
Identity-Based Key Aggregate Cryptosystem from
Multilinear Maps

Sikhar Patranabis and Debdeep Mukhopadhyay

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

{sikhar.patranabis, debdeep}@cse.iitkgp.ernet.in

Abstract. The key-aggregate cryptosystem (KAC) proposed by Chu et al. in 2014 offers a so-
lution to the flexible access delegation problem in shared data environments such as the cloud.
KAC allows a data owner, owning N classes of encrypted data, to securely grant access to any
subset S of these data classes among a subset Ŝ of data users, via a single low overhead aggre-
gate key KS . Existing constructions for KAC are efficient in so far they achieve constant size
ciphertexts and aggregate keys. But they resort to a public parameter that has size linear in the
number of data classes N , and require O(M ′M) secure channels for distribution of aggregate
keys in a system with M ′ data owners and M data users. In this paper, we propose three differ-
ent multilinear-map based KAC constructions that have at most polylogarithmic overhead for
both ciphertexts and public parameters, and generate constant size aggregate keys. We further
demonstrate how the aggregate keys may be efficiently broadcast among any arbitrary size sub-
set of M data users using only O(M ′ + M) secure channels, in a system with M ′ data owners.
Our constructions are secure in the generic multilinear group model and are fully collusion re-
sistant against any number of colluding parties. In addition, they naturally give rise to identity
based secure access delegation schemes.

Keywords: Key-Aggregate Cryptosystem, Identity-based, Online Data Sharing, Multilinear
Maps, Collusion-resistant

1 Introduction

The recent advent of cloud computing has led to unforeseen amounts of data being shared online
with wide-ranging applications. There exists today a massive demand for scalable and efficiently
implementable online data sharing schemes that provide formal guarantees of security and resistance
against multi-party collusion attacks. The major challenge in designing such a system is solving the
online access delegation problem [DMMM+12,CCT+14] in which a data owner owning N different
classes of encrypted data, wishes to grant decryption rights to an arbitrary subset S of these data
classes to a subset Ŝ of authorized data users. Note that a data class in this context refers to a
collection of similar data objects with identical access permissions.

A recently proposed solution to the online access delegation problem is the key-aggregate cryp-
tosystem (KAC) [CCT+14,PSM15]. KAC allows a data user to delegate decryption rights for any
arbitrary set of of data classes S into a single low overhead aggregate decryption key. The aggregate
key can then be distributed among a subset Ŝ of data users with appropriate access rights. The other
major advantage of KAC is that it does not assume any pre-defined data hierarchy as in [BBG05,?]
and can be adapted for any data organization mechanism. The efficiency of any KAC construction is
measured in terms of the ciphertext size (storage overhead) and the aggregate key size (distribution
overhead). A low overhead KAC construction is one in which both the ciphertext overhead and the
key aggregate overhead is upper bounded by a logarithmic function in the number of data classes as
well as the number of data users that the system can handle.

Relation of KAC with Broadcast Encryption. KAC may essentially be considered as a dual
notion of broadcast encryption [BGW05,BWZ14a]. In broadcast encryption, a single ciphertext is
broadcast among multiple users, each of whom may decrypt the same using their own individual
private keys. In KAC, a single aggregate key is distributed among multiple users and may be used to
decrypt ciphertexts encrypted with respect to different classes. For broadcast encryption, the focus is
on having shorter ciphertexts and low overhead individual decryption keys, while in KAC, the focus
is in having short ciphertexts and low overhead aggregate keys.

There exists, however, significant differences in the fundamental constructs for broadcast encryp-
tion and key aggregate encryption. Broadcast encryption essentially involves two classes of parties -
the broadcaster who broadcasts the secret key, and the data users who decrypt the broadcast message.
On the other hand, KAC involves three parties - the data owner who encrypts and puts the data in the
online sharing environment, the data users who access the data by decrypting it, and the trusted third
party that generates the aggregate key. In addition, the security framework for KAC constructions
as well as the notions for collusion resistance, anticipated in [CCT+14] and introduced concretely
[PSM15], are very different from that for the broadcast encryption techniques [BGW05,BWZ14a].
This motivates the dedicated study of KAC constructions separately from broadcast encryption.

Existing KAC Constructions in the Literature. Since KAC has only recently been introduced,
there exist only a handful of constructions that achieve full collusion resistance while maintaining
low ciphertext and aggregate key overhead. The first concrete construction for KAC was proposed
in [CCT+14]. Although [CCT+14] lays out the basic KAC framework for shared data environments,
it only anticipates the security notions for the same without stating any concrete proofs or security
results. The first concrete game-based security framework for KAC was introduced in [PSM15], which
was then used to prove the existing KAC construction to be CPA secure in the standard model.
The constructions proposed in both [CCT+14] and [PSM15] achieve constant size overhead for both
the ciphertext and the aggregate key. However, both the aforementioned constructions use a public
parameter that has linear size in the number of data classes N . In addition, for a system with M ′

data owners and M data users, these schemes require O(M ′M) secure channels for distribution of the
aggregate keys.

1.1 Our Contributions

In this paper, we propose three novel KAC constructions using multilinear maps with at most poly-
logarithmic overhead for all system parameters, ciphertexts and aggregate keys:

• Our first KAC construction uses an asymmetric O(logN) multilinear map to support N data
classes. The scheme has a public parameter overhead of O(logN) group elements, and produces
short ciphertexts and aggregate keys comprising of O(1) group elements. The scheme is proved to
be non-adaptively secure in the generic multilinear group model based on a well-known complexity
assumption.

• Our second KAC construction supports N data classes using a more general symmetric O(logN)
multilinear map, and has similar overheads as the first construction for ciphertexts, aggregate
keys as well as the public parameter. The symmetric map setting allows for non-adaptive security
proofs in the generic multilinear group model based on a simpler complexity assumption, as com-
pared to the asymmetric setting. However, as a flip side, it must be ensured that each data class
index i ∈ {1, · · · , N} can be efficiently mapped to integers î ∈ {1, · · · , O(N logN)}, where all î
have the same Hamming weight l.

• Our third KAC construction has two major differences with the first and second constructions. It
is adaptively secure in the generic multilinear group model, and provides tighter bounds on the

2

group size parameters. The trade-off is in the blow-up of the ciphertext size, which is O(logN)
group elements instead of O(1). However, a polylogarithmic overhead for the ciphertext is accept-
able since the overall system overhead still remains polylogarithmic.

• We also demonstrate how each of the three KAC constructons may be efficiently combined with
broadcast encryption schemes [BGW05,BWZ14a] so that the aggregate keys may be securely
broadcast to the target subset of data users without the need for secure channels. We demonstrate
that this extension to the basic KAC framework gives rise to data sharing schemes that require
O(M ′+M) secure channels (instead of O(M ′M) secure channels in previous KAC constructions)
for systems with M ′ data owners and M data users. Moreover, the extension does not cause any
blow-up in the size of the system parameters.

1.2 Other Related Work

One of the most popular techniques for access control in online data storage is to use a pre-defined
hierarchy of secret keys [ADSFM12,BBG05,?] in the form of a tree-like structure, where access to the
key corresponding to any node implicitly grants access to all the keys in the subtree rooted at that
node. Compact key encryption for the symmetric key setting has been used in [BCHL09] to solve the
problem of concisely transmitting large number of keys in the broadcast scenario. However, symmetric
key sharing via a secured channel is costly and not always practically viable for many applications
on the cloud. Efficient public key based encryption methods such as identity based encryption (IBE)
[BF03] and attribute based encryption (ABE) [GPSW06] focus principally on efficient decryption key
distribution. However, these schemes do not focus on the possibility of key aggregation for multi-class
data environments. Proxy re-encryption is another technique to achieve fine-grained access control
and scalable user revocation in unreliable clouds [AFGH06]. Proxy re-encryption essentially transfers
the responsibility for secure key storage from the delegatee to the proxy and may be susceptible to
collusion attacks.

2 Preliminaries

In this section, we formally define the key-aggregate cryptosystem (KAC) framework as well its se-
curity. For clarity of understanding, we present the definition in two parts. The first part defines a
basic KAC framework that focuses on generating small aggregate keys for arbitrarily large subsets of
data classes. The second part extends this basic framework by combining it with broadcast encryption
systems to distribute the aggregate key among multiple data users.

2.1 Key-Aggregate Cryptosystem : The Basic Version

The basic KAC is an ensemble of five poly-time randomized algorithms that are described next:

SetUp(ID): A data owner can classify her data into one or more classes belonging an identity space
ID. The function sets up the key-aggregate cryptosystem for the identity space ID. Outputs the
public parameter param.

KeyGen(): Outputs a master-secret key msk and the corresponding public key PK. A unique tuple
(msk, PK) is generated for each data owner. The master secret key msk is known only to the trusted
third party that generates the aggregate keys.

Encrypt(param,PK, i,M): Takes as input the public key parameter PK, the data class i ∈ ID
and the plaintext message M. Outputs the corresponding ciphertext C, which is stored online in the

3

shared environment.

Extract(param,msk,S): Takes as input the master secret key and a polynomial size subset of data
classes S ⊆ ID. Computes the aggregate key KS for all encrypted data/messages classified into any
class in S.

Decrypt(param, C, i,S,KS): Takes as input the ciphertext C, the data class i and the aggregate key
KS corresponding to a subset S. If i /∈ S, output ⊥. Otherwise, outputs the decrypted message M.
The Decrypt function is invoked by a data user with the appropriate credentials to access one or
more classes of data owned by the data owner. Note that the Decrypt operation for a given data
user requires the explicit knowledge of the subset S of data classes that the corresponding user can
access. This is of course a valid requirement since each user is expected to be aware of the subset S
of data classes that she can access.

Correctness. For correctness, we require that the decryption algorithm always succeeds in decrypting
a correctly encrypted plaintext message m. Formally, correctness of KAC may be described as follows.
For any valid identity space ID, any set S ⊆ ID, any index i ∈ S, and any plaintext message m, we
must have

Pr[Decrypt(C, i,S,KS) =M|E] = 1

where E is the event described as the conjunction of the following atomic events:

param← SetUp(ID), (msk, PK)← KeyGen(),

C ← Encrypt(param,PK, i,M),KS ← Extract(msk,S)

2.2 Security Definitions

We define a formal framework for proving active chosen ciphertext security of KAC. We begin by
introducing a game between a non-adaptive attack algorithm A and a challenger B, both of whom are
given ID, the data class identity space, as input. The game proceeds through the following stages.

SetUp: Challenger B sets up the KAC system. In particular, B generates the public parameter param,
the master secret key msk and the public key PK. Of these, param and PK are furnished to A.

Query Phase 1: Algorithm A adaptively issues decryption queries q1, · · · , qw. Here a decryption
query comprises of the tuple (C, v), where v ∈ ID is the data class of the message encrypted as C.
The challenger has to respond a valid decryption of the ciphertext.

Commit: A adaptively commits to a set S ⊂ ID of data classes that it wishes to attack. Since
collusion attacks are allowed in our framework, B furnishes A with the aggregate key KS that allows
A to decrypt any data class v /∈ S. Next, B randomly chooses a data class i ∈ S and provides it to A.

Challenge: A picks at random two messagesM0 andM1 from the set of possible plaintext messages
and provides them to B. To generate the challenge, B randomly picks b ∈ {0, 1}, and sets the challenge
to A as (C∗,M0,M1), where C∗ = Encrypt(PK, i,Mb).

Query Phase 2: A continues to adaptively issue decryption queries qw+1, · · · , qQD where a decryp-
tion query comprises of the tuple (C, v), but is now subject to the restriction C 6= C∗. B responds as
in query phase 1.

Guess: A outputs a guess b′ of b. If b′ = b, A wins the game.

4

The game above models an attack in the real world setting where users who do not have authorized
access to the subset S collude to try and expose a message in this subset. We now formally define the
security notions for KAC. Let AdvA,|ID| denote the probability that A wins the game.

Definition 2.1. A KAC construction is (ε, ID, QD) adaptively secure under a chosen ciphertext
attack (that is, adaptively CCA-secure) if, for all adaptive probabilistic poly-time algorithms A that
can make a total of QD decryption queries, we have that |AdvA,|ID| − 1

2 | < ε.

Definition 2.2. A KAC construction is (ε, ID) adaptively secure under a chosen plaintext attack
(that is, adaptively CPA-secure) if it is (ε, ID, 0) adaptively CCA secure.

We also define two weaker notions of security in the non-adaptive setting. In particular, non-adaptive
security is achieved in the scenario when A is required to commit to the set S before seeing the public
parameters. We refer to such an adversary as a non-adaptive adversary. This leads to the following
definitions.

Definition 2.3. A KAC construction is (ε, ID, QD) non-adaptively secure under a chosen ciphertext
attack (that is, non-adaptively CCA-secure) if, for all non-adaptive probabilistic poly-time algorithms
A that can make a total of QD decryption queries, we have that |AdvA,|ID| − 1

2 | < ε.

Definition 2.4. A KAC construction is (ε, ID) non-adaptively secure under a chosen plaintext attack
(that is, non-adaptively CPA-secure) if it is (ε, ID, 0) non-adaptively CCA secure.

2.3 Extensions to The Basic Version : Broadcasting Aggregate Keys

The basic KAC framework described in Section 2.1 assumes that the aggregate key is securely broad-
cast to the target set of users via secure channels. In a system with M ′ data owners and M data users,
this would require as many as O(M ′M) secure channels. In addition, storing the aggregate keys also
warrants significant amounts of secure storage. In this paper, we augment the basic KAC framework
to address these issues. Our approach is to broadcast the aggregate key among the target set of data
users using public-key based broadcast encryption schemes [BGW05,BWZ14a].

The Basic Idea. Quite intuitively, the crux of the extended construction lies in combining the
aggregate key KS with the broadcast secret for the target subset of data users Ŝ. The main challenge
in achieving this combination is the fact that the aggregate key and the broadcast secret generally
lie in two different mathematical groups, and cannot be trivially combined using a simple group
operation. Pairing them, on the other hand, makes it difficult to retrieve each individually and leads
to an extremely cumbersome decryption process. To retain the simplicity of the scheme, we introduce
the use of an additional secret key dsk, known only to the trusted third party. The secret key is
incorporated into both the ciphertext C, as well as the aggregate key KS , such that the knowledge of
the public key PK and the public parameter param leaks no information about dsk. The aggregate
key is then lifted to the appropriate group so that it may be combined with the broadcast secret to
produce the broadcast aggregate key K(S,Ŝ). Since dsk is only known to the trusted third party, the

extended scheme has the following major augmentations:

1. The Encrypt algorithm in the basic KAC framework is now broken up into two separate algo-
rithms - OwnerEncrypt where the data owner partially encrypts the plaintext message, and
FinalEncrypt where the trusted third party takes the partial encryption and incorporates the
knowledge of dsk in it to produce the final ciphertext. Note that it is to be made sure that the
partial ciphertext does not leak any knowledge of the plaintext to the trusted third party.

5

2. The aggregate key KS generated by the Extract algorithm is passed as input to a Broadcast
algorithm, which then generates the corresponding broadcast aggregate key K(S,Ŝ) for the target

subset of users Ŝ.

We point out that our proposed combination technique is generic; in particular, it is independent of
the nature of the mathematical constructs (such as bilinear or multilinear maps) used in an actual
construction instance of the extended KAC framework.

Let ID1 and ID2 denote the identity spaces for the data classes and the data users respectively.
We formally define the combined scheme, referred to as the extended KAC framework, using the fol-
lowing set of algorithms.

SetUp(ID1, ID2): Same as the basic KAC framework.

OwnerKeyGen(): In addition to the public key PK and the master-secret key msk, also outputs a
distribution secret key dsk. The tuple (msk, dsk) is known only to the trusted third party.

OwnerEncrypt(param,PK, i,M): Takes as input the data class i ∈ ID1 and the plaintext message
M. Outputs a partially encrypted ciphertext C′. This ciphertext is not placed directly in the online
shared environment. Instead, it is passed on to the FinalEncrypt operation executed by the trusted
third party, described next.

FinalEncrypt(C′,msk, dsk): Takes as input the partially encrypted ciphertext C′ and outputs the
final ciphertext C, which is then placed in the shared data environment. This additional step is essential
for supporting the broadcast of aggregate keys, as will be evident from the actual constructions
presented later.

UserKeyGen(param,msk, î): Takes as input the index î ∈ ID2 for a user and outputs the corre-
sponding secret key dî.

Extract(param,msk, dsk,S): Takes as input the master secret key, the distribution secret key and
a polynomial size subset of data classes S ⊆ ID1. Computes the aggregate key KS for all encrypted
data/messages classified into any class in S.

Broadcast(param,KS , Ŝ, PK): Takes as input the aggregate key KS , the polynomial size target
subset of users Ŝ ⊆ ID2. Outputs a single broadcast aggregate key K(S,Ŝ) that allows any user î ∈ Ŝ
to decrypt all encrypted data/messages classified into any class i ∈ S.

Decrypt(param, C,K(S,Ŝ), i, î, dî,S, Ŝ): The decryption algorithm now takes, besides the ciphertext

C and the corresponding data class i ∈ S, a valid user id î ∈ Ŝ. It also takes as input the broadcast
aggregate key K(S,Ŝ) and the secret key dî. The algorithm outputs the decrypted message.

Note that the only secure channel requirements here are for the transmission of the secret key dî
output by UserKeyGen, and the transmission of the partially encrypted ciphertext from the data
owner to the trusted third party. Since this requires only one one secure channel per data user and
one secure channel pr data owner, the number of secure channels necessary is O(M ′+M) in a system
with M ′ data owners and M data users. This is a significant reduction from the O(M ′M) secure
channel requirement in the basic construction. Moreover, the extended construction does not require
any secure storage for the aggregate keys, since the broadcast aggregate keys can be stored on the
public cloud itself.

6

2.4 Security of Extended KAC: A Game Based Framework

We also define the formal framework for proving the security of the extended KAC via the following
game between an attack algorithm A and a challenger B:

SetUp: Challenger B sets up the KAC system. In particular, B generates the public parameter param,
the master secret key msk, the distribution secret key dsk and the public key PK. Of these, param
and PK are furnished to A.

Query Phase 1: Algorithm A adaptively issues decryption queries q1, · · · , qw. Here a decryption
query comprises of the tuple (C, v), where v ∈ ID is the data class of the message encrypted as C.
The challenger has to respond a valid decryption of the ciphertext.

Commit: A adaptively commits to a set S ⊂ ID1 of data classes and a corresponding set Ŝ ⊂ ID2 of
authorized data users (with access to S) that it wishes to attack. Since collusion attacks are allowed
in our framework, B furnishes A with all the private user keys dĵ for ĵ /∈ Ŝ. In addition, A is also

provided with the broadcast aggregate key K(S,Ŝ) that allows any user in Ŝ to decrypt any ciphertext

class v /∈ S.

Challenge: A picks at random two messagesM0 andM1 from the set of possible plaintext messages
and provides them to B. To generate the challenge, B randomly picks b ∈ {0, 1}, and sets the challenge
to A as (C∗,M0,M1), where C∗ = Encrypt(PK, i,Mb).

Query Phase 2: A continues to adaptively issue decryption queries qw+1, · · · , qQD where a decryp-
tion query comprises of the tuple (C, v), but is now subject to the restriction C 6= C∗. B responds as
in query phase 1.

Guess: A outputs a guess b′ of b. If b′ = b, A wins the game.

The game above models an attack involving two different kinds of collusion. The first collusion
is by all users not in Ŝ who collude to try and expose an aggregate key that is broadcast for users
in Ŝ only. The second collusion is by users in Ŝ who collude (by compromising the knowledge of the
aggregate key for different subsets) to try and expose a message class in S.

We next define the security of extended KAC. Let Adv′A,|ID1|,|ID2| denote the probability that A
wins the above game.

Definition 2.5. An extended KAC construction with the ability to broadcast aggregate keys is
(ε, ID1, ID2, QD) non-adaptively secure under a chosen ciphertext attack (that is, non-adaptively
CCA-secure) if, for all non-adaptive probabilistic poly-time algorithms A that can make a total of QD
decryption queries, we have that |Adv′A,|ID1|,|ID2| −

1
2 | < ε.

Definition 2.6. An extended KAC construction is (ε, ID1, ID2) non-adaptively secure under a chosen
plaintext attack (that is, non-adaptively CPA-secure) if it is (ε, ID1, ID2, 0) non-adaptively CCA
secure.

2.5 Multilinear Maps

In this section, we provide a brief overview of multilinear maps. Our description of multilinear maps
is based on the graded encoding scheme used in several candidate multilinear map constructions
[GGH13].

7

Symmetric Multilinear Maps. A standard symmetric multilinear map consists of the following
pair of algorithms.

SetUp′(1λ,m): Sets up an m-linear map by outputting an m-tuple of groups < G1,G2, · · · ,Gm > of
prime order q (where q is a λ bit prime), along with the respective generator gi ∈ Gi for 1 ≤ i ≤ m.
In standard notation, G1 is the source group, Gm is the target group, and G2, · · · ,Gm−1 are the
intermediate groups.

ei,j(h1, h2): Takes as input h1 ∈ Gi and h2 ∈ Gj , and outputs h3 ∈ Gi+j such that

(h1 = gai , h2 = gbj)⇒ h3 = gabi+j

In this paper, we follow the standard notation used in the literature to omit the subscripts and simply
refer to this multilinear map as e. Further, e may be generalized to multiple inputs as e(h1, · · · , hk) =
e(h1, e(h2, · · · , hk)). Note that gai is sometimes referred to as the level-i encoding of a. The scalar a
itself may therefore be referred to as the level 0 encoding of itself. Although symmetric multilinear
maps are simple to understand, there currently exist no reported candidate constructions for the same.
Almost all candidate constructions [GGH13,CLT13] realize asymmetric multilinear maps, which we
describe next.

Asymmetric Multilinear Maps. We adopt the same definition of asymmetric multilinear maps
presented in [GGH13]. According to this definition, in asymmetric multilinear maps, the groups are
indexed by integer vectors. Formally, a standard asymmetric multilinear map consists of the following
algorithms.

SetUp′′(1λ,n): Takes as input a vector n ∈ Zl. Sets up an n-linear map by outputting an n-tuple
of groups < G1,G2, · · · ,Gn > of prime order q (where q is a λ bit prime), along with the respective
generators gv ∈ Gv for 1 ≤ v ≤ n(comparison is defined component-wise). Further, let xi be the ith
standard basis vector (with 1 at position i and 0 at each other position). In standard notation, Gxi is
the ith source group, Gv is the target group, and the rest are the intermediate groups.

ev1,v2(h1, h2): Takes as input h1 ∈ Gv1 and h2 ∈ Gv2 , and outputs h3 ∈ Gi+j such that

(h1 = gav1
, h2 = gbv2

)⇒ h3 = gabi+j

Again, we omit the subscripts and simply refer to this multilinear map as e, which may be generalized
to multiple inputs as e(h1, · · · , hk) = e(h1, e(h2, · · · , hk)).

In the forthcoming discussions, we present our KAC constructions assuming that the ideal multilin-
ear maps based on the graded encoding scheme described above exist and are efficiently computable.
We do this to make the analysis simple and easy to follow. We point out, however, that current
candidates for multilinear maps in the cryptographic literature deviate from these ideal notions. In
these candidates, group elements lack unique representations due to the presence of a noise term that
tends to grow with repeated group/multilinear operations. This, however, is not a major setback since
the KAC constructions presented in this paper can be instantiated using multilinear maps with the
properties listed below:

• The representation of an element should be statistically independent of the group and multilinear
operations that led to that element.

• It is possible to extract a canonical representation of an element in the target group given any
representation of that element using the zero-test parameter.

8

• The party setting up the multilinear map has sufficient trapdoor information to compute gα
x

for
a non-random α and exponentially large x.

• It is possible to generate asymmetric multilinear maps for any positive integer vector n ∈ Zl.

• It should be possible to design the parameters of our system such that the noise growth during
the execution of our scheme does not lead to erroneous computations.

The two foremost candidate multilinear map constructions [GGH13,CLT13] possess the aforemen-
tioned properties. Unfortunately, both these constructions, as well as attempted fixes for them [GHMS14,BWZ14b]
have been cryptanalyzed either in parts or completely [CHL+15,CLT14]. A more recent proposition
by Gentry et al. is the graph-induced multilinear map based on non-ideal lattices [GGH15], which
naturally gives rise to asymmetric multilinear maps. Even this construction has been broken by Coron
et al. [?], who demonstrate how to recover an equivalent private key for this scheme (even in the
presence of safeguards).

Given the extensive cryptanalysis of the existing multilinear map constructions, most of the in-
tractable problems related to multilinear maps are currently secure only in the generic group model
[BBG05]. We present a brief overview of the generic group model next.

2.6 Generic Multilinear Maps

Just as multilinear maps are an extension of bilinear maps, the generic multilinear map model is
an extension of the generic bilinear map model [BBG05]. We describe the model here for complete-
ness. In this model, the group Gv (where v ∈ Zl) is represented by a random injective function
ξ : Zq × Zl → {0, 1}n [BWZ14a]. Suppose that the target vector is n ∈ Zl. Any algorithm in the
generic multilinear map model is said to interact with the map using the tuple of algorithms (Encode,
Mult, Pair) described below.

Encode(x,v): Takes as input a non-negative integer vector v ≤m and outputs ξ(x,v).

Mult(ξ1, ξ2, �): Takes as input ξ1 = ξ(x1,v), ξ2 = ξ(x2,v) and � ∈ {+,−}. Outputs ξ(x1 � x2,v).

Pair(ξ1, ξ2): Takes as input ξ1 = ξ(x1,v1) and ξ2 = ξ(x2,v2) where v1 + v2 = v ≤ m. Outputs
ξ(x1.x2,v).

Note that if the inputs are not valid, each off the above algorithms returns ⊥. Also, Mult and Pair
here are assumed to be oracles to compute the induced group multiplication and multilinear map
operations.

3 KAC Using Asymmetric Multilinear Maps

In this section, we present the first construction of identity-based KAC based on asymmetric multi-
linear maps. Our goal in this scheme is to ensure that the size of the public parameter is O(logN)
group elements, while the ciphertext and the aggregate key comprise of O(1) group elements. The
construction is presented in two parts - the basic version followed by its extension for aggregate key
distribution among multiple users.

The Basic Idea. Let N = 2m−1 for some integer m, and let m be the m+1 length vector consisting
of all ones. We use an asymmetric multilinear map with the target group G2m. Note that if we pair
two elements in the group Gm, we get an element in G2m by the definition of asymmetric multilinear
maps. Let Yi = gα

i

m , where α ∈ Zq. Recall that xj is the jth standard basis vector (with 1 at position j

9

and 0 at each other position) and Gxj is the jth source group with generator gxi . Also, let Xj = gα
(2j)

xj

for 0 ≤ j ≤ m− 1, Xm = gα
(2m+1)

xm and X ′m = gα
(2m)

xm . We make the following claims.

Claim 3.1. Given an i such that 0 ≤ i ≤ N , Yi can be computed from the set of parameters
(X0, · · · , Xm).

Proof. Let i =
∑m−1
j=0 ij2

j . We have

Yi = gα
i

m

= gα
(∑m−1

j=0
ij2

j)
m

= e

(
gα

(2j)i0
x0

g1−i0x0
, · · · , gα

(2j)im−1
xm−1

g1−im−1
xm−1

, gxm

)
= e

(
Xi0

0 g
1−i0
x0

, · · · , Xim−1

m−1 g
1−im−1
xm−1

, gxm

)
Claim 3.2. Given i such that N + 2 ≤ i ≤ 2N , Yi can be computed from the set of parameters
(X0, · · · , Xm).

Proof. Let i′ = i− (2m + 1) =
∑m−1
j=0 i′j2

j . Then, we have

Yi = gα
i

m

= gα
((
∑m−1
j=0

i′j2
j)+(2m+1))

m

= e

(
g
α(2j)i′0
x0 g

1−i′0
x0 , · · · , gα

(2j)i′m−1
xm−1 g

1−i′m−1
xm−1 , gα

(2m+1)

xm

)
= e

(
X
i′0
0 g

1−i′0
x0 , · · · , Xi′m−1

m−1 g
1−i′m−1
xm−1 , Xm

)
We now make the following important observation.

Observation 3.3. Given the set of parameters (X0, · · · , Xm) and without the knowledge of X ′m =

gα
(2m)

xm , it is difficult to compute the value of YN+1.

This follows trivially from the fact that 2m cannot be expressed as the sum of other lower powers
of 2. Thus we successfully embed a parameter set comprising of O(N) group elements into another
parameter set comprising of O(logN) group elements, without revealing any secret information. We
next present the construction of the basic single data-owner KAC using this framework.

Assumption 3.4. For simplicity, we assume in the forthcoming discussion that our plaintext messages
are embedded as elements in the group G2m. We discuss in Appendix A how we may modify our scheme
to relax this assumption.

3.1 Construction for the Basic KAC Framework

We first present a basic construction for the KAC scheme that focuses on generating aggregate keys.
Assume that a data owner owning N classes of data wishes to furnish a data user with a single low
overhead aggregate key that grants the user with decryption rights for any data class i ∈ S, where S

10

is any arbitrary subset of {1, · · · , N}. For the moment we assume that the aggregate key is received
by the data owner from a trusted third party who sets up the overall system. We later show how this
construction may be extended using public-key based broadcast encryption to distribute the aggregate
key to multiple data users.

Assume that SetUp′′(1λ,m) is the setup algorithm for an asymmetric multilinear map, where
groups have prime order q (where q is a λ bit prime) and Gm is the target group. Our first basic
identity-based KAC, for a single data owner with N = 2m − 1 data classes, consists of the following
algorithms.

SetUp(1λ,m): Take as input the length m of identities and the group order parameter λ. Set ID =
{0, 1}m\{0}m as the identity space. Let m be the m + 1 length vector consisting of all ones. Also,
let param′′ ←SetUp′′(1λ

′
, 2m) be the public parameters for a multilinear map, with G2m being the

target group and λ′ is the adequate group size parameter for achieving λ bit security. Choose a random

α ∈ Zq. Set Xj = gα
(2j)

xj for 0 ≤ j ≤ m − 1 and Xm = gα
(2m+1)

xm . Output the public parameter tuple
param as

param = (param′′, {Xj}j∈{0,··· ,m})

Discard α after param has been output.

KeyGen(): Randomly pick γ ∈ Zq. Set the master secret key msk = γ and the public key PK = gγm.
Output the tuple (msk, PK).

Encrypt(param,PK, i,M): Take as input a messageM∈ G2m belonging to class i ∈ ID. Randomly

choose t ∈ Zq. Recall that Yi = gα
i

m and can be computed as per the formulation in Claim 3.1 for
1 ≤ i ≤ N . Output the ciphertext C as

C =
(
gtm, (PK.Yi)

t,M.gtα
(2m)

2m

)
where gtα

(2m)

2m is computed as (e(Y2m−1, Y1))
t
.

Extract(param,msk,S): For the input subset of data class indices S, the aggregate key is computed
as

KS =
∏
v∈S

Y msk2m−v

Note that this is indirectly equivalent to setting KS to
∏
v∈S PK

α2m−v
.

Decrypt(param, C, i,S,KS): If i /∈ S, output ⊥. Otherwise, set

aS =

 ∏
v∈S,v 6=i

Y2m−v+i

 and bS =

(∏
v∈S

Y2m−v

)

Let C = (c0, c1, c2). Output the decrypted message as

M̂ = c2
e(KS .aS , c0)

e(bS , c1)

Correctness. To see that the scheme is correct, that is, M̂ =M, put c0 = gtm, c1 = (PK.Yi)
t and

c2 =M.gtα
(2m)

2m . Then we have

11

M̂ = c2
e(KS .aS , c0)

e(bS , c1)

= c2
e(
∏
v∈S Y

γ
2m−v.

∏
v∈S,v 6=i Y2m−v+i, g

t
m)

e(
∏
v∈S Y2m−v, (PK.Yi)

t)

= c2
e(
∏
v∈S,v 6=i Y2m−v+i, g

t
m)

e(
∏
v∈S Y2m−v, Y

t
i)

=
M.gtα

(2m)

2m

e(Y2m , gtm)

=M

3.2 Security of the Proposed KAC

We state and prove the non-adaptive CPA security of our proposed KAC scheme in the generic group
model. We briefly state the complexity assumption that is to be used to prove the security of the
proposed KAC scheme.

The Hybrid Diffie-Hellman Exponent Assumption. Let param′′ is generated by SetUp′′(1λ
′
, 2m),

where m is the m+ 1 length vector consisting of all ones and λ′ is the adequate group size parameter

for achieving λ bit security. Choose α ∈ Zq at random (where q is a λ′-bit prime), and let Xj = gα
(2j)

xj

for 0 ≤ j ≤ m − 1. Also, define Xm = gα
(2m+1)

xm . Choose a random t ∈ Zq, and let V = gtm. The
decisional m-Hybrid Diffie Hellman Exponent (HDHE) problem as defined as follows. Given the tuple

(param′′, {Xj}j∈{0,··· ,m}, V, Z), distinguish if Z is gtα
(2m)

2m or a random element of G2m.

Definition 3.5. The decisional m-HDHE assumption holds for SetUp′′ if, for any polynomial m and
a probabilistic poly-time algorithm A, A has negligible advantage in solving the m-HDHE problem.

We now state and prove the following theorem.

Theorem 3.6. Let SetUp’′′ be the setup algorithm for an asymmetric multilinear map, and let the
decisional m-Hybrid Diffie-Hellman Exponent assumption holds for SetUp′′. Then our proposed basic
KAC for N = 2m − 1 data classes presented in Section 3.1 is non-adaptively CPA secure.

Proof. Let A be a poly-time adversary such that |AdvA,N − 1
2 | > ε for the proposed KAC system

parameterized with an identity space ID of size N = 2m − 1. Here ε is a non-negligible positive
constant. We build an algorithm B that has advantage at least ε in solving the decisional m-HDHE
problem for SetUp’′′. B takes as input a random m-HDHE challenge (param′′, {Xj}j∈{0,··· ,m}, V, Z)
where:

• param′′ ←SetUp′′(1λ
′
, 2m) (λ′ is the adequate group size parameter for achieving λ bit security)

• Xj = gα
(2j)

xj for 0 ≤ j ≤ m− 1

• Xm = gα
(2m+1)

xm

• V = gtm for a random t ∈ Zq (q being a λ′ bit prime)

• Z is either gtα
(2m)

2m or a random element of G2m

12

B then proceeds as follows.

Commit: B runs A and receives the set S of data classes that A wishes to be challenged on. B then
randomly chooses a data class i ∈ S and provides it to A.

SetUp: B should generate the public param the public key PK and the aggregate key KS , and
provide them to A. They are generated as follows.

• param is set as (param′′, {Xj}j∈{0,··· ,m}).
• PK is set as gum/Yi where u is chosen uniformly at random from Zq and Yi is computed as

mentioned in Claim 3.1. Note that this is equivalent to setting msk = (u− αi).
• B then computes

KS =
∏
v/∈S

Y u2m−v
Y2m−v+i

Observe that KS =
∏
v/∈S PK

α2m−v
, as desired. Moreover, B is aware that i /∈ S (implying i 6= v),

and hence has all the resources to compute KS .

Since the gm, α, u and t values are chosen uniformly at random, all the parameters and the keys have
an identical distribution to that in the actual construction.

Challenge: A picks at random two messagesM0 andM1 from the set of possible plaintext messages
in G2m, and provides them to B. B randomly picks b ∈ {0, 1}, and sets the challenge as (C,M0,M1),
where

C = (V, V u,Mb.Z)

We claim that when Z = gtα
(2m)

2m (i.e. the input to B is a valid m-HDHE tuple), then (C,M0,M1) is
a valid challenge to A as in a real attack. To see this, observe that

V = gtm and V u = (gum)
t

= (PK.Yi)
t

Mb.Z = Mb.g
tα(2m)

2m

Thus, by definition, C is a valid encryption of the message Mb in class i and hence, (C,M0,M1) is a
valid challenge to A.

Guess: The adversary A outputs a guess b′ of b. If b′ = b, B outputs 0 (indicating that Z = gtα
(2m)

2m).
Otherwise, it outputs 1 (indicating that Z is a random element in G2m).

We conclude that B has the same advantage ε as A, which must therefore be negligible, as desired. This
completes the proof of Theorem 3.6. Finally, we note here that in the absence of any provably secure
multilinear map construction in the cryptographic literature, the m-HDHE assumption currently only
holds in the generic group model. Boneh, Boyen and Goh [BBG05] introduced a general technique
to prove computational lower bounds on the difficulty of breaking Diffie-Hellman-type complexity
assumptions in a generic bilinear group model. An extension of these techniques can be used to
prove that the m-HDHE assumption holds in the generic group model. Hence our proposed KAC
construction is provably CPA secure in the generic group model. We point out, however, that should
a secure multilinear map construction be achieved in the future that causes the m-HDHE assumption
to hold in an actual group structure, the above proof would escalate to the standard model. ut

CCA Security. The CPA secure construction of Section 3.1 may be efficiently combined with a
signature scheme to obtain a CCA secure construction, albeit in the generic group model. For details,
refer Appendix B.

13

3.3 An Extended KAC Construction : Broadcasting the Aggregate Keys

We now extend the basic KAC construction to tackle the problem of aggregate key distribution in
data sharing environments with multiple users. Assume that there are N data classes and M users
in the system. For simplicity, let N = M , that is, we assume the identity spaces ID1 and ID2 to be
identical and denoted simply as ID. To achieve this, one can sufficiently pad all class identity and
user identity strings to have the same number of bits. The data owner grants access to a subset S
of her data classes to a subset Ŝ of the data users in the system. Here, both S and Ŝ are arbitrary
subset of {1, · · · , N}, not necessarily equal. We show how the construction from Section 3.1 may be
efficiently combined with the public-key based broadcast encryption scheme proposed in [BWZ14a] to
achieve a fully identity-based public key solution to this problem.

Construction. Let N = 2m − 1 and SetUp’′′ be as described before. The crux of the generalized
scheme lies in the combination of the aggregate key with the broadcast encryption secret, although
though they lie in different groups. Note that we do not need any additional parameters for incorpo-
rating broadcast encryption. Also note that generalization does not significantly blow up the overhead
for any component of the system. In particular, the generalized scheme also consists of parameters
that have size at most logarithmic in the number of data (and user) classes N . This allows N to be
exponentially large. Hence, the generalized system is fully identity-based with each data class and
each user associated with a unique identity string id ∈ {0, 1}∗. The class index i and the user index î
(where 1 ≤ i, î ≤ N) are obtained by hashing the corresponding id strings.

SetUp(1λ,m): Same as the basic construction in Section 3.1.

OwnerKeyGen(): Randomly pick γ1, γ2, γ3 ∈ Zq. Set the master secret key msk to (γ1, γ2) and
the public key PK = (gγ1m , g

γ2
m). Additionally, set the distribution secret key dsk = γ3. Output the

tuple (msk, PK, dsk).

OwnerEncrypt(param,PK, i,M): Take as input a message M ∈ G2m belonging to class i ∈ ID.
Randomly choose t ∈ Zq. Also, let PK = (PK1, PK2). Output the partially encrypted ciphertext C
as

C′ =
(
gtm, PK

t
1, (PK1.Yi)

t,M.gtα
(2m)

2m

)
Note that the additional group element PKt

1 in the tuple blows up the ciphertext overhead by only a
constant factor. The partially encrypted ciphertext C′ is then passed on to the FinalEncrypt oper-
ation described next.

FinalEncrypt(C′,msk, dsk): Let the partially encrypted ciphertext C′ be of the form (c0, c
′
1, c2, c3)

and msk = (msk1,msk2). Computes outputs the final ciphertext C as:

C = (c0, c1, c2, c3)

where

c1 =
c′1

gmsk1.dskm

The final ciphertext is now placed in the shared data environment. Note that the trusted third party
gains no knowledge of the secret parameter t used in the partial encryption step, neither does she gain
any knowledge of the plaintext message M.

14

UserKeyGen(param,msk, î): Let msk = (msk1,msk2). Output the secret key for data user î as

dî = Y msk2
î

Extract(param,msk, dsk,S): Let msk = (msk1,msk2). For the input subset of data class indices S,
the aggregate key is computed as

KS =
∏
v∈S

(Y2m−v)
msk1.dsk

Note that this aggregate key will be passed as input to the Broadcast algorithm described next, and
will not be transmitted to the target data users directly.

Broadcast(param,KS , Ŝ, PK): Broadcasts the aggregate key KS to all users in Ŝ as follows. Let
PK = (PK1, PK2). Randomly choose t̂ ∈ Zq and set

bŜ =

∏
v̂∈Ŝ

Y2m−v̂


Output

K(S,Ŝ) =
(
gt̂m,

(
PK2.bŜ

)t̂
,K
)

where
K =

((
gt̂α

(2m)

2m

)
. (e(KS , gm))

)
Here, gt̂α

(2m)

2m is computed as (e(Y2m−1, Y1))
t̂
. Note that the actual group element corresponding to

KS is difficult to recover from K. However, as we demonstrate next, this knowledge is not explicitly
necessary for decryption.

Decrypt(param, C,K(S,Ŝ), i, î, dî,S, Ŝ): If i /∈ S or î /∈ Ŝ, output ⊥. Otherwise, set

aŜ =

 ∏
v̂∈Ŝ,v̂ 6=î

Y2m−v̂+î

 , aS =

 ∏
v∈S,v 6=i

Y2m−v+i


and bS =

(∏
v∈S

Y2m−v

)

Let C = (c0, c1, c2, c3) and K(S,Ŝ) = (k̂0, k̂1, k̂2). Output the decrypted message as

M̂ = c3.k̂2.

(
e(bS , c1)e(aS , c0)

e(bS , c2)

)
.

(
e(dî.aŜ , k̂0)

e(Yî, k̂1)

)

Correctness of this scheme may be easily proven. We demonstrate next that this scheme is non-
adaptively CPA secure in the standard model.

3.4 Security of Extended KAC

We state and prove the non-adaptive CPA security of the extended multi-user KAC. We first describe
the complexity assumption that is used to prove security.

15

The Extended Hybrid Diffie-Hellman Exponent Assumption. Let param′′ is generated by
SetUp′′(1λ

′
, 2m), where m is the m + 1 length vector consisting of all ones and λ′ is the adequate

group size parameter for achieving λ bit security. Choose α ∈ Zq at random (where q is a λ-bit prime),

and let Xj = gα
(2j)

xj for 0 ≤ j ≤ m − 1. Also, define Xm = gα
(2m+1)

xm . Choose random t, t̂ ∈ Zq, and

let V1 = gtm and V2 = gt̂m. The decisional m-Extended Hybrid Diffie Hellman Exponent (EHDHE)
problem as defined as follows. Given the tuple(

param′′, {Xj}j∈{0,··· ,m}, (V1, V2), (Z1, Z2)
)

distinguish if (Z1, Z2) is
(
gtα

(2m)

2m , gt̂α
(2m)

2m

)
or a random element in G2m ×G2m.

Definition 3.7. The decisional m-EHDHE assumption holds for SetUp′′ if, for any polynomial m and
a probabilistic poly-time algorithm A, A has negligible advantage in solving the m-EHDHE problem.

We now state and prove the following theorem:

Theorem 3.8. Let SetUp’′′ be the setup algorithm for an asymmetric multilinear map, and let the
decisional m-EHDHE assumption holds for SetUp′′. Then the extended multi-user KAC for N =
2m − 1 data classes is non-adaptively CPA secure.

Proof. Let A be a poly-time adversary such that |AdvA,N − 1
2 | > ε for the extended KAC parame-

terized with an identity space ID of size N = 2m− 1. Here ε is a non-negligible positive constant. We
build an algorithm B that has advantage at least ε in solving the decisional m-EHDHE problem for
SetUp′′. B takes as input a random m-EHDHE challenge (param′′, {Xj}j∈{0,··· ,m}, (V1, V2), (Z1, Z2))
where:

• param′′ ←SetUp′′(1λ
′
, 2m), where λ′ is the adequate group size parameter for achieving λ bit

security.

• Xj = gα
(2j)

xj for 0 ≤ j ≤ m− 1

• Xm = gα
(2m+1)

xm

• (V1, V2) =
(
gtm, g

t̂
m

)
for a random t ∈ Zq (q being a λ′ bit prime)

• (Z1, Z2) is either
(
gtα

(2m)

2m , gt̂α
(2m)

2m

)
or a random element of G2m ×G2m.

B then proceeds as follows.

Commit: B runs A and receives the set S of data classes and the set Ŝ of data users that A wishes
to be challenged on. B then randomly chooses a data class i ∈ S and provides it to A.

SetUp: B sets the following parameters and provides them to A.

• param is set as (param′′, {Xj}j∈{0,··· ,m}).
• PK is set as

PK = (PK1, PK2) =

(
gγ1m
Yi
,

gγ2m∏
v̂∈Ŝ Y2m−v̂

)
where γ1, γ2 are chosen uniformly at random from Zq, and Yi is computed as mentioned in Claim
3.1.

16

Note that this is equivalent to setting msk as

msk = (msk1,msk2) =

γ1 − αi, γ2 −∑
v̂∈Ŝ

α2m−v̂


B chooses a random γ3 ∈ Zq and implicitly sets the value of the secret distribution key dsk to t− γ3
(recall that V1 = gtm). We see later how this implicit definition manifests in the actual game.

Once again, since the gm, α, γ1, γ2, and t̂ values are uniformly random, all parameters and keys
have an identical distribution to that in the actual construction.

Query Phase: A is allowed to query secret keys for users î /∈ S. B responds with

dî =
Y γ2
î∏

v̂∈Ŝ Y2m−v̂+î

Observe that dî = Y msk2
î

, as desired. In addition, A may also query for K(S,Ŝ). This query models

a collusion scenario where users in the set S itself may also collude to leak information about data
classes not in S. In response, B computes

KS =
∏
v/∈S

Y u2m−v
Y2m−v+i

and sets

K = Z2.e(KS , V1.g
−γ3
m)

Note that the implicit definition of dsk is used here. Finally, B provides A with the aggregate key

K(S,Ŝ) =
(
V2, V

γ2
2 ,K

)
It can be easily shown that whenever Z2 = gt̂α

(2m)

2m , this is a valid aggregate key that allows any user
in Ŝ to decrypt any class i /∈ S.

Challenge: A picks at random two messagesM0 andM1 from the set of possible plaintext messages
in G2m, and provides them to B. B randomly picks b ∈ {0, 1}, and sets the challenge as (C,M0,M1),
where

C = (V1, PK
γ3
1 , V γ11 ,Mb.Z1)

As before, whenever Z1 = gtα
(2m)

2m , (C,M0,M1) is a valid challenge to A, as in a real attack.

Guess: A outputs a guess b′ of b. If b′ = b, B outputs 0 (indicating that (Z1, Z2) =
(
gtα

(2m)

2m , gt̂α
(2m)

2m

)
).

Otherwise, it outputs 1 (indicating that (Z1, Z2) is a random element in G2m ×G2m).

We conclude that B has the same advantage ε as A, which must therefore be negligible. This completes
the proof of Theorem 3.8. Once again, we note here that the m-EHDHE assumption currently only
holds in the generic group model. Hence our proposed extended KAC construction is provably CPA
secure in the generic group model. Should a secure multilinear map construction be achieved in the
future that causes the m-EHDHE assumption to hold in an actual group structure, the above proof
would also escalate to the standard model. ut

17

3.5 Privacy of Data Owners

In any online data sharing environment with multiple data owners, data privacy is an essential require-
ment. In particular, the aggregate key supplied by one data owner should not leak information about
another data owner to an unauthorized user. This problem however does not arise in our construction
if a new parallel instance of the KAC construction in Section 3.3 is run for each data owner. Each
instance can handle N data classes and can cater to N data users. In order to distinguish between data
classes belonging to different instances, each data class is assigned a double index (i1, i2), where i1 is
the instance index, and i2 is the class index specific to the instance. Each instance i1 is characterized
by its own master secret key mski1 , public key PKi1 and distribution key dski1 . The main advantage
of this approach is that all the parallel instances can share the same public param, which needs to be
setup exactly once by the system administrator. Also note that the number of unique ordered tuples(
mski1 , PKi1 , dski1

)
is q3. For q = O(N), a single setup can support an exponentially large number

of data owners. Finally, if a data owner wishes to store more than N classes of data or cater to more
than N data users, she may be allocated more than one instance of the KAC construction in Section
3.3.

Finally, we note that our construction is agnostic of the manner in which the data owner organizes
her data. In particular, our construction is easily adaptable for hierarchical data structures, since a
data owner could create an aggregate key corresponding to all the data classes rooted at any internal
node, and then broadcast it to the target user group.

3.6 An Identity-Based Data Sharing Scheme

The extended KAC construction presented above can be used to design fully identity-based online data
sharing schemes with low overhead parameters. To see this, observe that each of our constructions can
support N data classes and N data users, while using parameters with only O(logN) group elements.
Thus, N is allowed to be exponentially large and in particular, as large as the range of a collision
resistant hash function H. This makes our KAC constructions fully identity-based, since each data
class and each data user can be associated with a unique identity id ∈ {0, 1}∗. The index number can
be automatically set by hashing the corresponding identity id to H(id) ∈ {1, · · · , N}. Quite evidently,
an identity-based KAC offers much flexibility. The aggregate key to any subset of data classes may
be computed by simply hashing the corresponding class identities. At the same time, this aggregate
key may be broadcast to any set of authorized users by hashing their public identities.

4 KAC Using Symmetric Multilinear Maps

In this section, we present a KAC construction based on traditional symmetric multilinear maps. We
use the same idea presented in the earlier construction, that is, we use a symmetric multilinear map
to ensure that the necessary parameters can be derived from a small number of public elements in

the source group of the map. In this construction, the parameter Yi = gα
i

m , while Xj = gα
2j

1 . However,
unlike in the asymmetric setting where the same elements cannot be paired together, in the symmetric
setting one could pair Xm−1 with itself, and then pair it with g1 m − 2 times, to obtain YN+1. To
overcome this we use a technique proposed in [BWZ14a] that restricts the bit representations of all
identities in ID to a single Hamming weight class. This actually allows computing the necessary Yi
without leaking the value of YN+1. The idea is illustrated in the following discussion.

The Basic Idea. Let Yi = gα
i

m−1 and Ŷi = gα
i

l where l ≤ m. Set Xj = gα
(2j)

1 for i = 0, 1, · · · ,m.
Further, let HW (i) denote the Hamming weight of the bit representation of i. We now make the
following claims.

18

Claim 4.1. One can compute gα
i

HW (i) for 1 ≤ i ≤ 2m − 2. In particular, one can compute Ŷi for

1 ≤ i ≤ 2m − 2 such that HW (i) = l.

Proof. Compute gα
i

HW (i) by pairing together all Xj such that the jth bit of i is 1. Since i has at most
m bits, the necessary Xj are available.

Claim 4.2. One can compute Yi and Y2m−1−i for 1 ≤ i ≤ 2m − 2 such that HW (i) = l.

Proof. Note that for all i such that 1 ≤ i ≤ 2m − 2, HW (i) ≤ m − 1. Hence, one can compute

gα
i

HW (i) by Claim 4.1 and then pair it with gm−HW (i)−1 (if HW (i) ≤ m − 2) to obtain Yi. Also,

compute gα
2m−1−i

HW (2m−1−i) as per Claim 4.1. Note that HW (2m − 1 − i) = m − l if HW (i) = l. Thus,

we basically computed gα
2m−1−i

m−l . Then, we pair it with gl−1 (obtained by pairing g1 (l − 1) times) to
obtain Y2m−1−i.

Claim 4.3. One can compute Y2m−1−v+i for 1 ≤ i, v ≤ 2m − 2, i 6= v where HW (i) = HW (v) = l.

Proof. Let T1 denote the set of these bit positions that are 1 in the bit representation of i, and T2
denote the set of bit positions that are 1 in the bit representation of 2m − 1− v. Clearly, |T1| = l and
|T2| = m− l. Now, note that that T1

⋂
T2 = φ iff i = v which is not allowed. So ∃j′ ∈ T1

⋂
T2. Then,

we can write

2m − 1− v + i =

 ∑
j∈T1\{j′}

2j

+

 ∑
j∈T2\{j′}

2j

+ 2j
′+1

Note that this is a sum of m− 1 powers of two. This in turn allows us to compute

Y2m−1−v+i = e
(
{Xj}j∈T1\{j′}, {Xj}j∈T2\{j′}, Xj′+1

)
which is a pairing of (m− 1) Xj terms, as desired.

Assumption 4.4. For simplicity, we assume in the forthcoming discussion that our plaintext messages
are embedded as elements in the group Gm+l−1. For relaxations, refer Appendix A.

4.1 An Extended KAC Construction with Broadcast Aggregate Keys

We present an extended KAC construction using symmetric multilinear maps with the ability to
broadcast aggregate keys for arbitrarily large subsets of data classes S to arbitrarily large subsets of
data users Ŝ. Our scheme handles N data classes and N users, as in the extended KAC construction
presented in Section 3.5.

Construction. Let N = 2m − 2 and SetUp′ sets up a symmetric multilinear map. Recall that
Yi = gα

i

m−1 and Ŷi = gα
i

l , where 1 ≤ i ≤ N and l ≤ m. Our scheme can handle N data classes and N
data users.

SetUp(1λ, (m, l)): Set up the KAC system for ID consisting of all m bit class identities with Ham-
ming weight l, that is N = |ID| =

(
m
l

)
. Since 1 ≤ l ≤ m − 1, we have N ≤ 2m−2. Let param′ ←

SetUp′(1λ
′
,m+ l−1) be the public parameters for a symmetric multilinear map, with Gm+l−1 being

the target group and λ′ is the adequate group size parameter for achieving λ bit security. Choose a

random α ∈ Zq. Set Xj = gα
(2j)

1 for 0 ≤ j ≤ m. Output the public parameter tuple param as

param = (param′, {Xj}j∈{0,··· ,m})

19

Discard α after param has been output.

OwnerKeyGen(): Randomly pick γ1, γ2, γ3 ∈ Zq. Set the master secret key msk = (γ1, γ2), the
public key PK = (gγ1l , g

γ2
l) and the distribution key dsk = γ3. Output the tuple (msk, PK, dsk).

OwnerEncrypt(param,PK, i,M): Take as input a messageM∈ Gm+l−1 belonging to class i ∈ ID.
Randomly choose t ∈ Zq. Output the partially encrypted ciphertext C′ as

C′ =
(
gtl , PK

t
1, (PK1.Ŷi)

t,M.gtα
(2m−1)

m+l−1

)
The partially encrypted ciphertext C′ is then passed on to the FinalEncrypt operation described
next.

FinalEncrypt(C′,msk, dsk): Let the partially encrypted ciphertext C′ be of the form (c0, c
′
1, c2, c3)

and msk = (msk1,msk2). Computes outputs the final ciphertext C as:

C = (c0, c1, c2, c3)

where

c1 =
c′1

gmsk1.dsk1

The final ciphertext is now placed in the shared data environment. Once gain, note that the trusted
third party gains no knowledge of the secret parameter t used in the partial encryption step, neither
does she gain any knowledge of the plaintext message M.

UserKeyGen(param,msk, î): Let msk = (msk1,msk2). Output the secret key for data user î as

dî = Y msk2
î

Extract(param,msk, dsk,S): Let msk = (msk1,msk2). For the input subset of data class indices S,
the aggregate key is computed as

KS =
∏
v∈S

(Y2m−1−v)
msk1.dsk

Recall that Y2m−1−v can be computed as per Claim .3 for j ∈ ID. Note once again that this aggregate
key will be passed as input to the Broadcast algorithm described next, and will not be transmitted
to the target data users directly.

Broadcast(param,KS , Ŝ, PK): Broadcasts the aggregate key KS to all users in Ŝ as follows. Let
PK = (PK1, PK2). Randomly choose t̂ ∈ Zq and set

bŜ =

∏
v̂∈Ŝ

Y2m−1−v̂


Output

K(S,Ŝ) =

(
gt̂l ,
(
gmsk2m−1 .bŜ

)t̂
,K
)

20

where
K =

((
gt̂α

(2m−1)

m+l−1

)
. (e(KS , gl))

)

Decrypt(param, C,K(S,Ŝ), i, î, dî,S, Ŝ): If i /∈ S or î /∈ Ŝ, output ⊥. Otherwise, set

aŜ =

 ∏
v̂∈Ŝ,v̂ 6=î

Y2m−1−v̂+î

 , aS =

 ∏
v∈S,v 6=i

Y2m−1−v+i


and bS =

(∏
v∈S

Y2m−1−v

)

Let C = (c0, c1, c2, c3) and K(S,Ŝ) = (k̂0, k̂1, k̂2). Output the decrypted message as

M̂ = c3.k̂2.

(
e(bS , c1)e(aS , c0)

e(bS , c2)

)
.

(
e(dî.aŜ , k̂0)

e(Yî, k̂1)

)
Correctness of this scheme may be easily proven. We introduce the complexity assumption for the
proof of security of this scheme here.

The Extended Multilinear Diffie-Hellman Exponent Assumption. Let param′ is generated

by SetUp′(1λ
′
,m+ l− 1). Choose α ∈ Zq at random (where q is a λ′-bit prime), and let Xj = gα

(2j)

1

for 0 ≤ j ≤ m. Choose random t, t̂ ∈ Zq, and let (V1, V2) =
(
gtl , g

t̂
l

)
. The decisional (m, l)-Extended

Multilinear Diffie Hellman Exponent (EMDHE) problem as defined as follows. Given the tuple(
param′, {Xj}j∈{0,··· ,m}, (V1, V2), (Z1, Z2)

)
distinguish if (Z1, Z2) is

(
gtα

(2m−1)

m+l−1 , gt̂α
(2m−1)

m+l−1

)
or a random element of Gm+l−1 ×Gm+l−1.

Definition 4.5. The decisional (m, l)-Extended Multilinear Diffie-Hellman Exponent (EMDHE) as-
sumption holds for SetUp′ if, for any polynomial m and a probabilistic poly-time algorithm A, A
has negligible advantage in solving the (m, l)-EMDHE problem.

Theorem 4.6. Let SetUp′ be the setup algorithm for an symmetric multilinear map, and let the de-
cisional (m, l)-EHDHE assumption holds for SetUp′. Then the extended multi-user KAC supporting
N data classes and N data users is non-adaptively CPA secure, where N =

(
m
l

)
.

The detailed proof of Theorem 4.6. is very similar to that of Theorem 3.8 in Section 3.4 and is hence
avoided. Like the m-HDHE assumption, the (m, l)-EMDHE assumption too currently only holds in
the generic group model. Hence our proposed KAC construction using symmetric multilinear maps is
provably CPA secure in the generic group model.Finally, we can easily extend this KAC construction
for non-adaptive CCA security with full collusion resistance. We present a basic CCA secure KAC
construction using symmetric multilinear maps in Appendix C.

5 An Adaptively Secure KAC in the Generic Multilinear Map Model

In this section, we present a fully collusion resistant KAC construction that is adaptively CPA secure
in the generic multilinear map model for standard group order parameter q. But first, we state the
motivation behind the third construction.

21

Need for Tighter Security Bounds. We have mentioned before that the m-HDHE and the (m, l)-
MDHE assumptions (along with their extended versions) are hard in the generic multilinear map
model. However, the presence of high degree exponents such as α2m in these assumptions means that
the adversary can construct polynomials with degree as high as m2m in the secret α. As pointed out
in [BWZ14a], this means the upper bound on the advantage of a generic adversary making at most
t queries is only ≈

(
t22m/q

)
. This in turn implies that, althouth the KAC constructions described

in Sections 3 and 4 may be proven to be adaptively secure in the generic group model, they require
the group order parameter λ′ ≈ 3λ (instead of the normal λ) or q = 23λ to achieve λ-bit security.
This motivates us to investigate the possibility of a KAC construction that is adaptively secure in the
generic multilinear map model for q = 2λ. We next present the idea behind this construction.

The Basic Idea. Our third KAC construction has two fundamental differences with the first two
constructions:

1. The third construction uses a set of public parameters that are not derived from a single scalar α.
Instead, each parameter is derived from a separate random scalar. This is essentially done to avoid
the high degree exponents in the previous constructions, and is similar to the technique proposed
in [BWZ14a]. The trick of embedding linearly many group elements in a logarithmic size public
parameter is still used. However, the presence of multiple scalars implies that we cannot use the
same embedding technique used in the first two constructions. Instead, we use a Naor-Reingold-
style pseudorandom function (PRF)[NR04].

2. The ciphertext in this construction cannot consist of O(1) group elements, since that would make
decryption impossible. At the same time, we cannot allow the ciphertext size to exceed polyloga-
rithmic, since that would render the KAC construction inefficient. To achieve this, we ensure that
the necessary ciphertext components for decryption are the outputs of another Naor-Reingold-
style PRF, and the decrypter can generate precisely these outputs by puncturing the PRF at
suitable points, similar to as described in [?].

5.1 A Basic Construction

Let Setup′(1λ,m) be the setup algorithm for an m-linear map with groups of prime order q (q being
a λ bit prime) and the target group Gm. Our third and final identity-based KAC consists of the
following algorithms.

SetUp(1λ,m): Set up the KAC system for ID consisting of all m bit class identities. Let param′ ←
SetUp′(1λ,m + 1) be the public parameters for a symmetric multilinear map, with Gm+1 being the
target group. For j = 0, · · · ,m − 1 and b = 0, 1, generate random αj,b ∈ Zq and let Xj,b = g

αj,b
1 .

Finally, randomly pick x ∈ Zq and set W = gx1 . Output the public parameter as

param =
(
param′, {Xj,b}j∈{0,··· ,m−1},b∈{0,1},W

)
Discard all αj,b after param has been output. The secret parameter x is retained, but is known only
to the trusted third party.

Claim 5.1. For any class index number i ∈ ID, one can compute Yi = g
∏m−1
j=0 αj,ij

m where ij is the
j-th bit in the binary representation of i.

Proof. Compute Yi as e(X0,i0 , X1,i1 , · · · , Xm−1,im−1
). Note that each Yi value is essentially the output

of a Naor-Reingold-style PRF.

22

KeyGen(): Randomly pick γ ∈ Zq. Set the master secret key msk = γ and the public key PK = gγm.
Output the tuple (msk, PK). Again, msk is known only to the trusted third party.

Encrypt(param,PK, i,M): Randomly choose t ∈ Zq and set

c0 = gr1

cj+1 = Xt
j,(1−uj) for j = 0, 1, · · · ,m− 1

cm+1 = (PK.Yi)
t

cm+2 =M.
(
gγxm+1

)t
=M. (e(PK,W))

t

Finally, output the ciphertext as

C = ({cj}j∈{0,··· ,m+2})

Claim 5.2. For any class index v 6= i, one can compute Y tv given C.

Proof. Let C = (c0, · · · , cm+2). Since v 6= i, there exists a bit position j′ ∈ {0, · · · ,m− 1} such that
vj′ = 1− ij′ . This allows one to compute

Y tv = e({Xj,vj}j∈{0,··· ,j−1}\{j′}, cj+1)

because:

Y tv = g
t.
∏m−1
j=0 αj,vj

m

= g
tαj′,v

j′
.
∏
j 6=j′ αj,vj

m

= g
tαj′,1−i

j′
.
∏
j 6=j′ αj,vj

m

= e({Xj,vj}j∈{0,··· ,m−1}\{j′}, cj′+1)

Note that for a given i, each Y tv for v 6= i and random t is also the output of a Naor-Reingold style
PRF. Moreover, the PRF is punctured at i to generate Y tv for v 6= i without the knowledge of Y ti .

Extract(param, x,S): We slightly alter the semantics of the Extract operation here in the sense
that it uses the secret x instead of msk. For the input subset of data class indices S, the aggregate
key is computed as

KS =

(∏
v∈S

Yv

)x

Decrypt(param, C, i,S,KS): If i /∈ S, output ⊥. Otherwise, use the result from Claim 5.2 to set

aS =

 ∏
v∈S,v 6=i

Y tv


Let C = (c0, · · · , cm+1, cm+2). Output the decrypted message as

M̂ = cm+2
e(KS , c0)

e(cm+1.aS ,W)

23

Correctness, Security and Extensions. The correctness of this scheme may be easily shown as
follows:

M̂ = cm+2
e(KS , c0)

e(cm+1.aS ,W)

= cm+2

e
((∏

v∈S Yv
)x
, gt1
)

e

((
gγm.Yi.

∏
v∈S,v 6=i Yv

)t
, gx1

)
=

cm+2

e((gγm)
t
, gx1)

=M

Unlike the previous constructions, there does not seem to exist any well known hardness assumption
(even in the generic group model) that may be reduced to the third construction. Nevertheless, the
construction is provably secure in the generic group model (see Appendix D.1) in the adaptive setting,
with tighter bounds on the group order parameters. An extension to this construction for broadcasting
the aggregate key KS to a target subset of data users is also straightforward to achieve.

6 Conclusions and Open Problems

We presented the first identity-based key-aggregate cryptosystem (KAC) for access delegation to ar-
bitrarily large subsets of data classes shared online, among any number of authorized data users.
We proposed three different O(logN)-way multilinear map-based constructions that support N data
classes and N data users, with low overhead for ciphertexts, aggregate keys and all public and pri-
vate parameters. We proved the generic group model based security and full collusion resistance of
each of the schemes under different security assumptions. For broadcasting the aggregate keys among
multiple users, we showed how to efficiently combine the stand-alone KAC constructions with broad-
cast encryption schemes. This in turn significantly reduces the secure channel requirement for KAC
constructions from those in the existing literature.

We leave as an open problem the question of building identity-based KAC constructions that are
secure in the standard model. Another interesting problem is to build efficiently revocable cryptosys-
tems for data sharing with traitor tracing properties. In particular, it would be interesting to build
a cryptosystem that allows revoking a user’s access rights without the need for re-encrypting all the
shared data. Finally, a possible future work is to present an instantiation of our proposed scheme using
a secure multilinear map construction, and test the performance of the resulting system in actual data
sharing environments such as the cloud.

References

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for con-
ditionally extractable commitments. In Advances in Cryptology-CRYPTO 2009, pages 671–689.
Springer, 2009.

[ADSFM12] Giuseppe Ateniese, Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. Provably-secure
time-bound hierarchical key assignment schemes. Journal of cryptology, 25(2):243–270, 2012.

[AFGH06] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-
encryption schemes with applications to secure distributed storage. ACM Transactions on In-
formation and System Security (TISSEC), 9(1):1–30, 2006.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant
size ciphertext. In Advances in Cryptology–EUROCRYPT 2005, pages 440–456. Springer, 2005.

24

[BCHL09] Josh Benaloh, Melissa Chase, Eric Horvitz, and Kristin Lauter. Patient controlled encryption:
ensuring privacy of electronic medical records. In Proceedings of the 2009 ACM workshop on
Cloud computing security, pages 103–114. ACM, 2009.

[BF03] Dan Boneh and Matthew Franklin. Identity-based encryption from the weil pairing. SIAM
Journal on Computing, 32(3):586–615, 2003.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In Advances in Cryptology–CRYPTO 2005, pages 258–275.
Springer, 2005.

[BWZ14a] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast encryption from multi-
linear maps. In Advances in Cryptology–CRYPTO 2014, pages 206–223. Springer, 2014.

[BWZ14b] Dan Boneh, David J Wu, and Joe Zimmerman. Immunizing multilinear maps against zeroizing
attacks. IACR Cryptology ePrint Archive, 2014:930, 2014.

[CCT+14] Cheng-Kang Chu, Sherman SM Chow, Wen-Guey Tzeng, Jianying Zhou, and Robert H Deng.
Key-aggregate cryptosystem for scalable data sharing in cloud storage. Parallel and Distributed
Systems, IEEE Transactions on, 25(2):468–477, 2014.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In Advances in Cryptology-Eurocrypt 2004, pages 207–222. Springer, 2004.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanal-
ysis of the multilinear map over the integers. In Advances in Cryptology–EUROCRYPT 2015,
pages 3–12. Springer, 2015.

[Clo] CloudPro. Dropbox goes big on security with Enterprise offering.
[CLT13] Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilinear maps over

the integers. In Advances in Cryptology–CRYPTO 2013, pages 476–493. Springer, 2013.
[CLT14] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Cryptanalysis of two candidate

fixes of multilinear maps over the integers. IACR Cryptology ePrint Archive, 2014:975, 2014.
[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen

ciphertext secure public-key encryption. In Advances in CryptologyEurocrypt 2002, pages 45–64.
Springer, 2002.

[DMMM+12] Idilio Drago, Marco Mellia, Maurizio M Munafo, Anna Sperotto, Ramin Sadre, and Aiko Pras.
Inside dropbox: understanding personal cloud storage services. In Proceedings of the 2012 ACM
conference on Internet measurement conference, pages 481–494. ACM, 2012.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
In Eurocrypt, volume 7881, pages 1–17. Springer, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices.
In Theory of Cryptography, pages 498–527. Springer, 2015.

[GHMS14] Craig Gentry, Shai Halevi, Hemanta K Maji, and Amit Sahai. Zeroizing without zeroes: Cryptan-
alyzing multilinear maps without encodings of zero. IACR Cryptology ePrint Archive, 2014:929,
2014.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on
Computer and communications security, pages 89–98. Acm, 2006.

[Kil88] Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 20–31. ACM, 1988.

[Mos10] Dana Moshkovitz. An alternative proof of the schwartz-zippel lemma. In Electronic Colloquium
on Computational Complexity (ECCC), volume 17, page 34, 2010.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. Journal of the ACM (JACM), 51(2):231–262, 2004.

[Pau] Ian Paul. Google Drive: The Pros and Cons.
[PSM15] Sikhar Patranabis, Yash Shrivastava, and Debdeep Mukhopadhyay. Dynamic key-aggregate

cryptosystem on elliptic curves for online data sharing. In Progress in Cryptology–INDOCRYPT
2015, pages 25–44. Springer, 2015.

25

A Relaxing Assumptions 3.4 and 4.4

In the two KAC constructions presented so far, we have assumed that all plaintext messages M may
be efficiently embedded as elements in the respective target multilinear groups. However, embedding
any general class of data as group elements is extremely challenging and requires public samplability -
a feature that makes a multilinear map constructions insecure. However, a workaround may be readily
proposed. We first note that in any ciphertext output by Encrypt, the message M is essentially
multiplied with a random secret group element ρ. Rather than embedding M as a group element,
we propose hashing ρ using a collision resistant hash function H, and then outputting M�H(ρ) in
the ciphertext (here � denotes an appropriate operator). In order to ensure that the constructions
are still provably secure in the standard model, we propose that H be chosen from the family of
smooth projective hash functions [CS02], that do not require the use of random oracles to prove
security. Smooth projective hash functions are very efficient to construct and can be designed to be
collision-resistant [ACP09], making them an ideal choice for our constructions.

B CCA Secure Basic KAC Using Asymmetric Multilinear Maps

In this section we demonstrate how to extend the basic identity-based KAC construction (for single
owner - single user scenario) to obtain non-adaptive chosen ciphertext security in the generic group
model, while maintaining full collusion resistance. The proof ideas stem from [CCT+14,PSM15]. We
have the following additional requirements for achieving CCA security:

• A signature scheme (SigKeyGen, Sign, V erify).

• A collision resistant hash function for mapping verification keys to Zq.

For simplicity of presentation, we assume here that the signature verification keys are encoded as
elements of Zq. We avoid any further mention of the hash function in the forthcoming discussion, since
it is implicitly assumed that any signature value we refer to is essentially the hash value corresponding
to the original signature.

Construction. It is to be noted that unlike non-adaptive CPA security, non-adaptive CCA security
for our proposed KAC under the m-HDHE assumption requires that the system handles at most
N − 1 data classes, where N = 2m − 1. The reason for this will be apparent in the proof. hence for
consistency of notation, we describe here the construction of the CCA-secure KAC for N − 1 data
classes. Recall that SetUp′′(1λ,m) is the setup algorithm for an asymmetric multilinear map, where
groups have prime order q (where q is a λ bit prime).

SetUp(1λ,m): Takes as input the length m of identities and the group order parameter λ. Let ID =
{0, 1}m\({0}m ∪ {1}m) be the data class identity space with N − 1 classes. Also, let m be the m+ 1
length vector consisting of all ones. Let param′′ ← SetUp′′(1λ, 2m) be the public parameters for a

multilinear map, with G2m being the target group. Next, choose a random α ∈ Zq. Set Xj = gα
(2j)

xj

for 0 ≤ j ≤ m− 1 and Xm = gα
(2m+1)

xm . Output the public parameter tuple param as

param = (param′′, {Xj}j∈{0,··· ,m})

Discard α after param has been output.

KeyGen(): Same as in the construction of Section 3.1.

26

Encrypt(param,PK, i,M): Run the SigKeyGen algorithm to obtain a signature signing key KSIG

and a verification key VSIG ∈ Zq. Randomly choose t ∈ Zq. Compute

C′ = (gtm, (PK.Yi.Y
VSIG
2m−1)t,M.gtα

(2m)

2m)

and output the ciphertext as

C = (C′, Sign(C′,KSIG), VSIG)

Extract(param,msk,S): Same as in the construction of Section 3.1.

Decrypt(param, C, i,S,KS): Let C = ((c0, c1, c2), σ, VSIG). Verify that σ is a valid signature of
(c0, c1, c2) under the key VSIG. If not, output ⊥. Also, if i /∈ S, output ⊥. Otherwise, set

SIGS =
∏
v∈S

Y VSIG2m+1−1−v

aS =
∏

v∈S,v 6=i

Y2m−v+i

bS =
∏
v∈S

Y2m−v

Note that these can be computed as 1 ≤ i, v ≤ N − 1(= 2m − 2). This is precisely why we allow only
N − 1 data classes. Next, pick a random w ∈ Zq and set

ĥ1 = (KS .SIGS .aS .(PK.Yi.Y
VSIG
2m−1)w)

ĥ2 = (bS .g
w
m)

Output the decrypted message

M̂ = c2
e(ĥ1, c0)

e(ĥ2, c1)

The proof of correctness of this scheme is presented below.

M̂ = c3
e(ĥ1, c1)

e(ĥ2, c2)

= c3.

 e (KS .SIGS .aS , g
t
m)

e
(
bS , (PK.Yi.Y

VSIG
2m−1)t

)
 .

e
((
PK.Yi.Y

VSIG
2m−1

)w
, gtm

)
e
(
gwm, (PK.Yi.Y

VSIG
2m−1)t

)


= c3.

(
e (KS , g

t
m)

e (bS , PKt)

)
.

 e (SIGS , g
t
m)

e

(
bS ,
(
Y VSIG2m−1

)t)
 .

(
e (aS , g

t
m)

e (bS , Y ti)

)

= c3
e(
∏
v∈S,v 6=i Y2m−v+i, g

t
m)

e(
∏
v∈S Y2m−v, Y

t
i)

=
M.gtα

(2m)

2m

e(Y2m , gtm)

=M

Note that the overhead for the ciphertext, aggregate key, public parameters, and the private and public
keys, remains unchanged. The main change from the original scheme is in the fact that decryption
requires a randomization value w ∈ Zq.

27

Claim B.1. For a given i ∈ S, the pair (ĥ1, ĥ2) is chosen from the following distribution(
(Y2m)

−1
.
(
PK.Yi.Y

VSIG
2m−1

)x
, (gm)

x
)

where x is uniformly randomly chosen from Zq.

Proof. We have

ĥ2 = (bS .g
w
m)

= g
(w+(

∑
v∈S α

2m−v))
m

= (gm)
x

Also, observe the following:

ĥ1 = (KS .SIGS .aS) .
(
PK.Yi.Y

VSIG
2m−1

)w
= (Y2m)

−1
(KS .SIGS .aS .Y2m) .

(
PK.Yi.Y

VSIG
2m−1

)w
= (Y2m)

−1
(
PK.Yi.Y

VSIG
2m−1

)(
∑
v∈S α

2m−v)
.
(
PK.Yi.Y

VSIG
2m−1

)w
= (Y2m)

−1
(
PK.Yi.Y

VSIG
2m−1

)(w+(
∑
v∈S α

2m−v))

= (Y2m)
−1
(
PK.Yi.Y

VSIG
2m−1

)x
This randomization slows down the decryption by a factor of two, but is vital from the point of view
of CCA-security. Note that the distribution (ĥ1, ĥ2) depends only on the data class i for the message
M to be decrypted and is completely independent of the subset S used to encrypt it.

CCA Security. We next prove the non-adaptive CCA security of this scheme. Note that a signature
scheme (SigKeyGen, Sign, V erify) is said to be (ε, qS) strongly existentially unforgeable if no poly-
time adversary, making at most qS signature signature queries, fails to produce some new message-
signature pair with probability at least ε. For a more complete description, refer [CHK04].

Theorem B.2. Let Setup′′ be the setup algorithm for an asymmetric multilinear map, and let the
decisional m-Hybrid Diffie-Hellman Exponent assumption holds for SetUp′′. Also, assume that the
signature scheme is strongly existentially unforgeable. Then the modified KAC construction for N − 1
data classes presented above is non-adaptively CCA secure.

Proof. Once again, let A be a poly-time adversary such that |AdvA,N−1− 1
2 | > ε1+ε2 for the proposed

KAC system parameterized with an identity space ID of size N−1 = 2m−2. Let the signature scheme
is (ε2, qS) strongly existentially unforgeable. We build an algorithm B that has advantage at least ε1 in
solving the decisional m-HDHE problem for Setup′′. B takes as input a random m-HDHE challenge
(param′′, {Xj}j∈{0,··· ,m}, V, Z) where:

• param′′ ← SetUp′′(1λ, 2m)

• Xj = gα
(2j)

xj for 0 ≤ j ≤ m− 1

• Xm = gα
(2m+1)

xm
• V = gtm for a random t ∈ Zq, q being a λ bit prime

• Z is either gtα
(2m)

2m or a random element of G2m

28

B then proceeds as follows.

Commit: B runs A and receives the set S∗ of data classes that A wishes to be challenged on. B then
randomly chooses a data class i ∈ S∗ and provides it to A.

SetUp: B should generate the public param, public key PK and the aggregate key KS∗ and provide
them to A. Algorithm B first runs the SigKeyGen algorithm to obtain a signature signing key K∗SIG
and a corresponding verification key V ∗SIG ∈ Zq. The various items to be provided to A are generated
as follows.

• param is set as (param′′, {Xi}i∈{0,··· ,m}).
• PK is set as (gum) /

(
Yi.Y

V ∗SIG
2m−1

)
where u is chosen uniformly at random from Zq and Yi, Y2m−1

are computed as mentioned in Claim 3.1. Note that this is equivalent to setting msk = u− αi −
V ∗SIGα

2m−1.
• B then computes

KS∗ =
∏
v/∈S∗

Y u2m−v

(Y2m−v+i).(Y
V ∗SIG
2m+1−1−v)

Observe that KS∗ =
∏
v/∈S∗ PK

α2m−v
, as desired. Moreover, B is aware that i /∈ S∗ (implying

i 6= v), and hence has all the resources to compute KS∗ .

Since the gm, α, u and t values are chosen uniformly at random, all parameters and keys have an
identical distribution to that in the actual construction.

Query Phase 1: Algorithm A now issues decryption queries. Let (C, v) be a decryption query C
is obtained by A using some subset S containing v. However, B is not given the knowledge of S.
Let C = ((c0, c1, c2), σ, VSIG). Algorithm B first runs V erify to check if the signature σ is valid on
(c0, c1, c2) using VSIG. If invalid, B returns ⊥. If VSIG = V ∗SIG, B outputs a random bit b ∈ {0, 1} and
aborts the simulation. Otherwise, the challenger picks a random x ∈ Zq. It then sets

ĥ0 = Y
(VSIG−V ∗SIG)
2m−1 .Yv.Y

−1
i

ĥ′0 = (Yv+1/Yi+1)
1

(VSIG−V
∗
SIG

)

ĥ2 = gxm.Y
1

(VSIG−V
∗
SIG

)

1

ĥ1 =
(
ĥ2

)u
.
(
ĥ0

)x
.
(
ĥ′0

)
Note that ĥ′0 can be computed following Claim 3.1 as 1 ≤ i, v ≤ 2m − 2. B responds with M′ =

c2
e(ĥ1,c0)

e(ĥ2,c1)
.

Claim B.3. B’s response is exactly as in a real attack scenario, that is, for some x′ chosen uniformly
at random from Zq, we have

ĥ1 = (Y2m)
−1
.
(
PK.Yv.Y

VSIG
2m−1

)x′
and ĥ2 = gx

′

m

Proof. Set x′ = x+ α
(VSIG−V ∗SIG) . Since x is uniform in Zq, so is x′. Now, observe that

ĥ2 = gxm.Y
1

(VSIG−V
∗
SIG

)

1

= gxm.g
α

(VSIG−V
∗
SIG

)

m

= gx
′

m

29

Next, observe the following:

ĥ1 =
(
ĥ2

)u
.
(
ĥ0

)x
.
(
ĥ′0

)
= (gum)

x′
.
(
Y
x(VSIG−V ∗SIG)
2m−1

)
. (Yv/Yi)

(
x+ α

(VSIG−V
∗
SIG

)

)

=
(
PK.Yi.Y

V ∗SIG
2m−1

)x′
.
(
Y
x(VSIG−V ∗SIG)
2m−1

)
. (Yv/Yi)

x′

=
(
PK.Yv.Y

VSIG
2m−1

)x′
.

(
Y

(x−x′)(VSIG−V ∗SIG)

2m−1

)
=
(
PK.Yv.Y

VSIG
2m−1

)x′
.
(
Y −α2m−1

)
= (Y2m)

−1
.
(
PK.Yv.Y

VSIG
2m−1

)x′
Thus, B’s response is identical to Decrypt(C, v,S,KS), even though B does not possess the knowledge
of the subset S used by A to obtain C.

Challenge: A picks at random two messagesM0 andM1 from the set of possible plaintext messages
in G2m, and provides them to B. B randomly picks b ∈ {0, 1}, and sets

C = (V, V u,Mb.Z)

C∗ = (C, Sign(C,K∗SIG), V ∗SIG)

The challenge posed to A is (C∗,M0,M1). It can be easily shown that when Z = gtα
(2m)

2m (i.e. the
input to B is a valid m-HDHE tuple), then this is a valid challenge to A as in a real attack.

Query Phase 2: Same as in query phase 1.

Guess: The adversary A outputs a guess b′ of b. If b′ = b, B outputs 0 (indicating that Z = gtα
(2m)

2m).
Otherwise, it outputs 1 (indicating that Z is a random element in G2m).

We now bound the probability that B aborts the simulation as a result of one of the decryption queries
by A. We claim that Pr[abort] < ε2; otherwise one can use A to forge signatures with probability
at least ε2. A very brief proof of this may be stated as follows. We may construct a simulator that
knows the secret u and receives K∗SIG as a challenge in an existential forgery game. A can then cause
an abort by producing a query that leads to an existential forgery under K∗SIG on some ciphertext.
Our simulator uses this forgery to win the existential forgery game. Only one chosen message query
is made by the adversary during the game to generate the signature corresponding to the challenge
ciphertext. Thus, Pr[abort] < ε2.

We conclude that B has the same advantage ε as A, which must therefore be negligible, as desired.
This completes the proof of Theorem B.2. ut

Similar CCA secure extensions can also be made to the generalized KAC construction for the
multi-user scenario.

C A CCA Secure Basic KAC using Symmetric Multilinear Maps

We now demonstrate how to extend the identity-based KAC construction using multilinear maps to
obtain non-adaptive chosen ciphertext security. We again make use of the signature scheme coupled
with the collusion resistant hash function that we introduced in Appendix B. In this CCA secure
construction, we force the class index value i to be strictly less than 2m − 2 instead of 2m − 1 in the

30

CPA secure construction.

SetUp(1λ,m): SetUp(1λ, (m, l)): Set up the KAC system for ID consisting of all m bit class identities
with Hamming weight l, that is N = |ID| =

(
m
l

)
. Since 1 ≤ l ≤ m − 1, we have N ≤ 2m−2. Let

param′ ← SetUp′(1λ,m + l − 1) be the public parameters for a symmetric multilinear map, with

Gm+l−1 being the target group. Choose a random α ∈ Zq. Set Xj = gα
(2j)

1 for 0 ≤ j ≤ m. Output the
public parameter tuple param as

param = (param′, {Xj}j∈{0,··· ,m})

Discard α after param has been output.

KeyGen(): Randomly pick γ ∈ Zq. Set msk = γ and PK = gγl . Output the tuple (msk, PK).

Encrypt(param,PK, i,M): Run the SigKeyGen algorithm to obtain a signature signing key KSIG

and a verification key VSIG ∈ Zq. Randomly choose t ∈ Zq. Compute

C′ = (gtl , (PK.Yi.g
VSIG
m−1)t,M.gtα

(2m−1)

m+l−1)

and output the ciphertext as

C = (C′, Sign(C′,KSIG), VSIG)

Extract(param,msk,S): Let msk = (msk1,msk2). For the input subset of data class indices S, the
aggregate key is computed as

KS =
∏
v∈S

(Y2m−1−v)
msk1

Recall that Y2m−1−v can be computed as per Claim 4.3 for j ∈ ID. Note that this is equivalent to

setting KS to
∏
v∈S

(
gmskm−1

)α2m−1−v

.

Decrypt(param, C, i,S,KS): Let C = ((c0, c1, c2), σ, VSIG). Verify that σ is a valid signature of
(c0, c1, c2) under the key VSIG. If not, output ⊥. Also, if i /∈ S, output ⊥. Otherwise, set

SIGS =
∏
v∈S

gVSIGm−1

aS =
∏

v∈S,v 6=i

Y2m−1−v+i

bS =
∏
v∈S

Y2m−1−v

Next, pick a random w ∈ Zq and set

ĥ1 = (KS .SIGS .aS .(PK.Yi.g
VSIG
m−1)w)

ĥ2 = (bS .g
w
m−1)

Output the decrypted message

M̂ = c2
e(ĥ1, c0)

e(ĥ2, c1)

The proof of correctness of this scheme is presented in Appendix B. Note that the overhead for the
ciphertext, aggregate key, public parameters, and the private and public keys, remains unchanged.
The main change from the original scheme is in the fact that decryption requires a randomization
value w ∈ Zq.

31

Claim C.1. For a given i ∈ S, the pair (ĥ1, ĥ2) is chosen from the following distribution(
(Y2m−1)

−1
.
(
PK.Yi.g

VSIG
m−1

)x
, (gm−1)

x
)

where x is uniformly randomly chosen from Zq.
Proof. Similar to the proof in Appendix B.

Once again, note that the distribution (ĥ1, ĥ2) depends only on the data class i for the message
M to be decrypted and is completely independent of the subset S used to encrypt it. We next prove
the non-adaptive CCA security of this scheme.

Theorem C.2. Let Setup′ be the setup algorithm for a symmetric multilinear map, and let the
decisional (m, l)-Multilinear Diffie-Hellman Exponent assumption holds for SetUp′. Then our proposed
construction of KAC for N data classes presented in this section is non-adaptively CCA secure for
N =

(
m
l

)
, where each data class number i < 2m − 2.

Proof. Let A be a poly-time adversary such that |AdvA,N ′ − 1
2 | > ε for the proposed KAC system

parameterized with an identity space ID′ of size N ′, and ε is a non-negligible positive constant. We
build an algorithm B that has advantage at least ε in solving the decisional (m, l)-MDHE problem
for Setup′. B takes as input a random (m, l)-MDHE challenge tuple (param′, {Xj}j∈{0,··· ,m}, V, Z),
where:

• param′ ← SetUp′(1λ,m+ l − 1)

• Xj = gα
(2j)

1 for 0 ≤ j ≤ m
• V = gtl for a random t ∈ Zq (where q is a λ bit prime)

• Z is either gtα
(2m−1)

m+l−1 or a random element of Gm+l−1.

B then proceeds as follows.

Commit: B runs A and receives the set S∗ of data classes that A wishes to be challenged on. B then
randomly chooses a data class i ∈ S∗ and provides it to A.

SetUp: B should generate the public param, public key PK and the aggregate key KS∗ and provide
them to A. Algorithm B first runs the SigKeyGen algorithm to obtain a signature signing key K∗SIG
and a corresponding verification key V ∗SIG ∈ Zq. The various items to be provided to A are generated
as follows.

• param is set as (param′′, {Xi}i∈{0,··· ,m}).
• PK is set as (gul) /

(
Yi.g

V ∗SIG
m−1

)
where u is chosen uniformly at random from Zq.

• B then computes

KS∗ =
∏
v/∈S∗

Y u2m−1−v

(Y2m−1−v+i).(g
V ∗SIG
m−1)

Since the gm, α, u and t values are chosen uniformly at random, all the parameters and keys have an
identical distribution to that in the actual construction.

Query Phase 1: Algorithm A now issues decryption queries. Let (C, v) be a decryption query C
is obtained by A using some subset S containing v. However, B is not given the knowledge of S.
Let C = ((c0, c1, c2), σ, VSIG). Algorithm B first runs V erify to check if the signature σ is valid on

32

(c0, c1, c2) using VSIG. If invalid, B returns ⊥. If VSIG = V ∗SIG, B outputs a random bit b ∈ {0, 1} and
aborts the simulation. Otherwise, the challenger picks a random x ∈ Zq. It then sets

ĥ0 = Y (VSIG−V ∗SIG).Yv.Y
−1
i

ĥ′0 = (Yv+1/Yi+1)
1

(VSIG−V
∗
SIG

)

ĥ2 = gxm.Y
1

(VSIG−V
∗
SIG

)

1

ĥ1 =
(
ĥ2

)u
.
(
ĥ0

)x
.
(
ĥ′0

)
B responds with M′ = c2

e(ĥ1,c0)

e(ĥ2,c1)
.

Claim C.3. B’s response is exactly as in a real attack scenario, that is, for some x′ chosen uniformly
at random from Zq, we have

ĥ1 = (Y2m−1)
−1
.
(
PK.Yv.g

VSIG
m−1

)x′
and ĥ2 = gx

′

m−1

Proof. Similar to the proof in Appendix B.

Thus, by the result in Claim C.2, B’s response is identical to Decrypt(C, v,S,KS), even though B
does not possess the knowledge of the subset S used by A to obtain C.

Challenge: A picks at random two messagesM0 andM1 from the set of possible plaintext messages
in G2m, and provides them to B. B randomly picks b ∈ {0, 1}, and sets

C = (V, V u,Mb.Z)

C∗ = (C, Sign(C,K∗SIG), V ∗SIG)

The challenge posed to A is (C∗,M0,M1). It can be easily shown that when Z = gtα
(2m−1)

m+l−1 (i.e. the
input to B is a valid m-MDHE tuple), then this is a valid challenge to A as in a real attack.

Query Phase 2: Same as in query phase 1.

Guess: The adversary A outputs a guess b′ of b. If b′ = b, B outputs 0 (indicating that Z = gtα
(2m−1)

m+l−1).
Otherwise, it outputs 1 (indicating that Z is a random element in Gm+l−1).

It can be easily proved that the probability that B aborts the simulation as a result of one of the
decryption queries by A is less than ε2 (from the existential unforgability property of the signature
scheme). We conclude that B has the same advantage ε as A, which must therefore be negligible, as
desired. This completes the proof of Theorem C.3. ut

Similar CCA secure extensions can also be made to the generalized KAC construction for the
multi-user scenario.

D The Third KAC Construction

D.1 Security In The Generic Multilinear Map Model

In this section, we prove that the basic version of our third KAC construction described in Section 5.1
is adaptively CPA secure in the generic multilinear map model . In particular, we demonstrate that
with a prime group order parameter q ≈ 2λ, the scheme achieves λ-bit security. We state and prove
the following theorem.

33

Theorem D.1. Any generic adversary A that can make at most a polynomial number of queries to
(Encode,Mult,Pair) has negligible advantage in breaking the adaptive security of the KAC construc-
tion presented in Section 5.1, provided that 1/q is negligible.

Proof. Let A be an adaptive adversary under the generic model and let B be a challenger that plays
the following game with A:

SetUp: Challenger B sets up the system for ID consisting of all m bit class identities. B generates
random αj,b ∈ Zq for j = 0, · · · ,m − 1, and b = 0, 1. B also generates random γ, x ∈ Zq. A receives
the following:

• Xj,b = ξ(αj,b, 1) for j = 0, · · · ,m− 1, and b = 0, 1

• W = ξ(x, 1)

• PK = (ξ(γ,m))

Oracle Query Phase. A adaptively issues queries to (Encode,Mult,Pair).

Commit. Algorithm A commits to a set S ⊂ ID of data classes that it wishes to attack. Since
collusion attacks are allowed in our framework, B furnishes A with the aggregate key KS computed
as

KS = ξ

x∑
v/∈S

m−1∏
j=0

αj,vj ,m


B also chooses i ∈ S and communicates the same to A.

Challenge: To make a challenge query, A randomly generates m̂0, m̂1 ∈ Z2q and provides these to
B. B in turn randomly chooses t ∈ Zq and a random b̂ ∈ {0, 1}, and sets

c0 = ξ(t, 1)

cj+1 = ξ(tαj,(1−ij)) for j = 0, 1, · · · ,m− 1

cm+1 = ξ(t(γ +

m−1∏
j=0

αj,ij),m)

cm+2 = ξ(m̂b̂ + γxt,m+ 1)

Finally, B sets

C = ({cj}j∈{0,··· ,m+2})

and provides the challenge to A as (C, ξ(m̂0,m+ 1), ξ(m̂1,m+ 1)).

Guess: A outputs a guess b̂′ of b̂. If b̂′ = b̂, A wins the game.

We now assume that instead of choosing random values for the set of parameters

({αj,b}j∈{0,··· ,m−1},b∈{0,1}, γ, x, t, m̂0, m̂1)

the algorithm B treats them as formal variables and maintains a list of tuples L = {(p, l, ε)}, where p
is a polynomial in these formal variables, l is the group index and ε ∈ {0, 1}n. The game now proceeds
through the following stages:

34

• B initializes the list with the following tuples:

– (αj,b, 1, ξ2j+b) for randomly generated ξ2j+b ∈ {0, 1}n, where j ∈ {0, · · · ,m− 1} and b ∈ {0, 1}
– (γ,m, ξ2m) for a randomly generated ξ2m ∈ {0, 1}n
– (x, 1, ξ2m+1) for a randomly generated ξ2m+1 ∈ {0, 1}n

Thus intially, |L| = 2m+ 2. B supplies the set of strings {ξj}j∈{0,··· ,2m+2} to A.

• A is allowed at most a polynomial number of (Encode,Mult,Pair) queries to which B responds
as follows:

– Encode(x, l): If x /∈ Zq or i /∈ {1, · · · ,m + 1}, B returns ⊥. Otherwise, B looks for a tuple
(px, l, ξ) ∈ L, where px is a constant polynomial equal to x. If such a tuple exists, B returns ξ.
Otherwise, B generates a random ξ ∈ {0, 1}n. The tuple (px, l, ξ) is added to L and B responds
with ξ.

– Mult(ξk0 , ξk1 , b): B searches in L for the pair of tuples (pk0 , lk0 , ξk0) and (pk1 , lk1 , ξk1). Un-
less both of them exist, B returns ⊥. Also, if both tuples are available but lk0 6= lk1 , B returns
⊥. Otherwise, B searches in L for a tuple of the form (pk, lk, ξk), where pk = pk0 + (−1)bpk1
and lk ≡ lk0 ≡ lk1 . If such a tuple is found, B responds with ξk. If not, B generates a random
ξk ∈ {0, 1}n, augments L by adding the tuple (pk, lk, ξk) and returns ξk.

– Pair(ξk0 , ξk1): B searches in L for the pair of tuples (pk0 , lk0 , ξk0) and (pk1 , lk1 , ξk1). Unless both
of them exist, B returns ⊥. Also, if both tuples are available but lk0 + lk1 > m+ 1, B returns ⊥.
Otherwise, B searches in L for a tuple of the form (p′k, l

′
k, ξ
′
k), where p′k = pk0 .pk1 and l′k ≡ lk0 +lk1 .

If such a tuple is found, B responds with ξ′k. If not, B generates a random ξ′k ∈ {0, 1}n, augments
L by adding the tuple (p′k, l

′
k, ξ
′
k) and returns ξ′k.

We stress the fact that in each query to any of the three algorithms, at most one new tuple is
added to L, and no tuple can have index j > m+ 1. Note that B can make the string responses ξ
to A arbitrarily long, and thus, hard to guess. Hence, without loss of generality, we assume that
all Mult and Pair queries made by A are precisely on strings furnished by B.

• A is allowed to commit to a set S and query for the collusion aggregate key KS . In response, B
adds the tuple

(
x
∑
v/∈S

∏m−1
j=0 αj,vj ,m, ξ

)
for randomly generated ξ ∈ {0, 1}n, which is given as

response to A. B also chooses i ∈ S and communicates the same to A.

• Finally, A is allowed to make a single encryption query on the class i ∈ S. B creates a new formal
variables t and m̂ and adds the following tuples to its list L:

– (t, 1, ξ)
– (tαj,(1−ij), 1, ξj) for j = 0, 1, · · · ,m− 1

– (t(γ +
∏m−1
j=0 αj,ij),m, ξm)

– (m̂+ γxt,m+ 1, ξm+1)
– (m̂0,m+ 1, ξm+2)
– (m̂1,m+ 1, ξm+3)

Once again ξ and ξj , j ∈ {0, · · · ,m + 3} are randomly generated strings in {0, 1}n that are pro-
vided to A as response.

• A outputs a random b̂′ ∈ {0, 1}.

35

Table 1: Upper Bounds on Contributions to Length of L

Query Stage Maximum Contribution to |L|
SetUp 2m + 2

Oracle Query Phase Qe + Qm + Qp

Commit 1

Challenge m + 5

Total Qe + Qm + Qp + 3m + 8

• At this point, B chooses random values for αj,b, γ, x, t and asks A for two random messages m0

and m1. B also randomly chooses , b̂ ∈ {0, 1} and sets m̂ = m̂b̂.

We denote by Υ a false polynomial equality event where, for two random tuples (p, l, ξ) and (p′, l′, ξ′)
in the list L such that l = l′, we have p(αj,b, · · ·) = p′(αj,b, · · ·) even though p 6≡ p′. In case an instance

of Υ occurs, B fails to simulate the oracle perfectly. We say that A wins the game if b̂ = b̂′ or an
instance of the event Υ occurs.

We now look at the probability that a random choice of values for the formal variables

(αj,b, γ, x, t,m0,m1) ∈ Z(2m+5)
q

results in the event Υ . First, we make the following observations.

Observation D.2. The maximum degree of any polynomial in L is at most m+ 1.

Observation D.3. Substituting the formal variable m̂ with m̂b̂ results in no instances of the false
polynomial equality event Υ .

It follows from the Swartz-Zippel lemma [Mos10] that the probability that a randomly chosen pair
of polynomials in L evaluate to the same value for a random choice of variable values, is upper
bounded by (m + 1)/q. Next, assume that A makes QE queries to Encode, QM queries to Mult
and QP queries to Pair during Oracle Query Phase. Table 1 summarizes the maximum possible
contributions to |L| by the tuples added by B at different query stages. Note that |L| is upper bounded
by (Qe+Qm+Qp+ 3m+ 8). It easily follows that the probability of a false polynomial equality event
Υ is upper bounded as

Pr(Υ) ≤ (Qe +Qm +Qp + 3m+ 8)
2

(m+ 1) /2q

If the event Υ does not occur, B simulates the oracle in response to A’s queries perfectly and, from
A’s view, b̂ is independent as it was chosen after the simulation. Hence we have

Pr[b̂ = b̂′ | Υ] = 1/2

This in turn gives us the following relations:

Pr[b̂ = b̂′] ≥ Pr[b̂ = b̂′ | Υ]Pr[Υ] =
1− Pr[Υ]

2

Pr[b̂ = b̂′] ≤ Pr[b̂ = b̂′ | Υ]Pr[Υ] + Pr[Υ] =
1 + Pr[Υ]

2

From this, it is straightforward to conclude that the advantage of the generic adversary A may be
upper bounded as follows:

|AdvA,2m −
1

2
| = |Pr[b̂ = b̂′]|

≤ Pr[Υ]/2

= (Qe +Qm +Qp + 3m+ 8)
2

(m+ 1) /4q

36

For Qe, Qm, Qp,m polynomial in the security parameter λ, this quantity is negligible provided that
1/q is negligible, or in particular, q ≈ 2λ, as desired. This completes the proof of Theorem D.1. ut

E Applications of KAC

In this section, we point out some specific applications in which KAC proves to be a very efficient
solution. Some of these are mentioned in [CCT+14]. The applications are mentioned for readers not
entirely familiar with the utility of KAC.

Online Collaborative Data Sharing. The foremost application of KAC is in secure data sharing
for collaborative applications. Applications such as Google Drive [Pau] and Dropbox [Clo] allow users
to share their data on the cloud and delegate access rights to multiple users to specific subsets of their
whole data. Even government and corporate organizations require secure data sharing mechanisms
for their daily operations. KAC can be easily set up to function on top of standard data sharing
applications to provide security and flexibility. Data classes may be viewed as folders containing similar
files. The fact that our proposed KAC is identity based means that each folder can have its own unique
ID chosen by the data owner. Also, the fact that the ciphertext overhead is only logarithmic in the
number of data classes implies that space requirement for any data owner is optimal. Finally, the
aggregate key also has low overhead and can be transmitted via a secure channel such as a password
protected mail service. Since KAC is easily extensible to multiple data owners, the system is practically
deployable for a practical data sharing environment. The other advantage of KAC is that once a system
is setup with a set of multilinear maps and public parameters, the same setup with the same set of
public parameters can be reused by multiple teams within the same organization. Since data owned by
each individual owner is insulated from access by users who do not have the corresponding aggregate
key, and each data owner has her own tuple of public, private and authentication keys, a single KAC
can support multiple data sharing units, while guaranteeing the same underlying security. This saves
the cost of setting up new multilinear maps and public parameters each time.

Distribution of Product License and/or Activation Keys. Suppose a company owns a number
of products, and intends to distribute the license files (or activation keys) corresponding to these to
different users. The KAC framework allows them to put these keys on the cloud in an encrypted
fashion, and distribute an aggregate key corresponding to the license files for multiple products to
legally authenticated customers as per their requirements. The legal authentication comes from the
fact the user who buys multiple products from the company is given the authentication key and the
aggregate key that allows her to decrypt the license file for each product. Since both these keys are of
constant size, distributing these to users is easier than providing a separate license file to each user.

Patient controlled encryption (PCE). Patient controlled encryption (PCE) is a recent concept
that has been studied in the literature [BCHL09]. PCE allows a patient to upload her own medical
data on the cloud and delegate decryption rights to healthcare personnel as per her requirement.
KAC acts as an efficient solution to this problem by allowing patients to define their own hierarchy of
medical data and delegate decryption rights to this data to different specialists/medical institutions
using aggregate keys in an efficient fashion. Given the multitude of sensitive digital health records
existent in today’s world, storing this data in local/personal machines is not a viable solution and the
cloud seems the best alternative. KAC thus provides a two-way advantage in this regard. Not only
does it allow people from across the globe to store their health data efficiently and safely, but also
allows them to envisage the support of expert medical care from across the globe.

37

