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1 Orange Labs, 42 rue des coutures, 14066 Caen, France
{mohamed.sabt, jacques.traore}@orange.com

2 Sorbonne universités, Université de technologie de Compiègne,
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Abstract. We analyze the security of Android KeyStore, a system ser-
vice whose purpose is to shield users credentials and cryptographic keys.
The KeyStore protects the integrity and the confidentiality of keys by us-
ing a particular encryption scheme. Our main results are twofold. First,
we formally prove that the used encryption scheme does not provide
integrity, which means that an attacker is able to undetectably modify
the stored keys. Second, we exploit this flaw to define a forgery attack
breaching the security guaranteed by the KeyStore. In particular, our at-
tack allows a malicious application to make mobile apps to unwittingly
perform secure protocols using weak keys. The threat is concrete: the
attacker goes undetected while compromising the security of users. Our
findings highlight an important fact: intuition often goes wrong when se-
curity is concerned. Unfortunately, system designers still tend to choose
cryptographic schemes not for their proved security but for their appar-
ent simplicity. We show, once again, that this is not a good choice, since
it usually results in severe consequences for the whole underlying system.
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1 Introduction

Smartphones are used in an ever-growing variety of use-cases, including highly-
sensitive tasks. Third party applications often need to generate and use some
sensitive data, such as authentication credentials and cryptographic keys. Un-
fortunately, no strong protection is guaranteed for these highly valuable data,
which might attract powerful attackers motivated by economic gain. This lack
has hindered the adoption of smartphones in certain areas in which the use of
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cryptographic keys is crucial. The development of smartphone market spurs mo-
bile system designers to reinvent their security features. Starting from Android
4.3, aka Jelly Bean, official support for app-specific secrets storage has been
provided by a newly introduced component, called Android KeyStore.

The Android KeyStore is an Android system service that allows applications
to generate, use and store their cryptographic keys. Once inside the KeyStore,
keys can no longer be extracted. They can be used for cryptographic operations
without ever leaving the KeyStore.

Multiple implementations exist for the KeyStore. The default one, provided
by Google, does all key-related operations using the OpenSSL library. It protects
the integrity and the confidentiality of its keys by storing them in encrypted form
using authenticated encryption (AE). For some reason, the scheme in use is
particular and does not follow any standardized or provably secure construction.
Its idea is simple: the message (representing the stored key) is appended to its
MD5 hash value before encrypting it with CBC (cipher block chaining) mode.
Henceforth, we call this AE scheme Hash-then-CBC-Encrypt.

At the first look, Hash-then-CBC-Encrypt is a lightweight mode that has
many advantages over other popular AE schemes. It is more efficient than those
based on the generic composition approach [6], since the message is needed not
to be processed twice. In addition, it is much simpler to implement compared
to others. Therefore, it might seem to be the most fitting scheme to implement
inside mobile devices for the protection of users keys.

1.1 Our Contribution

In this paper, we show that the use of non-provably secure cryptographic schemes
in complex architectures could cause severe consequences. We start by proving
that the AE scheme Hash-then-CBC-Encrypt does not provide authenticity
regardless of the used hash function. To this end, we show that it does
not satisfy two notions of integrity: integrity of ciphertext (INT-CTXT) and ci-
phertext unforgeability (CUF-CPA). Then, we present a selective forgery attack
where an adversary exploits this weakness to substantially reduce the length of
the symmetric keys protected by the KeyStore.

We illustrate this security flaw by defining an attack scenario in which an
application entrusts the KeyStore with its symmetric key. Our attack lulls users
into a false sense of security by silently transforming, for instance, 256-bit HMAC
keys into 32-bit ones. This allows a malicious third party that controls the net-
work to break any secure protocol based on these weak keys. Such an attack
might constitute a real threat, since it could happen undetected. At the writing
of this paper, our attack affects the latest Android build (android-6.0.1 r22).

Our work brings to light an interesting fact: security in modern systems still
does not withstand a simple cryptanalysis. Astonishingly, recently, the KeyStore
has been significantly enhanced by new features without reviewing its security
correctness. We show that, once again, security by feature-enhancing is disap-
pointedly misleading. Moreover, it is really tempting for system designers to use
ad hoc cryptographic schemes due to their straightforwardness and flexibility to
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meet special needs. The particularity of our work is that we use advanced secu-
rity notions, such as indistinguishability, in order to compromise a system like
Android. Our attack demonstrates that any theoretical weakness concerning the
security of a cryptographic scheme could be utilized to break the whole system.
We thus show that the scope of these notions extends beyond theory. We ad-
vocate the shift onto provably secure cryptography in order to prevent potential
vulnerabilities that will be hard to find inside a complex system.

1.2 Related Work

KeyStore Security. Encryption in mobile devices is increasingly becoming a
topic of utmost importance. Teufl et al. have thoroughly analyzed the encryp-
tion components of Android in [25]. This concerns both full disk encryption and
credential storage. Authors provide a descriptive study of the two systems. How-
ever, no cryptanalysis of the presented cryptographic schemes is given. Works
in [9, 19] highlight the severity of physical attacks, such as cold boot, against
Android’s disk encryption. The primary limitation of these attacks is that they
require a physical access to the targeted mobile devices.

As for secure credential storage, authors in [26] show that app developers
tend to implement their own mechanisms to store credentials. They underline
the prevalence of flawed solutions by designing a tool capable of automatically
identifying and retrieving app credentials. Developers are thus urged to use the
security services proposed by the Android system itself, that is KeyStore. The
different flavors, software-based and hardware-based, of the KeyStore are sub-
jected to close scrutiny in [8]. The investigation involves how an adversary is
able to compromise the different access controls to the stored keys. However,
the study assumes that all the cryptographic algorithms were properly defined
and implemented, which is proved not to be true in [10]. Hay et al. exploit a
buffer overflow vulnerability that permits the execution of an arbitrary code
inside the keystore process. To the best of our knowledge, we present the first
cryptanalysis-based attack against the KeyStore. In addition, our attack has the
advantages to be software-only and remotely executable.

Authenticated Encryption. Authenticated encryption is a symmetric encryp-
tion scheme that protects data confidentiality and integrity. Integrity (authen-
ticity) means that no adversary is able to produce new valid ciphertexts. This
entails that encrypted data cannot be undetectably modified. Recently, the de-
sign of AE primitives has renewed interest, not least because of the currently
running CAESAR competition [7]. The security notions of AE were formalized in
the early 2000s in [5, 12]. Generic composition [6] is the most popular approach
for numerous security protocols, such as SSH,TLS and IPsec. This approach is
about combining a confidentiality-providing encryption scheme together with a
message authentication code (MAC). Nevertheless, the pursuit of more efficiency
than that offered by these two-pass schemes has motivated the construction of
dedicated AE designs, such as the Galois Counter Mode (GCM).
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It turns out that designers do not only strive for efficiency, but also for im-
plementation simplicity. Therefore, authenticity obtained from Encryption-with-
Redundancy (EwR) has long been attractive. In such a paradigm, encryption
consists of computing some public function h over the message M to get a check-
sum σ = h(M). Then, M ||σ is encrypted and returned. As for decryption, the
ciphertext is decrypted to get M ||σ and then the equality σ = h(M) is verified.
Several of these schemes have been partially or fully broken [17, 18]. A generic at-
tack attributed to Wagner on a large class of CBC-Encryption-with-Redundancy
is described in [22]. An and Bellare in [1] formally prove that this AE scheme
does not guarantee security regardless of how the checksum is computed.

Some might argue that Hash-then-Encrypt (HtE) is just a special case of
EwR, where the checksum function h is a hash function. However, we argue that
this is not true. Indeed, the checksum is appended at the end of the message
(M ||σ) in EwR, while the hash value is appended at the beginning of the message
(σ||M) in HtE. Thus, generic attacks against EwR, Wagner’s for instance, are
easier to apply than those against HtE. This is due to the fact that the former
typically requires to remove the last block of ciphertexts, and for many schemes,
the decryption of the first blocks does not depend on the last ones (e.g. CBC
and CTR). Moreover, the proof of Bellare only shows that EwR does not offer a
sufficient condition for security even if the underlying base encryption is secure.
A similar result related to MAC-then-Encrypt (MtE) is given in [6]. In order to
avoid misinterpretation, we emphasize that these results only imply that such
constructions are not generically secure: the soundness of the underlying primi-
tives does not constitute a sufficient condition to guarantee security. Indeed, the
proof consists of providing a counterexample, i.e. a particular MtE scheme that
it is not IND-CCA although its encryption and MAC algorithms are secure. The
proof is applicable only for special IND-CPA encryption schemes whose cipher-
texts can be modified without changing their corresponding plaintexts, which is
clearly not the case for CBC and CTR modes. We note that the results of [6]
do not mean that all MtE schemes are inherently broken. A body of results
(e.g. [20]) has proved the security of several schemes following this construction.

In this paper, we give the first proof that HtE for both CBC and CTR modes,
indeed, does not guarantee integrity. In addition, the proof that we provide is not
a mere existential forgery or a theoretical distinguishing attack. Unlike related
work, we provide a practical attack that could be exploited to compromise the
Android KeyStore. The threat is concrete: the broken HtE in CBC mode (Hash-
then-CBC-Encrypt) is the cryptographic scheme that is used to safeguard the
stored keys in Android mobile devices.

1.3 Responsible Disclosure

We communicated our findings to Google in January 2016. The Android security
team has acknowledged the attack presented in this paper and confirmed that
the broken encryption scheme is planned for removal.
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1.4 Paper Outline

The rest of the paper is structured as follows: Section 2 reviews some classical
definitions and notations. In Section 3, we provide two proofs that Hash-then-
CBC-Encrypt does not provide integrity. Section 4 describes some technical de-
tails about the Android KeyStore. We present our attack scenario in Section 5.
Section 6 provides some discussion and specific recommendations related to the
identified vulnerability.

2 Definitions

A message is a string. A string is a member of {0, 1}∗. The concatenation of
strings X and Y is denoted X||Y or simply XY . For a string X, its length is
represented by |X|. A block cipher is a function E : Key × {0, 1}n −→ {0, 1}n,
where Key is a finite nonempty set and Ek(.) = E(k, .) is a permutation, hence in-
vertible, on {0, 1}n. The number n is called the block length. We use the notation
AO to denote the fact that the algorithm A can make queries to the function
O. Hereafter, we say that the adversary A has access to the oracle O. If f is

a randomized (resp., deterministic) algorithm, then y
R← f(x) (resp., y ← f(x))

denotes the process of running f on input x and assigning the result to y.

Symmetric Encryption Schemes. Following Bellare et al. in [4], a symmetric
encryption scheme SE is given by three algorithms (K, E ,D), where (1) the key
generation algorithm, K, takes a security parameter k ∈ N and returns a key

K. We write K
R←− K(k); (2) the encryption algorithm, E , takes a key K and

a plaintext M to produce a ciphertext C. We write C
R←− Ek(M); and (3) the

decryption algorithm, D, takes a key K and a ciphertext C to return either the
corresponding plaintext M or a special symbol ⊥ to indicate that the ciphertext
is invalid. We require that Dk(Ek(M)) = M for all M and K.

Secrecy of a Symmetric Encryption Scheme. The security of symmetric
encryption schemes is usually classified from the point of view of their goals
and attack models. The classical goal of secure encryption is to protect the
confidentiality of messages, which could be defined by various concepts [24].

The most used one is indistinguishability (IND) that is formalized as fol-
lows [4]: given a symmetric encryption SE = (K, E ,D) and a ciphertext of one of
two plaintexts, no adversary can distinguish which one was encrypted. IND can
be expressed as an experiment. Let Ek(LR(., ., b)) be a left-or-right oracle where
b ∈ {0, 1}: the oracle takes two messages of equal length as input, m0 and m1,
and returns C ← Ek(mb). The adversary submits queries of the form (m0,m1),
where |m0| = |m1|, to the oracle, and must guess which message was encrypted.
If all adversaries cannot succeed with probability better than a random guess,
then SE is called IND-ATK secure, where ATK represents the attack model.

The standard attack models are as follows: (1) The chosen plaintext attack
(CPA) in which an adversary has access to the encryption oracle Ek(LR(., ., b)),
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so that she can choose a set of plaintexts and obtain the corresponding cipher-
texts; (2) the chosen ciphertext attack (CCA) in which an adversary has access,
besides the encryption oracle, to the decryption oracle Dk(.), so that she can
choose a set of ciphertexts and obtain their plaintexts.

Definition 1. (Indistinguishability of a Symmetric Encryption Scheme). Let
SE = (K, E ,D) be a symmetric encryption scheme. Let A be a polynomial-time
adversary. For b ∈ {0, 1} and k ∈ N, consider the following experiments:

Experiment Expind−cpa−bSE,Acpa
(k)

1: K
R←− K(k)

2: x←− AEk(LR(.,.,b))
cpa

3: return x

Experiment Expind−cca−bSE,Acca
(k)

1: K
R←− K(k)

2: x←− AEk(LR(.,.,b)),Dk
cca

3: return x

The adversary A is prohibited from querying Dk(.) on a ciphertext C output by
the encryption oracle. For atk ∈ {cpa, cca}, the advantage of the adversary is
defined as follows:

Advind−atkSE (k) = Pr[Expind−atk−1SE, A = 1]− Pr[Expind−atk−0SE, A = 1]

The scheme SE is secure if the advantage of any adversary is negligible.

The Cipher Block Chaining (CBC) Mode. Encryption with a raw block
cipher is not used in practice. Instead, several modes of operation exist. Here,
we only consider the CBC mode.

Definition 2. (The CBC Encryption Scheme). Let Ek : Key×{0, 1}l −→ {0, 1}l
be a block cipher and let E−1k be its inverse. Let CBC[Ek] = (K, E ,D) be its
associated CBC encryption scheme. Given a message M = m1||...||mn ∈ {0, 1}ln,
the encryption and the decryption algorithms are defined as follows:

CBC Encryption ECBC
k (M)

1: Parse M as m1||...||mn

2: c0
R←− {0, 1}l

3: for i = 1...n do
4: ci ←− Ek(ci−1 ⊕mi)
5: end for
6: return c0||c1||...||cn

CBC Decryption DCBC
k (C)

1: Parse C as c0||c1||...||cn
2: for i = 1...n do
3: mi ←− E−1k (ci)⊕ ci−1
4: end for

5: return m1||...||mn

Two points should be noted in the definition. First, the random IV is denoted c0
in order to highlight that the IV is included along with the ciphertext. Second, we
make the simplifying assumption that DCBC

k (.) never returns the error message
⊥. It takes any ciphertext as input, and always returns some string.
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3 Hash-Then-CBC-Encrypt Does Not Provide Integrity

In this section, we start by reviewing the different concepts of integrity which our
proof relies on. We then provide a formal definition of Hash-then-CBC-Encrypt.
We end by proving that this scheme is not secure.

3.1 Integrity of a Symmetric Encryption Scheme

In the context of symmetric encryption, integrity (or authenticity) means that
only valid parties possessing the secret key K are able to produce a valid cipher-
text; i.e. whose decryption does not give ⊥. Symmetric encryption schemes in
general do not protect the integrity of messages. For example, the CBC mode
does not provide integrity, since it never returns⊥. The IND-CPA secure schemes
that also provide integrity are called authenticated encryption schemes.

Throughout this paper, we consider two notions of integrity: integrity of
ciphertext (INT-CTXT) [6] and ciphertext unforgeability (CUF-CPA) [13]. Both
notions require that no adversary be able to produce a valid ciphertext which the
encryption oracle had never produced before. However, contrary to INT-CTXT,
the adversary in CUF-CPA has no access to the decryption oracle and outputs
only one attempted forgery. Despite of their similarity, these two notions are
defined to accomplish different goals. Indeed, INT-CTXT is a strong measure
for security, while CUF-CPA is a strong one for the effectiveness of the potential
attacks. Thus, proving that a symmetric scheme does not achieve neither INT-
CTXT nor CUF-CPA entails two consequences: (1) the scheme does not provide
high security and therefore it should not be used by scheme designers; and (2)
the found attack is very damaging due to its readily implementation in practice.

Definition 3. (Integrity of an Authenticated Encryption Scheme). Let SE =
(K, E ,D) be a symmetric encryption scheme. Let A be a polynomial-time adver-
sary. Let S be the list of all ciphertexts generated by the adversary queries to
Ek(.). For k ∈ N, the following experiments are defined:

Experiment Expint-ctxtSE,Actxt
(k)

1: K
R←− K(k)

2: if C ← A
Ek(.),Dk(.)
ctxt such that

Dk(C) 6= ⊥ and C /∈ S then
3: return 1
4: else
5: return 0
6: end if

Experiment Expcuf-cpaSE,A-cpa
(k)

1: K
R←− K(k)

2: C ←− AEk(.)cuf-cpa

3: if Dk(C) 6= ⊥ and C /∈ S then
4: return 1
5: else
6: return 0
7: end if

For both experiments, the adversary’s advantage is defined to be:

AdvintSE, A(k) = Pr[ExpintSE, A = 1]

The scheme SE is INT-CTXT secure (or CUF-CPA secure) if the corresponding
advantage is negligible for any adversary.
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3.2 Hash-then-CBC-Encrypt

Conceptually, Hash-then-CBC-Encrypt in its general setting is an authenticated
encryption scheme obtained from the association of any given hash function with
any given CBC encryption algorithm.

Construction 1 (Hash-then-CBC-Encrypt (hCBC)). Let CBC[Ek] = (K, E ,D)
be an IND-CPA CBC encryption scheme, where Ek is a block cipher of block
length l. Let h be a hash function. Without loss of generality, we suppose that the
output length of h is l bits (otherwise, padding is needed). For M ∈ {0, 1}ln, we
define the composite Hash-then-CBC-Encrypt hCBC = (h,K, E ′,D′) as follows:

Encryption E ′k(M)

1: σ ←− h(M)

2: C ←− ECBC
k (σ||M)

3: return C

Decryption D′k(C)

1: Parse DCBC
k (C) as σ′||M

2: if σ′ 6= h(M) then
3: return ⊥
4: end if
5: return M

3.3 Hash-then-CBC-Encrypt is not INT-CTXT

Here, we provide an indirect proof that hCBC is not secure against INT-CTXT.
For this, we use the relations among notions that are defined in [6]. In particular,
we use a derived one: if an AE scheme is IND-CPA and not IND-CCA, then it
is not INT-CTXT (IND-CPA ∧ ¬IND-CCA ⇒ ¬INT-CTXT), which is
easily obtained from IND-CPA ∧ INT-CTXT ⇒ IND-CCA. Therefore,
our proof is composed of two parts: firstly we prove that hCBC is IND-CPA and
secondly we prove that it is not IND-CCA.

Proposition 1. Hash-then-CBC-Encrypt is IND-CPA secure.
The proof is based on a standard reduction argument, and the understanding of
the rest of the paper does not depend on it. We leave it for Appendix A.

Proposition 2. Hash-then-CBC-Encrypt is not IND-CCA secure.

Proof. Let A be an IND-CCA adversary for hCBC = (h,K, E ,D). Its algorithm
is shown below.

Algorithm A
Ek(LR(.,.,b)),Dk
cca

1: Let m0 and m1 be two messages
2: m′

0 ←− h(m0)||m0

3: m′
1 ←− h(m0)||m1

4: C ←− Ek(LR(m′
0,m

′
1, b))

5: Parse C as c0||c1||c2||c3
6: C′ ←− c1||c2||c3

7: x←− Dk(C
′)

8: if x 6= ⊥ then
9: return 0

10: else
11: return 1
12: end if
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We claim that the previous adversary succeeds whether b = 0 or b = 1. Therefore,
Advind−ccahCBC (A) = 1, and as a result, hCBC is not CCA-secure. Recall that the
oracle Ek(LR(., ., b)) returns the ciphertext of one of the two submitted messages.
Thus, we have C = Ek(m′b = h(m0)||mb). Applying hCBC, C can be written as
ECBC
k (h(h(m0)||mb) ||h(m0) ||mb), which is composed as follows:

C = c0 ||
c1︷ ︸︸ ︷

Ek(c0 ⊕ h(h(m0)||mb)) ||
c2︷ ︸︸ ︷

Ek(c1 ⊕ h(m0)) ||
c3︷ ︸︸ ︷

Ek(c2 ⊕mb)

We see that for C ′, c0 is removed and c1 becomes the new initial value. Consid-
ering the new IV, the CBC decryption algorithm performed over C ′ returns the
rest of the plaintext h(m0)||mb. Therefore, Dk(C

′) outputs m0 when b = 0, ⊥
otherwise (unless h(m0) = h(m1)), which concludes our proof.

3.4 Hash-then-CBC-Encrypt is not CUF-CPA

As a matter of fact, we have already proved that hCBC is not CUF-CPA. In-
deed, following [21], if a scheme is not INT-CTXT, then consequently, it is not
CUF-CPA. Nevertheless, our goal here is to explicitly provide a selective forgery
upon which our attack scenario against the KeyStore is built. We note that
the presented attack is quite powerful: the adversary succeeds in forging a valid
ciphertext for any message M after only one query to the encryption oracle.

Proof. Let A be a CUF-CPA adversary for hCBC = (h,K, E ,D). We will show
that A can forge a valid ciphertext for any M ∈ {0, 1}ln.

Algorithm AEkcuf-cpa(M)

1: M ′ ←− h(M)||M
2: C ←− Ek(M ′)
3: Parse C as c0||c1||c2||...||cn+2

4: C′ ←− c1||c2||...||cn+2

5: return C′

As mentioned in definition 3, the adversary A wins if the output ciphertext C ′

is both new and valid. Trivially, C ′ has never been produced by the encryption
oracle Ek(.) before, and thus it is new. In addition, we argue that the oracle Dk(.)
on C ′ will not return ⊥. Indeed, using the same arguments given in proposition 2,
C ′ could be written as ECBC

k (h(M)||M). Thus, Dk(C
′) = M( 6= ⊥).

4 The Android KeyStore

The Android KeyStore is a high-level service that enables applications to store
their credentials. The original credential store was created in Android 1.6 and was
limited to store VPN and Wi-Fi EAP credentials. Back then, only the operating
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Fig. 1. Android KeyStore Architecture

system, and not user applications, could access the stored keys and certificates.
It is worth mentioning that hereafter all the implementation details that we
provide concern the KeyStore of the build android-6.0.1 r22, which is the latest
version of Android at the writing of this paper.

As illustrated in Figure 1, the KeyStore is comprised of three layers: Public
APIs, Keystore service, and Keymaster. The security of keys is primarily ensured
by the Keymaster which is designed to protect keys from extraction. This implies
that it is the only component that has a direct access to keys material, and
therefore keys are represented differently outside Keymaster: alias (name) in
Public APIs and key handlers in Keystore service.

Generally speaking, the key handler is an opaque object that identifies a
keymaster-protected key. Key handlers are implementation-dependent. We only
consider the default software-only keymaster provided by Google. By inspecting
its implementation that is found in keymaster openssl.cpp, we see that the
key handler is just an encoded version of the corresponding key. Encoding is
achieved by concatenating a header of describing meta data to the key. The
header includes: a 4-byte constant value for software keys, a 4-byte key type,
and a 4-byte big endian integer for key length. Thus, the default key handler is
written as follows: Soft Key Magic || Key Type || Key Length || Key.

Our target in this paper is the stored keys on mobile device. Therefore, in
what follows, we focus solely on the secure mechanism performed by the Keystore
service for storing keys (or more precisely key handlers).
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4.1 Keystore service

Similar to other services, the Keystore service spans two layers in the Android
architecture: the Java world (application framework) and the native world (sys-
tem service). Based on the Binder, its different components, KeyStore.java and
Keystore.cpp, communicate via the Binder proxy IKeyStoreService.

The implementation [2] of the Keystore reveals how the blobs of key handlers
are stored on mobile device. A key handler blob (binary large object) contains
a serialized version of the key handler. The keystore saves its files in /data/mis-
c/keystore, where there is one directory for each user. Each directory includes
files that have the following content:

– A single master key. The Keystore service is initialized by generating a 128-
bit master key using the internal entropy source /dev/urandom. The master
key is then encrypted by a 128-bit AES key derived from the screen passcode
by applying PBKDF2 [11]. The derivation process employs 8192 iterations
with a randomly generated 128-bit salt. The encrypted keymaster and the
random salt are stored in the .masterkey file.

– Key handler blobs related to user’s applications. Each file contains a header
of meta data as well as the encryption of the key handler using Hash-then-
CBC-Encrypt. The content of the file is written as follows:

meta data || ECBC[AES]
master key(MD5(key handler) || key handler)

We note that the KeyStore applies the hCBC = (MD5,K, ECBC
AES ,DCBC

AES ) to pro-
tect key handlers. Therefore, the adversary defined in Section 3.4 is able to
maliciously forge new key handlers given valid ones. However, this attack fails
in practice when performed against the Keystore service because the produced
key handlers would yield errors while being decoded. We recall that key handlers
have a special encoding format that is specified by the keymaster. In the next
Section, we adapt our forgery attack so that an adversary could fabricate a valid
key handler which the keymaster successfully parses to its related key.

5 Attacking the Android KeyStore

5.1 Technical background

As mentioned previously, our target is the secure storage of keys. As a result,
among all other operations provided by the KeyStore, only those involving the
encryption of the stored keys will be relevant to us. This includes two operations:
key generation and key import.

The KeyStore is designed to work not only with its own keys, but with
those generated by a third party system. This implies that all keys, generated or
imported, must follow a special format when being serialized. For instance, the
keymaster requires formatting keys before wrapping them inside key handlers.
The file keymaster defs.h shows that there are three categories of formats:
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typedef enum {

KM_KEY_FORMAT_X509 = 0, /* for public key export */

KM_KEY_FORMAT_PKCS8 = 1, /* for asymmetric key pair import */

KM_KEY_FORMAT_RAW = 3, /* for symmetric key import */

} keymaster_key_format_t;

We notice that standard formats (i.e. X.509 and PKCS#8) are used for key-
pairs, while no format is provided for symmetric keys. Thus, the exact bytes
comprising a symmetric key are encapsulated inside the stored key handler.
This is due to the fact that their support is quite recent. Indeed, until lately, the
KeyStore was limited to asymmetric key-pairs (e.g. RSA, DSA and EC).

This lack of formatting makes the adversary task easier. Indeed, it is hard to
fabricate a ciphertext that is both valid and properly formatted. Consequently,
the current version of our attack is limited to applications using symmetric keys.

5.2 Threat Model

The adversary’s goal is to undetectably undermine the security of the applica-
tions relying on symmetric keys for their security. For this purpose, we assume
that the adversary installs some malware on the mobile device. This malware is
capable of importing keys inside the KeyStore, since any installed application
does have this capability. In addition, the malware is supposed to be granted the
read-write permission on the KeyStore directory (i.e. /data/misc/keystore).

Furthermore, the malware is executed inside a mobile device with protective
tools. First, the mobile system detects any malware trying to connect to a remote
server. Second, the mobile system imposes the use of a strong screen passcode.
This helps to avoid exhaustive attacks, since the master key of the KeyStore
is derived from this passcode. Third, the system prohibits the KeyStore from
storing short or obviously non-random keys. Thus, the adversary cannot perform
the trivial attack consisting of generating the same key for all applications or
generating a different key for each application and communicating it to a server.
In both cases, the attack would be detected. We insist that these assumptions are
highly plausible in corporate environments where companies enforce the security
of their employees mobile devices.

Finally, the adversary controls all communications with the mobile, and thus
can intercept and tamper with any exchanged message. Besides, it is assumed
that any proved cryptographic mechanism is secure unless weak keys are used.

To sum up, in order to succeed her attack, the adversary should silently
“break into” the KeyStore to shorten, and hence weaken, the stored keys which
the targeted applications would blindly continue using.

5.3 The Forgery Attack

The purpose of the forgery attack is that given a ciphertext of a symmetric key,
the adversary can fabricate another ciphertext that decrypts to a shorter key.
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As already stated, the KeyStore protects keys by encrypting their key handlers
with hCBC. Thus, keys protection, involving their confidentiality and integrity,
is done using a variant of hCBC which we call encode-then-hCBC (ehCBC).

Informally, ehCBC is an AE scheme where messages are encoded before
hCBC-encrypting them. To be more precise, let ehCBC = (K′, E ′,D′) be an
encoded version of hCBC = (h,K, E ,D). Then, for all message M , the next rela-
tion holds: E ′(M) = E(Length(M)||M). In what follows, we adapt the CUF-CPA
adversary of hCBC in order to compromise ehCBC.

Let M be an arbitrary weak symmetric key, and let A be an attacker that
can import keys of its choice to the KeyStore. For the sake of clarity, we omit
the constant values in the header of the key handler, and so only the key length

is kept. Therefore, the import function corresponds to the ehCBC-encryption
operation (E ′k). It is worth mentioning that this simplifying assumption does not
alter the logic of the attack. A wins if it can produce a valid ehCBC-ciphertext of
M . However, conforming to our threat model (Section 5.2), the attacker cannot
import M directly. To this end, A executes the algorithm below:

Algorithm Aimport
malicious(M)

1: M ′ ←− Len(M) ||M
2: M ′′ ←− MD5(M ′) ||M ′

3: C ←− E ′k(padding ||M ′′)
so that Len(.)||padding is l-block

4: Parse C as c0||c1||c2||C′

5: C′′ ←− c2 ||C′

6: return C′′

Following the same arguments provided in Sections 3.3 and 3.4, we can see
that DehCBC

k (C ′′) outputs M , which means that A achieves its goal. Though, it
is important to notice that the attacker owes part of its success to the absence
of verification of sound key lengths. Indeed, considering all the technical details
that we provided, the length in bytes of the imported key (padding||M ′′) is
always greater than 32, since it is constructed of at least two AES blocks (i.e.
MD5(.) and Len(.)||padding). For instance, if A selects 4-byte M (or key), it
calls the import function on a key of length 36 bytes. We recall that AES keys
cannot be longer than 32 bytes. Fortunately (for the attacker), no checking is
done by import, and consequently the attack ends successfully.

We underline that the interest of the above attack is twofold. First, it can
be abused by some malware to breach the KeyStore security even in a well-
protected mobile system. Second, we prove that encoding does not improve the
security of hCBC unlike for many other AE schemes. We believe that this result
is of independent importance regardless of the introduced attack scenario.
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5.4 The Undetected Malware

We illustrate the fallout of our forgery against the KeyStore by a complete attack
scenario. We emphasize that the severity of protecting highly sensitive data, like
keys, by a broken cryptographic scheme is not limited to the suggested scenario.

In our scenario, the intent of the attacker is to maliciously modify all the ex-
changed messages between an app and a remote server even if they are protected
by proved cryptography. This is possible thanks to some malware installed on the
mobile and which soundlessly weakens the keys of the KeyStore. This attacker
represents a new kind of threat, since she can go undetected while compromising
the security of users including those hiding behind secure protocols.

Actors. We define five actors to describe the plot of the attack: (1) a secu-
rity manager who enforces the security of the mobile system. In particular, the
KeyStore refuses to store weak (i.e. short) keys. Additionally, the system would
detect any malware trying to communicate with its accomplice server; (2) a vic-
tim who uses the said mobile to perform some services requiring to protect their
critical transactions. The corresponding cryptographic keys are managed by the
KeyStore; (3) a remote server related to the running services and to which the
critical transactions are sent; (4) a malicious application viciously shortening
the keys of other applications; and (5) a colluding party that is able to intercept
and alter any exchanged message on the network.

Attack Workflow. We suppose that the attacker has already convinced the
victim in some way to install the malicious application on her device. The attack
scenario is structured into three phases: provisioning, lulling and attacking.

Provisioning phase. The malicious application runs in background and executes
the algorithm described in 5.3. Thus, it craftily generates several symmetric
keys of length 32 +x bytes. Then, it imports these keys into the KeyStore which
accepts them for two reasons: they are seemingly strong and no verification is
done concerning their abnormal length. Afterward, it cuts them down into keys
of length x bytes. Here, we take x to be 4, so that keys are small enough to allow
a swift brute-force attack. For the sake of completeness, we precise that once the
keys are trimmed, their meta data are required to be padded with some dummy
data. This is because the files containing the keys must remain of constant size.
For brevity, we omit the technical details related to this balancing operation.

Lulling phase. In this phase, an application on the victim’s device asks the
KeyStore to generate a key with alias as its name. The malicious application,
snooping on the KeyStore, notes this alias as well as the UID of the caller
application. As soon as the key is generated and its associated file is created,
the malicious application modifies the name of one of its keys in such a way that
the renamed key is believed to belong to the targeted application. Some might
argue that this operation is delicate, since the malicious application is assumed
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to continuously supervise the KeyStore activities. Nevertheless, we argue that
no special privilege is required to do this. Indeed, since it can be done with quite
ease by regularly monitoring the content of the KeyStore folder. This is due to
the fact that the key’s alias and the creating application’s UID could be easily
guessed from the key file name.

Attacking phase. Now, the user is carrying out some operations that involve
transmitting sensitive messages to a server. The application handling such op-
erations needs to protect the integrity of these messages. Therefore, it asks the
KeyStore to generate an HMAC tag over each message. The KeyStore returns
a tag unwittingly generated with the weak key. Concatenated to their tag, the
messages are then intercepted by the colluding party while being sent to the
server. The latter performs an exhaustive search to find the secret key used to
generate the HMAC tag. Since the search space being explored is shrunk, the
brute-force search ends quite fast. The colluding party then modifies the content
of some messages (e.g. the total amount of a payment transaction), and recom-
putes a valid tag for them before forwarding the new messages to the server. In
this way, the attacker effortlessly breaks into victims who think that they are
safe with primitives, HMAC for example, which are believed to be secure.

5.5 The Hidden Assumption

The malicious application is supposed to have read/write permissions to the
folder /data/misc/keystore. Nevertheless, in practice, the Android system re-
stricts access to this folder: only the keystore user is allowed to see or modify
its contents. Thus, the success of our attack depends on how likely the mali-
cious application is to bypass the access control mechanisms of Android. This
requires one of these two extra abilities: (1) executing an arbitrary code inside
the keystore process by either code injection or code reuse; and (2) obtaining root
or kernel-level privileges. Some might argue that once such abilities have been
gained the presented attack in Section 5.4 could be realized otherwise. Here, we
present three possible scenarios and we discuss how our attack is more effective.

The Trivial Scenario. With a root privilege, we need not bother mutating
key blobs. Instead, we can simply recover the master key from the keystore
memory in order to decrypt/re-encrypt any keystore file. This scenario is not
as straightforward as it seems to be. Indeed, it involves a program to parse the
memory. The problem is that the keystore has been regularly updated recently, so
its memory layout has been continuously changing. Therefore, this program may
require to be different depending on the installed Android version. In addition,
it should be constantly maintained to keep on with any further update. We note
that the format of the keystore files has not changed since Android 4.3. Involving
only basic I/O file operations, our attack is much simpler and more portable.

The Big-Brother Function. The malicious application and her colluding
party agree on a function B to generate keys that could be quickly guessed.
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Unable to communicate, otherwise the subversion will be detected, the function
B is embedded into the malicious application. It is easy to see that this attack
ends successfully following our threat model. However, we claim that our attack
is more practical because it satisfies two additional properties: (1) stateless: the
adversary (i.e. colluding party) needs not to store data related to the victim (i.e.
the mobile device) so as to win; and (2) size-oblivious: the complexity of the
attack does not increase with the number of the targeted users. In contrast, the
other attack cannot be both stateless and size-oblivious. Indeed, the function
B outputs a new key for each device. Keys shall seem to be strong, otherwise
they will be rejected. The more the attacker targets new devices, the bigger the
keys search space becomes. Avoiding this increase in time of execution involves
the parameterization of the function B for each user. For instance, B might be
seeded with the device IMEI (International Mobile station Equipment Identity).
Hence, the attack becomes size-oblivious, but stateful. Statelessness is important
in our context due to its relevance to stronger undetectability.

Man in the KeyStore. The scenario supposes that all calls to the KeyStore
are intercepted at runtime by the malicious application. Subverted values are
returned for any intercepted call, including all cryptographic operations. Surely,
this attack is powerful, but we argue that it is more limited than ours. Firstly,
actively proxying all calls might be resource-consuming, i.e. slowing down the
mobile or shortening its battery life, which makes the attack quite detectable.
Secondly, the Keystore service is based on the Binder architecture, and thus
intercepting calls requires an attack of type Man in the Binder (MitB). However,
a success MitB [3] necessitates deep insight on how Binder works, consequently
it is version-dependent and more complicated than just reading/writing files.

6 Discussion and Recommendations

An important aspect of any forgery is what it implies in practice. Here, we have
demonstrated how a theoretical weakness could be exploited to undermine the
security of a real-world system, namely Android. In addition, the defined attack
is attractive to implement, since it is simple and not demanding in term of
resources. We insist that this scenario is just an example: a wholly new class of
threat could be built from our forgery attack.

Furthermore, it is worth noting that the attack of Section 5 is conceived to be
applicable only against software-only implementations of KeyStore. We admit
that it does not directly impact hardware-based implementations which exist on
some mobile devices. Indeed, our scenario involves forging keys by forging key
handlers. Hardware-backed implementations, such as those based on Trusted Ex-
ecution Environment (TEE) [23], encrypt their keys with AE schemes to produce
their key handlers. Therefore, the integrity of keys is protected by two means:
the Keystore service and the TEE. In our scenario, an attacker can still forge a
valid key handler that is sent to the Keymaster (i.e., TEE). The TEE in its turn
will detect the forgery when it decodes the forged key handler, which means that
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the attack does not succeed. However, we can imagine other possible vectors of
attack. For example, an attacker might perform a fuzzy attack by generating
valid key handlers and send them to the TEE. A malformed key handler might
allow the attacker to carry out, for instance, a stack overflow attack.

Finally, we believe that even if some may argue that our attack is difficult to
mount, there is value in identifying these types of design flaws. Corporate-issued
devices or state-level malware could easily execute the described attack in order
to gain undetectable long-term access to device communications.

Recommendations. Having thus presented our main results, we are now on a
position to make specific recommendations. We recall that any countermeasure
intended to fix a deployed system must not cause intrusive changes that affect the
entire architecture of this system. Fortunately, the KeyStore design is modular
enough to allow modifying the scheme hCBC without involving the rest.

The quickest solution would be to keep the hash-then-encrypt paradigm and
use it with another encryption mode. The Counter (CTR) mode is often per-
ceived as being advantageous to other modes. However, we prove that the scheme
Hash-then-CTR-Encrypt does not provide integrity either. The full proof is given
in appendices B and C. We could have proposed other encryption modes, how-
ever the lack of obvious attacks cannot be taken as evidence of the soundness of a
scheme. Instead, it would be better to switch to proved AE encryption schemes.
At first glance, the simplest solution to make would seem to be Encrypt-then-
MAC (EtM). Unfortunately, the ‘generic composition’ approach does not suit
systems like Android. In fact, efficiency is important for mobile devices. EtM
might incur some overhead while computing ciphertexts. Moreover, it might be
hard to implement, since it requires to manually manage two different crypto-
graphic primitives (a MAC and a confidentiality-providing encryption) with two
independent keys.

Thus, we might believe that mobile designers should just go and pick up one of
the AE one-pass dedicated schemes. It turns out that choosing a proper scheme
is a great hassle for system designers. Let us discuss two popular ones: OCB
(Offset Codebook Mode) [15] and GCM (Galois Counter Mode) [16]. OCB is a
fast, secure and easy to implement AE encryption scheme. However, Rogaway,
its inventer, holds a patent on it, and therefore it is not free to use. As for
GCM, it is also fast and secure, but it involves hard mathematical concepts. As
a result, most system designers feel unable to go through and implement GCM.
We suspect that the absence of trusted implementations while defining the first
KeyStore architecture might have been the reason of using hCBC. Today, GCM
is being increasingly supported by free libraries, such as OpenSSL. Hence, we
recommend to replace hCBC by GCM in the Android KeyStore.

It is worth reiterating that proved cryptography is the way to go. Although
this fact is well known to cryptographers, it has not yet been widely understood
by system designers. A key lesson from this paper is that cryptographers and
system designers must work closely together. Bridging the perilous gap that
separates these communities will be essential for keeping future systems secure.
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A Proof of Proposition 1

Proposition 3. Hash-then-CBC-Encrypt is IND-CPA secure.

Proof. We use a reduction argument. LetB be an IND-CPA adversary for hCBC.
Let A be an IND-CPA adversary for CBC[Ek] = (K, E ,D) that is associated to
B. The algorithm of A is described below:

Algorithm A
Ek(LR(.,.,b))
cpa

1: repeat
2: if B queries (m0,m1) then
3: m′

0 ←− h(m0)||m0; m′
1 ←− h(m1)||m1

4: C ←− Ek(LR(m′
0,m

′
1, b))

5: Send C to B
6: end if
7: until B outputs b′

8: return b′

We can see that A perfectly simulates the answers to B and that their advantages
are equal. Indeed, if B correctly guesses b, so does A (since A returns the same
output as B does). As CBC (in its stateless version, i.e. with a randomly chosen
IV for each message) is IND-CPA secure, this means that the advantage of A in
correctly guessing b is negligible. Therefore, the advantage of B is also negligible.
Hence, Hash-then-CBC-Encrypt is IND-CPA secure.

B The Counter Mode

Encryption with Counter (CTR) mode is widely implemented due to its signif-
icant efficiency advantages over other modes. There exist different variants of
CTR-mode encryption; we only describe the randomized counter mode here.

Notation. Let F : Key × {0, 1}l −→ {0, 1}l be a block cipher, where Key is a
finite nonempty set, and Fk(.) = F (k, .) is a pseudorandom function mapping
n-bit strings to n-bit strings for a fixed k ∈ Key. Given a message X ∈ {0, 1}l
and an unsigned positive integer i, X + i denotes the n-bit message which is
obtained from adding i to X treated as a number (msb first, lsb last), taking
the result modulo 2l and then returning it back into n-bit message.

Definition 4. (The CTR Encryption Scheme). Let Fk be a pseudorandom func-
tion on {0, 1}l. Let CTR[Fk] = (K, E ,D) be its associated CTR encryption
scheme. Given a message M = m1||...||mn ∈ {0, 1}ln, the encryption and the
decryption algorithms are defined as follows:
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CTR Encryption ECTR
k (M)

1: Parse M as m1||...||mn

2: ctr
R←− {0, 1}l/2

3: c0 ←− ctr || 0l/2
4: for i = 1...n do
5: ci ←− mi ⊕ Fk(c0 + i)
6: end for
7: return c0||c1||...||cn

CTR Decryption DCTR
k (C)

1: Parse C as c0||c1...cn
2: for i = 1...n do
3: mi ←− ci ⊕ Fk(c0 + i)
4: end for
5: return m1||...||mn

Two points should be noted in the definition. First, the random ctr is denoted
c0 in order to underline the fact that ctr is sent as part of the ciphertext.
Second, the variant described here operates only on messages of at most 2l/2

blocks (assuming that l is even). Otherwise, two blocks of the ciphertext would
be encrypted by the same pad, which compromises the security of this mode.

C Hash-then-CTR-Encrypt Is Not INT-CTXT

C.1 Definition

Construction 2 (Hash-then-CTR-Encrypt (hCTR)). Let CTR[Fk] = (K, E ,D)
be an IND-CPA CTR encryption scheme, where Fk operates on {0, 1}l. Let h
be a hash function. Without loss of generality, we suppose that h outputs l-bit
strings (otherwise, padding is needed). For M ∈ {0, 1}ln, we define the composite
Hash-then-CTR-Encrypt hCTR = (h,K, E ′,D′) as follows:

Encryption E ′k(M)

1: σ ←− h(M)

2: C ←− ECTR
k (σ||M)

3: return C

Decryption D′k(C)

1: Parse ←− DCTR
k (C) as σ′||M

2: if σ′ 6= h(M) then
3: return ⊥
4: end if
5: return M

C.2 Integrity Analysis of hCTR

Using the aforementioned arguments presented in the case of hCBC in sec-
tion 3.3, we show that hCTR is not secure against INT-CTXT by proving that
it achieves IND-CPA but not IND-CCA. As a matter of fact, the proof given in
Appendix A which concerns the property IND-CPA of hCBC is independent of
the used encryption mode, and thus remains true for hCTR. Therefore, here, we
only provide the proof that the scheme hCTR is not IND-CCA.

Proposition 4. Hash-then-CTR-Encrypt is not IND-CCA secure.

Proof. Let A be an IND-CCA adversary for hCTR = (h,K, E ,D):



22 M. Sabt et al.

Algorithm A
Ek(LR(.,.,b)),Dk
cca

1: Let m0, m1 and m2 be three
messages of one block

2: C ←− Ek(LR(m0,m1, b))
3: Parse C as c0||c1||c2
4: c′1 ←− h(m2)⊕ h(m0)⊕ c1
5: c′2 ←− m2 ⊕m0 ⊕ c2
6: C′ ←− c0||c′1||c′2

7: x←− Dk(C
′)

8: if x 6= ⊥ then
9: return 0

10: else
11: return 1
12: end if

We claim that the previous adversary succeeds whether b = 0 or b = 1, hence
hCTR is not CCA-secure. It is easy to see that C = ECTR

k (h(mb)||mb). As a
result, C can be written as follows:

C = c0 ||
c1︷ ︸︸ ︷

h(mb)⊕ Fk(c0 + 1) ||
c2︷ ︸︸ ︷

mb ⊕ Fk(c0 + 2)

Since the definition of C ′ includes c1 and c2, C ′ can be expanded thusly:

C ′ = c0 ||

c′1︷ ︸︸ ︷
h(m2)⊕ h(m0)⊕ h(mb)⊕ Fk(c0 + 1) ||

c′2︷ ︸︸ ︷
m2 ⊕m0 ⊕mb ⊕ Fk(c0 + 2)

Let us begin with the case when b = 0. C ′ becomes c0 ||h(m2)⊕Fk(c0+1) ||m2⊕
Fk(c0+2). Therefore, the following relation holds: C ′ = ECTR

k (h(m2)||m2), which
makes Dk(C

′) = m2 (6= ⊥). Now, we consider the case when b = 1. We can easily
see that Dk(C

′) = ⊥, unless we have h(m0⊕m1⊕m2) = h(m0)⊕h(m1)⊕h(m2).
This relation is unlikely to hold for a hash function h (except for homomorphic
hash functions [14]), which concludes our proof.


