ElGamal ciphertext
will consume 66 bytes.

3.2 Zero-knowledge Proofs

As explained above the homomorphic tallying scheme requires three types of proofs: proof
of correct decryption (to verify the correctness of the HSM), proof that the ciphertext
contains an encryption of either 0 or 1, and proof that the sum of the ciphertexts is 1 (to
guarantee that the voter is able to cast only a single vote only for a single candidate).

Proof of correct decryption. The HSM receives an aggregated ElGamal ciphertext
tuple (c1, c2), which contains the sum of votes given for a candidate. In addition to
decrypted plaintext m, the HSM must return zero-knowledge proof proving that plaintext
m was correctly obtained by taking c1 to some exponent x and the result was factored
out from c2 to obtain plaintext m. However, the HSM must also prove that the exponent
x used to obtain m is indeed the corresponding private key value from the election key
pair, and thus the HSM proves in the same proof that the publicly known public key
h is equal to the generator g taken to this exponent x. Thus, the HSM proves without
disclosing private key x that gx = h and c1

x = c2
m

. The Chaum-Pedersen proof of discrete
logarithm equality [8] is used to prove this statement. The proof is made non-interactive
by using the strong form [9] of the Fiat-Shamir transformation [10] and SHA-256 as a
hash function.

As a result, complete proof consists of ElGamal ciphertext (c1, c2) (66 bytes), plaintext
m (32 bytes), challenge c (32 bytes) and response r (32 bytes).

To verify the proof, the commitment values a, b are recovered from c by a = gr

hc and
b = c1r

c2
m

c and it is verified that c = H(g||h||c1|| c2m ||a||b).
Note that since the additive ElGamal scheme is used, the number of votes given for

the candidate must be recovered from the plaintext m by brute-forcing exponent i until
gi = m, in which case i will be the number of votes given for the candidate.

Proof that the ciphertext encrypts 0 or 1. To prove that the ciphertext contains
either (gr, hrg0) or (gr, hrg1) for some randomness r, disjunctive Chaum-Pedersen
proof [11] is used. The proof is converted into non-interactive proof using the strong
form of Fiat-Shamir transformation and SHA-256 as a hash function.
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A complete proof consists of ElGamal ciphertext (c1, c2) (66 bytes), challenges ca, cb
(64 bytes) and responses ra, rb (64 bytes) – in total 194 bytes.

The proof is verified by first recovering challenge and commitments: c = ca + cb, a0 =
gra

c1ca
, a1 = hra

c2ca
, b0 = grb

c1
cb
, b1 = hrb

(c1/g)
cb and checking that c = H(g||h||c1||c2||a0||a1||b0||b1).

Proof that the sum of ciphertexts is 1. Instead of using zero-knowledge proof to
prove that the sum of ciphertexts is 1, the prover can provide the decryption of aggregated
ciphertexts. The voter includes in the vote rsum – the sum of individual randomness values
used in encryptions (note that rsum does not leak any information about the individual
randomness values). The verifier adds up individual ciphertexts and checks whether the
aggregated ciphertext is equal to the encryption of 1 using rsum as randomness. The size
of rsum is 32 bytes.

3.3 Choice of Elliptic Curve

We evaluated the three most popular 256-bit prime order curves: NIST P-256,
secp256k1 and Ed25519. The main evaluation criterion was speed provided by available
cryptographic libraries implementing the curve. The speed of implementation is
important, since the verification of proofs is an intensive task, computationally. Since
private key operations will be performed in the HSM, the side channel protections provided
by the benchmarked implementations are of no importance. In fact, increased speed-up
could be gained if the libraries provided implementations that did not consider protection
against side channel attacks.

NIST P-256. The curve also known as prime256v1 and secp256r1 has been
standardized by the NIST and the SECG and is the most widely supported curve in
the industry. The curve is used also in the Estonian Mobile-ID for ECDSA digital
signatures [12, Section A.2.5]. We benchmarked two P-256 implementations available
in OpenSSL 1.0.2h. Intel’s optimization (i) [13] and Google’s optimization (g) [14] that
can be enabled with flag enable-ec nistp 64 gcc 128.

secp256k1. The curve has been standardized by the SECG and this is the curve used
in Bitcoin for transaction signing. The curve has mathematical properties that allow
performing point operations faster than in P-256. We benchmarked two secp256k1
implementations – implementation available in OpenSSL 1.0.2h and implementation
libsecp256k1 -r699 [15] used by the official Bitcoin software. Implementation
libsecp256k1 was compiled with the parameters USE NUM GMP, USE FIELD 5X52 ASM,
USE FIELD INV NUM, USE SCALAR INV NUM, USE SCALAR 4X64 and USE ENDOMORPHISM that
were found to provide the best result.

Ed25519. The curve was designed for speed and security against side channel attacks.
The curve is birationally equivalent to the ECDH optimized Curve25519, the difference
being that Ed25519 supports efficient point arithmetic with the Y coordinate. We
benchmarked the 64-bit optimized implementation ed25519-donna -r81 [16]. The
implementation was compiled with the parameters HAVE UINT128 and ED25519 64BIT

that were found to provide the best result.
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P-256 (OpenSSL (i))

P-256 (OpenSSL (g))

secp256k1 (OpenSSL)

secp256k1 (libsecp256k1)

Ed25519 (ed25519-donna)

2,304

701

450

2,762

2,824

Proof verifications / core second

Figure 1: Proof verification speed of 256-bit curve implementations.

Implementations libsecp256k1 and ed25519-donna have been designed for efficient
digital signatures using ECDSA and edDSA, respectively. In order to use the
implementation for general-purpose point operations, the required functionality had to
be constructed using low-level API calls. For the libraries benchmarked in this paper, we
have published Python bindings [17] which provide a uniform interface for general-purpose
elliptic curve point operations.

In the benchmark we measured the speed of disjunctive Chaum-Pedersen proof
verifications (proof that the ciphertext encrypts 0 or 1). Single proof verification involves
2 curve point decompressions, 8 compressions, 6 multiplications, 2 base multiplications,
7 additions, 4 inversions and one SHA256 hash calculation. In all implementations the
hash was calculated using OpenSSL.

The benchmark was run on a single core of an Intel i5 6260U@2.90GHz processor
embedded in Intel NUC Mini PC NUC6i5SYH. The code was compiled with GCC 5.3.1
using optimization option -O2. The results are shown in Figure 1.

We see that the performance of secp256k1 and Ed25519 curve implementation is
similar, while curve P-256 implementation is 0.82 times slower. Since the difference in
performance is not particularly significant, the choice of curve P-256 might be preferable
due to its availability in cryptographic libraries and support by HSM vendors.

4 Relevant Statistics

The efficiency of homomorphic tallying depends on several parameters such as candidates
in the candidate list, the total number of candidates and the total number of i-votes cast.
Here we present relevant statistics from the last three elections.

KOV2013. In the 2013 Municipal Elections [18], out of 1,086,935 eligible voters,
133,8084 voters cast their vote using i-voting. In municipal elections voters can vote for
candidates who run in their municipality. The total number of candidates running for
elections was 14,784. The smallest number of candidates in a municipality was 12 and
the largest 437. The weighted average of candidates in the candidate list returned to
i-voters was 166.

The maximum number of i-votes given to a single candidate was 3,263. The maximum
number of votes per minute submitted to election servers was 134 votes per minute [19,
Slide 17].

4The number of votes received is usually negligibly larger because of re-voting and the number of votes
counted is usually negligibly smaller because some are revoked by a paper vote.
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EP2014. In the 2014 European Parliament Elections [20], out of 902,873 eligible voters,
103,151 voters cast their vote using i-voting. All voters chose a candidate from a single
country-wide list of 88 candidates.

The maximum number of i-votes given to a single candidate was 17,268. The maximum
number of votes per minute submitted to election servers was 86 votes per minute [21].

RK2015. In the 2015 Parliamentary Elections [22], out of 899,793 eligible voters,
176,491 voters cast their vote using i-voting.

In the parliamentary elections voters can vote for candidates who run in their district.
The total number of candidates running for elections was 872. The smallest number
of candidates in a district was 49 and the largest was 115. The weighted average of
candidates in the candidate list returned to i-voters was 80.

The maximum number of i-votes given to a single candidate was 6,423. The maximum
number of votes per minute submitted to election servers was 159 votes per minute [23,
Slide 43].

From these statistics we can see that the maximum number of votes that has to be
stored if all eligible voters i-vote would be ≈ 1,100,000, while the current number is ≈
130,000. We can also see that municipal elections are the most complex: there, the total
number of candidates is ≈ 15,000 and the largest candidate list contains ≈ 500 candidates.

5 Required Changes and Efficiency

In this section we list the required changes to the components of the i-voting system and
analyze their impact on efficiency.

5.1 Voting Client Application

Instead of encrypting a single candidate number using the 2048-bit RSA, the Voting
Client Application (VCA) has to create as many encryptions with proofs as there are
candidates in the candidate list. The production of votes in the worst-case-scenario
candidate list of 500 candidates takes 0.5 seconds on a single core of the benchmark
machine using curve P-256.

In case of the worst-case-scenario candidate list of 500 candidates, the size of the vote
would increase by 95 KB (194 ∗ 500 + 32 = 97, 032 bytes), which is an amount that can
be sent to the VFS even over a low-speed mobile Internet connection.

For vote verification, the VCA would have to replace the 20-byte RSA-OAEP
encryption padding in the QR code with the 32-byte ElGamal randomness that was used
to encrypt the ciphertext that contains the encryption of 1.

5.2 Vote Verification Application

In the current scheme, the Vote Verification Application (VVA) decodes the QR code and
extracts the vote identifier and RSA-OAEP randomness used to encrypt the candidate
number. Using the vote identifier, the VVA obtains from the VSS the candidate list and
the encrypted vote. Using RSA-OAEP randomness, candidate numbers in the candidate
list are encrypted one by one, until the produced ciphertext matches the encrypted vote
received from the VSS [3]. This brute-force search applied to a candidate list of 500
candidates takes around 5.5 seconds on an Android 2.3.6 device with ARMv6 832 MHz
CPU using Bouncy Castle v1.54.

7



For the homomorphic tallying scheme, the RSA-OAEP randomness in the QR code (40
hexadecimal characters) must be replaced with ElGamal randomness used to encrypt the
value 1 (64 hexadecimal characters). To find the candidate, a single ElGamal encryption
must be made and the produced ciphertext must be used to find its position in the list of
ciphertexts received from the VSS.

While such a single ElGamal encryption using curve P-256 on an Android device
described above takes only 0.2 seconds, instead of the fixed 256-byte RSA ciphertext,
the VVA must download ciphertext whose size depends on the number of candidates
in the candidate list. In the worst-case-scenario, when the candidate list contains 500
candidates, the vote size is 95 KB. To reduce the size to 32 KB, the VSS can return votes
without proofs. The vote size can be further reduced to 16 KB by including in the vote
only the second member c2 from the ElGamal ciphertext tuple (c1, c2). We can skip the
verification of c1 by observing that the VCA controlled by an attacker cannot come up
with randomness r (encoded in the QR code) and randomness r′ (used for encrypting 0)
such that c2 = hrg1 = hr′g0, unless the attacker can solve a discrete logarithm problem
or unless the attacker knows the election private key5.

To sum up, the homomorphic tallying scheme decreases a varying number of
brute-force encryptions to a single encryption, but doubles the download size (assuming
the vote and the candidate list are of a similar size).

5.3 Vote Forwarding Server

In addition to digital signature verification, the VFS will also have to verify the proofs
included in the vote. A single core of the benchmark machine can process 4.6 votes
per second, assuming the worst-case-scenario, where each vote contains 500 proofs, using
curve P-256 (see Figure 1).

Taking into account that the VFS will have a faster processor with several cores, that
an average vote only contains 170 proofs, and that the maximum number of votes cast
per minute so far has only been 159 (in RK2015), then even a single instance of the
VFS should be able to easily handle the current stream of votes without introducing a
noticeable delay.

5.4 Vote Storage Server

The task of the VSS is to store the votes until elections are over. Assuming that the
average candidate list contains 170 candidates, the size of the vote increases by 32 KB
(194 ∗ 170 + 32 = 33, 012 bytes), which in total requires an additional 4 GB of storage
in case of 130,000 i-votes cast and 34 GB of storage if all ≈ 1,100,000 eligible voters cast
their i-vote. While these storage requirements are far from being too high for today’s
hardware, the increase in vote storage is a challenge for the daily vote backup procedure,
which up to now has been implemented by manually writing votes onto a DVD.

After the end of the voting period, the VSS has to produce aggregated ciphertexts
by adding up all ciphertexts corresponding to the same candidate. This involves two
curve point decompressions and two point additions per ElGamal ciphertext. Assuming
that the average candidate list contains 170 candidates and 130,000 i-votes are cast, the
summation takes 27 minutes on a single core of the benchmark machine using curve
P-256, excluding the overhead introduced by file access and read operations. The size of
aggregated ciphertexts is 1 MB, assuming that 15,000 candidates are running for elections.

5An attacker who knows the ElGamal private key x can come up with values r = 0 and r′ = x−1 that

will satisfy the equation, since h0g1 = gx
x−1

g0. Therefore, the VVA must reject QR codes with r = 0.
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5.5 Vote Tallying Server

As mentioned in Section 2.1, the task of the VTS becomes simpler. The VTS is provided
with a list of candidates and the corresponding aggregated ciphertexts. The VTS obtains
a decryption from the HSM and outputs the number of votes cast for the candidate.

Since the number of votes i cast for a candidate is encoded in plaintext in the form
gi, the VTS has to recover the exponent by solving a discrete logarithm. Since the search
space is small, the exponent can be found trivially. So far, the largest number of i-votes
cast for a candidate has been 17,268 (in EP2014). It takes only 0.2 seconds to test 17,000
successive exponents on a single core of the benchmark machine using curve P-256.

5.6 Procedures

To use the verifiability features provided by the scheme, two new procedures have to be
implemented.

Public verification of VTS and HSM. To verify the correctness of the VTS and
the HSM, the NEC would have to publish a file, which contains for every candidate
aggregated ciphertexts (66 bytes) and proof of correct decryption (96 bytes). This file
can be published on the NEC website, since it leaks no information about individual votes.

Verification of signed votes. To verify that aggregated ciphertexts were produced
from correctly formed and signed votes, procedures have to be established for providing
observers with access to signed votes for verification using their hardware and software. As
a possible measure to prevent data leakage, the verification can be done on the premises
of the NEC on the condition that after verification, the hardware onto which the votes
were loaded is left on the premises of the NEC for destruction.

Assuming that 130,000 votes are cast and the average candidate list contains 170
candidates, the NEC would have to provide verifiers with a 4 GB medium. The proof
verification process will take 2 hours and 40 minutes on a single core of the benchmark
machine using curve P-256, plus 5 minutes for 2048-bit RSA signature verifications,
plus 27 minutes to produce aggregated ciphertexts (see Section 5.4). The output of the
verification procedure is a hash of aggregated ciphertexts, which should match the hash
of the aggregated ciphertexts that are published on the NEC website.

As a minimum, the NEC should implement the verification using a machine that has
never been connected to the Internet, and, if there is no interest from observers to verify
signed votes, buy the verification service from an external entity (e.g., an auditing firm).

6 Related Schemes

The same level of verifiability can be achieved using mix-net-based schemes, where
signature-less ciphertexts are rerandomized and decryptions of rerandomized ciphertexts
are made public. While a mix-net-based scheme would be more efficient [24, Section 5.2],
the proof of correct shuffling used in a mix-net scheme is cryptographically more complex
than the disjunctive Chaum-Pedersen proof used in the homomorphic tallying scheme.
The cryptographic simplicity of the scheme is important in case of a national voting
scheme, since it is desirable that the voting scheme be understandable to and verifiable
by as wide an audience as possible.
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Another side effect of mix-net-based schemes is an additional mixing party that has to
be trusted to not compromise ballot secrecy. Several independent mixing parties can be
used in a chain to reduce the risk of ballot secrecy compromise, but the cost is complicating
the scheme and introducing additional organizational challenges.

The simple ballot style used in Estonia makes it possible to use homomorphic tallying.
For more complicated ballots, the mix-net-based scheme would be the only option.

7 Conclusions

The configuration of the Estonian electoral system allows the Estonian i-voting system
to benefit from security and verifiability features provided by a relatively simple
homomorphic tallying scheme. The scheme provides counted-as-cast verifiability,
improving efficiency in the tallying phase, with the cost of increasing the ballot size
by 32 KB on average.
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