Efficient and Private Scoring of Decision Trees, Support Vector Machines and Logistic Regression Models based on Pre-Computation

Martine De Cock, Rafael Dowsley, Caleb Horst, Raj Katti, Anderson C. A. Nascimento, Wing-Sea Poon and Stacey Truex

Abstract—Many data-driven personalized services require that private data of users is scored against a trained machine learning model. In this paper we propose a novel protocol for privacy-preserving classification of decision trees, a popular machine learning model in these scenarios. Our solutions is composed out of building blocks, namely a secure comparison protocol, a protocol for obliviously selecting inputs, and a protocol for multiplication. By combining some of the building blocks for our decision tree classification protocol, we also improve previously proposed solutions for classification of support vector machines and logistic regression models. Our protocols are information theoretically secure and, unlike previously proposed solutions, do not require modular exponentiations. We show that our protocols for privacy-preserving classification lead to more efficient results from the point of view of computational and communication complexities. We present accuracy and runtime results for 7 classification benchmark datasets from the UCI repository.

Index Terms—Private classification, decision trees, support vector machines, logistic regression, secure multiparty computation, secret sharing, privacy-preserving computation.

I. INTRODUCTION

Data-driven machine learning has the ability to vastly improve the quality of our daily lives and is already doing so in many ways. Healthcare providers use systems based on machine learning to diagnose patients; wearable devices are connected to fitness tracking apps that use machine learning to make personal health recommendations; search engines and social media sites rely on machine learning to decide which content to show to each individual user, including which advertisements; e-commerce companies leverage machine learning to determine which products or movies to recommend to customers based on their prior purchase behavior; online dating services use machine learning in an attempt to connect people with the love of their lives... the list goes on and on. To benefit from any of these personalized services, the personal data of users – such as personal preferences, browsing behavior or medical lab results – needs to be scored against a trained machine learning model. In this paper we propose techniques to perform this scoring in a privacy-preserving way so that individuals do not have to share their personal data with anyone “in the clear” but may still benefit from these types of personalized services.

More specifically, we deal with scenarios where a person holding data (Alice) wants to score her data against a model in possession of another party (Bob) such that, at the end of the protocol, Bob learns nothing about Alice’s data and Alice learns as little as possible about Bob’s model.

Our contributions: We propose a new privacy-preserving protocol for evaluating decision trees. We also substantially improve upon previously proposed protocols for hyperplane based classifiers - we include support vector machines and logistic regression classifiers as specific cases. We provide formal definitions of security and show that our protocols match these definitions. We show that our protocols compare favorably against previous results [9], [20].

Our results are proven in the so-called commodity-based model [5], [4], in which correlated data is distributed to Alice and Bob during a setup phase. Later on, during an online phase, Alice and Bob use these commodities to run the desired computation on their respective inputs. This data can be pre-distributed by a trusted authority or it can be pre-computed by the players during a setup phase using well-known protocols available in the literature (see, for instance, [18], [17], [44]). These commodities do not depend on the actual inputs of Alice or Bob. Thus, in case a trusted authority is used to distribute the commodities, the trusted authority never engages in the actual computation during the online phase and never learns any information about the model held by Bob or the data possessed by Alice. The protocols in our online phase are information theoretically secure; that is, if the commodities are provided in an information theoretically secure fashion, the overall protocol will be information theoretically secure. Finally, differently from previously proposed solutions [9], [54] our protocols solely use modular additions and multiplications. No modular exponentiations are ever required.

The main idea behind our solutions is to decompose the problem of obtaining privacy-preserving classifiers into the problem of obtaining secure versions of a few building
blocks: distributed multiplication, distributed comparison, bit-decomposition of shares, distributed inner product and argmax computation, and oblivious input selection. We then either use the most efficient available versions of these protocols or propose more efficient ones. In more detail, the main contributions include:

- A novel protocol for computing private scoring of decision trees where Bob learns nothing about Alice’s data and Alice learns only the depth of Bob’s decision tree and the classification result. Moreover, only modular additions and multiplications are required. In previous solutions [9, 54], either modular exponentiations and fully homomorphic encryption are required [9] or Paillier encryption-based private comparison schemes and Oblivious Transfer protocols (both requiring modular exponentiations) are required [54].
- Demonstration that applying an adaptation of the bit decomposition protocol proposed in [37] and the comparison protocol of [30] (with secret sharings in the field \(\mathbb{Z}_2 \)) as building blocks to previously proposed protocols for hyper-plane based classifiers [20] delivers more efficient results for the computational and communication complexities. We implement the particular case of support vector machines and logistic regression.
- Application of our proposed protocols on 7 real data benchmark datasets from the UCI Machine Learning repository [1] and presentation of the obtained accuracies and running times.

Our solutions are secure in the honest-but-curious model, consistent with the security model used in previous works [9, 20]. We provide full proofs of security.

Outline: We first introduce our notation and model in Section II. Section III explains the machine learning classifiers that are considered in this work. We then present in Section IV the building blocks that are used in the privacy-preserving classifiers: a secure distributed comparison protocol, a secure argmax protocol, a secure bit-decomposition protocol and an oblivious input selection protocol. After that, Section V describes the privacy-preserving classifiers and how the pre-distributed data can be generated by the parties if no trusted initializer is available (or desirable). Section VI deals with the experiments that we performed to assess their performance. Finally, Section VII compares our solution with the related work and Section VIII presents our concluding remarks.

II. PRELIMINARIES

A. Notation

We denote by \(y \xleftarrow{\$} F(x) \) the act of running the probabilistic algorithm \(F \) with input \(x \) and obtaining the output \(y \). \(y \xleftarrow{\$} F(x) \) is similarly used for deterministic algorithms. Logarithms are base 2. For a bit \(b \), \(b \) represents its negation.

In this work additively secret sharings are used to perform computation modulo \(q \). A value \(x \) is secretly shared over \(\mathbb{Z}_q \) by picking \(x_1, \ldots, x_n \) uniformly at random subject to the constraint that \(x = \sum_{i=1}^{n} x_i \mod q \) and then distributing each share \(x_i \) to \(P_i \). Let \([x]_q \) denote this secret sharing. Given \([x]_q \), \([y]_q \), and a constant \(c \), it is trivial for the parties to compute a secret sharing \([z]_q \) corresponding to \(z = x + y \), \(z = x - y \), \(z = cx \) or \(z = x + c \). All of these operations can be performed locally by the parties without any interaction by simply adding, subtracting or proposing the shares respectively for the first three cases, and by having a pre-agreed party add the constant in the last case. These operations will be denoted respectively by \([z]_q \xleftarrow{\$} [x]_q + [y]_q \), \([z]_q \xleftarrow{\$} [x]_q - [y]_q \), \([z]_q \xleftarrow{\$} c[x]_q \) and \([z]_q \xleftarrow{\$} [x]_q + c \). For a secret sharing \([x]_q\), the parties can open the value \(x \) by revealing their shares \(x_i \).

We should remark that the applications considered in this paper are between two parties, but for the sake of generality some protocols are described in a more general form, running with \(n \) parties.

B. Security Model

The Universal Composability (UC) framework [11] is the security model considered in this work. Only a short overview of the UC model is provided here, for more details please refer to the book of Cramer et al. [10]. The UC framework analyzes the security of cryptographic protocols under arbitrary composition, i.e., it considers scenarios where multiple copies of a protocol are executed concurrently with themselves and other protocols in a complex environment, such as the Internet. The UC composition theorem guarantees that any protocol proven UC-secure can also be securely composed with other copies of itself and other protocols. Apart from guaranteeing security in a realistic scenario, this framework also enables the design of complex protocols in a modular way.

In the UC model there are a set of parties \(P_1, \ldots, P_n \), an adversary \(A \) and an environment \(\mathcal{Z} \) that interact with each other. The main insight of the UC framework is that \(\mathcal{Z} \) captures all activity external to the current execution of the protocol. \(\mathcal{Z} \) is responsible for providing the inputs for the parties and \(A \), and for receiving their outputs. The adversary \(A \) is responsible for delivering the messages between the parties in the protocol execution (thus modeling that the adversary controls the network scheduling) and for corrupting parties, in which case he gains control over them. All entities are modeled as Interactive Turing Machines. For defining security, one first defines an idealized version \(\mathcal{F} \) of the functionality that the protocol is supposed to perform. The ideal functionality \(\mathcal{F} \) does what the protocol should do in a black box manner, i.e., given the inputs, the ideal functionality follows the primitive specification and returns the output as specified; however, the functionality must also deal with the actions of corrupted parties, such as invalid inputs and deviations from the protocol. After that, one shows that for every adversary \(A \) there exists a simulator \(\mathcal{S} \) such that no environment \(\mathcal{Z} \) can distinguish

between an execution of the protocol π with the parties P_1, \ldots, P_n and A, and an ideal execution with dummy parties that only forward inputs/outputs, F and S. Some interesting points are: S has no access to the contents of the messages sent between a party and F if the party is not corrupted; Z cannot see the messages sent between the parties and F and also cannot see the messages sent between the parties in the real protocol execution. A protocol π securely UC-realizes an ideal functionality F if for every adversary A in the real world there exists a simulator S in the ideal world such that no Z can distinguish an execution of the protocol π with the parties and A from an execution of the ideal functionality F with the dummy parties and S. This is stated formally as follows:

Definition II.1 A protocol π is said to UC-realize an ideal functionality F if, for every adversary A, there exists a simulator S such that, for every environment Z, the following holds:

$$\text{EXEC}_{\pi,A,Z} \approx \text{IDEAL}_{F,S,Z}$$

where \approx denotes computational indistinguishability, $\text{EXEC}_{\pi,A,Z}(n)$ represents the view of Z in the real protocol execution with A and the parties (with security parameter n) and $\text{IDEAL}_{F,S,Z}(n)$ represents the view of Z in the ideal execution with the functionality F, the simulator S and the dummy parties. The probability distribution is taken over the randomness of the parties.

Computational indistinguishability between real and ideal executions guarantees that the protocol is secure against probabilistic polynomial time adversaries. Even though this is enough for the security requirements of many protocols and applications, it is also very interesting to achieve perfect security against computationally unbounded adversaries, which is the case considered in this work.

Corruption Model: In this work we consider honest-but-curious, static adversaries (like all other privacy-preserving classification protocols so far). Honest-but-curious adversaries follow the protocol instructions correctly, but try to learn additional information. A static adversary means that the set of corrupted parties is fixed before the protocol execution and remains unchanged during the execution. For a version of the UC composition theorem for this scenario please refer to the Theorem 4.20 of Cramer et al. [16].

Setup Assumption: It is a well-known fact that two-party computation and multi-party computation with dishonest majority is only possible with additional assumptions, either computational or setup assumptions. In the case of UC-secure protocols, the restriction is even bigger: non-trivial two-party and multi-party functionalities cannot be realized without setup assumptions [12], [13]. Some setup assumptions allowing the realization of non-trivial functionalities are: the existence of a common reference string [12], [13], [43], a public-key infrastructure [3] or noisy-channels [24], [28], the random oracle model [31], signature cards [32] and tamper-proof hardware [35], [23], [25]. Pre-distributed correlated randomness, i.e., the commodity-based model, constitutes an attractive setup assumption and is the one focused on this work.

Functionality F^D_{TI}

F^D_{TI} is parametrized by an algorithm D. Upon initialization run $(D_1, \ldots, D_n) \leftarrow D$. For $i = 1, \ldots, n$, deliver D_i to P_i.

Simplifications: In our proofs the simulation strategy is simple and will be described briefly: all the messages look uniformly random from the recipient’s point of view, except for the messages that open some secret share to a party, but these ones can be easily simulated using the output of the respective functionalities. Therefore a simulator S, having the leverage of being able to simulate the trusted initializer functionality F^D_{TI} (see next section) in the ideal world, can easily perform a perfect simulation of a real protocol execution; therefore making the real and ideal worlds indistinguishable for any environment Z.

In the ideal functionalities the messages are public delayed outputs, meaning that the simulator is first asked whether they should be delivered or not (this is due to the modeling that the adversary controls the network scheduling). This fact as well as the session identifications are omitted from our functionalities’ descriptions for the sake of readability.

C. Commodity-based Cryptography

The commodity-based model [5], [4] is a setup assumption in which there is a trusted initializer who pre-distributes correlated data to the protocol participants during a setup phase, which is performed before the protocol execution (possibly far before the inputs are even fixed) and is independent of the protocol inputs. The trusted initializer does not take part in the protocol execution after the setup phase; in particular, he does not learn the parties’ inputs. The trusted initializer is modeled in this work by an ideal functionality F^D_{TI}, which is parametrized by an algorithm D that samples the correlated data to be pre-distributed to the parties. Details in Figure 1.

The main advantage of using this model is that, for many problems, it allows very efficient solutions with unconditional security (in some cases even perfect security). This follows from the fact that, in these problems, the trusted initializer can pre-distribute instances computed on random inputs, which the parties later on only derandomize to match their actual inputs. One such example is the case of the multiplication of secret shared values, which is an expensive operation in the plain model (i.e., the model in which there is no setup assumption), but quite simple in the commodity-based model (see Section 11D). This model was already used to obtain very efficient solutions for primitives such as commitments [46], [8], [39], oblivious transfer [5], [4], inner-product [27], [34], linear algebra [19], string equality [34], verifiable secret sharing [40], [26], set intersection [34] and oblivious polynomial evaluation [52]. In the context of privacy-preserving machine learning, this model was used in [20], [15].
The protocol is parametrized by the size q of the ring and the dimensions (i,j) and (j,k) of the matrices.

Input: Upon receiving a message from a party with its shares of $[X]_q$ and $[Y]_q$, verify if the share of X is in $\mathbb{Z}_q^{i \times j}$ and the share of Y is in $\mathbb{Z}_q^{j \times k}$. If it is not, abort. Otherwise, record the shares, ignore any subsequent message from that party and inform the other parties about the receipt.

Output: Upon receipt of the shares from all parties, reconstruct X and Y from the shares, compute $Z = XY$ and create a secret sharing $[Z]_q$ to distribute to the parties: the corrupt parties fix their shares of the output to any constant values and the shares of the uncorrupted parties are then created by picking uniformly random values subject to the correctness constraint.

Functionality \mathcal{F}_{DMM}

\mathcal{F}_{DMM} runs with parties P_1, \ldots, P_n and is parametrized by the size q of the ring and the dimensions (i, j) and (j, k) of the matrices.

Theorem II.2. The protocol π_{DMM} is correct and securely implements the distributed matrix multiplication functionality \mathcal{F}_{DMM} against honest-but-curious adversaries in the commodity-based model.

Proof. Correctness: For verifying correctness, first notice that $Z = XY = (U + D)(V + E) = UV + UE + DV + DE = W + UE + DV + DE$ and therefore $[Z]_q = [W]_q + E[U]_q + D[V]_q + DE$.

Security: The simulation is very simple and proceeds as follows. The simulator S runs internally a copy of the adversary A and reproduces the real world protocol execution perfectly for A. For that, it simulates the protocol execution with dummy inputs for the uncorrupted parties. The leverage of the simulator is the fact that it can simulate the trusted initializer functionality \mathcal{F}_{DMM} for A. Using this leverage, whenever a corrupted party announces its shares of D and E in the simulated protocol execution, S can extract the respective shares of X and Y to give to the distributed matrix multiplication functionality \mathcal{F}_{DMM}. And whenever an honest party sends its shares to the functionality, S simulates the announced messages for A by sending random messages, which from A’s point of view are indistinguishable from the messages in the real protocol execution, as the parties of U and V are uniformly random and unknown to A. Given its knowledge about $[U]_q, [V]_q, [W]_q, D$ and E by the end of the simulated execution, S knows, for each corrupted party, which value its share of the output is supposed to take, and therefore S can fix these values in \mathcal{F}_{DMM} so that the sum of the uncorrupted parties’ shares is compatible with the simulated execution. Therefore no environment Z can distinguish the real and ideal worlds.

Notation: We denote by π_{DM} the protocol for the special case of multiplication of single elements. The special case of
inner-product computation will be denoted as τ_{IP}. Henceforth $\llbracket Z \rrbracket_q \leftarrow \llbracket X \rrbracket_q[\llbracket Y \rrbracket_q]$ will denote the secure distributed multiplication of secret shared values using the above protocol.

III. MACHINE LEARNING CLASSIFIERS

In this section we briefly review the machine learning models for which we propose privacy-preserving scoring protocols in Section IV. Our presentation and notation is similar to that of Bost et al. [9].

A. Decision Trees

Decision trees are non-parametric, discriminative classifiers. Alice holds an input vector $x = (x_1, \ldots, x_t) \in \mathbb{R}^t$ consisting of t features. The classification algorithm consists of a mapping $C: \mathbb{R}^t \rightarrow \{c_1, \ldots, c_k\}$ on x. The result of the classification $C(x)$ is one of the k possible classes c_1, \ldots, c_k. The model is a tree structure and is held by Bob. Each internal node of the tree structure tests the value of a particular feature against a corresponding threshold and branches according to the results. Each leaf node specifies one of the k classes. The result of the classification is the class associated with the leaf reached from traversing the tree.

In all our secure protocols a full tree is assumed. In the case where a decision tree is not full, one can always fill it with dummy nodes to obtain a full tree. It is assumed, without loss of generality, that the trees are binary.

Bob’s model is $D = (d, G, H, \mathbf{w})$, where d is the depth of the tree, $G: \{1, \ldots, 2^d\} \rightarrow \{1, \ldots, k\}$ is a mapping from the indices of the leaves to the indices of the classes, $H: \{1, \ldots, 2^d-1\} \rightarrow \{1, \ldots, t\}$ is a mapping from the indices of the internal nodes (always considered in level-order) to the indices of Alice’s input features and $\mathbf{w} = (w_1, \ldots, w_{2^d-1})$ with $w_i \in \mathbb{R}$ contains the thresholds corresponding to each internal node. For each internal node v_i with $1 \leq i \leq 2^d-1$, let z_i be the Boolean variable denoting the result of comparing $x_{H(i)}$ with w_i, which is one if $x_{H(i)} \geq w_i$ and zero otherwise. The classification process goes as follows:

- Starting from the root node, for the current internal node v_i, evaluate z_i. If $z_i = 1$, take the left branch; otherwise, the right branch.
- If the j-th leaf is reached, then the output is $C_{G(j)}$.

B. Hyperplane Based Classifiers and Support Vector Machines

Hyperplane-based classifiers are parametric, discriminative classifiers. For a setting with t feature dimensions and k classes, the model consists of k vectors $\mathbf{w} = (w_1, \ldots, w_k)$ with $w_i \in \mathbb{R}^t$ and the classification result is obtained by determining, for Alice’s feature vector $x \in \mathbb{R}^t$, the index

$$k^* = \arg \max_{i \in [k]} \langle w_i, x \rangle,$$

where $\langle \cdot, \cdot \rangle$ is the inner-product.

Hyperplane-based classifiers are very common in machine learning. They can be obtained, for example, through maximizing the margin (as in support vector machines, which are explained below), perceptron learning, Fisher linear discriminant analysis and least squares optimization. All these techniques result in hyperplane-based classifiers for which the privacy-preserving scoring protocols we propose in Section IV are applicable.

Support vector machine (SVM) learning is a method for training classifiers based on different types of kernel functions – polynomial functions, radial basis functions, etc. An SVM is characterized by a linear separating hyperplane which maximizes the margins between the classes [29]. The decision boundary is maximized with respect to the data points from each class (known as support vectors) that are closest to the decision boundary. Support vector machines are a particular case of hyperplane-based classifiers. For the particular case of an SVM classifier with two classes c^+ and c^-, we can rephrase hyperplane-based classifiers as follows. Alice holds an input vector x, Bob holds a model (a, b), where a is a t-dimensional vector (the weight vector) and b is a real number. The result of the classification is obtained by computing

$$\text{sign} \left(\langle x, a \rangle + b \right),$$

where $\text{sign}(y)$ is $+$ if $y > 0$ and $-$ otherwise.

Logistic regression is a classifier that models the posterior probability of the class given the input features by fitting a logistic curve to the relationship between them [41]. As such, logistic regression model outputs can be interpreted as probabilities of the occurrence of a class. When the response is a binary variable with class labels c^+ and c^-, then for a new input instance x, a trained logistic regression model outputs the probabilities

$$P_{c^+|X}(c^-|x) = \frac{1}{1 + \exp((x, a) + b)}$$

and $P_{c^+|X}(c^+|x) = 1 - P_{c^+|X}(c^-|x)$, where the weight vector a and the real number b are learned during the logistic regression model training process. The class decision for the given probability is then made based on a threshold value which is often set to 0.5: if $P_{c^+|X}(c^+|x) \geq 0.5$, then we predict that the instance belongs to the positive class, and otherwise we predict the instance belongs to the negative class. In this case the classification can be done by computing

$$\text{sign} \left(\langle x, a \rangle + b \right).$$

IV. BUILDING BLOCKS

A. Secure Distributed Comparison

For performing secure distributed bitwise comparison we use the protocol of Garay et al. [30] with secret sharings in the field \mathbb{Z}_2. That protocol has $\lceil \log \ell \rceil + 1$ rounds and uses $3\ell - \lceil \log \ell \rceil - 2$ multiplications. The protocol will be denoted by τ_{DC} and it securely implements the distributed comparison functionality F_{DC} that is described in Figure 4. For a more detailed description of the protocol please see the original paper of Garay et al. [30] or Section 4.3.3 of De Hoogh’s
Using the protocol for secure distributed comparison it is possible to give simple and practical solutions for securely computing this function. An idea, which optimizes the number of communication rounds, is having the parties comparing in parallel each ordered pair of vectors and then using the result of the comparisons to determine the argmax. Note that when considering all executions of the comparison protocol involving a specific value \(v_j \) as the first argument, they will all return one if and only if the value is a maximum. The protocol \(\pi_{\text{argmax}} \) is described in Figure 6.

Theorem IV.1. The argmax protocol \(\pi_{\text{argmax}} \) is correct and securely implements the argmax functionality \(\mathcal{F}_{\text{argmax}} \) against honest-but-curious adversaries in the commodity-based model.

Proof. Correctness: The correctness follows trivially as for a maximum value, all comparison involving it as the first argument will return one, and so the product of the comparison results will also be one and the index will be added to the output. For all values which are not a maximum, at least one comparison will return zero, and so the product will be zero and the index will not be added.

Security: The first two steps only involve invocations of the distributed comparison \(\pi_{\text{DC}} \) and multiplication \(\pi_{\text{DM}} \) protocols, while the last step only opens one bit of information per index, indicating whether it corresponds to a maximum value or not; but this information is exactly the information contained in the output of the functionality \(\mathcal{F}_{\text{argmax}} \); hence the security of the protocol follows easily. Using the fact that \(\pi_{\text{DC}} \) securely realizes \(\mathcal{F}_{\text{DC}} \) and \(\pi_{\text{DM}} \) securely realizes \(\mathcal{F}_{\text{DM}} \), the simulator \(S \) runs internally a protocol execution for the adversary \(A \) in which he simulates the ideal functionalities and uses dummy inputs for the uncorrupted parties. Using this leverage, it is trivial for \(S \) to extract the inputs of the corrupted parties in order to give to \(\mathcal{F}_{\text{argmax}} \). If \(P_1 \) is corrupted, \(S \) can then use the output it gets from \(\mathcal{F}_{\text{argmax}} \) to adjust the output of the simulated protocol by picking an uncorrupted party and changing its share of each \(w_j \) appropriately before the opening.

Secure Argmax Protocol \(\pi_{\text{argmax}} \)

Let \(\ell \) be the bit length of the \(k \) values to be compared. The trusted initializer pre-distributes all the correlated randomness necessary for the execution of the instances of the distributed multiplication and comparison protocols. The parties have as input bitwise shares \(\llbracket v_{j,i} \rrbracket_2 \) for all \(j \in \{1,\ldots,k\} \) and \(i \in \{1,\ldots,\ell\} \) and proceed as follows:

1. For all \(j = 1,\ldots,k \) and \(n \in \{1,\ldots,\ell\} \setminus j \), the parties compare in parallel \(\llbracket v_{j,i} \rrbracket_2 \) and \(\llbracket v_{n,i} \rrbracket_2 \) (\(i = 1,\ldots,\ell \)).
 Let \(\llbracket w_{j,n} \rrbracket_2 \) denote the output obtained.
2. For all \(j = 1,\ldots,k \), the parties computed in parallel \(\llbracket w_j \rrbracket_2 = \prod_{n \in \{1,\ldots,\ell\} \setminus j} \llbracket w_{j,n} \rrbracket_2 \).
3. The parties open \(w_j \) for \(P_i \). If \(w_j = 1 \), \(P_i \) append \(j \) to the value to be output in the end.

Functionality \(\mathcal{F}_{\text{argmax}} \)

\(\mathcal{F}_{\text{argmax}} \) runs with parties \(P_1,\ldots,P_n \) and is parametrized by the bit-length \(\ell \) of the values being compared.

Input: Upon receiving a message from a party with its shares of \(\llbracket x_i \rrbracket_2 \) and \(\llbracket y_i \rrbracket_2 \) for all \(i \in \{1,\ldots,\ell\} \), record the shares, ignore any subsequent messages from that party and inform the other parties about the receipt.

Output: Upon receipt of the inputs from all parties, reconstruct \(x \) and \(y \) from the bitwise shares. If \(x \geq y \), then create and distribute to the parties the secret sharing \(\llbracket 1 \rrbracket_2 \); otherwise the secret sharing \(\llbracket 0 \rrbracket_2 \). Before the delivery of the output shares, the corrupt parties fix their shares of the output to any constant values. In both cases the shares of the uncorrupted parties are then created by picking uniformly random values subject to the correctness constraint.

Functionality \(\mathcal{F}_{\text{DC}} \)

\(\mathcal{F}_{\text{DC}} \) runs with parties \(P_1,\ldots,P_n \) and is parametrized by the bit-length \(\ell \) of the values being compared.

Input: Upon receiving a message from a party with its shares of \(\llbracket x_i \rrbracket_2 \) and \(\llbracket y_i \rrbracket_2 \) for all \(i \in \{1,\ldots,\ell\} \), record the shares, ignore any subsequent messages from that party and inform the other parties about the receipt.

Output: Upon receipt of the inputs from all parties, reconstruct \(x \) and \(y \) from the bitwise shares. If \(x \geq y \), then create and distribute to the parties the secret sharing \(\llbracket 1 \rrbracket_2 \); otherwise the secret sharing \(\llbracket 0 \rrbracket_2 \). Before the delivery of the output shares, the corrupt parties fix their shares of the output to any constant values. In both cases the shares of the uncorrupted parties are then created by picking uniformly random values subject to the correctness constraint.

Security: The first two steps only involve invocations of the distributed comparison \(\pi_{\text{DC}} \) and multiplication \(\pi_{\text{DM}} \) protocols, while the last step only opens one bit of information per index, indicating whether it corresponds to a maximum value or not; but this information is exactly the information contained in the output of the functionality \(\mathcal{F}_{\text{argmax}} \); hence the security of the protocol follows easily. Using the fact that \(\pi_{\text{DC}} \) securely realizes \(\mathcal{F}_{\text{DC}} \) and \(\pi_{\text{DM}} \) securely realizes \(\mathcal{F}_{\text{DM}} \), the simulator \(S \) runs internally a protocol execution for the adversary \(A \) in which he simulates the ideal functionalities and uses dummy inputs for the uncorrupted parties. Using this leverage, it is trivial for \(S \) to extract the inputs of the corrupted parties in order to give to \(\mathcal{F}_{\text{argmax}} \). If \(P_1 \) is corrupted, \(S \) can then use the output it gets from \(\mathcal{F}_{\text{argmax}} \) to adjust the output of the simulated protocol by picking an uncorrupted party and changing its share of each \(w_j \) appropriately before the opening.

Proof. Correctness: The correctness follows trivially as for a maximum value, all comparison involving it as the first argument will return one, and so the product of the comparison results will also be one and the index will be added to the output. For all values which are not a maximum, at least one comparison will return zero, and so the product will be zero and the index will not be added.

Security: The first two steps only involve invocations of the distributed comparison \(\pi_{\text{DC}} \) and multiplication \(\pi_{\text{DM}} \) protocols, while the last step only opens one bit of information per index, indicating whether it corresponds to a maximum value or not; but this information is exactly the information contained in the output of the functionality \(\mathcal{F}_{\text{argmax}} \); hence the security of the protocol follows easily. Using the fact that \(\pi_{\text{DC}} \) securely realizes \(\mathcal{F}_{\text{DC}} \) and \(\pi_{\text{DM}} \) securely realizes \(\mathcal{F}_{\text{DM}} \), the simulator \(S \) runs internally a protocol execution for the adversary \(A \) in which he simulates the ideal functionalities and uses dummy inputs for the uncorrupted parties. Using this leverage, it is trivial for \(S \) to extract the inputs of the corrupted parties in order to give to \(\mathcal{F}_{\text{argmax}} \). If \(P_1 \) is corrupted, \(S \) can then use the output it gets from \(\mathcal{F}_{\text{argmax}} \) to adjust the output of the simulated protocol by picking an uncorrupted party and changing its share of each \(w_j \) appropriately before the opening. The real

Functionality \(\mathcal{F}_{\text{argmax}} \)

\(\mathcal{F}_{\text{argmax}} \) runs with parties \(P_1,\ldots,P_n \) and is parametrized by the bit-length \(\ell \) of the values being compared.

Input: Upon receiving a message from a party with its shares of \(\llbracket x_i \rrbracket_2 \) and \(\llbracket y_i \rrbracket_2 \) for all \(i \in \{1,\ldots,\ell\} \), record the shares, ignore any subsequent messages from that party and inform the other parties about the receipt.

Output: Upon receipt of the inputs from all parties, reconstruct \(x \) and \(y \) from the bitwise shares. If \(x \geq y \), then create and distribute to the parties the secret sharing \(\llbracket 1 \rrbracket_2 \); otherwise the secret sharing \(\llbracket 0 \rrbracket_2 \). Before the delivery of the output shares, the corrupt parties fix their shares of the output to any constant values. In both cases the shares of the uncorrupted parties are then created by picking uniformly random values subject to the correctness constraint.

Security: The first two steps only involve invocations of the distributed comparison \(\pi_{\text{DC}} \) and multiplication \(\pi_{\text{DM}} \) protocols, while the last step only opens one bit of information per index, indicating whether it corresponds to a maximum value or not; but this information is exactly the information contained in the output of the functionality \(\mathcal{F}_{\text{argmax}} \); hence the security of the protocol follows easily. Using the fact that \(\pi_{\text{DC}} \) securely realizes \(\mathcal{F}_{\text{DC}} \) and \(\pi_{\text{DM}} \) securely realizes \(\mathcal{F}_{\text{DM}} \), the simulator \(S \) runs internally a protocol execution for the adversary \(A \) in which he simulates the ideal functionalities and uses dummy inputs for the uncorrupted parties. Using this leverage, it is trivial for \(S \) to extract the inputs of the corrupted parties in order to give to \(\mathcal{F}_{\text{argmax}} \). If \(P_1 \) is corrupted, \(S \) can then use the output it gets from \(\mathcal{F}_{\text{argmax}} \) to adjust the output of the simulated protocol by picking an uncorrupted party and changing its share of each \(w_j \) appropriately before the opening. The real
and ideal worlds are then indistinguishable to all environments Z. \hfill \Box$

Optimization: The round complexity for performing the multiplications in the second step can be improved by using a binary tree approach: the multiplicands are inserted as leaves of a binary tree and then we proceed upwards attributing to each internal node the value corresponding to the multiplication of its two children. Using this method the second step can take $\lceil \log_k - 1 \rceil$ rounds.

C. Secure Bit-Decomposition

In this section we deal with the problem of converting from shares $\llbracket x \rrbracket_q$ of a value x in a large field \mathbb{Z}_q to shares of $\llbracket x_i \rrbracket_2$ in the field \mathbb{Z}_2, where $x \cdot \cdots \cdot x$ is the binary representation of x. The bit-decomposition functionality $\mathcal{F}_{\text{decomp}}$ is described in Figure 7. The usefulness of such functionality comes from the fact that it allows to convert from a representation that allows the efficient execution of algebraic operations to a representation that allows the efficient execution of Boolean operations, such as a comparison. We present in Figure 8 a bit-decomposition protocol π_{decomp} that is specialized for the two-party case with $q = 2^\ell$. Alice and Bob know shares a and b, respectively, such that $x = a + b \mod 2^\ell$. The main observation is that the difference between the sum of $a = a_1 \cdots a_1$ and $b = b_1 \cdots b_1$ modulo 2^ℓ and two bit strings that xor to the bit string $x \cdot \cdots \cdot x$ is exactly equal to the carry bits. Therefore we use a carry computation to obtain the bitwise secret sharings $\llbracket x_i \rrbracket_2$ starting from $a_1 \cdots a_1$ and $b_1 \cdots b_1$.

4The protocol is similar to the one of Laud and Randmets [37], see the related works in Section VII for more details.

Fig. 7. The bit-decomposition functionality.

Fig. 8. The secure two-party bit-decomposition protocol.

Theorem IV.2. Over any ring \mathbb{Z}_{2^ℓ}, the bit-decomposition protocol π_{decomp} is correct and securely implements the bit-decomposition functionality $\mathcal{F}_{\text{decomp}}$ for the special case of two players against honest-but-curious adversaries in the commodity-based model.

Proof. Correctness: The protocol implements the carry of a full adder logic $c_i = (a_i \land b_i) \lor ((a_i \lor b_i) \land c_{i-1})$, which can be similarly expressed as $c_i = (a_i \lor b_i) \land c_{i-1}$. To obtain the carry bit string. By adding c_{i-1} into y_i, we convert from bit strings that sum to x modulo 2^ℓ to bit strings that xor to x, thus obtaining the shares of x_i modulo 2.

Security: The only non-local operations are the invocations of the distributed multiplication protocol π_{DM}, which securely realizes \mathcal{F}_{DMM}. Therefore the security follows essentially from the security of that protocol, S runs a copy of A and simulates an execution of the protocol using dummy inputs for the uncorrupted party. Since S is the one simulating the distributed multiplication functionality \mathcal{F}_{DMM}, it can easily extract the corrupted party’s share of the input in order to give it to $\mathcal{F}_{\text{decomp}}$ and also derive the corrupted party’s shares of the outputs in order to fix then in $\mathcal{F}_{\text{decomp}}$. Consequently the real and ideal worlds are indistinguishable to any possible environment Z. \hfill \Box

Optimization:

The idea to optimize the number of rounds to logarithmic is to compute speculatively. In the first round the bit strings are divided in blocks of size 1 and the values of x_i and c_i are computed speculatively using both $c_{i-1} = 1$ and $c_{i-1} = 0$ for all but $i = 1$, for which we know that there is no carry in and so only one computation is needed. The second round divides the bit strings in blocks of size 2.
Functionality F_{OIS}

F_{OIS} runs with Alice and Bob and is parametrized by the size n of the input vector $x = (x_1, \ldots, x_n)$ and the bit-length ℓ of each input x_j.

Input: Upon receiving a message with the input vector $x = (x_1, \ldots, x_n)$ from Alice, store them, ignore any subsequent message from her and inform Bob that the inputs were received.

Output: Upon receipt of the selected index $k \in [t]$ from Bob, distribute bitwise sharings $\llbracket x_{k,i} \rrbracket_2$ for $i \in \{1, \ldots, \ell\}$ and ignore any subsequent messages. Before the output deliver, the corrupt party fix its shares of the outputs to any constant values. The shares of the uncorrupted parties are then created by picking uniformly random values subject to the correctness constraints.

Fig. 9. The oblivious input selection functionality.

and uses the information from the previous round to compute $x_{i+1}|x_i$ and $c_{i+1}|c_i$ specularly using both $c_{i-1} = 1$ and $c_{i-1} = 0$ (except for the least significant block that only needs one computation). The third round proceeds analogously with blocks of size 4 by joining the blocks of size 2, and so on. After $\lceil \log \ell \rceil$ rounds one gets the desired bit strings $x_2 \ldots x_1$ and $c_2 \ldots c_1$. The first iteration uses 3ℓ instances of the multiplication protocol and needs two rounds of communication as there are pairs of sequential multiplications, all other iterations only need one round of communication and use 2ℓ multiplications each. Therefore in total the optimized protocol has $2 + \lceil \log \ell \rceil$ rounds and uses $2\ell \lceil \log \ell \rceil + 3\ell$ instances of the multiplication protocol.

D. Oblivious Input Selection

In our applications there are also circumstances in which Alice holds a vector of inputs $x = (x_1, \ldots, x_n)$ and Bob holds an index k, and they want to obtain bitwise secret sharings of x_k for further uses in the protocol, but without revealing any information about the inputs or k. The oblivious input selection functionality F_{OIS}, which captures this task, is described in Figure 9. In Figure 10 a protocol π_{OIS} realizing this functionality is presented. This idea was previously used by Toft [49], [51], where it was called “secret indexing”.

Theorem IV.3. The oblivious input selection protocol π_{OIS} is correct and securely implements the oblivious input selection functionality F_{OIS} against honest-but-curious adversaries in the commodity-based model.

Proof. Correctness: Straightforward to verify.

Security: Similarly to the previous proofs, S uses the fact that the only messages exchanged are for performing the distributed multiplications and the leverage of being able to simulate F_{DMM} in order to simulate an execution of the protocol to A and at the same time being able to extract the inputs and the output shares of a corrupted party in order to forward to F_{OIS}. By doing so, the real and ideal worlds are indistinguishable to Z.

Remark: As pointed out by an anonymous reviewer, an alternative would be to run the equivalent of the first two steps in \mathbb{Z}_{2^ℓ} instead of \mathbb{Z}_2 and then execute the bit decomposition protocol. Overall this would result in n multiplications in \mathbb{Z}_{2^ℓ} (plus the ones for the bit decomposition) instead of $n\ell$ multiplications in \mathbb{Z}_2, and the amount of data communicated in the two steps would be the same.

V. ASSEMBLING THE BUILDING BLOCKS

We now present our privacy-preserving classifiers using the building blocks from the previous sections.

We use the same fixed-point representation as in Catrina and Saxena [14] to deal with real numbers. This representation maps fixed-point precision real numbers into integers. We assume a fixed precision for all of our inputs (and truncate any digit beyond that precision) and multiply them by a constant big enough so that the result is an integer for the whole range of inputs we work with. While in [14] a downscale (truncation) protocol is used after each multiplication in order to reduce multiplied numbers to the original precision, this step is not necessary in our implementation, since: (i) in our decision tree protocol there is no multiplication of fixed-point numbers; and (ii) in our hyperplane-based classifier the multiplication depth of the inner product is 1, so we can avoid rounding by just running the argmax protocol on the outputs of the inner-product protocol.

A. Secure Decision Trees

Here, Alice inputs $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and the classification algorithm will result in one of the k possible
classes c_1, \ldots, c_k. Bob holds the model $D = (d, G, H, w)$, where d is the depth of the tree, G maps the leaves to classes, H maps internal nodes (always considered in level-order) to input features and w is a vector of thresholds. Each internal node of the tree structure tests the value of a particular feature against a corresponding threshold and branches according to the results. Each leaf node specifies a class. In all our secure protocols, we assume without loss of generality that we have a full binary tree. In case a decision tree is not full, one can always fill it with dummy nodes and obtain a full one. Let z_j be the Boolean variable denoting the result of comparing $x_{H(i)}$ with w_j. We recall the classification algorithm:

- Starting from the root node, for the current internal node v_i, evaluate z_i. If $z_i = 1$, take the left branch; otherwise, the right branch.

- The algorithm terminates when a leaf is reached. If the j-th leaf is reached, then the output is c_{z_j}. Similar to Bost et al. [9], the classification can be expressed as a polynomial $P_G: \{0, 1\}^{2^d-1} \rightarrow \{1, \ldots, k\}$ that depends on the mapping G from the leaves to the classes. On input $z = (z_1, \ldots, z_{2^d-1})$, P_G gives the classification result. This polynomial is a sum of terms such that each term corresponds to one possible path in the tree: the term corresponding to path

Security Against Curious Adversaries

The idea of our secure protocol is that, for each internal node, Alice and Bob use the oblivious input selection protocol π_{OIS} to obtain bitwise secret sharings of $x_{H(i)}$ by using π_{OIS} with inputs x_1, \ldots, x_n from Alice and input $H(i)$ from Bob. Then the results. Each leaf node specifies a class. In all our secure protocols, we assume without loss of generality that we have a full binary tree. In case a decision tree is not full, one can always fill it with dummy nodes and obtain a full one. Let z_j be the Boolean variable denoting the result of comparing $x_{H(i)}$ with w_j. We recall the classification algorithm:

- Starting from the root node, for the current internal node v_i, evaluate z_i. If $z_i = 1$, take the left branch; otherwise, the right branch.

- The algorithm terminates when a leaf is reached. If the j-th leaf is reached, then the output is c_{z_j}. Similar to Bost et al. [9], the classification can be expressed as a polynomial $P_G: \{0, 1\}^{2^d-1} \rightarrow \{1, \ldots, k\}$ that depends on the mapping G from the leaves to the classes. On input $z = (z_1, \ldots, z_{2^d-1})$, P_G gives the classification result. This polynomial is a sum of terms such that each term corresponds to one possible path in the tree: the term corresponding to path

Security Against Curious Adversaries

The idea of our secure protocol is that, for each internal node, Alice and Bob use the oblivious input selection protocol π_{OIS} to obtain bitwise secret sharings of $x_{H(i)}$ by using π_{OIS} with inputs x_1, \ldots, x_n from Alice and input $H(i)$ from Bob. Then the comparisons

4) For all $r = 1, \ldots, \alpha$ compute $[\sigma_r]_2 \leftarrow \sum_{j=0}^{2^d-1} [y_{j,r}]_2$ and open σ_r to Alice. Alice reconstructs σ from the bit string $\sigma_\alpha \ldots \sigma_1$ and outputs $k^* = \sigma + 1$.

The decision tree functionality F_{DT} is parametrized by the tree depth d, which is revealed to Alice.

Input: Upon receiving the feature vector x from Alice or the decision tree model $D = (d, G, H, w)$ from Bob, store it, ignore any subsequent message from that party, and inform the other party about the receipt.

Output: Upon receipt of the inputs from both parties, evaluate the decision tree D with the input x. Let j be the reached leaf. Output $G(j)$ to Alice.

Alice has as input a feature vector x and Bob has a decision tree model $D = (d, G, H, w)$. Alice and Bob proceed as follows:

1) For $i = 1, \ldots, 2^d - 1$, Alice and Bob obtain bitwise secret sharings of $x_{H(i)}$ by using π_{OIS} with inputs x_1, \ldots, x_n from Alice and input $H(i)$ from Bob.

2) For $i = 1, \ldots, 2^d - 1$, Alice and Bob securely compare $x_{H(i)}$ with w_i. For the input w_i, Bob inputs its bit representation and Alice inputs zeros. Let $[z_i]_2$ denote the result.

3) For $j = 0, \ldots, 2^d - 1$, let $j_d \ldots j_1$ be the binary representation of j with d bits and let $b_n \ldots b_1$ for $\alpha = \lceil \log k \rceil - 1$. For $r = 1, \ldots, \alpha$, initialize $[y_{j,r}]_2$ with the shares $(0, b_r)$. Initialize $u = 1$ and $s = d$. While $s > 0$ do:

 a) For $r = 1, \ldots, \alpha$, $[y_{j,r}]_2 \leftarrow [y_{j,r}]_2 ([z_a]_2 + j_{s})$.
 b) Update $u \leftarrow 2u + j_s$ and $s \leftarrow s - 1$.

4) For all $r = 1, \ldots, \alpha$ compute $[\sigma_r]_2 \leftarrow \sum_{j=0}^{2^d-1} [y_{j,r}]_2$ and open σ_r to Alice. Alice reconstructs σ from the bit string $\sigma_\alpha \ldots \sigma_1$ and outputs $k^* = \sigma + 1$.

The decision tree functionality F_{DT} is parametrized by the tree depth d, which is revealed to Alice.

Input: Upon receiving the feature vector x from Alice or the decision tree model $D = (d, G, H, w)$ from Bob, store it, ignore any subsequent message from that party, and inform the other party about the receipt.

Output: Upon receipt of the inputs from both parties, evaluate the decision tree D with the input x. Let j be the reached leaf. Output $G(j)$ to Alice.
3 correspond to a binary representation of the index of its associated class (offset by 1) if \(j \) is the leaf that would be reached by using the model \(D \) on input \(x \); otherwise they correspond to zeros as at least one of the terms \([z_{a_j}] + z_j\) in the multiplication would be zero. Thus in step 4, by summing all \([y_{j-1}, r_j]\) for \(j \in \{1, \ldots, 2^d\}\), opening the results and adding 1, Alice obtains the result of the classification \(k^* \).

Security: Alice learns the depth \(d \) of the tree in order to allow the execution, but this is leaked by \(F_{\text{DT}} \) as well. In the first three steps messages are only exchanged in order to execute the sub-protocols \(\pi_{\text{OIS}}, \pi_{\text{DC}} \) and \(\pi_{\text{DM}} \) respectively, which securely realize the functionalities \(F_{\text{OIS}}, F_{\text{DC}} \) and \(F_{\text{DMM}} \) respectively. Then the last step simply reveals the bit string encoding the class that was the result of the classification to Alice. The simulation strategy is similar to the one in the previous sections. The simulator \(S \) internally runs a protocol execution for the adversary \(A \) in which \(S \) simulates \(F_{\text{OIS}}, F_{\text{DC}} \) and \(F_{\text{DMM}} \) and uses dummy inputs for the uncorrupted parties. Using this leverage \(S \) can easily extract the inputs of the corrupted party, \(x \) in case Alice is corrupted or \(D = (d, G, H, w) \) in case Bob is corrupted, in order to forward to \(F_{\text{DT}} \). In case Alice is corrupted, upon learning the correct output from \(F_{\text{DT}}, S \) can adjust appropriately Bob’s shares of \(\sigma_j \) in the simulated protocol in order to match the right result. The real and ideal worlds are thus indistinguishable to \(Z \).

Optimization: All independent operations are run in parallel and the round complexity of step 3(a) can be reduced using techniques similar to the previous sections.

B. Secure Hyperplane-Based Classifiers

A privacy-preserving hyperplane-based classifier is easily achievable using our building blocks. One just needs to represent the model and features in \(\mathbb{Z}_q \), compute each inner product between \(w_i \) and \(x \) by using \(\pi_{\text{IP}} \), input the results into the bit-decomposition protocol \(\pi_{\text{decomp}} \) and then into the argmax protocol \(\pi_{\text{argmax}} \) to obtain the classification result

\[
k^* = \arg\max_{i \in [k]} (w_i, x).
\]

In the specific case of SVM, the overall idea for obtaining a privacy-preserving classifier is as follows: Alice inputs her personal vector \(x \) and Bob inputs his model vector \(a \) to the secure distributed inner product protocol \(\pi_{\text{IP}} \). After that, the result is run through the bit-decomposition protocol \(\pi_{\text{decomp}} \). The resultant bitwise shares, together with \(b \), are used in the comparison protocol \(\pi_{\text{DC}} \) to determine the final result, which is then opened to Alice as her prediction. To privately score a logistic regression classifier with threshold 0.5 we can use exactly the same protocol as for support vector machines.

The security of these compositions follows from the security of the sub-protocols and the fact that no values are ever opened before the final result; each party only sees shares, which appear completely random.

C. Removing the Trusted Initializer

Our protocols assume that pre-distributed data is made available to the players by a trusted initializer: random binary multiplication triples (binary Beaver triples) in the case of decision trees, random binary multiplication triples and random inner product evaluations for the support vector machines and logistic regression classifiers.

In case a trusted initializer is not available or desirable, Alice and Bob can run pre-computations during a setup phase (see, for instance, [18], [17], [44]). In the case of the protocol evaluating decision trees, to obtain the binary random multiplication triples, Alice and Bob can run oblivious transfer protocols on random inputs. The outcome of these evaluations can be easily transformed in the random binary multiplication triples (see, for instance, [42]). The nice point of this solution is that oblivious transfer can be extended efficiently by using symmetric cryptographic primitives [33], [60], [2]. The online phase of our protocols would remain the same - using solely modular additions and multiplications. Therefore, even considering the offline phase, our protocol would still be substantially more efficient than the protocols proposed in [9] and in [54]. We also remark that the protocol for evaluating decision trees in [9] does not allow its computationally heavy steps (Paillier encryptions and uses of a somewhat homomorphic encryption scheme) to be pre-computed. We also note that while the oblivious transfer executions in [54] could also be pre-computed, the Paillier encryption scheme would still be needed in the online phase.

VI. Experiments

For decision trees, SVM and logistic regression models we report accuracy (calculated using 10-fold cross validation) for 7 different datasets within the UCI Repository. We also report average classification time for an instance in each dataset when following our privacy-preserving protocol as well as average time required when the classification is done in the clear. Note that the bit-length used to express the values should be large enough as not to compromise the accuracy of the algorithms. It is no real gain for applications if the performance is improved at the cost of drastically decreasing the accuracy, therefore the accuracy is also reported.

Support Vector Machine: For this study, we tested SVM with a linear kernel, and we report the results for accuracy for 7 different datasets from the UCI repository. We leveraged the e1071 package within R [48], setting type to ‘C-classification’, indicating our problems were classification tasks.

Decision Trees: We used an implementation of the classification and regression tree algorithm (CART) [10] in R [48]. The minimum deviance (mean squared error) is used as the test parameter for proceeding with a new split. That is, adding a node should reduce the error by at least a certain amount. For our models, we set the complexity parameter to 0.01 and report the corresponding accuracy.

Logistic Regression: For our experimentation, we used R’s base glm function [45], setting the family parameter to binomial(link=“logit”) to obtain a logistic regression model.

The following datasets were chosen for our experimentation:

1. **Breast Cancer Wisconsin (Diagnostic):** The goal with this dataset is to classify 568 different tumors as malignant or benign. Each tumor is characterized by 30
different continuous features derived from an image of the tumor (i.e. perimeter, area, symmetry, etc.).

2) **Pima Indians Diabetes:** This dataset includes 767 females of at least 21 years of age, all with Pima Indian decent, and we wish to identify those with diabetes. We leverage 8 different continuous features which describe each woman’s health (examples: body mass index, diastolic blood pressure).

3) **Parkinsons:** Here, the task is to differentiate between patients with and without Parkinson. To this end, the dataset includes 22 features, all of which are measures derived from voice recordings of 195 different patients (example: average vocal fundamental frequency).

4) **Connectionist Bench (Sonar, Mines vs. Rocks):** The goal with this dataset is to differentiate whether 207 sonar signals were bounced off of a metal cylinder vs. a roughly cylindrical rock. Each of the 60 features is within the range of 0.0 to 1.0 and represents energy within a particular frequency band over a certain period of time.

5) **Hill-Valley:** The task for this dataset is to identify hills vs. valleys in terrain. Each of the 100 continuous features is a point on a 2-D graph. We chose the dataset which did not contain any noise.

6) **LSVT Voice Rehabilitation:** This dataset includes 126 patients who have undergone voice rehabilitation treatment and we wish to determine the success of their treatment, i.e. whether their phonations are considered acceptable or unacceptable. To do this, we leverage 312 features, each of which is the results of a different speech signal algorithm.

7) **Spambase:** Here, the goal is to identify 4,600 emails as either spam or not spam. This dataset includes 57 features which describe the contents of each email (examples: word frequencies, number of capital letters).

A. Results

1) **Implementation Specifics:** To generate preliminary results, the privacy-preserving algorithms were implemented in Java, and compared against a simple implementation without any privacy preservation. For our experiments with the privacy-preserving classifiers, a general bit length, ℓ, of 64 bits was used for representing all the inputs and throughout all calculations, as this allowed for a good trade off between complexity and space for precision. For some trials, a smaller bit length might have served with sufficient precision.

All values had to be converted to integers to properly work in the proposed algorithms. This was accomplished by choosing a multiplier value and applying it to the features and the weights for SVM and logistic regression or the thresholds for decision trees and rounding any remaining decimals. Furthermore, since calculations were done over a ring, any negative values had to be expressed as their additive inverses. This means in addition to precision considerations, the bit length must be selected in such a way that the positive values and negative values will remain distinctly separate in the lower half and upper half of the values, respectively. This allows us to differentiate between positive and negative values by comparing against $2^{\ell-1}$ instead of 0.

Table I presents the results for the case of decision tree classifiers and Table II for SVM and logistic regression classifiers. These results were generated using a laptop computer with 16 GB DDR4 RAM at 2133 MHz and an Intel Core i7 6700HQ at 2.6 GHz. For each dataset the average was computed using more than 10000 scorings.

B. Analysis and Comparisons to Previous Results

Decision Trees: the computing time for running our protocol for the privacy-preserving evaluation of decision trees is at most 13 milliseconds for trees of depth up to 9. In Bost et al. [9], for evaluating a tree of depth 4, the computing time is in the order of a few seconds. Our protocol has 11 rounds of communication or less for trees with depth up to 9, while their number of interactions is always over 30, even for trees of depth 4. In the case of the protocols for computing decision trees of Wu et al. [54], the computing time for a tree with depth 4 is around 100 ms. The communication complexity of our protocol for a decision tree of depth 4 and 8 features is around 3KB, while the results in [54] are around 100KB and in [9] are around 3MB for trees of the same dimension. As stated in these previous works, solutions based on general purpose multiparty computation frameworks have a much poorer performance than their specific protocols (and hence than the solutions presented here as well).

Support Vector Machines: We run the protocols proposed in [20] with the building blocks presented in this paper. While there are no implementation times given in [20], it is clear that our implementations have a significant impact in the performance. The number of rounds is usually the most important factor in determining the latency of these protocols and we reduce the round complexity from linear to logarithmic in the input length. Compared to the implementations described in Bost et al. [9] the computation times are about 50ms for 30 and 47 features. In our case for 30 features, the computing time is less than 4 ms. Our number of rounds is larger: our solution takes 16 rounds, while their solution takes 7 rounds. If the roundtrip time is the major factor in the total time their solution is preferable to ours. The main reason for the elevated round complexity in our solution is the bit decomposition protocol, which is not needed in their work.

Logistic Regression: The efficiency of the logistic regression protocol is the same as the support vector machine one.

VII. Related Works

Privacy-preserving Scoring of Machine Learning Classifiers: There is a huge literature in training privacy-preserving machine learning models (see [1] for a survey). However, general (non-application specific) privacy-preserving protocols for privately scoring machine learning classifiers were proposed just recently in [9] for the case of hyperplane-based classifiers, Naive Bayes and decision trees and in [54] for decision trees and random forests. In [20] protocols for hyperplane-based and Naive Bayes classifiers were proposed.
De Hoogh et al. [21] introduced the most efficient protocol for privacy-preserving training of decision trees with categorical attributes only. They also presented a protocol for privacy-preserving scoring of decision trees. Their protocol is designed for categorical attributes. It does not scale well for fine-grained numerical attributes - the complexity of the protocol increases exponentially on the bit-length representation of a category.

Many classification problems are characterized by numerical attributes, such as age, temperature, or blood test results, or by a combination of numerical and categorical attributes. The well known top down algorithms to induce decision trees from data (ID3, CART) can easily be extended to include numerical attributes as well. This is typically done with a binary split at internal nodes, e.g. instances with “cholesterol level ≤ p” go down the left branch, and instances with “cholesterol level > p” go down the right. The threshold p is chosen dynamically at each node as the tree is grown, and, unlike with categorical attributes, a numerical attribute may appear more than once in the same tree branch, but with different thresholds. For instance, in the branch below the node “cholesterol level ≤ p”, a new node “cholesterol level ≤ $p'” may appear, with p' a smaller threshold than p. The process of dynamically choosing and refining thresholds adds to the expressivity of decision trees with numerical values, making the hypothesis space of such trees far richer than that of decision trees with categorical values.

In [5], hyperplane-based classifiers were implemented by using a secure protocol for computing the inner product based on the Paillier encryption scheme and a comparison protocol that also relies heavily on the Paillier encryption scheme.

The decision tree protocol of Bost et al. [9] is divided in two phases. In a first stage Paillier-based comparison protocols are run with Alice inputting a vector containing her features and Bob inputting the threshold values of the decision tree. On a second stage, fully homomorphic encryption is used to process the outcomes of the comparison protocols run in the first stage. It is claimed that the protocol leaks nothing about the tree (we will show that in a more realistic attack scenario this is not true) and the second stage is round-optimal. However, the computations to be performed are heavy and the first stage involves many rounds (in total their protocol typically has more rounds than ours). In our solution, we allow the depth of the tree to be leaked, but avoid altogether using Paillier and fully homomorphic encryption. In our solution, the online phase for evaluating decision trees uses solely modular additions and multiplications.

In [54] protocols for decision trees and random forests were proposed. The protocols are based on an original comparison protocol also based on the Paillier encryption scheme and on oblivious transfer. The Paillier encryption scheme uses modular exponentiation and oblivious transfer protocols that are usually as expensive as public-key cryptographic primitives. As pointed out in the introduction, our solutions use, in the online phase, solely additions and multiplications over a finite field or ring.
In [20], one can find protocols for hyperplane-based and Naive Bayes classifiers in the commodity-based model. By directly replacing some of the building blocks used in [20] (the comparison and bit decomposition protocols) by the ones used in this paper, the communication and computing complexities can be decreased.

All published results for privacy-preserving machine learning classification are secure in the honest-but-curious model.

How much information is leaked about the decision trees in [9] and in [54]: In the protocol in [9], theoretically nothing is ever leaked about the tree. However, if an adversary can measure the time it takes for Bob to do the evaluation of the decision tree protocol, clearly the deeper the tree the longer the computation becomes. Therefore, some information about the depth of the tree is leaked if this side channel attack is considered. Therefore, in our solution we do not loose much by giving away the depth of the tree to an adversary. In [54], the depth of the tree is also leaked.

Bit Decomposition Protocols: The best solution for bit-decomposition, in terms of round complexity, is a constant-round solution by Toft [50], which has round complexity equal to 23. Veugen noted in [53] that for a certain range of practical parameters (number of input bits less than 20), a protocol with a linear number of rounds in the length of the input could outperform the solution presented by Toft [50]. Veugen proposed a protocol that has a linear number of rounds in ℓ, where ℓ is the length of the input in bits. Veugen also proposed a way to reduce the number of rounds of this protocol by a factor of β, obtaining a round complexity equal to ℓ/β at the cost of performing an exponential (in β) number of multiplications in a pre-processing phase.

The bit-decomposition protocol used in this work is over binary fields and runs in $2+\lceil\log \ell\rceil$ rounds. For practical values of ℓ (less than 100 typically), it is always better than Toft’s and Veugen’s solutions. The number of multiplications to be performed in our the online phase, $2\ell\lceil\log \ell\rceil + 3\ell$, is less than the $31\ell\lceil\log \ell\rceil + 71\ell + 30\lceil\sqrt{\ell}\rceil$ multiplications in the case of Toft’s protocol. While Veugen’s protocol can have a fast online phase, requiring only $3\ell-2\beta$ multiplications for ℓ/β rounds, it requires an exponential (in β) number of multiplications in the offline phase.

The protocol of Schoenmakers and Tyul [47] has the same number of rounds and roughly half as many multiplications as the protocol used here. However the multiplications are in \mathbb{Z}_q for big q while our multiplications are in \mathbb{Z}_2. Hence our multiplications are faster and communicate less data. In addition, in our case OT extension can be directly used for the pre-computation if a trusted initiator is not available. For more details about Schoenmakers and Tyul’s protocol see the original paper or Section 4.3.5 of De Hoogh’s PhD thesis [22].

A restriction of our protocol is that it only works for operations modulo a power of 2. As we need no modular inversions in our privacy-preserving machine learning protocols this imposes no problem at all. The bit-decomposition protocol of Laud and Randmets [57] for the case of three parties with at most one corruption is similar to one here. It first reduce the original problem to a new one between two-parties, and then uses the adder idea to obtain bitwise shares. Although the protocol is not fully specified in [57], we believe that the authors intended to use the same adder computation as here. We believe that Veugen’s and Toft’s protocols can also be improved in the case that the module is a power of 2.

VIII. Conclusion

In this paper we have proposed a novel protocol for privacy-preserving classification of decision trees, and improved the performance of previously proposed protocols for general hyperplane-based classifiers and for the two specific cases of support vector machines and logistic regression. Our protocols work in the commodity-based model. The pre-distributed data can be distributed during a setup phase by a trusted authority to Alice and Bob. In the case a trusted authority is not available or desirable, Alice and Bob can pre-compute this data by themselves, during a setup phase, with the help of well-known computationally secure schemes. Our solutions are very efficient and use solely modular addition and multiplications. We present accuracy and runtime results for 7 classification benchmark datasets from the UCI repository.

One open problem is improving the performance of the bit-decomposition protocol using techniques similar to [14] while keeping the shares in \mathbb{Z}_2, which is a good feature for saving communication and for optimizing an eventual pre-processing phase using OT extension.

References
