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Abstract. We investigate the e�ciency of implementing the Jao and De
Feo isogeny-based post-quantum key exchange protocol (from PQCrypto
2011) on ARM-powered embedded platforms. In this work we propose
new primes to speed up constant-time �nite �eld arithmetic and per-
form isogenies quickly. Montgomery multiplication and reduction are
employed to produce a speedup of 3 over the GNU Multiprecision Li-
brary. We analyze the recent projective isogeny formulas presented in
Costello et al. (Crypto 2016) and conclude that a�ne isogeny formulas
are much faster in ARM devices. We provide fast a�ne SIDH libraries
over 512, 768, and 1024-bit primes. We provide timing results for emerg-
ing embedded ARM platforms using the ARMv7A architecture for the
85-, 128-, and 170-bit quantum security levels. Our assembly-optimized
arithmetic cuts the computation time for the protocol by 50% in com-
parison to our portable C implementation and performs approximately 3
times faster than the only other ARMv7 results found in the literature.
The goal of this paper is to show that isogeny-based cryptosystems can
be implemented further and be used as an alternative to classical cryp-
tosystems on embedded devices.
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1 Introduction

Post-quantum cryptography (PQC) refers to research on cryptographic primi-
tives (usually public-key cryptosystems) that are not e�ciently breakable using
quantum computers. Most notably, Shor's algorithm [1] can be e�ciently imple-
mented on a quantum computer to break standard Elliptic Curve Cryptogra-
phy (ECC) and RSA cryptosystems. There are some alternatives secure against
quantum computing threats, such as the McEliece cryptosystem, lattice-based



cryptosystems, code-based cryptosystems, multivariate public key cryptography,
and others. Recent work such as [2,3,4] demonstrates e�cient implementations
of such quantum-safe cryptosystems on embedded systems. None of these works
consider an approach based on quantum-resistant elliptic curve cryptosystems.
Hence, they introduce and implement new cryptosystems with di�erent security
metrics and performance characteristics.

To avoid quantum computing attacks, Jao and De Feo [5] proposed an elliptic
curve based alternative to Elliptic Curve Di�e-Hellman (ECDH) which is not
susceptible to Shor's attack, namely the Supersingular Isogeny Di�e-Hellman
(SIDH) key exchange protocol. Isogeny computations constitute an algebraic
map between elliptic curves, which appear to be resistant to quantum attacks.
Thus, this system improves upon traditional ECC and represents a strong can-
didate for quantum-resistant cryptography. Faster isogeny constructions would
speed up such cryptosystems, increase the viability of existing proposals, and
make new designs feasible. Existing results on the implementation of isogeny-
based key exchange include De Feo et al. [5,6] and Costello et al. [7]. However,
implementations on emerging embedded devices have not been fully investigated.
It is expected that mobile devices, such as smartphones, tablets, and emerging
embedded systems, will become more widespread in the coming years for in-
creasingly sensitive applications. In this work, we investigate the applicability of
advances in theoretical quantum-resistant algorithms on real-world applications
by providing several e�cient implementations on emerging embedded systems.
Our goal is to improve the performance of isogeny-based cryptosystems to the
point where deployment is practical.

In a recent announcement at PQC 2016 [8], NIST announced a preliminary
plan to start the gradual transition to quantum-resistant protocols. As such,
there is a tremendous need to discover and implement new proposed methods
that are resistant to both classical computers and quantum computers. NIST will
evaluate these PQC schemes based on security, speed, size, and tunable param-
eters. Isogeny-based cryptography provides a suitable replacement for standard
ECC or RSA protocols because it provides small key sizes, provides forward
secrecy, and has a Di�e-Hellman-like key exchange available. Furthermore, key
compression schemes have been proposed in [9] and [7] to aid in the storage
and transmission of ephemeral keys. Lastly, isogeny-based cryptography utilizes
standard ECC point multiplication schemes, allowing for re-use of existing ECC
libraries and even hybrid schemes that simultaneously use ECC and isogenies to
provide quantum resistance, such as the hybrid scheme proposed in [7].

Our contributions:

� We provide e�cient libraries1 for the key exchange protocol presented in [5]
using highly optimized C and ASM.

� We present fast and secure prime candidates for 85-bit, 128-bit, and 170-bit
quantum security levels.

1 Code is available at https://github.com/kozielbrian/NEON-SIDH_ARMv7
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� We provide hand-optimized �nite �eld arithmetic computations over various
ARM-powered processors to produce constant-time arithmetic that is 3 times
as fast as GMP.

� We analyze the e�ectiveness of projective [7] and a�ne [6] isogeny compu-
tation schemes.

� We provide implementation results for embedded devices running Cortex-A8
and Cortex-A15. For the latter, an entire quantum-resistant key exchange
with 85-bit quantum security operates in approximately a tenth of a second.
Further, our Cortex-A15 assembly optimized results are 3 times faster than
[10], the fastest results available in the literature.

2 SIDH Protocol

This serves as a quick introduction to the Supersingular Isogeny Di�e-Hellman
key exchange. For a full mathematical background of the protocol, we point the
reader to the original works proposing it in [5,6] or [11] for a complete look at
elliptic curve theory.

2.1 Key Exchange Protocol Based on Isogenies

Two parties, Alice and Bob, want to exchange a secret key over an insecure chan-
nel in the presence of malicious third-parties. They agree on a smooth isogeny
prime p of the form `aA`

b
B · f ± 1 where `A and `B are small primes, a and b

are positive integers, and f is a small cofactor to make the number prime. They
de�ne a supersingular elliptic curve, E0(Fq) where q = p2. Lastly, they agree
on four points on the curve that form two independent bases. Over a start-
ing supersingular curve E0, these are a basis {PA, QA} and {PB , QB} which
generate E0[`

eA
A ] and E0[`

eB
B ], respectively, such that 〈PA, QA〉 = E0[`

eA
A ] and

〈PB , QB〉 = E0[`
eB
B ].

As �rst noted in [12], consider a graph of all supersingular elliptic curves
of a �xed isogeny graph under Fp2 . In this graph, the vertices represent each
isomorphism class of supersingular elliptic curves and the edges represent the
degree-` isogenies of a particular isomorphism class. Essentially, each party takes
seemingly random walks in the graph of supersingular isogenies of degree `aA and
`bB to both arrive at supersingular elliptic curves with the same isomorphism
class and j-invariant, similar to a Di�e-Hellman key exchange. In a graph of
supersingular isogenies, the infeasibility to discover a path that connects two
particular vertices provides security for this protocol.

Alice chooses two private keys mA, nA ∈ Z/`aAZ with the stipulation that
both are not divisible by `aA. On the other side, Bob chooses two private keys
mB , nB ∈ Z/`bBZ, where both private keys are not divisible by `bB . From there,
the key exchange protocol can be broken down into two rounds of the following:

1. Compute R = 〈[m]P + [n]Q〉 for points P,Q.
2. Compute the isogeny φ : E → E/〈R〉 for a supersingular curve E.
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3. Compute the images φ(P ) and φ(Q) for the basis of the opposite party for
the �rst round.

The key exchange protocol proceeds as follows. Alice performs the double point
multiplication with her private keys to obtain a kernel, RA = 〈[mA]P + [nA]Q〉
and computes an isogeny φA : E0 → EA = E0/〈[mA]P + [nA]Q〉. She performs
the large degree isogeny e�ciently by performing many small isogenies of degree
`A. She then computes the projection {φA(PB), φA(QB)} ⊂ EA of the basis
{PB , QB}for E0[`

b
B ] under her secret isogeny φA, which can be done e�ciently

by pushing the points PB and QB through each isogeny of degree `A. Over
a public channel, she sends these points and curve EA to Bob. Likewise, Bob
performs his own double-point multiplication and computes his isogeny over
the supersingular curve E with φB : E0 → EB = E0/〈[mB ]P + [nB ]Q〉. He
also computes his projection {φB(PA), φB(QA)} ⊂ EB of the basis {PA, QA}for
E0[`

a
A] under his secret isogeny φB and sends these points and curve EB to

Alice. For the second round, Alice performs the double point multiplication to
�nd a second kernel, RAB = 〈[mA]φB(PA)+ [nA]φB(QA)〉, to compute a second
isogeny φ′A : EB → EAB = EB/〈[mA]φB(PA)+[nA]φB(QA)〉. Bob also performs
a double point multiplication and computes a second isogeny φ′B : EA → EBA =
EA/〈[mB ]φA(PB)+[nB ]φA(QB)〉. Alice and Bob now have isogenous curves and
can use the common j-invariant as a shared secret key.

EAB = φ′B(φA(E0)) = φ′A(φB(E0)) =

= E0/{[mA]PA + [nA]QA, [mB ]PB + [nB ]QB},
j(EAB) ≡ j(EBA).

2.2 Protocol Optimizations

Many optimizations have been proposed in [6] and [7] for computing isogenies. To
begin with, all arithmetic is performed on Montgomery curves [13] as they have
been shown to have fast scalar point multiplication and fast isogeny formulas.
We refer to the Explicit Formulas Database (EFD) [14] for the fastest operation
counts on elliptic curves. The Kummer representation for Montgomery curves
provides extremely fast curve arithmetic by performing operations on the curve's
Kummer line [13]. Points are represented as (X : Z), where x = X/Z. Under
this scheme, there is no di�erence between points P and −P . The EFD provides
explicit formulas for di�erential addition and point doubling. Note that P and
−P generate the same subgroup of points on the elliptic curve, so isogenies can
be evaluated correctly on the Kummer line. Lastly, the optimal path to compute
large-degree isogenies involves �nding an optimal strategy of point multiplica-
tions and isogeny evaluations. The general trend has been to use isogeny graphs
of base 2 and 3, since fast isogenies between Montgomery curves and fast scalar
point multiplications can be performed over these isogeny graphs.

Our implementation style closely follows the methods of [6]. We use a 3-
point Montgomery di�erential ladder (also presented in [6]) for a constant set of
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operations for double point multiplcations and their �a�ne� isogeny formulas for
computing and evaluating large degree isogenies. We note that [6] does not scale
the Z-coordinates of the inputs to the ladder to 1. This would decrease the cost
of a 3-point step by 2 multiplications per step. An alternative approach to the
double-point multiplication is to utilize a uniform double-point multiplication
algorithm, such as those proposed in [15] or [16]. Costello et al. [7] recently
proposed �projective� isogeny formulas that represent the curve coe�cients of a
Montgomery curve in projective space (i.e. a numerator and denominator), so
that isogeny calculations do not need inversion until the very end of a round of
a key exchange. We also note that [7] proposes sending isogenies evaluated over
the points P , Q, and PQ in Kummer coordinates to the other party in the �rst
round and that isogenies of degree 4 have been shown to be faster than isogenies
of degree 2.

3 Proposed Choice of SIDH-Friendly Primes

The primes used in the key exchange protocol are the foundation of the under-
lying arithmetic. Since supersingular curves are used, it is necessary to generate
primes to allow the curve to have smooth order so that the isogenies can be com-
puted quickly. For this purpose, smooth isogeny primes of the form p = `aA`

b
B ·f±1

are selected. Within that group of primes, [6] and [7] speci�cally chose isogeny-
based cryptosystem parameters of `A = 2 and `B = 3. These isogeny graph bases
provides e�cient formulas for isogenies of degree 2 and 3, as shown in [6] and
[7].

Smooth isogeny primes do not feature the distinct shape of a Mersenne prime
(e.g. 2521−1) or pseudo-Mersenne prime, but the choice of `A = 2 does provide for
several optimizations to �nite-�eld arithmetic, covered in more detail in Section
4.

The security of the underlying isogeny-based cryptosystem is directly related
to the relative magnitude of `aA and `bB , or rather min(`aA, `

b
B). Whichever isogeny

graph is spanned by the smaller prime power is easier to attack. Therefore, a
prime should be chosen where these prime powers are approximately equal. As
demonstrated in [6], the classical security of the prime is approximately its size
in bits divided by 4 and quantum security of a prime is approximately its size in
bits divided by 6. Based on this security assessment, the SIDH protocol over a
512-bit, 768-bit, and 1024-bit prime feature approximately 85, 128, and 170 bits
of quantum security, respectively.

3.1 Proposed Prime Search

We searched for primes by setting balanced isogeny orders `aA and `bB for `A = 2
and `B = 3 and searching for factors f that produce a prime ±1. However, using
+1 in the form of the prime produces a prime where −1 mod p is a quadratic
residue, which is not optimal for performing arithmetic in the extension �eld Fp2 .
Therefore, we primarily investigated only primes of the form p = 2a3b ·f−1. Our

5



primes were found by using a Sage script that changes f to �nd such primes.
We did not search for primes with an f value greater than 100. The primes that
we discovered were compared and selected based on the following parameters:

� Security: The relative security of SIDH over a prime is based onmin(`aA, `
b
B).

Therefore, the prime should have balanced isogeny graphs and a small f
term.

� Size: These primes are designed to be used in ARM processors, some that
are limited in memory. These primes should feature a size slightly less than
a power of 2 to allow for some speed optimizations such as lazy reduction
and carry cancelling, while still featuring a high quantum security.

� Speed: These primes e�ciently use space to reduce the number of operations
per �eld arithmetic, but also have nice properties for the �eld arithmetic.
Notably, all primes of the form p = 2a`bB · f − 1 will have the Montgomery
friendly property [17] because the least signi�cant half of the prime will have
all bits set to '1'.

Table 1 contains a list of strong prime candidates for 512, 768, and 1024-bit SIDH
implementations. Each of these primes feature approximately balanced isogeny
graphs. Each prime requires the least number of total bits for a quantum security
level. We provide a prime with the f term to be 1 for each security level, but
that is not a requirement.

Table 1. Proposed smooth isogeny primes

Security Prime
p = `aA`

b
B · f ± 1 min(`aA, `

b
B)

Classical Quantum
Level Size (bits) Security Security

p512

499 225131555− 1 3155 123 82
503 22503159 − 1 2250 125 83
510 2252315937− 1 2252 126 84

p768

751 23723239 − 1 2372 186 124
758 2378323717− 1 3237 188 125
766 2382323879− 1 3238 189 126

p1024

980 24933307 − 1 3307 243 162
1004 2499331549− 1 2499 249 166
1008 2501331641− 1 3316 250 167
1019 2508331935− 1 3319 253 168

We provide several primes within each security level to give tunable param-
eters for an SIDH implementation. Costello et al. [7] propose using the prime
23723239−1 for a 768-bit implementation. This prime is actually 751 bits, allow-
ing for 17 bits of freedom for speed optimizations in systems using 32 or 64-bit
words. However, as Table 1 shows, the prime 2378323717 − 1 is a 758-bit prime
that gives 1 more bit of quantum security and still has 10 bits of freedom to
allow for speed optimizations. We �nd it useful to have several strong primes to
work with, which could allow for a variety of speed techniques.
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For our design, we chose to implement over the primes:

p512 = 22503159 − 1
p768 = 23723239 − 1
p1024 = 2501331641− 1

4 Proposed Finite-Field Arithmetic

For any cryptosystem featuring large �nite-�elds, the �nite-�eld arithmetic lies at
the heart of the computations. This work is no exception. The critical operations
are �nite-�eld addition, squaring, multiplication, and inversion. The abundance
of these operations throughout the entire key exchange protocol calls for nu-
merous optimizations to the arithmetic, even at the assembly level. This work
targets the ARMv7-A architectures. All operations are done in the Montgomery
domain [18] to take advantage of the extremely fast Montgomery reduction for
the primes above.

All arithmetic below is for Fp. Since supersingular curves can be de�ned over
Fp2 , a reduction modulus must be de�ned to simplify the multiplication between
elements of Fp2 . With the prime choice of p = 2a`bB ·f−1, -1 is never a quadratic
residue of the prime and x2+1 can be used as a modulus for the extension �eld.
We utilized reduced arithmetic in Fp2 based on fast arithmetic in Fp.

4.1 Field Addition

Finite-�eld addition performs A+B = C, where A,B,C ∈ Fp. Essentially, this
just means that there is a regular addition of elements A and B to produce a
third element C. If C ≥ p, then C = C − p. For ARMv7, this can be e�ciently
done by using the ldmia and stmia instructions, which load and store multiple
registers at a time, incrementing the address each time. The operands are loaded
into multiple registers and added with the carry bit. If the resulting value is larger
than the prime for a �eld, then a subsequent subtraction by the prime occurs.
For a constant-time implementation, the conditional �ags are used to alter a
mask that is applied to the prime as the subtraction occurs. In the case that
the value is not larger than the prime, the masked prime becomes 0. Finite-�eld
subtraction is nearly identical to addition, but subtraction with borrow is used
and if the borrow �ag is set at the end of the subtraction, then the prime is
added to the resulting value.

4.2 Field Multiplication and Squaring

Finite-�eld multiplication performs A×B = C, where A,B,C ∈ Fp. This equates
to a regular multiplication of A and B to produce a third element C. However,
if elements A and B are both m-bits, then the result, C, is 2m-bits. A reduction
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A7 A6 A5 A4 A3 A2 A1 A0

Transpose

B0

Multiplication 
and Carry

Carry Chains
B0

A4 x B0

×
Step 1:

Step 2:

Step 3:

Step 4:

Quad Register 1 Quad Register 0

A4 x B0 A0 x B0

A5 x B0 A1 x B0

A6 x B0 A2 x B0

A7 x B0 A3 x B0

A1 x B0

Fig. 1. Finite-�eld Multiplication using NEON

must be made so that the result is still within the �eld. Montgomery multi-
plication and reduction [18] was chosen because of its fast reduction method.
Introduced in [7], smooth isogeny primes of the form 2a`bf − 1 feature a fast
reduction based on simplifying the Montgomery reduction formula [18]:

c = (a+ (aM ′mod R)p)/R = (a− aM ′mod R)/R+ ((p+ 1)(aM ′mod R))

where R = 2m is slightly larger than the size of the prime (e.g. R = 2512

for p512), a is a result of a multiplication and less than 2m bits long, M ′ =
−p−1mod R, and c =a mod p. In this equation, p+ 1 has many least-sign�cant
limbs of '0', since approximately half of the least-signi�cant limbs of p are all
'1'. Thus, many partial products can be avoided for reduction over this scheme.
An alternative to the above scheme is to leave the Montgomery reduction in
its standard form, but perform the �rst several partial products as subtractions
since 0xFF×A = A× 28 −A and the least signi�cant limbs are all '1'.

The typical scheme for Montgomery multiplication is to useM ′ = −p−1mod 2w,
where w is the word size. We note that the form of the prime 2a`bf−1 guarantees
that M ′ = 1 as long as 2a > 264, for our ARMv7 implementation. This reduces
the complexity of Montgomery reduction from k2+k to k2 single-precision mul-
tiplication operations, where k is the number of words of an element within the
�eld that must be multiplied.

We utilize the ARM-NEON vector unit to perform the multiplications be-
cause it can hold many more registers and parallelize the multiplications. We
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adopt the multiplication and squaring scheme of [19] to perform large multipli-
cations e�ciently. This scheme utilizes a transpose of individual registers within
NEON to reduce data dependency stalls. This same technique was employed
in this work to perform the multiplication for 512-bit multiplication with the
Cascade Operand Scanning (COS) method, as shown in Figure 1. By using a
transposed quad register in NEON, the partial products can be determined out
of order and the carries applied later, reducing data dependencies in the multi-
plication sequence. Figure 1 demonstrates an example of a 32×256 bit multipli-
cation, which is applied several times to produce a 512 × 512 multiplication. A
separated reduction scheme was used. A 1024-bit multiplication is composed of
three 512× 512 multiplications, based on a 1 level additive Karatsuba multipli-
cation. Squaring can reuse the input operands and several partial products for
multiplication and requires approximately 75% of the cycles for a multiplication.

4.3 Field Inversion

Finite-�eld inversion �nds some A−1 such that A · A−1 = 1, where A,A−1 ∈
Fp. There are many schemes to perform this e�ciently. Fermat's little theorem
exponentiates A−1 = Ap−2. This requires many multiplications and squarings,
but is a constant set of operations. The Extended Euclidean Algorithm (EEA)
has a signi�cantly lower time complexity of O(log2n) compared to O(log3n)
for Fermat's little theorem. EEA uses a greatest common divisor algorithm to
compute the modular inverse of elements a and b with respect to each other, ax+
by = gcd(a, b). Based on the analysis presented in Section 5, the EEA was chosen
because it made a�ne SIDH much faster than projective SIDH. The GMP library
already employs a highly optimized version of EEA for various architectures.
EEA performs an inversion quickly, but does leak some information about the
value being inverted from the timing information. Therefore, to take advantage
of this fast inversion and provide some protections against simple power analysis
and timing attacks, a random value was multiplied to the element before and
after the inversion, e�ectively obscuring what value was initially being inverted.
This requires two extra multiplications, but the additional defense against timing
and simple power analysis attacks is necessary for a secure key exchange protocol.

5 A�ne or Projective Isogenies

Here, we analyze the complexity of utilizing the new �projective� isogeny formu-
las presented by Costello et al. in [7] to the �a�ne� isogeny formulas presented
by De Feo et al. in [6]. Notably, the projective formulas allow for constant-time
inversion implementations without greatly increasing the total time of the pro-
tocol. However, in terms of non-constant inversion, we will show that the a�ne
isogeny formulas are still much faster for ARMv7 devices. For cost comparison
between these formulas, let I,M, and S refer to inversion, multiplication, and
squaring in Fp, respectively. A tilde above the letter indicates that the operation
is in Fp2 .
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Table 2. Comparison of I/M ratios for various computer architectures based on GMP
library

Architecture Device
I/M ratio

p512 p768 p1024

ARMv7 Cortex-A8 Beagle Board Black 7.0 6.4 6.1

ARMv7 Cortex-A15 Jetson TK1 7.1 6.1 5.9

ARMv8 Cortex-A53 Linaro HiKey 8.2 7.3 6.5

Haswell x86-64 i7-4790k 14.9 14.7 13.8

Table 3. A�ne isogeny formulas vs. projective isogenies formulas

Computation A�ne Cost [6] Projective Cost [7]

Point Mult-by-3 7M̃ + 4S̃ 8M̃ + 5S̃

Iso-3 Computation 1Ĩ + 5M̃ + 1S̃ 3M̃ + 3S̃

Iso-3 Evaluation 4M̃ + 2S̃ 6M̃ + 2S̃

Point Mult-by-4 6M̃ + S̃ 8M̃ + 4S̃

Iso-4 Computation 1Ĩ + 3M̃ 5S̃

Iso-4 Evaluation 6M̃ + 4S̃ 9M̃ + 1S̃

We introduce the idea of the inversion/multiplication ratio, or for SIDH over
Fp2 , Ĩ/M̃ , as a metric to compare the relative cost of inversion and multiplica-
tion and decide between the e�ectiveness of a�ne or projective formulas. This
inversion/multiplication ratio is dependent on the size of elements in Fp, the
processor, as well as the inversion used. For a constant-time inversion using Fer-
mat's little theorem, the ratio is most likely several hundred since it requires
several hundred multiplications and squarings for the inversion exponentiation.
However, for non-constant time inversion, such as EEA or Kaliski's almost in-
verse [20], the ratio is much smaller. Table 2 compares the I/M ratio for di�erent
computer architectures over the GNU Multiprecision Library (GMP). We note
that with optimized multiplication, this ratio would generally be higher, but
it gives an idea of the relative di�erence between I/M ratios for ARM archi-
tectures and x86 architectures. As Table 2 shows, the I/M ratio for a PC is
much greater than ARM architectures, by a factor of 2. This shows that ARM
implementations bene�t much more from using a�ne isogeny computations.

In Table 3, we compare the relative computational costs of a�ne isogeny
formulas presented in [6] and projective isogeny formulas presented in [7] over
isogenies of degree 3 and 4. Point multiplications by ` are over Kummer coordi-
nates with a�ne or projective curve coe�cients. Isogeny computations compute
the map between two points and isogeny evaluations push a point through the
mapping, both of these are of degree `. A�ne isogeny computations cost more
than their projective counterpart because certain calculations are performed that
are reused across each a�ne isogeny evaluation.
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Table 4. Relative costs of computing large-degree isogenies based on a�ne vs. projective
isogeny formulas

Prime #3P #3eval #3comp LargeIso3Cost #4P #4eval #4comp LargeIso4Cost

A�ne Isogeny Computations

p512 496 698 159 159Ĩ + 9417M̃ 457 410 124 124Ĩ + 6966M̃

p768 780 1176 239 239Ĩ + 15163M̃ 771 638 185 185Ĩ + 11215M̃

p1024 1123 1568 316 316Ĩ + 21005M̃ 1061 942 250 250Ĩ + 15974M̃

Projective Isogeny Computations

p512 500 691 159 11525M̃ 423 441 124 9182M̃

p768 811 1124 239 18623M̃ 638 771 185 14865M̃

p1024 1129 1558 316 25792M̃ 981 1013 250 21076M̃

From this table, we created optimal strategies for traversing the large-degree
isogeny graphs. The a�ne and projective optimal strategy di�ered because the
ratio of point multiplication over isogeny evaluation di�ered. Similar to the
method proposed by [6] and also implemented in [7], we created an optimal
strategy to traverse the graph. We based the cost of traversing the graph with
the relationship S̃ = 0.66M̃ , since there are 2 multiplications in Fp for S̃ and

3 multiplications in Fp for M̃ . We performed this experiment for our selected
primes in the 512-bit, 768-bit, and 1024-bit categories, shown in Table 4. In Ta-
ble 4, we count the total number of point multiplications by ` as #`P , the total
number of `−isogeny evaluations as #`eval, and the total number of `−isogeny
computations as#`comp. From the cost of these operations in a�ne or projective
coordinates, shown in Table 3, we calculated the total cost of the large-degree
isogeny in terms of multiplications and inversions in Fp2 under LargeIso`Cost.

We note that the di�erence in performance is also much greater for the �rst
round of the SIDH protocol, as the other party's basis points are pushed through
the isogeny mapping. This includes 3 additional isogeny evaluations per isogeny
computation, as P , Q, and P − Q are pushed through the isogeny. In Table
5, we compare the break-even points for when the cost of a�ne and projective
isogenies are the same. If the ratio is smaller than the break-even point, then
the large-degree isogeny computation is faster with a�ne isogeny formulas. Al-
ice operates over degree 4 isogenies and Bob operates over degree 3 isogenies.
We utilize Ĩ = I + 3.33M̃ to get the break-even points for operations in Fp

since we used a Karatsuba-based inversion. Thus, I/M = 3(Ĩ/M̃ − 3.33). As
an example, the break-even point for Alice's round 1 isogeny is I = 53M at
the 512-bit level. Thus, even with conservative estimates for the cost of using
projective coordinates, a�ne coordinates trump projective coordinates for small
I/M ratios.
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Table 5. Comparison of break-even inversion/multiplication ratios for large-degree iso-
genies at di�erent security levels. When the inversion over multiplication ratio is at the
break-even point, a�ne isogenies require approximately the same cost as projective
isogenies. Ratios smaller than these numbers are faster with a�ne formulas.

Prime Alice Round 1 Iso Bob Round 1 Iso Alice Round 2 Iso Bob Round 2 Iso

p512 Ĩ = 20.87M̃ Ĩ = 19.26M̃ Ĩ = 17.87M̃ Ĩ = 13.26M̃

p768 Ĩ = 22.73M̃ Ĩ = 20.48M̃ Ĩ = 19.73M̃ Ĩ = 14.48M̃

p1024 Ĩ = 23.41M̃ Ĩ = 21.15M̃ Ĩ = 20.41M̃ Ĩ = 15.15M̃

p512 I = 52.62M I = 47.78M I = 43.62M I = 29.78M

p768 I = 58.20M I = 51.44M I = 49.20M I = 33.46M

p1024 I = 60.23M I = 53.46M I = 51.23M I = 35.46M

6 Implementation Results and Discussion

In this section, we review the ARM architectures that were used as testing
platforms, how we optimized the assembly code around them, and present our
results.

6.1 ARM Architectures

As the name Advanced RISC Machines implies, ARM implements architectures
that feature simple instruction execution. The architectures have evolved over
the years, but this work will focus on the ARMv7-A. The ARMv7-A family em-
ploys a 32-bit architecture that uses 16 general-purpose registers, although reg-
isters 13, 14, and 15 are reserved for the stack pointer, link register, and program
counter, respectively. ARM-NEON is a Single-Instruction Multiple-Data (SIMD)
engine that provides vector instructions for the ARMv7 architecture. ARMv7's
NEON features 32 registers that are 64-bits wide or alternatively viewed as 16
registers that are 128-bits wide. NEON provides nice speedups over standard
register approaches by taking advantage of data paralellism in the large register
sizes. This comes in handy primarily in multiplication, squaring, and reduction.

We benchmarked the following boards running these ARM architectures:

� A BeagleBoard Black running a single ARMv7 Cortex-A8 processor operat-
ing at 1.0 GHz.

� A Jetson TK1 running 4 ARMv7 Cortex-A15 cores operating at 2.3 GHz.

6.2 Testing Methodology

The key exchange was written in the standard C language. We used GMP version
6.1.0. The code was compiled using the standard operating system and devel-
opment environment on the given device. A parameters �le de�ning the agreed
upon curve, basis points, and strategies for the key exchange was generated ex-
ternally using Sage. The strictly C code with GMP is fairly portable and can be
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Table 6. Timing results of key exchange on Beagle Board Black ARMv7 device for
di�erent security levels

Beagle Board Black (ARM v7) Cortex-A8 at 1.0 GHz using C

Field Fp [cc] Fp2 [cc] Key Exch. [cc× 103]

Size A S M mod I Ã S̃ M̃ Ĩ Alice Bob

p512 115 1866 2295 3429 40100 1241 12229 14896 72400 483,968 514,786

p768 142 3652 4779 6325 71500 1404 23167 28459 135400 1,406,381 1,525,215

p1024 168 5925 8202 10150 111900 1558 38046 46891 211400 3,135,526 3,367,448

Beagle Board Black (ARM v7) Cortex-A8 at 1.0 GHz using ASM and NEON

Field Fp [cc] Fp2 [cc] Key Exch. [cc× 103]

Size A S M mod I Ã S̃ M̃ Ĩ Alice Bob

p512 70 718 953 962 40100 279 4445 6736 52756 216,503 229,206

p1024 120 2714 3723 3956 111900 375 15714 23682 150795 1,597,504 1,708,383

used with primes of any size, as long as it is provided with a valid parameters
�le. There are separate versions which include the 512-bit and 1024-bit assembly
optimizations that only work with primes up to these sizes. The protocols are
identical in both the C and ASM implementations. The primes that were used
can be found in Table 3.

6.3 Results and Comparison

The results for this experiment are presented in Table 6 and Table 7 for the
BeagleBoard Black and Jetson TK1, respectively. This provides the timings, in
clock cycles, of individual �nite �eld operations in Fp and Fp2 as well as the
total computation time of each party for the protocol. The expected time to run
this protocol is roughly Alice or Bob's computation time and some transmission
cost.

The Beagle Board Black achieved a speedup of 2.27 over the 512-bit primes
and a speedup of 2.00 over 1024-bit primes when using our hand-optimized as-
sembly code over our generic C code. The Jetson TK1 achieved a speedup of
1.94 for 512-bit primes and a speedup of 1.59 for 1024-bit primes when using
the assembly code. These speedups came as a result of the optimized �nite �eld
arithmetic over Fp. Addition is generally a fraction of the cost. Multiplication
and squaring are almost twice as fast with the ASM. The most signi�cant im-
provement is reduction around 3-3.5 times as fast with the ASM. Addition in
Fp2 is approximately 5-7 times faster with assembly because the intermediate
elements were guaranteed to be in the �eld, only requiring a subtraction with a
mask as a modulus. With the assembly optimizations, the Beagle Board Black
performs one party's computations in approximately 0.223 seconds and 1.65 sec-
onds over 85-bit and 170-bit quantum security, respectively. The Jetson TK1
performs one party's computations in approximately 0.066 seconds and 0.491
seconds over 85-bit and 170-bit quantum security, respectively.
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Table 7. Timing results of key exchange on NVIDIA Jetson TK-1 ARMv7 device for
di�erent security levels

Jetson TK-1 Board (ARM v7) Cortex-A15 at 2.3 GHz using C

Field Fp [cc] Fp2 [cc] Key Exch. [cc× 103]

Size A S M mod I Ã S̃ M̃ Ĩ Alice Bob

p512 83 926 1152 2271 24302 877 7256 8776 42481 285,026 302,332

p768 99 1679 2403 4024 39100 982 13467 16216 73922 783,303 848,461

p1024 117 2955 4144 6053 59800 1122 21558 26286 115437 1,728,183 1,851,782

Jetson TK-1 Board (ARM v7) Cortex-A15 at 2.3 GHz using ASM and NEON

Field Fp [cc] Fp2 [cc] Key Exch. [cc× 103]

Size A S M mod I Ã S̃ M̃ Ĩ Alice Bob

p512 39 516 640 732 24302 158 3025 4579 34049 148,003 154,657

p1024 73 1856 2464 2961 59800 273 11273 17007 97594 1,118,644 1,140,626

Our implementation follows the algorithms and formulas of the a�ne key
exchange protocol given in [6]. Our implementation also includes side-channel
resistance. Our �nite-�eld arithmetic is constant-time, except for inversion which
applies extra multiplications for protection, and we utilize a constant set of op-
erations that deal with the secret keys. Lastly, our C implementation is portable
because it only requires a C compiler and the GNU library.

The only other portable implementations of SIDH for ARMv7 are [10] and
[7]. Of these, [7] only operates with projective isogeny formulas over the 751-
bit prime, 23723239 − 1, and uses a generic, constant-time, implementation with
Montgomery reduction. [10] uses the same a�ne formulas as our implementa-
tion, but uses primes that are not as e�cient. Table 8 contains a comparison
of these implementations for ARM Cortex-A15. We note that the assembly op-
timizations are not applied for our 768-bit version. Similarly, [7] has generic
arithmetic with Montgomery reduction. Our assembly optimized implementa-
tion is approximately 3 times faster than the implementation in [10] and the
portable C implementation is about 5 times faster than the projective isogeny
implementation in [7]. Moreover, [10] does not consider side-channel attacks,
but [7] is a constant-time implementation, which is inherently protected against
simple power analysis and timing attacks.

There are several other popular post-quantum cryptosystems that have been
implemented in the literature. The ones that consider embedded system have
typically used FPGA's or 8-bit microcontrollers, such as the lattice-based system
in [2], code-based system in [4], or McEllice system in [3]. The comparison with
any of these works is di�cult because the algorithms are extremely di�erent and
the implementations did not use ARM-powered embedded devices.

7 Conclusion

In this paper, we proved that isogeny-based key exchanges can be implemented
e�ciently on emerging ARM embedded devices and represent a new alternative
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Table 8. Comparison of a�ne and projective isogeny implementations on ARM Cortex-
A15 embedded processors. Our work and [7] was done on a Jetson TK1 and [10] was
performed on an Arndale ARM Cortex-A15.

Work Lang
Field PQ Iso. Timings [cc× 106]
Size Sec. Eq.

Alice R1 Bob R1 Alice R2 Bob R2 Total
[bits] [bits]

Costello
C 751 124 Proj. 1,794 2,120 1,665 2,001 7,580

et al. [7]1

Azarderakhsh C 521 85
A�ne

N/A N/A N/A N/A 1,069

et al.[10]
C 771 128 N/A N/A N/A N/A 3,009
C 1035 170 N/A N/A N/A N/A 6,477

This work
ASM 503 83

A�ne
83 87 66 68 302

C 751 124 437 474 346 375 1,632
ASM 1008 167 603 657 516 484 2,259

1. Targeted x86-64 architectures, but is portable on ARM. All arithmetic is in
generic C.

to classical cryptosystems. Both e�cient primes and the impact of projective
isogeny formulas were investigated. Without transmission overhead, a party can
compute their side of the key exchange in fractions of a second. We hope that
the initial investigation of this protocol on embedded devices will inspire other
researchers to continue looking into isogeny-based implementations as a strong
candidate for NIST's call for post-quantum resistant cryptosystems. As a fu-
ture work, we plan to investigate redundant arithmetic schemes with NEON
and apply our assembly optimizations to the projective isogeny formulas for a
constant-time implementation. We note that robust and high-performance im-
plementations provide critical support for industry adoption of isogeny-based
cryptosystems.
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