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Abstract. Designing an efficient cipher was always a delicate balance between linear and non-
linear operations. This goes back to the design of DES, and in fact all the way back to the seminal
work of Shannon.
Here we focus, for the first time, on an extreme corner of the design space and initiate a study
of symmetric-key primitives that minimize the multiplicative size and depth of their descriptions.
This is motivated by recent progress in practical instantiations of secure multi-party computa-
tion (MPC), fully homomorphic encryption (FHE), and zero-knowledge proofs (ZK) where linear
computations are, compared to non-linear operations, essentially “free”.
We focus on the case of a block cipher, and propose the family of block ciphers “LowMC”, beating
all existing proposals with respect to these metrics. As examples, we give concrete instatiations
for 80-bit, 128-bit, and 256-bit security. We sketch several applications for such ciphers and give
implementation comparisons suggesting that when encrypting larger amounts of data the new
design strategy translates into improvements in computation and communication complexity by up
to a factor of 5 compared to AES-128, which incidentally is one of the most competitive classical
designs. Furthermore, we identify cases where “free XORs” can no longer be regarded as such but
represent a bottleneck, hence refuting this commonly held belief with a practical example.

Keywords: block cipher, multiplicative complexity, multiplicative depth, secure multiparty
computation, fully homomorphic encryption 1

1 Introduction

Motivation. Modern cryptography developed many techniques that go well beyond solving
traditional confidentiality and authenticity problems in two-party communication. Secure multi-
party computation (MPC), zero-knowledge proofs (ZK) and fully homomorphic encryption
(FHE) are some of the most striking examples.

In recent years, especially the area of secure multi-party computation has moved from a
science that largely concerned itself with the mere existence of solutions towards considerations
of a more practical nature, such as costs of actual implementations for proposed protocols in
terms of computational time, memory, and communication.

Despite important progress and existing proof-of-concept implementations, e.g. [MNPS04,
PSSW09,HEKM11,NNOB12,KSS12,FN13,SS13], there exists a huge cost gap between employ-
ing cryptographic primitives in a traditional way and using them in the more versatile MPC
context. As an example, consider implementations of the AES block cipher, a global standard
for the bulk encryption of data. Modern processors achieve a single execution of the block

1 An earlier version appeared in the proceedings of Eurocrypt 2015 [ARS+15]. This is an updated and extended
version.



cipher within a few hundred clock cycles (or even less than 100 clock cycles using AES-NI).
However, realizing the same cipher execution in the context of an MPC protocol takes many
billions of clock cycles and high communication volumes between the participating parties,
e.g. several hundreds of Megabytes for two-party AES with security against malicious adver-
saries [PSSW09,NNOB12,KSS12,FN13,SS13,DZ13,LOS14,DLT14].

Traditionally, ciphers are built from linear and non-linear building blocks. These two have
roughly similar costs in hardware and software implementations. In CMOS hardware, the small-
est linear gate (XOR) is about 2-3 times larger than the smallest non-linear gate (typically,
NAND). When implemented in an MPC protocol or a homomorphic encryption scheme, how-
ever, the situation is radically different: linear operations come almost for free, since they only
incur local computation (resp. do not increase the noise much), whereas the bottleneck are non-
linear operations that involve symmetric cryptographic operations and communication between
parties (resp. increase the noise considerably). Our motivation hence comes from implemen-
tations of ciphers in the context of MPC, ZK, or FHE schemes where linear parts are much
cheaper than non-linear parts.

This cost metric suggests a new way of designing a cipher where most of the cryptographically
relevant work would be performed as linear operations and the use of non-linear operations is
minimized. This design philosophy is related to the fundamental theoretical question of the
minimal multiplicative complexity (MC) [BPP00] of certain tasks. Such extreme trade-offs were
not studied before, as all earlier designs – due to their target platforms – faired better with
obtaining a balance between linear and non-linear operations.

In this work we propose to start studying symmetric cryptography primitives with low mul-
tiplicative complexity in earnest. Earlier steps in this direction [GGNPS13, PRC12, GLSV14]
were aimed at good cost and performance when implemented with side-channel attack coun-
termeasures, and are not extreme enough for our purpose. Our question hence is: what is the
minimum number of multiplications for building a secure block cipher? We limit ourselves to
multiplications in GF(2) and motivate this as follows:

– By using Boolean circuits we decouple the underlying protocol / primitive (MPC protocol
/ ZK protocol / FHE scheme) from that of the cipher. Hence, the same cipher can be used
for multiple applications.

– GF(2) is a natural choice for MPC protocols based on Yao or GMW (in the semi-honest
setting, but also for their extensions to stronger adversaries), ZK protocols, as well as for
fully or somewhat homomorphic encryption schemes (cf. Section 2 for details).

By nature of the problem, we are interested in two different metrics. One metric refers
to what is commonly called multiplicative complexity (MC), which is simply the number of
multiplications (AND gates) in a circuit, see e.g. [BPP00]. The second metric refers to the
multiplicative depth of the circuit, which we will subsequently call ANDdepth. We note that
already in [DSES14a] it was observed that using ciphers with low ANDdepth is of central impor-
tance for efficient evaluations within homomorphic encryption schemes. Therefore, the authors
of [DSES14a] suggest to study block cipher designs that are optimized for low ANDdepth, a
task to which we provide a first answer. Our work is somehow orthogonal to Applebaum et.
al [AIK06], where the question of what can in principle be achieved in cryptography with shallow
circuits was addressed.

While our design approach is not specific to block ciphers but can be equally applied to
other primitives like hash functions or stream ciphers, in this work we focus on the block cipher
case. This all motivates the following guiding hypothesis which we will test in this paper: “When
implemented in practice, a block cipher design with lower MC and lower ANDdepth will result
in lower executing times”. We note that the relatively low execution times often reported in
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the literature are amortized times, i.e. averaged over many calls of a cipher (in parallel). This,
however, neglects the often important latency. Hence, another design goal in this work is to
reduce this latency.

Outline and contribution. In Section 2 we describe several schemes with “free XORs”and
use-cases where block ciphers with a low ANDdepth and MC are required. Then, in Section 3,
we focus on an extreme corner of the design space of block ciphers and propose a new block-
cipher design strategy that minimizes the multiplicative size and depth of the circuit describing
it, beating all existing candidates with respect to these metrics. In terms of ANDdepth, the
closest competitor is PRINCE and Noekeon. In terms of MC, the closest competitor turns
out to be Simon. We give a high-level overview over a larger field of competing designs in
Section 4. We analyse the security of our constructions in Section 5 and provide experimental
evidence for the soundness of our approach in Section 6. In particular, our implementations
outperform previously reported results in the literature, often by more than a factor 5 in MPC
and FHE implementation settings. They also indicate that in the design space we consider,
“free XORs” can no longer be regarded as free but significantly contribute to the overall cost,
hence refuting this commonly held belief with a practical example. Finally, we describe our
optimisation strategies for implementing our designs in the MPC and FHE case, which might
be of independent interest.

Main features and advantages of LowMC. LowMC is a very parameterizable design
approach. Given any blocksize, a choice for the number of Sboxes per round, and security
expectations in terms of time and data complexity, a concrete instantiation can be created
easily. Notable features include:
– Low ANDdepth, and low MC, which positively impacts the latency and throughput of the

FHE, MPC, or ZK evaluation of the cipher. We give example instatiations that minimize
the ANDdepth, others that minimize the number of ANDs overall, and again others that
minimize the number of ANDs per encrypted bit.

– Partial Sbox layer, which is partially responsible for the low multiplicative complexity (MC).
Together with Armadillo[BDJ+10], Zorro [GGNPS13] is the first SPN cipher in the litera-
ture that uses a non-full Sbox layer and is related to LowMC in this respect. However, re-
cent attacks on Zorro that exploit this particular property [WWGY13,RASA14,GNPW13,
BDD+15], highlight the need to be very careful with this design strategy. In our analysis of
LowMC in Section 5 we are able to take these into account.

– Security arguments against large classes of statistical attacks like differential attacks, similar
to other state-of-the-art designs are given in Section 5.

– In contrast to many other constructions, it is easy to obtain tight bounds on the MC and
ANDdepth.

– The design is very flexible and allows for a unified description regardless of the blocksize.
In fact it would even allow an asymptotic study of the design and analysis of this class
of ciphers, and is as such the first practical construction after this was proposed for SPN
constructions in [MV12].

– We explicitly de-couple the security claim of a block cipher from the block size.
– We do not add an explicit security margin, but base our choice for the number of rounds on

attack vectors known to us and our bounds on them.

Version history of LowMC. A first parameter set for LowMC (called v0 in this paper) was
circulated since end of 2014 and after a seminar presentation at ESC 2015, Dmitry Khovra-
tovich point out the omission of combined attacks in our formula to compute the number of
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rounds, which led to a new set of parameters (called v1 in this paper) which also appear in the
proceedings version of this paper at Eurocrypt 2015 [ARS+15]. After its presentation a number
of works gave new insights on how higher-order properties can get extended because of non-full
Sbox layers [DLMW15, DEM16] and novel optimization of interpolation attacks [DLMW15].
Results show that for LowMCv1 for fraktion of weak choices of the affine layer, attacks much
better than brute-force are possible. For LowMC a concrete choice for the used affine layers
should follow a “nothing-up-my-sleeves approach” and not be in the hand of a malicious party.
Attacks are also extended to work for any choice of affine layer for our parameterset aiming
at 128-bit security. In this more interesting case, attacks reported in [DLMW15] are estimated
to have a time complexity that is about 1000 times faster than a naive brute-force key search.
We note that as the memory complexity of that attack is very high, even a variant of a brute
force key search that could use the same amount of memory would also be sped up noticeably,
perhaps by a factor 10 to 100. Insights of these two cryptanalysis papers have been taken into
account in this paper, and the new parameter sets for LowMC are now referred to as LowMCv2.
For reference, the earlier parameter-sets for v0 and v1 can be found in Appendix A and B.

Subsequent work. For the FHE/SHE use-case, a number of designs followed-up on LowMC
and provided alternatives. Keyvrium [CCF+15] is a proposal aimin at 128-bit security and is
based on the stream-cipher design approach Trivium [DP08] which has 80-bit security and has
in terms of AND-related metrics similar properties as LowMC, albeit LowMC can be param-
eterized in many ways whereas the the Keyvrium design is fixed. The very recent proposal
FLIP [MJSC16] has a much lower depth (especially important for the FHE use-case), but a
much higher number of ANDs per encrypted bit. All of them use operations in GF(2) as their
main building block. The only cipher design in this domain which deviates, with basic opera-
tions either in GF (2n) or GF (p), is MiMC [AGR+16,GRR+16], which aims for a small number
of multiplications in larger fields, and finds applications in MPC and ZK protocols.

2 Schemes and Applications

In this section we list several schemes and applications for MPC, FHE, and ZK that benefit from
evaluating our cipher. In all the example applications below, the complexity of the functionality
being evaluated within the protocol is dominated by the complexity of the block cipher and
hence using our cipher instead of AES or any other cipher results in immediate performance
gains.

2.1 Multi-Party Computation (MPC)

Schemes. There are two classes of practically efficient secure multi-party computation (MPC)
protocols for securely evaluating Boolean circuits where XOR gates are considerably cheaper
(no communication and less computation) than AND gates.

The first class of MPC protocols has a constant number of rounds and their total amount
of communication depends on the MC of the circuit (each AND gate requires communica-
tion). Examples are protocols based on Yao’s garbled circuits [Yao86] with the free XOR tech-
nique [KS08]. To achieve security against stronger (i.e., malicious or covert) adversaries, garbled
circuit-based protocols apply the cut-and-choose technique where multiple garbled circuits are
evaluated, e.g., [LP07, AL07, LPS08, PSSW09, LP11, SS11, KSS12, FN13, Lin13, HKE13, SS13,
FJN14,HKK+14,LR14]; also MiniLEGO [FJN+13] falls into this class.

The second class of MPC protocols has a round complexity that is linear in the ANDdepth of
the evaluated circuit (each AND gate requires interaction) and hence the performance depends

4



on both, the MC and ANDdepth of the circuit. Examples are the semi-honest secure version of
the GMW protocol [GMW87] implemented in [CHK+12, SZ13], and tiny-OT [NNOB12] with
security against malicious adversaries.

Server-side one-time passwords. The following application is being commercialized by
Dyadic Security.5 In one-time password authentication schemes, a user authenticates with a
freshly generated short 6-8 digit password. This helps alleviate the problem of users choosing
bad passwords. The one-time password is generated by a device that contains a cryptographic
key and computes the new password by applying a function like AES to the time or some
other transient value. In order to verify the one-time password, a server has to compute the
cryptographic function itself, derive the password and compare. The problem with this system
is that if a server breach occurs, then all of the cryptographic keys can be stolen. In such a case,
all user devices have to be replaced, which is extremely expensive (most of these devices cannot
even be reprogrammed with a new key). This exact scenario happened to RSA, and Lockheed-
Martin reported attacks on their systems that can be traced back to the server breach at RSA
(note that devices were not replaced after this breach, probably because it was not clear exactly
what was stolen and the cost would be too great). Using MPC, it is possible to mitigate the
danger of such a server breach by splitting the server into two or more parts and giving each
server a share of the cryptographic key for computing the one-time passwords. Then, one-time
passwords can be verified by running a secure computation to compute AES. This forces the
attacker to break into both servers which is much harder (of course, in order to ensure that it
is indeed harder, they should be given different protection mechanisms and/or be at different
locations; in addition, the shares should be refreshed periodically so that an attacker has to
break into both simultaneously).

Oblivious pseudorandom functions and applications. An example for privacy-preserving
keyword search is based on Oblivious Pseudorandom Functions (OPRFs), introduced in [FIPR05],
where one party inputs a key and the other party obliviously obtains an encryption under the key.
OPRFs have further applications in set intersection [HL08] and secure database join [LTW13].
Another interesting application of OPRFs was proposed in[BCDa15] in the area of brokered
identification systems. When evaluated as a circuit, the OPRF could be instantiated with our
cipher instead of AES resulting in better performance.

Secure storage. [DK10] describe further applications of evaluating a block cipher (AES in
their case) within an MPC protocol, e.g., to allow the servers involved in an MPC computation
to store symmetrically encrypted information in untrusted (cloud) storage. Dyadic Security
builds on this idea for their “Application-Layer Data Encryption”.6

2.2 Fully homomorphic encryption (FHE)

Schemes. In all somewhat and fully homomorphic encryption schemes known so far XOR (ad-
dition) gates are considerably cheaper than AND (multiplication) gates. Moreover, XOR gates
do not increase the noise much, whereas AND gates increase the noise considerably (cf. [HS14]).
Hence, as in somewhat homomorphic encryption schemes the parameters must be chosen such
that the noise of the result is low enough to permit decryption, the overall complexity depends
on the ANDdepth.

5 see http://www.breachworks.com/datasheets/mpc-primer.pdf for details
6 see https://www.dyadicsec.com/wp-content/uploads/2015/06/dyadic-s-dsm-web-suite-use-cases.pdf
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Sending data to the cloud. Today’s FHE schemes still have a very high ciphertext expansion
rate. Therefore, as described in [NLV11,LN14], it is beneficial for privacy-preserving applications
based on FHE that outsource computations on sensitive data to the cloud to make use of
hybrid encryption: Instead of encrypting client’s data directly with FHE, the client encrypts
its data using symmetric encryption, e.g., with a block cipher such as LowMC, and then sends
the encrypted data along with the FHE-encrypted symmetric key to the cloud. The cloud
then decrypts the symmetrically encrypted data under FHE. Using this method, the network
communication is lowered to the data size, which is optimal, plus a one-time setup for sending
the FHE-encrypted symmetric key.

Verifiable computing. Another use case of our cipher is verifiable computing proposed in
[GGP10] which allows to outsource computation to untrusted workers (such as the cloud) and
verify that the result was computed correctly. [GGP10] propose to evaluate a garbled circuit
within fully homomorphic encryption. Today’s most efficient construction of garbled circuits of
[BHKR13] requires one evaluation of a block cipher per AND gate. The block cipher can be
instantiated with our cipher instead of AES for better efficiency.

2.3 Zero-Knowledge proof of knowledge (ZK)

Schemes. In several zero-knowledge proof protocols XOR relations can be proven for free and
the complexity essentially depends on the number of AND gates of the relation to be proven.
Examples for such protocols are [BC86,BDP00] and the recently proposed highly efficient pro-
tocol of [JKO13] that requires only one evaluation of a garbled circuit [Yao86] and can make
use of the free XOR technique [KS08].

ZK proof of knowledge of symmetric encryption key. The following application was
described in [JKO13]: In 2010 Julian Assange released a “thermonuclear file insurance”, i.e., a
1.4GB file which was an AES encryption of highly sensitive information as a countermeasure to
protect WikiLeaks from being shut down by the U.S. government. The file was widely distributed
over peer-to-peer networks and simply releasing the short encryption key would have allowed a
great number of people to have access to the information. In order to prove that the file actually
contains sensitive information without releasing the decryption key, one needs a block cipher
that “works well” with a zero-knowledge protocol.

ZK proof of knowledge of MAC key. Another application of our cipher would be to prove
in zero-knowledge that one knows the key corresponding to a message and a MAC for a block
cipher-based MAC, e.g., CBC-MAC.

3 Description of LowMC

LowMC is a flexible block cipher based on an SPN structure where the block size n, the key
size k, the number of Sboxes m in the substitution layer and the allowed data complexity d
of attacks can independently be chosen7. The number of rounds needed to reach the security
claims is then derived from these parameters.

To reduce the multiplicative complexity, the number of Sboxes applied in parallel can be
reduced, leaving part of the substitution layer as the identity mapping. Despite concerns raised
regarding this strategy [WWGY13,RASA14,GNPW13,BDD+15], we will show that security is

7 The number of Sboxes is limited though by the block size as the Sboxes need to fit into a block.
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viable. To reach security in spite of a low multiplicative complexity, pseudorandomly generated
binary matrices are used in the linear layer to introduce a very high degree of diffusion. A
method to accountably instantiate LowMC is given in Section 3.3.

Encryption with LowMC starts with a key whitening, followed by several rounds of encryp-
tion where the exact number of rounds depends on the chosen parameter set. A single round is
composed as follows:

LowMCRound(i) =
KeyAddition(i) ◦ ConstantAddition(i) ◦ LinearLayer(i) ◦ SboxLayer

In the following we give a detailed description of the individual steps.

. . .S S S . . . S

Affine Layer

ki

Fig. 1. Depiction of one round of encryption with LowMC.

SboxLayer is an m-fold parallel application of the same 3-bit Sbox on the first 3m bits of the
state. If n > 3m then for the remaining n−3m bits, the SboxLayer is the identity. The selection
criteria for the Sbox were as follows:

– Maximum differential probability: 2−2

– Maximum square correlation: 2−2

– Simple circuit description involving only 3 AND gates, with ANDdepth=1
– Algebraic degree 2 in each of the 8 non-zero component functions

The Sbox is specified in Figure 2, and coincides with the Sbox used for PRINTcipher [KLPR10].
A table representation of the Sbox can be found in Section C of the Appendix.

LinearLayer(i) is the multiplication in GF(2) of the state with the binary n × n matrix
Lmatrix[i]. The matrices are chosen independently and uniformly at random from all invertible
binary n× n matrices during the specification of a LowMC instantiation and are then fixed.

ConstantAddition(i) is the addition in GF(2) of roundconstant[i] to the state. The con-
stants are chosen independently and uniformly at random from all binary vectors of length n
during the specification of a LowMC instantiation and are then fixed.

KeyAddition(i) is the addition in GF(2) of roundkey[i] to the state. To generate roundkey[i],
the master key key is multiplied in GF(2) with the binary n× k matrix Kmatrix[i]. The ma-
trices are chosen independently and uniformly at random from all binary n×k matrices of rank
min(n, k) during the specification of a LowMC instantiation and are then fixed.

Decryption is done in the straightforward manner by an inversion of these steps.
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S(a, b, c) = (a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab)

Fig. 2. Specification of the 3-bit Sbox.

3.1 Pseudocode

plaintext and state are n-bit quantities. key is a k-bit quantity, which can both be larger or
smaller than n. r is the number of rounds.

ciphertext = encrypt (plaintext,key)
//initial whitening
state = plaintext + MultiplyWithGF2Matrix(KMatrix(0),key)

for (i = 1 to r)
//m computations of 3-bit sbox,
//remaining n-3m bits remain the same
state = Sboxlayer (state)

//affine layer
state = MultiplyWithGF2Matrix(LMatrix(i),state)
state = state + Constants(i)

//generate round key and add to the state
state = state + MultiplyWithGF2Matrix(KMatrix(i),key)

end
ciphertext = state

3.2 Parameters

As the design goal of LowMC is to be minimal with respect to complexity metrics based on the
AND gates, we tried to minimize the number of rounds necessary to reach security. To this end
we evaluated and estimated the security of LowMC with respect to a range of different attack
vectors (see Section 5), and used this as a base to derive a formula that determines for any set
of block size n, number of Sboxes m, key size k and allowed data complexity d, the number
of rounds r necessary for security. Our selection of parameter sets offering different trade-offs
can be found in Table 1. The formula used to derive the number of rounds can be found in
Section 5.7.

3.3 Instantiation of LowMC

To maximize the amount of diffusion achieved by the linear layer, we rely on randomly generated,
invertible binary matrices. As there exist no binary matrices of size larger than 1 × 1 that are
MDS, and as it is generally an NP-complete problem to determine the branching number of a
binary matrix [BMvT78], there is no obviously better method to reach this goal. The problem in
the instantiation of LowMC is to find an accountable way of constructing the random matrices
and vectors that leaves no room for the designer to plant backdoors.

Our recommended instantiation is a compromise between randomness, accountability and
ease of implementation. It uses the Grain LSFR as a self-shrinking generator (see [HJMM08]
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Table 1. A range of different parameter sets for LowMC instantiations offering different trade-offs. The first set
is for PRESENT-like security parameters, the second set for AES-like security parameters. The third aims at a
128-bit post-quantum security level with k = d = 256. The ANDdepth corresponds to the number of rounds.

blocksize sboxes keysize data rounds # of ANDs ANDs
n m k d r per bit

256 49 80 64 12 1764 6.89
128 31 80 64 12 1116 8.72
64 1 80 64 164 492 7.69

1024 20 80 64 45 2700 2.64
1024 10 80 64 85 2550 2.49

256 63 128 128 14 2646 10.34
196 63 128 128 14 2646 13.50
128 3 128 128 88 792 6.19
128 2 128 128 128 768 6.00
128 1 128 128 252 756 5.91
1024 20 128 128 49 2940 2.87
1024 10 128 128 92 2760 2.70

512 66 256 256 18 3564 6.96
256 10 256 256 52 1560 6.09
256 1 256 256 458 1374 5.37
1024 10 256 256 103 3090 3.02

and [MS94]) as a source of random bits. The exact procedure can be found in Section G in the
Appendix.8

It must be mentioned though that it is principally possible to use any sufficiently random
source to generate the matrices and constants. It is also not necessary that the source is crypto-
graphically secure. Note that this of course assumes that no malicious party has influence over
the choice of these constants.

4 Comparison with other ciphers

In the following we survey a larger number of existing cipher designs and study their ANDdepth
and MC per encrypted bit which we summarize in Table 2. We both choose representative
candidates from various design strategies, as well as the designs that are most competitive in
terms of our metrics. We do this in two distinct categories: AES-like security (with key sizes
of 128-bits and more and data security and block size of 128-bits and more), and lightweight
security (data security and block size of 96 bits or below). Note that data security refers to
the log2 of the allowable data complexity up to which a cipher is expected to give the claimed
securtiy against shortcut attacks. For LowMC we explicitly de-couple the data security from the
block size of the cipher as the proposed design strategy favour larger block sizes but we don’t see
a new for larger data security than 128. For size-optimized variants we instantiate `-bit adders
using a ripple-carry adder which has ` − 1 ANDs and ANDdepth ` − 1; for depth-optimized
variants we instantiate them with a Ladner-Fischer adder that has ` + 1.25` log2 ` ANDs and
ANDdepth 1 + 2 log2 `, cf. [SZ13].

We first survey AES versions and then ciphers with related security properties. The Sbox
construction of [BP12] has 34 AND gates and ANDdepth 4 (the size optimized Sbox construction
of [BMP13] has only 32 AND gates, but higher ANDdepth 6). See also Canright [Can05]. To
encrypt a 128-bit block, AES-128 has 10 rounds and uses 160 calls to the Sbox (40 for key

8 A reference implementation of LowMC including functionality to generate instances as described above and a
program to compute the number of rounds can be found at https://github.com/tyti/lowmc.
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schedule), hence 5 440 AND gates, or 42.5 AND gates per encrypted bit. To encrypt a 128-bit
block, AES-192 has 12 rounds and uses 192 calls to the Sbox (32 for key schedule), hence 6 528
AND gates, or 51 AND gates per encrypted bit. To encrypt a 128-bit block, AES-256 has 14
rounds and uses 224 calls to the Sbox (56 for key schedule), hence 7 616 AND gates, or 59.5
AND gates per encrypted bit.

AES is actually comparatively efficient. Other ciphers with a different design strategy can
have very different properties. Threefish [FLS+10] is a cipher with large block size. Threefish
with its 512-bit block size has 72 rounds with 4 additions modulo 264 each resulting in 35.438
AND gates per encrypted bit and ANDdepth=4 536 (63 per round). Threefish with its 1 024-
bit block size has 80 rounds with 8 additions each resulting in 39.375 AND gates per bit and
ANDdepth=5 040 (63 per round). The recently proposed NSA cipher Simon [BSS+13] is also a
good candidate to be of low multiplicative complexity. If b is the block size, it does b/2 AND
gates per round, and ANDdepth is equal to the number of rounds. For a key size of 128 bit
(comparable to AES) and block size 128 bit, it needs 68 rounds. This means, 4 352 AND gates,
or 34 AND gates per bit.

In the lightweight category, we consider Present, but also Simon. The Present Sbox can be
implemented with as little as 4 AND gates which is optimal [CHM11] and has ANDdepth 3.
With 16 · 31 = 496 Sbox applications per 64 bit block we arrive at 31 AND gates per bit. A
depth-optimized version of the Present Sbox with ANDdepth 2 and 8 ANDs is given in the
full version of this paper. The 128bit secure version of Present differs only in the key schedule.
Simon-64/96 has a 96 bit key, block size 64 bit and 42 rounds and Simon-32/64 has a 64 bit
key, block size 32 bit and 32 rounds; see above for MC and ANDdepth. As another data point,
the DES circuit of [TS] has 18 175 AND gates and ANDdepth 261. KATAN [CDK09] has 254
rounds. In KATAN32, the ANDdepth increases by two every 8 rounds resulting in an ANDdepth
of 64; with 3 AND gates per round and a block size of 32 bit this results in 23.81 ANDs per bit,
but similar to Simon-32/64 applications are limited due to the small block size. In KATAN48
and KATAN64 the ANDdepth increases by 2 every 7 rounds resulting in an ANDdepth of 74.
KATAN48 has 6 ANDs per round and a block size of 48 bit resulting in 31.75 ANDs per bit.
KATAN64 has 9 ANDs per round and a block size of 64 bit resulting in 35.72 ANDs per bit.
Prince [BCG+12] has 12 rounds and each round can be implemented with ANDdepth 2, and
each Sbox with 10 AND gates, cf. [DSES14b]. The low-latency design goal ends up making
Prince the most competitive when it comes to the ANDdepth. NOEKEON [DPVAR00] is a
competitive block cipher with 16 rounds and each round applies 32 S-boxes consisting of 4
AND gates with ANDdepth 2 each.

LowMC is easily parameterizable to all these settings, see also Table 1 in Section 3. It has
at most (if 3m = n) one AND gate per bit per round which results, together with a moderate
number of rounds to make it secure, in the lowest ANDdepth and lowest MC per encrypted bit,
cf. Table 2.

5 Resistance against cryptanalytic attacks

The ANDdepth, the number of ANDs per encrypted bit, and the total number of ANDs all
critically depend on the number of rounds. As the goal of LowMC is to optimize the cipher with
regard to these metrics, the goal of this security analysis is to determine the minimal number
of rounds required to grant security for a given fixed set of parameters, i.e., for any choice of
block size n, number of Sboxes m, allowed data complexity d, and key size k.

To determine the number of rounds needed for LowMC to be secure, we evaluate its vulner-
ability under a range of different attack vectors that cover a large portion of standard attacks.
In particular, we will discuss differential cryptanalysis, linear cryptanalysis, boomerang attacks,
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Cipher Key size Block size Data sec. ANDdepth ANDs/bit Sbox representation
AES-like security

AES-128 128 128 128 40 (60) 43 (40) [BP12] ([BMP13])
AES-192 192 128 128 48 (72) 51 (48) [BP12] ([BMP13])
AES-256 256 128 128 56 (84) 60 (56) [BP12] ([BMP13])
Simon 128 128 128 68 34 [BSS+13]
Simon 192 128 128 69 35 [BSS+13]
Simon 256 128 128 72 36 [BSS+13]
Noekeon 128 128 128 32 16 [DPVAR00]
Robin 128 128 128 96 24 [GLSV14]

Fantomas 128 128 128 48 16.5 [GLSV14]
Threefish 512 512 512 936 (4 536) 306 (36) [FLS+10]
Threefish 512 1 024 1024 1 040 (5 040) 340 (40) [FLS+10]
LowMC 128 256 128 14 10.34 AppendixC
LowMC 128 1024 128 92 2.7 AppendixC

Lightweight security
PrintCipher-96 160 96 96 96 96 AppendixC
PrintCipher-48 80 48 48 48 48 AppendixC

Present 80 or 128 64 64 62 (93) 62 (31) AppendixF ([CHM11])
Simon 96 64 64 42 21 [BSS+13]
Simon 64 32 32 32 16 [BSS+13]
Prince 128 64 64 24 30 [DSES14b]

KATAN64 80 64 64 74 36 [CDK09]
KATAN48 80 48 48 74 32 [CDK09]
KATAN32 80 32 32 64 24 [CDK09]

DES 56 64 56 261 284 [TS]
LowMC 80 256 64 12 6.89 AppendixC
LowMC 80 1 024 64 85 2.49 AppendixC

Allowing attacks with data and time complexity up to 2256

LowMC 256 512 256 18 6.96 AppendixC
LowMC 256 1 024 256 103 3.02 AppendixC

Table 2. Comparison of ciphers (excluding key schedule). We list the depth-optimized variants; size-optimized
variants are given in () if available. Best in class are marked in bold.

higher-order attacks and interpolation attacks. The discussion is accompanied by experimental
evaluation of small-scale version of LowMC.

Building up on this, we will finally formulate a relatively simple expression for deriving an
estimate for the number of rounds needed for a desired security level.

5.1 Differential characteristics

In differential cryptanalysis [BS91], the principal goal is to find a pair (α, β) of an input difference
α and an output difference β for the cipher such that pairs of input texts with difference α have
an unusual high probability to produce output texts with difference β. Such a pair of differences
is called a differential. A good differential can be used to mount distinguishing attacks as well
as key recovery attacks on the cipher. For this it suffices if the differential does not cover the
whole cipher but all except one or a few rounds.

As it is infeasible to calculate the probability of differentials for most ciphers, the cryptana-
lyst often has to be content with finding good differential characteristics i.e., paths of differences
through the cipher for which the probability can directly be calculated. Note that a differential
is made up of all differential characteristics that have the same input and output difference as
the differential. The probability of a good differential characteristic is thus a lower bound for
the related differential.

Allowing parts of the state to go unchanged through the Sbox layer clearly increases the
chance of good differential characteristics. It is for example always possible to find a one round
characteristic of probability 1. In fact, it is even possible to find d l

3me-round characteristics
of probability 1 where l is the width of the identity part and m the number of 3-bit Sboxes.
Nonetheless, as we will prove in the following, this poses no threat. This is because of the
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randomness of the linear layer which maps a fixed subspace to a random subspace of the same
dimension: Most “good” differences i.e., differences that activate none or only few Sboxes, are
mapped to “bad” differences that activate most of the Sboxes per layer. This causes the number
of characteristics that only use “good” differences to decay exponentially with the number of
rounds. In the case of a d l

3me-round characteristic of probability 1, this means that the output
difference is fixed to very few options, which makes it then already in the next round extremely
unlikely that any one of the options is mapped onto a “good” difference.

We will now prove that good differential characteristics exist only with negligible probability
in LowMC after a low number of rounds. The basic idea behind the proof is the following. We
calculate for each possible good differential characteristic over r rounds the probability that
it is realized in an instantiation of LowMC under the assumption that the binary matrices of
the linear layer were chosen independently and uniformly at random. By evaluating the sum of
these probabilities, which is an upper bound for the probability that any good characteristic
exists, we can test that this probability is negligible for a given number of rounds.

Recall that m is the number of Sboxes in one Sbox layer in LowMC and that l is the bit-
length of the identity part of the Sbox layer. We thus have n = 3m+ l. Let V (i) be the number
of bit vectors of length n that correspond to differences that activate exactly i Sboxes. As we
can choose i out of the m Sboxes, as for each active 3-bit Sbox there are 7 possible non-zero
input differences, and as the bits of the identity part can be chosen freely, we have

V (i) =
(
m

i

)
· 7i · 2l . (1)

Let α0 be an input difference and let α1 be an output difference for one round of LowMC. Let
a0 be the number of Sboxes activated by α0. As an active Sbox maps its non-zero input difference
to four possible output differences each with probability 1

4 , and as a uniformly randomly chosen
invertible binary n × n matrix maps a given non-zero n-bit vector with probability 1

2n−1 to
another given non-zero output vector, the probability that the one-round characteristic (α0, α1)
has a non-zero probability in a random instantiation of LowMC is

4a0

2n − 1 . (2)

Let (α0, α1, . . . , αr) now be a given characteristic over r rounds where the differences αi are
the output differences of round i and α0 is the starting difference. Let (a0, a1, . . . , ar−1) be the
numbers of Sboxes activated by each α0, α1,. . . , and αr−1. We can now calculate the probability
that this characteristic has a non-zero probability in a random instantiation of LowMC as

4a0

2n − 1 ·
4a1

2n − 1 . . .
4ar−1

2n − 1 = 4a0+a1+···+ar−1

(2n − 1)r
. (3)

Summing this probability now for all possible characteristics over r rounds that activate
at most d Sboxes, gives us an upper bound for the probability that there exists any r-round
characteristic with d or fewer active Sboxes. This sum is then∑

0≤a0,a1,...,ar−1≤m
a0+a1+···+ar−1≤d

V (a0) · V (a1) · · ·V (ar−1) · (2n − 1) · 4a0+a1+···+ar−1

(2n − 1)r
(4)

where the factor (2n − 1) is the number of choices for the last difference αr that can take any
non-zero value.

With the knowledge that each active Sbox reduces the probability of a characteristic by a
factor of 2−2, we can now calculate for each parameter set of LowMC the number of rounds
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after which any good differential characteristic is present only with a negligible probability. We
consider as good differential characteristics those with a probability higher than 2−d, where d is
the allowed data complexity in the respective parameter set. We call a negligible probability a
probability lower than 2−100. Note that this probability only comes into play once when fixing
an instantiation of LowMC.9 The calculated bound for our choice of parameters can be found
in Table 4.

Table 3. Example of how the probability bound pstat, for the existence of differential or linear characteristic of
probability at least 2−d, evolves. The parameters are here m = 42, d = 128.

Rounds 1 - 6 7 8 9 10 11 12 13 14 15

n = 256 1.0 2−100 2−212 2−326 2−442 2−558 2−676 2−794 2−913 -
n = 1024 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2−26 2−145 2−264

5.2 Linear characteristics

In linear cryptanalysis [Mat93], the goal of the cryptanalyst is to find affine approximations of
the cipher that hold sufficiently well. As with differential cryptanalysis, these can be used to
mount distinguishing and key recovery attacks. The approximation is done by finding so-called
linear characteristics, a concatenation of linear approximations for the consecutive rounds of
the cipher. Similar to differential characteristics, linear characteristics activate Sboxes that are
involved in the approximations.

The proof for the absence of good differential characteristics is directly transferable to linear
characteristics because of two facts. Firstly, the maximal square correlation of an approxima-
tion over one Sbox is 2−2, just the same as the maximal differential probability. Secondly, the
transpose of a uniformly randomly chosen invertible binary matrix is still a uniformly randomly
chosen invertible binary matrix. Thus we can use equation 4 to calculate the bounds for good
linear characteristics as well.

5.3 Boomerang attacks

In boomerang attacks [Wag99], good partial differential characteristics that cover only part of
the cipher can be combined to attack ciphers that might be immune to standard differential
cryptanalysis. In these attacks, two differential characteristics are combined, one that covers the
first part of the cipher and another that covers the second part. If both have about the same
probability, the complexity corresponds roughly to the inverse of the product of the square of
each of their probabilities [Wag99]. Thus to calculate the number of rounds sufficient to ensure
that no good boomerang exists, we determine the number of rounds after which we cannot
separate the cipher into two parts and find a differential for each such that the product of their
probabilities is less than 2−d/2.

5.4 Higher order attacks

To prevent higher-order attacks such as [Knu94] and [DS09] ideally we would like to be able to
make a statement such as

9 We should mention here that this bound requires the linear layers are once chosen randomly and then fixed.
Malicious instantiation of the linear layers can clearly introduce strong differential characteristics.
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After r rounds there is no output bit and no input subspace of dimension d such that
the derivative of the polynomial representation of the output bit with respect to this
subspace is the zero-polynomial.

As it seems very difficult to determine whether such a statement holds, we approximate it in
the following.

First we determine a bound on the number of rounds needed for terms of degree d to appear.
As we will see later, an upper bound for the degree of the encryption function dependent on
the number of rounds can be stated recursively as follows. If the degree after r rounds is d then
the degree after r + 1 rounds is at most

min
(

2d,m+ d,
n

2 + d

2

)
. (5)

We believe that this bound is tight (or at least close to tight) in LowMC in the following way:
If the bound suggests that after r rounds the degree is at most d, the polynomial representation
of any output bit will contain at least one term of degree d. While clearly there are terms of
degree d that can impossibly be realized, we believe that the large number of possible ways to
construct terms of degree d and the random nature of the linear layer will cause at least one to
be realized.

Now one problem remains. If we know that a term of degree d exists, we can still take the
derivative with respect to one variable that is not in the term to ensure that it vanishes. Thus
we need to prepend a certain number of rounds that ensures that the term of degree d depends
on all input bits. Or in other words, that all terms of order d are realized in the polynomial of
the output bit with some probability.

As such an estimate for the number of rounds which need to be prepended, we use the
number of rounds needed for one input bit to influence all output bits. We approximate this as
follows. An average input bit activates 7

8 of all m S-boxes. Thus after one round the dimension
of the linear space that this bit influences is on average 7m

8 . As the linear layer is random, we
can assume that this bound grows linearly, such that after

⌈
8n
7m

⌉
rounds, we expect that on

average all bits are influenced. Prepending this number of rounds should give a good estimate
for the number of rounds needed so that no higer-order derivatives of our chosen degree give us
a zero-polynomial in any output bit.

Estimating the growth of the degree Due to its small width of only 3-bit, the degree of
the Sbox in its algebraic representation is only two. Since in one round the Sboxes are applied
in parallel and since the affine layer does not change the algebraic degree, the algebraic degree
of one round is two as well. As a low degree could be used as a lever for a higher-order attack,
let us take a look at how the algebraic degree of LowMC develops over several rounds.

Clearly the algebraic degree of the cipher after r rounds is bounded from above by 2r. It
is furthermore generally bounded from above by n − 1 since the cipher is a permutation. A
second upper bound, that is better suited and certainly more realistic for the later rounds, was
found by Boura, Canteaut, and De Cannière [BCC11]. In our case it is stated as following: If
the cipher has degree dr after r rounds, the degree after round r+ 1 is at most n

2 + dr
2 . Differing

from [BCC11], in LowMC the Sbox layer only partially consists of Sboxes and partially of the
identity mapping. This must be accounted for and requires a third bound: If the cipher has
degree dr after r rounds, the degree after round r+ 1 is at most m+ dr. A proof of this can be
found in Secion E. This can be summarized as follows:
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Lemma 1. If the algebraic degree of LowMC with m Sboxes and length l of the identity part in
the Sbox layer is dr after r rounds, the degree in round r + 1 is at most

min
(

2dr,m+ dr,
n

2 + dr

2

)
(6)

where n = 3m+ l is the block width of LowMC.

Combining these three bounds, we can easily calculate lower bounds for the number of rounds
r needed for different parameter sets l and m of LowMC to reach a degree that is at least as
large as the allowed data complexity d minus 1. The results of this for LowMC’s parameters are
displayed in Table 4.

Table 4. For the different sets of LowMC parameters, bounds are given for the number of rounds for which
no good differential or linear characteristics exist (rstat), to avoid good boomerangs (rbmrg), and the number of
rounds needed to have a sufficiently high algebraic degree (rdeg). The bounds were calculated using Equations 4
and 6.

Sboxes blocksize data complexity rstat rbmrg rdeg

49 256 64 5 6 6
63 256 128 5 6 7

5.5 Interpolation attack

The bound derived in this section is based on the attack on LowMC by Dinur, Liu, Meier and
Wang [DLMW15].

In an interpolation attack [JK97], we determine the polynomial representation of a state
bit. This is done by combining knowledge about restrictions of this polynomial with a sufficient
number of evaluations of this polynomial. More concretely, let us suppose we can determine the
value of some intermediate bit in LowMC by choosing the right plaintexts. Let us furthermore
assume that the polynomial representation of this bit in the ciphertext bits can only contain a
restricted set of terms. When we now regard the coefficients of these terms as the unknown vari-
ables, a pair of plaintext and ciphertext will correspond to a linear equation in these variables.
Using sufficiently many plaintext-ciphertext pairs, we can create enough linear independent
equations to be able to solve the system of equations and hence deduce the polynomial. As the
coefficients usually depend on the key bits, we gain knowledge about the key bits.

Let us now estimate the time complexity of this attack. When we consider the intermediate
state bits before the last round, we see that the only quadratic terms that appear are those
produced by the S-boxes. As any S-box output bit contains only quadratic term, there are thus
only 3m quadratic terms available.10 For rounds farther away from the last round, we determine
the number of terms of a given degree by considering all combinations of terms of the previous
round that, when multiplied, give terms of that degree.

We thus receive an estimate of the number of terms of each degree for a given number of
rounds before the last round. But for the correct estimate, we also need to consider the number
of possible coefficients for these terms. We note that the maximal degree in the key bits of a
coefficient depends on the degree of its term. For example, let us consider the polynomial of a bit
10 This is when we represent the polynomials as polynomials over the standard base, that is the bits of the

ciphertext. This is intuitively the best choice of base for an attack.
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before the second to last round. The maximal degree of the terms is then 4. But the coefficients
cannot depend on the key bits. For the terms of the degree 3, the coefficients can only be linear
in the key bits. And the terms of degree 2 can only depend quadratically on the key bits. As
this limits the number of possible coefficients and thus the number of equations needed for an
attack, we estimate the number of equations needed as follows: for each possible term degree,
we determine how many possible terms and how many possible coefficients for these terms there
are and take the minimum of both.

Lastly we need to note that the complexity of the interpolation attacks depends on solving
a linear system of equations in the variables. We estimate thus that a number of k

2.3 variables
is sufficient to make the attack more complex than bruteforcing the k key bits since the best
methods for solving a system of linear equations (which have a large overhead) have a limit
exponent of 2.3.

5.6 Experimental Cryptanalysis

We proved that no good differential or linear characteristic can cover sufficiently many rounds
to be usable as an attack vector in LowMC. This does not exclude though the possibility of
good differentials or linear hulls for which a large number of characteristics combine. Given the
highly diffusive, random linear layers, this seems very unlikely.

Likewise we were able to find lower bounds on the number of rounds needed for the algebraic
degree of LowMC to be sufficiently high. Even though this is state-of-the art also for traditional
designs to date, this gives us no guarantee that it will indeed be high. Unfortunately it is not
possible to directly calculate the algebraic degree for any large block size.

To nevertheless strengthen our confidence in the design, we numerically examined the prop-
erties of small-scale versions of LowMC. In Table 5, we find the results for a 24-bit wide version
with 4 Sboxes. For testing its resistance against differential cryptanalysis, we calculated the full
codebook under 100 randomly chosen keys and used the distribution of differences to estimate
the probabilities of the differentials. To reduce the computational complexity, we restricted the
search space to differentials with one active bit in the input difference.

It can clearly be seen that the probability of differentials quickly saturates to values too low to
allow an attack. Clearly, the bound calculated with equation 4 (pstat in the table) overestimates
the probability of good characteristics. Even though we were not able to search the whole
space of differentials there is little reason to assume that there are other differentials that fare
considerably better. It is important to note that the number of impossible differentials goes to
0 after only few rounds. Thus impossible differentials cannot be used to attack any relevant
number of rounds. At the same time this assures the absence of any truncated differentials of
probability 1.

The minimal algebraic degree11 is tight for this version when compared with the theoretic
upper bound as determined with equation 6.

For the version with only 2 Sboxes the degree deviates for some round numbers from the
theoretic bound which is not too surprising considering the size of the cipher. It can beexpected
that with increasing block size – and with the thereby quadraticallyincreasing random matrices
– the bound is more likely to hold.

5.7 Determining the number of rounds needed for security

The design goal of LowMC is to offer a cipher optimized for schemes whose performance critically
depends on the ANDdepth, the number of ANDs or the number of ANDs per bit. We thus tried
11 That is the minimum of the algebraic degrees of the 24 output bit when written as Boolean functions.
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Table 5. Experimental results of full codebook encryption over 100 random keys for a set of small parameters are
given. pbest and pworst are the best and the worst approximate differential probability of any differential with one
active bit in the input difference. nimposs is the number of impossible differentials with one active bit in the input
difference. degexp is the minimal algebraic degree in any of the output bits. degtheor is the upper bound for the
algebraic degree as determined from equation 6. pstat is the probability that a differential or linear characteristic
of probability at least 2−12 exists (see eq. 4).

n = 24, m = 4, k = 12, d = 12

Rounds pbest pworst nimposs degexp degtheor pstat

2 2−8.64 0 228.58 4 4 -
3 2−12.64 0 228.00 8 8 -
4 2−14.64 0 24.25 12 12 -
5 2−18.60 2−26.06 0 16 16 -
6 2−20.49 2−25.84 0 20 20 -
7 2−23.03 2−25.74 0 22 22 -
8 2−23.06 2−25.74 0 23 23 -
10 - - - - - 2−5.91

11 - - - - - 2−16.00

12 - - - - - 2−26.28

19 - - - - - 2−101.5

n = 24, m = 2, k = 12, d = 12

Rounds pbest pworst nimposs degexp degtheor pstat

4 2−8.64 0 228.55 6 8 -
5 2−12.62 0 228.17 10 10 -
6 2−12.64 0 224.93 10 12 -
7 2−14.64 0 24.75 14 14 -
8 2−16.63 2−26.47 0 14 16 -
9 2−16.64 2−26.06 0 16 18 -
10 2−20.34 2−25.84 0 18 20 -
11 2−20.50 2−25.84 0 22 22 -
12 2−22.94 2−26.06 0 22 23 -
20 - - - - - 2−5.91

21 - - - - - 2−10.93

22 - - - - - 2−16.00

38 - - - - - 2−101.5

to be as close to the number of rounds needed for security as possible. Based on our discussion
of different attack vectors above, our recommendation for the number of rounds is hence the
following:

r ≥ max(rstat, rbmrg, rdeg + rdiff) + router

where rstat is a bound for statistical attack vectors such as differentials and linear characteristics
as discussed in Section 5.1, rbmrng is the bound for boomerang attacks as discussed in Section 5.3,
rdeg indicates the number of rounds needed for the cipher to have sufficient degree and where
rdiff denotes the number of rounds needed for full diffusion as discussed in Section 5.4. Values of
these for the parameters of LowMC can be found in Table 4. For the number of rounds which
can be peeled off at the beginning and end of the cipher by key guessing and other strategies,
we use the ad-hoc formular router = rinterpol where rinterpol denotes number of rounds that can
be peeled off by an interpolation attack as discussed in Section 5.5.

6 Comparison of Implementations

In the following we report on experiments when evaluating LowMC with MPC protocols in Sec-
tion 6.1 and with FHE in Section 6.2. The performance of both implementations is independent
of the specific choice of the random matrices and vectors used in LowMC (cf. Section 3.3) as
we do not use any optimizations that are based on their specific structure.

In both the FHE and MPC settings, for more efficient matrix multiplication, we use a method
that is generically better than a naive approach: the “method of the four Russians” [ABH10].
This method reduces the complexity of the matrix-vector product from O(n2) to O(n2/log(n)),
i.e. it’s an asymptotically faster algorithm and is also fast in practice for the dimensions we face
in LowMC. Asymptotically faster methods like the Strassen-Winograd method method make
no sense however, for the dimensions we are considering.

It turns out that considering design-optimizations of the linear layer by introducing structure
and thereby lowering the density of the matricies and in turn reducing the number of XOR
computations will not improve performance of all these implementations. On the contrary,
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as the application of the security analysis suggests, the number of rounds would need to be
increased in such a case.

6.1 MPC Setting

As an example for both classes of MPC protocols described in Section 2.1 we use the GMW
protocol [GMW87] in the semi-honest setting. As described in [CHK+12], this protocol can be
partitioned into 1) a setup phase with a constant number of rounds and communication linear
in the MC of the circuit (2κ bits per AND gate for κ-bit security), and 2) an online phase whose
round complexity is linear in the ANDdepth of the circuit. Hence, we expect that the setup
time grows linearly in the MC while the online time grows mostly with increasing ANDdepth
when network latency is high.

Benchmark Settings. For our MPC experiments we compare LowMC against other ciphers
with a comparable level of security. We compare LowMC with the two standardized ciphers
Present and AES and also with the NSA cipher Simon which previously had the lowest number
of ANDs per encrypted bit (cf. Table 2). More specifically, for lightweight security with at least
κ = 80 bit security we compare LowMC with 80 bit keys against Present with 80 bit key (using
the Sbox of [CHM11]) and Simon with 96 bit keys (the Simon specification does not include a
variant with 80 bit keys); for long-term security with κ = 128 bit security we compare LowMC
with 128 bit keys against AES-128 (using the Sbox of [BP12]) and Simon with 128 bit key;
we set the security parameters for the underlying MPC protocol to κ = 80 bit for lightweight
security and to κ = 128 bit for long-term security. We exclude the key schedule and directly
input the pre-computed round keys. We use the GMW implementation that is available in the
ABY-framework [DSZ15] which uses the efficient oblivious transfer extensions of [ALSZ13]12.
We run our MPC experiments on two desktop PCs, each equipped with an Intel Haswell i7-
4770K CPU with 3.5 GHz and 16GB of RAM, that are connected by Gigabit LAN. To see the
impact of the reduced ANDdepth in the online phase, we measured the times in a LAN scenario
(0.2 ms latency) and also a trans-atlantic WAN scenario (50 ms latency) which we simulated
using the Linux command tc.

In our first experiment depicted in Table 6 we encrypt a single block, whereas in our second
experiment depicted in Table 7 we encrypt multiple blocks in parallel to encrypt 12.8 Mbit of
data.

Single-Block Results. From our single-block experiments in Table 6 we see that the com-
munication of LowMC is factor 1.6 lower than the next best cipher for lightweight security and
factor 6 for long-term security. In terms of total runtime, for lightweight security LowMC is
slower than Present and Simon by factor 3 in the LAN setting but outperforms both by factor
3 to 7 in the WAN setting. For long-term security, LowMC is slower than AES and Simon
by factor 4 in the LAN setting, but again outperforms both in the WAN setting by factor 3
to 4. These results can be explained by the high number of XOR gates of LowMC compared
to AES, which impact the run-time higher than the communication for the AND gates. In the
WAN setting, the higher ANDdepth of AES outweighs the local overhead of the XOR gates for
LowMC, yielding a faster run-time for LowMC.

12 Our MPC implementations of the benchmarked block-ciphers are available online at http://encrypto.de/
code/LowMC.
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Lightweight Security
Cipher Present Simon LowMC
Communication [kB] 39 26 16
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 0.001 0.05 0.001 0.05 0.001 0.05
Online [s] 0.008 9.31 0.005 4.21 0.033 1.23
Total [s] 0.009 9.36 0.006 4.26 0.034 1.29
Long-Term Security
Cipher AES Simon LowMC
Communication [kB] 170 136 23
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 0.003 0.05 0.003 0.05 0.002 0.05
Online [s] 0.006 4,01 0.009 6.81 0.038 1.44
Total [s] 0.009 4.06 0.012 6.86 0.040 1.49

Table 6. GMW benchmarking results for single block. Best in class marked in bold.

Multi-Block Results. From our multi-block experiments in Table 7 we see that LowMC
needs less communication than all other ciphers: at least factor 6 for lightweight security and
factor 12 for long-term security. Also the total runtime of LowMC is the lowest among all
ciphers, ranging from factor 3 when compared to Simon for lightweight security to factor 8
when compared to AES for long-term security.

Lightweight Security
Cipher Present Simon LowMC
Comm. [GB] 7.4 5.0 0.8
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 68.08 83.89 45.16 55.49 14.6 18.85
Online [s] 0.91 10.00 0.59 5.82 0.91 1.29
Total [s] 68.99 93.89 45.75 61.31 15.5 20.14
Long-Term Security
Cipher AES Simon LowMC
Comm. [GB] 16 13 1.1
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 101.63 198.53 73.42 87.13 22.09 29.21
Online [s] 1.29 4.27 0.95 7.71 1.58 1.95
Total [s] 102.85 202.85 74.38 94.84 23.70 25.29

Table 7. GMW benchmarking results for multiple blocks to encrypt 12.8 Mbit of data. Best in class marked in
bold.

Summary of the Results. To summarize our MPC experiments, the benefits of LowMC
w.r.t. the online time depend on the network latency: over the low-latency LAN network existing
ciphers achieve faster online runtimes than LowMC, whereas in the higher latency WAN network
LowMC achieves the fastest online runtime. W.r.t. the total runtime, LowMC’s benefit in the
single-block application again depends on the latency (comparable or slightly less efficient over
LAN, but more efficient over WAN), whereas in the multi-block application LowMC significantly
improves over existing ciphers by factor 4 to 8. For secure computation protocols with security
against malicious adversaries, the benefit of using LowMC would be even more significant, since
there the costs per AND gate are at least an order of magnitude higher than in the semi-honest
GMW protocol, cf. [NNOB12,LOS14].

6.2 FHE Setting

We implemented LowMC using the homomorphic encryption library HELib [HS13,HS14], which
implements the BGV homomorphic encryption scheme [BGV11] and which was also used to
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evaluate AES-128 [GHS12a,GHS12b]. Our implementation represents each plaintext, ciphertext
and key bits as individual HE ciphertexts on which XOR and AND operations are performed.
Due to the nature of the BGV system this means that we can evaluate many such instances
in parallel, typically a few hundred. We found this representation to be more efficient than our
other “compact” implementation which packs these bits into the slots of HE ciphertexts.

In the homomorphic encryption setting the number of AND gates is not the main determi-
nant of complexity. Instead, the ANDdepth of the circuit largely determines the cost of XOR
and AND, where AND is more expensive than XOR. However, due to the high number of
XORs in LowMC, the cost of the linear layer is not negligible. In our implementation we use
the “method of the four Russians” [ABH10] to reduce the number of HE ciphertext additions
from O(n2) to O(n2/ log(n)).

In our experiments we chose the depth for the homomorphic encryption scheme such that
the “base level” of fresh ciphertexts is at least the number of rounds, i.e. we consume one level
per round. Our implementation also does not precompute round keys in advance, but deriving
round keys is considered part of the evaluation (cost).

We consider LowMC instances for Present-80 and AES-128 like security. We always choose
a homomorphic encryption security level of 80 for compatibility with [GHS12b]. Our results are
given in Table 8. Our implementation is available at https://bitbucket.org/malb/lowmc-helib.

d m r n #blocks tsetup teval tsbox tkey tblock tbit

128 63 14 256 504 6.7 854.0 605.6 2.2 1.6945 0.0066
64 31 12 128 600 11.8 217.7 166.9 0.6 0.3629 0.0028

Table 8. LowMC (commit f6a086e) in HElib [HS13] (commit be9d3785e) on Intel i7-4850HQ CPU @ 2.30GHz;
d is the allowed data complexity, m is the number of Sboxes, n is the blocksize, r is the number of rounds, #
blocks is the number of blocks computed in parallel, tsetup is the total setup time, teval is the total running time
of the encryption, tsbox the total time spent in the S-Box layer, tkey the total time spent in the key schedule,
tblock = teval/#blocks and tbit = tblock/n. All times are in seconds.

For comparison with previous results in the literature we reproduce those results in Table 9
which demonstrates the benefit of a dedicated block cipher for homomorphic evaluation.

d ANDdepth #blocks teval tblock tbit Cipher Reference Key Schedule

128 40 120 3m 1.5s 0.0119s AES-128 [GHS12b] excluded
128 40 2048 31h 55s 0.2580s AES-128 [DHS14] excluded
128 40 1 22m 22m 10.313s AES-128 [MS13] excluded
128 40 12 2h47m 14m 6.562s AES-128 [MS13] excluded
128 14 504 14.2m 1.7s 0.0066s LowMC this work included

64 24 1024 57m 3.3s 0.0520s PRINCE [DSES14b] excluded
64 12 600 3.6m 0.36s 0.0028s LowMC this work included

Table 9. Comparison of various block cipher evaluations in the literature and this work; Notation as in Table 8.
Memory requirements are not listed as they are usually not provided in the literature. The first row is based on
experimental data obtained on the same machine and the same instance of HELib as in Table 8.

7 Conclusions, lessons learned, and open problems

We proposed block ciphers with an small number of AND gates and an shallow AND depth,
demonstrated the soundness of our design through experimental evidence and provided a se-
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curity analysis of these constructions. Of course, as with any other block cipher, more security
analysis is needed to firmly establish the security provided by this new design. Furthermore,
with the proposal of the LowMC family, we bring together the areas of symmetric cryptographic
design and analysis research with new developments around MPC and FHE. Finally, in contrast
to current folklore belief, in some implementation scenarios, we identified practical cases where
“free XORs” can no longer be considered free and where local computations in an MPC protocol
represent a considerable bottleneck.

To finish, we highlight a number of open problems related to the LowMC family of ciphers in
the areas of cryptanalysis, design, and implementation. We start with cryptanalysis, as analyzing
such an extreme corner of the design space for a symmetric cipher is an interesting endeavor in
itself.

– In Eq(4) we give an approach to calculate, for any number of Sboxes per round, block
size, and security level, a number of rounds for which we believe and our analysis suggests
that LowMC is secure. We on purpose do not add an additional security margin. Are there
attack vectors for which those r rounds are not enough? Or is perhaps the opposite true: is
it possible to reduce the number of rounds in LowMC, which in turn would further reduce
MC and ANDdepth?

– Security of LowMC, or variants of it, in other use-cases for which we do not claim secu-
rity, i.e. against related-key attacks, or its use in a key-less settings like block-cipher-based
compression or hash functions, or sponge-based hash functions.

There are also various open questions related to the design of LowMC-like ciphers:

– Affine layer (1): Can we add more structure into the linear layers in order to reduce the
necessary computational effort in those cases where the number of AND gates is no longer
the bottleneck? Do such approaches beat applying asymptotically faster linear algebra tech-
niques for applying linear layers as done in Section 6? As we argue in the paper, simply
lowering the density of the matrices by several factors of two will not be enough to change
performance at all.

– Affine layer (2): For breaking up symmetries it seems to suffice to have sufficiently distinct
linear layers in every round, i.e. distinct random matrices Lmatrix[i]. We however chose
to add distinct round constants, also because the cost of doing so is very low, even though
we don’t know of an attack. An interesting question hence is: Could LowMC without the
ConstantAddition(i) step be secure, perhaps equally so?

– Affine layer (3): Can we add more structure into the linear layer in order to improve the
security? Our strategy to use random linear layers gives good expected properties, but a small
probability for unlucky choices remains. For that reason we introduced an analysis technique
in the paper that can quantify this risk, and set the threshold for our concrete instantiations
to 2−100. It will be interesting to study what techniques for constructing concrete affine
layers (using e.g. linear codes as it is usually done) can achieve. The advantage would be
to remove that chance of being unlucky, but we conjecture it to be unlikely that it will be
possible to e.g. at the same time get close to our bounds on the probability of linear or
differential characteristics.

– Sbox-layer: It would be interesting to study Sboxes (larger than 3 bits) with low ANDdepth
and Sboxes with low multiplicative complexity.

Currently, the multiplicative complexity and ANDdepth of various cipher constructions is
poorly understood. For example, it would be interesting to find efficient algorithms along the
lines of [BMP13] for the various ciphers in the literature. While our choice for GF(2) is well
motivated, there are scenarios where larger fields might be beneficial. What designs minimize
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MC and multiplicative depth under such constraints? In a follow-up work MiMC[AGR+16,
GRR+16] was proposed that aims to minimize the number of multiplications in GF(p). Finding
designs in GF(p) that minimize multiplicative depth is still an interesting option problem.
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A LowMC version 0

In the first version of this paper, we proposed a number of parameter sets for LowMC instan-
tiations that turned out to be too optimistic. The formula for deriving the number of rounds
needed for security did not yet contain a bound against boomerang attacks which can pose a
strong threat due to the partial non-linear layer. We thank Dmitry Khovratovich for pointing
that out to us. Apart from this the formula was identical to the one of version 1.

You can find the parameters which we suggested for LowMC version 0 in Table 10.

Table 10. Parameter sets of LowMC version 0 instantiations. LowMC-S are shallow instances minimizing AND-
depth. LowMC-W are wide instances minimizing the ANDs per encrypted bit.

sboxes keysize blocksize data rounds ANDdepth ANDs
m k n d r per bit
21 80 128 64 13 13 6.4 LowMC-S with 80-bit PRESENT-like security
21 80 1024 64 28 28 1.72 LowMC-W with 80-bit PRESENT-like security

42 128 256 128 13 13 6.4 LowMC-S with AES-128-like security
42 128 1024 128 19 19 2.33 LowMC-W with AES-128-like security

42 192 256 128 14 14 6.9 LowMC-S with AES-192-like security
42 192 1024 128 20 20 2.46 LowMC-W with AES-192-like security

42 256 256 128 15 15 7.4 LowMC-S with AES-256-like security
42 256 1024 128 21 21 2.58 LowMC-W with AES-256-like security

B LowMC version 1

Version 1 of LowMC was published at EUROCRYPT 2015. While the formula for calculating
the rounds was improved compared to version 0, it was still not sufficient. In particular, the
bound used for calculating the security against higher-order attacks was insufficient. This has
been exploited in two attacks [DLMW15,DEM16]. This has been amended in this version by
taking the number of rounds needed for full diffusion into account. Furthermore the number of
outer rounds was independent of the key size. The formula used to be

r ≥ max(rstat, rbmrg, rdeg) + router

where router = rstat.
The suggested parameters for LowMC version 1 can be found in Table 11.

Table 11. Parameter sets of LowMC version 1 instantiations. The first set has PRESENT-like security param-
eters, the second set has AES-like security parameters.

blocksize sboxes keysize data rounds ANDdepth ANDs
n m k d r per bit

256 49 80 64 11 11 6.3
256 63 128 128 12 12 8.86
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C Table representation of LowMC Sbox

The representation of the Sbox in algebraic normal form is given as

(a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab)

(see also Figure 2). Alternatively it can be given in table form as following:

ABC DEF
000 000
001 001
010 011
011 110
100 111
101 100
110 101
111 010

D Other attack vectors

Slide attacks and their variants are ruled-out by the choice of random i.e., high Hamming-weight
round constants and distinct linear layers [BW00, BW99, Sol14]. Meet-in-the-middle (MITM)
attacks and their variants [DH77, CE85] should be thwarted by the larger number of round-
key additions. It is straightforward to transfer the proof of the absence good boomerangs to
to differential-linear structures [LH94, BDK02]. Integral attacks [LH94] can be formulated as
higher-order differential attacks. As shown in Section 5.4, we do not expect such attacks to
exist.

E A lower bound for the algebraic degree of an SPN

The following theorem and proof lends heavily from Boura, Canteaut, and De Cannière [BCC11].

Theorem 1. Let F be a function that corresponds to the parallel application of m balanced
d-bit Sboxes and an identity function of width l. Thus F is from IFdm+l

2 into IFdm+l
2 . Let δk be

the maximal degree of the product of any k output bits of the Sbox. Then for any function G
from IFmd+l into IFk

2, we have

deg(G ◦ F ) ≤ βm+ deg(G)

where
β = max

1≤i≤d
(δi − i) .

Proof. Let π be the product of j output bits of F . Let xi, 1 ≤ i ≤ d denote the number of
Sboxes that give exactly i bits to the product π and let x0 be the number of bits taken from
identity. We then have

deg(π) ≤ max
(x0,...,xd)

d∑
i=1

δixi + x0 =
d∑

i=1
δixi + j −

d∑
i=1

ixi =
d∑

i=1
(δi − i)xi + j ≤ βm+ j

as
d∑

i=1
ixi + x0 = j and

d∑
i=1

xi ≤ m. ut
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F Sbox representation of PRESENT with low depth

Let S(A,B,C,D) = (E,F,G,H) be the Sbox of PRESENT.We used Mathematica’s BooleanConvert
function to convert the Sbox of PRESENT into Algebraic Normal Form (ANF). This yields the
following Sbox representation which can be represented by 8 AND gates and has ANDdepth 2:

E = A⊕ C ⊕D ⊕BC ⊕ABD ⊕ACD ⊕BCD ⊕ 1
F = A⊕B ⊕AC ⊕AD ⊕ CD ⊕ABD ⊕ACD ⊕ 1
G = A⊕ C ⊕AB ⊕AC ⊕ABD ⊕ACD ⊕BCD
H = A⊕B ⊕D ⊕BC.

G Specification

Here we give detailed specifications of the operations of LowMC and its instantiation. A reference
implementation of LowMC including functionality to generate instances as described above and
a program to compute the number of rounds can be found at https://github.com/tyti/lowmc.

Let w be an n-bit word. We denote by wi the (i + 1)th least significant bit i.e., w0 is the
least significant bit, w1 is the second least significant bit and so forth. By wi:i+2 we denote
the 3-bit substring of w that starts with wi and ends with wi+2. With a superscript we index
quantities that are round-dependent e.g., KeyAdditiont is the round key addition in round t.

As before n denotes the block width in bits, m denotes the number of Sboxes in the Sbox
layer. The number of rounds is denoted as r, the key length as k. Bold lower letters denote bit
strings i.e. elements of IFn

2 or IFk
2, bold capital letters denote matrices over IF2.

The state s is thus an n-bit quantity, the key k a k-bit quantity. The round keys rkt, indexed
with 0 ≤ t ≤ r, are n-bit quantities. The round constants bt, indexed with 0 < t ≤ r, are likewise
n-bit quantities. The linear layer matrices LMt, indexed with 0 < t ≤ r, are invertible n × n
matrices over IF2. The round key generation matrices KMt, indexed with 0 ≤ t ≤ r, are n× k
matrices over IF2 of rank min(n, k).

Encryption
The encryption is now defined through the following functions. Some of the functions depend
on the round t, some definitions are given bitwise, depending on bit i. For the definition of the
Sbox, see the table in Appendix C. Note though that the bits are counted from the right there.

Encrypt(s) = LowMCRoundr ◦ · · · ◦ LowMCRound1 ◦KeyAddition0(s)
LowMCRoundt(s) = KeyAdditiont ◦ConstantAdditiont ◦ LinearLayert ◦ SboxLayer(s)

SboxLayeri(s) =
{

Sbox(s3p:3p+2)q where p = bi/3c, q = i mod 3 if i < 3m
si if i ≥ 3m

LinearLayert
i(s) =

⊕
0≤j<n

LMt
i,j · sj

ConstantAdditiont(s) = s⊕ bt

KeyAdditiont(s) = s⊕ rkt

Key schedule
The round keys rkt are derived from the main key k via multiplication with the binary matrices
KMt:

rkt
i =

⊕
0≤j<k

KMt
i,j · kj
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Instantiation

To use the cipher, the matrices LMt, used in the linear layer, the round constants bt and the
matrices KMt, used in the round key generation, must be specified.

In principal any sufficiently random instantiation method is suitable for the instantiation of
the matrices and the constants. As a middle ground between accountability, randomness and
ease of implementation, we chose the LFSR from the Grain cipher [HJMM08] as self-shrinking
generator [MS94]. The LFSR generates a stream of random bits ai via the following recursion
relation

ai+80 = ai+62 ⊕ ai+51 ⊕ ai+38 ⊕ ai+23 ⊕ ai+13 ⊕ ai.

The initial 80 bits a0 to a79 are all set to 1. The first 160 bits generated from this starting state
are discarded, as is done in Grain as well. Thus the first bit that is used is a240. To use the
LFSR as a self-shrinking generator, the output bits of the LFST are evaluated in pairs. When
the first bit is equal to 1, the second bit is produced. When the first bit is 0 though, the second
bit is just discarded.

This stream of bits is then used to generate the LMt, the bt and the KMt.
We begin by creating the LMt. Let s = 240. We now fill the matrix with the bits from the

bit stream row by row: LM0
i,j = as+ni+j . Now we check whether the LM0, we generated this

way, is invertible. If it is not, we discard it and redo the same procedure with the next bits from
the bit stream. Otherwise we continue to create the next matrix.

Once we have generated all LMt, we create the round constants bt. Let as−1 be the last used
bit from the bit stream. We then set b0

i = as+i and continue likewise until all round constants
are set.

Finally the matrices KMt for the key generation are created. Let again as−1 be the last
used bit from the bit stream. We then set KM0

i,j = as+ni+j . If the rank of this matrix is not
equal to min(n, k), we discard it and redo the same procedure with the next bits from the bit
stream. Otherwise we continue to create the next matrix in the same manner.
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