
Unconditional UC-Secure Computation

with (Stronger-Malicious) PUFs

Saikrishna Badrinarayanan∗ Dakshita Khurana† Rafail Ostrovsky‡

Ivan Visconti§

Abstract

Brzuska et. al. (Crypto 2011) proved that unconditional UC-secure computation
is possible if parties have access to honestly generated physically unclonable functions
(PUFs). Dachman-Soled et. al. (Crypto 2014) then showed how to obtain uncon-
ditional UC secure computation based on malicious PUFs, assuming such PUFs are
stateless. They also showed that unconditional oblivious transfer is impossible against
an adversary that creates malicious stateful PUFs.

• In this work, we go beyond this seemingly tight result, by allowing any adversary
to create stateful PUFs with a-priori bounded state. This relaxes the restriction
on the power of the adversary (limited to stateless PUFs in previous feasibility
results), therefore achieving improved security guarantees. This is also motivated
by practical scenarios, where the size of a physical object may be used to compute
an upper bound on the size of its memory.

• As a second contribution, we introduce a new model where any adversary is
allowed to generate a malicious PUF that may encapsulate other (honestly gen-
erated) PUFs within it, such that the outer PUF has oracle access to all the inner
PUFs. This is again a natural scenario, and in fact, similar adversaries have been
studied in the tamper-proof hardware-token model (e.g., Chandran et. al. (Euro-
crypt 2008)), but no such notion has ever been considered with respect to PUFs.
All previous constructions of UC secure protocols suffer from explicit attacks in
this stronger model.

In a direct improvement over previous results, we construct UC protocols with un-
conditional security in both these models.

∗UCLA. Email: saikrishna@cs.ucla.edu.
†UCLA. Email: dakshita@cs.ucla.edu.
‡UCLA. Email: rafail@cs.ucla.edu.
§University of Salerno. Email: visconti@unisa.it.

1

Contents

1 Introduction 1
1.1 UC security based on Physically Unclonable Functions 1
1.2 Our Contributions . 2
1.3 Our Techniques . 3
1.4 Organization . 7

2 Preliminaries 8
2.1 Physically Unclonable Functions . 8
2.2 UC Secure Computation . 10

3 Unconditional UC Security with (Malicious) Stateless PUFs 10

4 UC-Security with (Bounded-Stateful Malicious) PUFs 11

5 One-Sided Correlation Extractors with Malicious Security 15

6 UC Secure Computation in the Malicious Encapsulation Model 17

7 UC Commitments in the Malicious Encapsulation Model 19

8 Acknowledgements 20

References 25

A Formal Models for PUFs 25

B Physically Unclonable Functions: Modeling 29

C The UC Framework and the Ideal Functionalities 32

D UC-Secure Commitments 34

E Proof of Security for OT in Malicious Bounded Stateless PUF Model 35

F Proof of Security for OT in Malicious Bounded Stateful PUF Model 39

G One-Sided Correlation Extractors with Malicious Security: Proofs 42

H High Production Rate 44

I From UC Oblivious Transfer to UC Two-Party Computation 44

J UC Computation with Encapsulated Malicious PUFs: Proofs 45

K UC Commitments with Encapsulated Malicious PUFs: Full Proofs 49

L Bounded Stateful PUFs with a Non-Rewinding Simulator 54

2

1 Introduction

In recent years, there has been a rich line of work studying how to enhance the computational capa-
bilities of probabilistic polynomial-time players by making assumptions on hardware[41]. Two types
of hardware assumptions in particular have had tremendous impact on recent research: tamper-
proof hardware tokens and physically unclonable functions (PUFs).

The tamper-proof hardware token model introduced by Katz [31] relies on the simple and well
accepted assumption that it is possible to physically protect a computing machine so that it can only
be accessed as a black box, via oracle calls (as an example, think of smart cards). Immediately after
its introduction, this model has been studied and its power is now understood in large part. Tamper-
proof hardware tokens allow to obtain strong security notions and very efficient constructions, in
some cases without requiring computational assumptions. In particular, the even more challenging
case of stateless tokens started by [9] has been investigated further in [25, 20, 30, 33, 29, 21, 14, 1, 13].

Physically Unclonable Functions. Physically Unclonable Functions (PUFs) were intro-
duced by Pappu et al. [37, 36] but their actual potential has been understood only in recent years1.
Increasing excitement over such physical random oracles generated various different (and sometimes
incompatible) interpretations about the actual features and formalizations of PUFs.

Very roughly, a PUF is an object that can be queried by translating an input into a specific
physical stimulation, and then by translating the physical effects of the stimulation to an output
through a measurement. The primary appealing properties of PUFs include: (1) constructing two
PUFs with similar input-output behavior is believed to be impossible (i.e. unclonability), and (2)
the output of a PUF on a given input is seemingly unpredictable, i.e., one cannot “learn” the
behavior of an honestly-generated PUF on any specific input without actually querying the PUF
on that input.

There is a lot of ongoing exciting research on concrete constructions of PUFs, based on various
technologies. As such, a PUF can only be described in an abstract way with the attempt to establish
some target properties for PUF designers.

However, while formally modeling a PUF, one might (incorrectly) assume that a PUF guarantees
some properties that unfortunately exceed the state of affairs in real-world scenarios. For example,
assuming that the output of a genuine PUF is purely random is clearly excessive, while relying on
min-entropy is certainly a safer and more conservative assumption. Various papers have proposed
different models and even attempts to unify them. The interested reader can refer to [2] for detailed
discussions about PUF models and their connections to properties of actual PUFs. We stress that
in this work we will consider the use of PUFs in the UC model of [6]. Informally, this means that
we want to study protocols that can securely compose with other protocols that may be executing
concurrently.

1.1 UC security based on Physically Unclonable Functions

Starting with the work of Brzuska et al. [5], a series of papers have explored UC-secure computation
based on physically unclonable functions. The goal of this line of cryptographic research has been
to build protocols secure in progressively stronger models.

1PUFs are used in several applications like secure storage, RFID systems, anti-counterfeiting mecha-
nisms, identification and authentication protocols [43, 22, 40, 39, 16, 32].

1

The trusted PUFs of Brzuska et al. [5]. Brzuska et al. [5] began the first general attempts
to add PUFs to the simulation paradigm of secure computation. They allowed any player (malicious
or honest) to create only well-formed PUFs. As already mentioned, the output of a well-formed PUF
on any arbitrary input is typically assumed to have sufficient min-entropy. Furthermore, on being
queried with the same input, a well-formed PUF can be assumed to always produce identical (or
sufficiently close) outputs. Applying error-tolerant fuzzy extractors [12] to the output ensures that
each invocation of the PUF generates a (non-programmable) random string that can be reproduced
by querying the PUF again with the same input. Brzuska et al. demonstrated how to obtain
unconditional UC secure computation for any functionality in this model.

The malicious PUFs of Ostrovsky et al. [35]. Ostrovsky et al. [35] then showed that
the constructions of [5] become insecure in case the adversary can produce a malicious PUF that
deviates from the behavior of an honest PUF. For instance, a malicious PUF could produce outputs
according to a pseudo-random function rather than relying on physical phenomena, or it could just
refuse to answer to a query. They also showed that it is possible to UC-securely compute any
functionality using (potentially malicious) PUFs if one is willing to additionally make computational
assumptions. They left open the problem of achieving unconditional UC-secure computation for
any functionality using malicious PUFs.

Damg̊ard and Scafuro [11] showed that unconditional UC secure commitments can be obtained
even in the presence of malicious PUFs2.

The fully malicious but stateless PUFs of Dachman-Soled et al. [10]. More
recently, it was shown by Dachman-Soled et al. [10] that unconditional UC security for general
functionalities is impossible if the adversary is allowed to create malicious PUFs that can maintain
state. They also gave a complementary feasibility result in an intermediate model where PUFs are
allowed to be malicious, but are required to be stateless.

We note that the impossibility result of [10]crucially relies on (malicious) PUFs being able to
maintain a priori unbounded state.

Thus, the impossibility seems interesting theoretically, but its impact to practical scenarios is
unclear. In the real world, this result implies that unconditional UC secure computation of all
functionalities is impossible in a model where an honest player is unable to distinguish maliciously
created PUFs with gigantic memory, from honest (and therefore completely stateless) PUFs. One
could argue that this allows the power of the adversary to go beyond the reach of current technology.
On the other hand, the protocol of [10] breaks down completely if the adversary can generate a
maliciously created PUF with even one bit of memory, and pass it off as a stateless (honest) PUF.
This gap forms the starting point for our work.

1.2 Our Contributions

The current state-of-the-art leaves open the following question:

Can we achieve UC-secure computation with malicious PUFs that are allowed to have a priori
bounded state?

2This can be extended to other functionalities but not to all functionalities.

2

In the main contribution of this work we answer this question in the affirmative. We show
that not only it is possible to obtain UC-secure computation for any functionality as proven in [35]
with computational assumptions, but we prove that this can be done with unconditional security,
without relying on any computational assumptions. This brings us to our first main result, which
we now state informally.

Informal Theorem 1. For any two party functionality F , there exists a protocol π that uncondi-
tionally and UC-securely realizes F in the malicious bounded-stateful PUF model.

As our second contribution, we introduce a new adversarial model for PUF-based protocols.
Here, in addition to allowing the adversary to generate malicious stateless PUFs, we also allow him
to encapsulate other (honestly generated) PUFs inside his own (malicious, stateless) PUF, even
without the knowledge of the functionality of the inner PUFs. This allows the outer malicious
PUF to make black-box (or oracle) calls to the inner PUFs that it encapsulates. In particular, the
outer malicious PUF could answer honest queries by first making oracle calls to its inner PUFs,
and generating its own output as a function of the output of the inner PUFs on these queries. An
honest party interacting with such a malicious PUF need not be able to tell whether the PUF is
malicious and possibly encapsulates other PUFs in it, or it is honest.

In this new adversarial model3, we require all PUFs to be stateless. We will refer to this as
the malicious encapsulated PUF model. It is interesting to note that all previously known proto-
cols (even for limited functionalities such as commitments) suffer explicit attacks in this stronger
malicious encapsulated (stateless) PUF model.

As our other main result, we develop techniques to obtain unconditional UC-secure computation
in the malicious encapsulated PUF model.

Informal Theorem 2. For any two party functionality F , there exists a protocol π that uncondi-
tionally and UC-securely realizes F in the malicious encapsulated (stateless) PUF model.

Table 1 compares our results with prior work. Our feasibility result in the malicious bound-
stateful PUF model and our feasibility result in the malicious encapsulated-stateless PUF model
directly improve the works of [5, 10]. Indeed each of our two results strengthen the power of the
adversaries of [5, 10] in one meaningful and natural direction still achieving the same unconditional
results of [5, 10]. A natural question is whether our techniques defeating malicious bounded-stateful
PUFs can be composed with our techniques defeating malicious encapsulated-stateless PUFs to
obtain unconditional UC-security for any functionality against adversaries that can construct ma-
licious bounded-stateful encapsulated PUFs. While we do not see a priori any conceptual obstacle
in obtaining such even stronger feasibility result, the resulting construction would be extremely
complex and heavily tedious to analyze. Therefore we defer such a stronger claim to future work
hoping that follow up research will achieve a more direct and elegant construction.

1.3 Our Techniques

The starting point for our constructions is the UC-secure OT protocol of [10], which itself builds
upon the works of [35, 5]. We begin by giving a simplified description of the construction in [10].

3A concurrent and independent work [38] considers an adversary that can encapsulate PUFs but does
not propose UC-secure definitions/constructions.

3

Reference
Unconditional

UC for any
Functionality

UC with
Stateless

Mal. PUFs

UC with
Bounded Stateful

Mal. PUFs

UC with
Encapsulated

Stateless Mal. PUFs

[5] X × × ×
[35] × X X ×
[10] X X × ×

This Work X X X ×
This Work X X × X

Table 1: The symbol X (resp. ×) indicates that the construction satisfies (resp. does not
satisfy) the corresponding security guarantee.

Suppose a sender S with inputs (m0,m1) and a receiver R with input bit b want to run a UC
secure OT protocol in the malicious stateless PUF model. Then, S generates a PUF and sends it
to the receiver. The receiver queries the PUF on a random challenge string c, records the output r
and then returns the PUF to S. Then, the sender sends two random strings (x0, x1) to the receiver.
In turn, the receiver picks xb, and sends v = c⊕ xb to the sender. The sender uses PUF(v ⊕ x0) to
mask his input m0 and PUF(v ⊕ x1), to mask his input m1; and sends both masked values to the
receiver. Here PUF(·) denotes the output of the PUF on the given input. Since R had to return the
PUF before (x0, x1) were revealed, with overwhelming probability, R only knows r = PUF(v⊕ xb),
and can output one and only one of the masked sender inputs.

1.3.1 Enhancing [10] in the Stateless PUF Model.

Though this was a simplified overview of the protocol in [10], it helps us to explain a subtle
assumption required in their simulation strategy against a malicious sender. In particular, the
simulator against a malicious sender must return the PUF to the sender before the sender picks
random messages (x0, x1). However, it is evident that in order to extract both messages (m0,m1),
the simulator must know (x0 ⊕ x1), and in particular know the response of the PUF on challenges
(c, c⊕ x0 ⊕ x1) for some known string c.

But the simulator only learns (x0, x1) after sending the PUF back to S. Thus, in order to
successfully extract the input of S, the simulator should have the ability to make these queries even
after the PUF has been returned to the malicious sender. This means that the PUF is supposed
to remain accessible and untouched even when it is again in the hands of its malicious creator. We
believe this is a very strong assumption that clearly deviates from real scenarios where the state of
a PUF can easily be changed (e.g., by damaging it).

Our protocol in Figure 1 gets rid of this strong assumption on the simulator, and we give a new
sender simulation strategy that does not need to query the PUF when it is back in the hands of the
malicious sender S. This is also a first step in obtaining security against bounded-stateful PUFs.
In the protocol of [10], if the PUF created by a malicious S is stateful, S on receiving the PUF can
first change the state of the PUF (say, to output ⊥ everywhere), and then output values (x0, x1).
In this case, no simulation strategy will be able to extract the inputs of the sender.

We change the protocol in [10], by having S commit to the random values (x0, x1) at the
beginning of the protocol, using a UC-secure commitment scheme. These values are decommitted

4

Inputs: Sender S has private inputs (m0,m1) ∈ {0, 1}2n and Receiver R has
private input b ∈ {0, 1}.

1. Sender Message: S does the following:

• Generate a PUF PUFs : {0, 1}n → {0, 1}n.

• Choose a pair of random strings (x0, x1)
$←{0, 1}2n.

• Send PUFs and (t0, t1) = UC-Com.Commit(x0, x1) to R.

2. Receiver Message: R does the following:

• Choose a pair of random strings (c0, c1)
$←{0, 1}2n.

• Compute r0 = PUFs(c0), r1 = PUFs(c1).

• Set c = cp and r = rp for p
$←{0, 1}.

• Store the pair (c, r) and send PUFs to S.

3. Sender Message:

• S sends (x0, x1) = UC-Com.Decommit(t0, t1) to R.

4. Receiver Message: R does the following:

• Abort if the decommitment does not verify correctly.

• Compute and send val = c⊕ xb to S.

5. Sender Message:

• S computes S0 = m0⊕PUFs(val⊕x0), S1 = m1⊕PUFs(val⊕x1) and sends
(S0, S1) to R.

Outputs: S has no output. R outputs mb which is computed as (Sb ⊕ r).

Figure 1: Protocol Π1 for 2-choose-1 OT in the malicious stateless PUF model.

only after R returns the PUF back to S, so the scheme still remains UC-secure against a malicious
receiver. Moreover, now the simulator against a malicious sender can use the straight-line extractor
guaranteed by the UC-secure commitment scheme, to extract values (x0, x1), and query the PUF
on challenges of the form (c, c ⊕ x0 ⊕ x1) for some string c. It then sets v = c ⊕ x0 and sends
it to S. Now, the sender masks are PUF(v ⊕ x0) and PUF(v ⊕ x1), which is nothing but PUF(c)
and PUF(c⊕ x0 ⊕ x1), which was already known to the sender simulator before returning the PUF

5

to S. This simulation strategy works (with the simulator requiring only black-box access to the
malicious PUF’s code) even if the PUF is later broken or its state is reset in any way. This protocol
is described formally and proven secure in Section 3.

1.3.2 UC Security with Bounded Stateful PUFs.

A malicious PUF is allowed to maintain state, and can generate outputs (including ⊥) as a function
of not only the current query but also the previous queries that it received as input. This allows for
some attacks on the protocol we just described, but they can be prevented by carefully interspersing
coin-tossing with the protocol. Please see Section 4 for more details.

A stateful PUF created by the sender can also record information about the queries made by
the receiver, and replay this information to a malicious sender when he inputs a secret challenge.
Indeed, for PUFs with unbounded state, it is this ability to record queries that makes oblivious
transfer impossible. However, we only consider PUFs that have a-priori bounded state. In this
case, it is possible to design a protocol, parameterized by an upper bound on the size of the state
of the PUF, that in effect exhausts the possible state space of such a malicious PUF. Our protocol
then carefully uses this additional entropy to mask the inputs of the honest party.

More specifically, we repeat the OT protocol described before (with an additional coin-tossing
phase) K times in parallel, using the same (possibly malicious, stateful) PUF, for sufficiently large
K > ` (where ` denotes the upper bound on the state of the PUF). At this point, what we require
essentially boils down to a one-sided malicious oblivious transfer extractor. This is a gadget that
would yield a single OT from K leaky OTs, such that the single OT remains secure even when
a malicious sender can ask for ` bits of universal leakage across all these OTs. This setting is
incomparable to previously studied OT extractors [27, 23] because: a) we require a protocol that is
secure against malicious (not just semi-honest) adversaries, and b) the system has only one-sided
leakage, i.e., a corrupt sender can request ` bits of leakage, but a corrupt receiver does not obtain
any leakage at all.

For simplicity, we consider the setting of one-sided receiver leakage (instead of sender leakage).
It is possible to consider this because OT is reversible. To protect against a malicious receiver
that may obtain ` bits of universal leakage, the sender picks different random inputs for each OT
execution, and then uses a strong randomness extractor to extract min-entropy and mask his inputs.
We show that this in fact suffices to statistically hide the input messages of the sender. Please see
Section 5 for a more detailed overview and construction.

1.3.3 UC Security with Encapsulated PUFs.

We demonstrate the feasibility of UC secure computation, in a model where a party may (mali-
ciously) encapsulate one or more PUFs that it obtained from honest parties, inside a malicious
stateless PUF of its choice. We stress that our protocol itself does not require honest parties to
encapsulate PUFs within each other.

To describe our techniques, we begin by revisiting the protocol in Figure 1, that we described
at the beginning of this overview. Suppose parties could maliciously encapsulate some honest PUFs
inside a malicious PUF. Then a malicious receiver in this protocol, when it is supposed to return the

sender’s PUF PUFs, could instead return a different malicious PUF P̂UFs. In this case, the receiver
would easily learn both inputs of the sender. But as correctly pointed out in prior work [11, 10],
the sender can deflect such attacks by probing and recording the output of PUFs on some random

6

input(s) (known as Test Queries) before sending it to the receiver. Later the sender can check

whether P̂UFs correctly answers to all Test Queries.

However, a malicious receiver may create P̂UFs that encapsulates PUFs, such that P̂UFs is
programmed to send most outer queries to PUFs and echo its output externally; in order to pass

the sender’s test. However, P̂UFs may have its own malicious procedure to evaluate some of the

other external queries. In particular, the “unpredictability” of P̂UFs may break down completely
on these queries.

It turns out that the security of the sender in the basic OT protocol of Figure 1 hinges on the

unpredictability of the output of PUFs (in this situation, P̂UFs) on a “special challenge query” only,
which we will denote by s. It is completely feasible for a receiver to create a malicious encapsulating

PUF P̂UFs that passes the sender tests, and yet its output on this special query s is completely
known to the receiver, therefore breaking sender security.

We overcome this issue by ensuring that s is chosen using a coin toss, and is completely unknown

to the receiver until after he has sent P̂UFs (possibly a malicious encapsulating PUF) back to the

sender. Intuitively, this means that P̂UFs will either not pass the sender tests, or will be highly
likely to deflect this the query s to the inner PUF and echo its output (thereby ensuring that the
output of the PUF on input s is unpredictable for the receiver). An additional subtlety that arises
is that the receiver might use an incorrect s in the protocol (instead of using the output of the coin
toss): the receiver is forced to use the correct s via a special cut-and-choose mechanism. For a more
detailed overview and construction, please see to Section 6.

1.3.4 UC-Secure Commitments Against Encapsulation Attacks.

Finally, UC-secure commitments against encapsulation attacks play a crucial role in our UC-secure
OT protocol in the encapsulation model. But, we note that the basic commitment protocol of [11]
is insecure in this stronger model, and therefore we modify the protocol of [11] to achieve UC-
security in this scenario. In a nutshell, this is done by having the receiver send an additional PUF
at the end of the protocol, and forcing any malicious committer to query this additional PUF on
the committer’s input bit. We then show that even an encapsulating (malicious) committer will
have to carry out this step honestly in order to complete the commit phase. Then, a simulator
can extract the adversary’s committed value by observing the queries of the malicious committer
to this additional PUF. We illustrate in detail, how prior constructions of UC-secure commitments
fail in the PUF encapsulation model in Section 7. Our UC-secure commitment protocol in the
encapsulated malicious (stateless) PUF model is also described in Section 7.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we discuss PUFs and other preliminaries
relevant to our protocols. In Section 3, we describe an improved version of the protocol in [10], in
the stateless PUF model. In Section 4 and Section 5, we boost this protocol to obtain security in
the bounded stateful PUF model. In Section 6 and Section 7, we discuss protocols that are secure
in the PUF encapsulation model. In Appendix A, we discuss the formal modelling of our PUFs. In
additional supplementary material (Appendices B - I) we complete models and proofs that could
not be included in the paper owing to space restrictions.

7

2 Preliminaries

2.1 Physically Unclonable Functions

A PUF is a noisy physical source of randomness. The randomness property comes from an uncon-
trollable manufacturing process. A PUF is evaluated with a physical stimulus, called the challenge,
and its physical output, called the response, is measured. Since the processes involved are physical,
the function implemented by a PUF can not (necessarily) be modeled as a mathematical function,
neither can be considered computable in PPT. Moreover, the output of a PUF is noisy, namely,
querying a PUF twice with the same challenge, could yield distinct responses within a small Ham-
ming distance to each other. Moreover, the response need not be random-looking; rather, it is a
string drawn from a distribution with high min-entropy. Prior work has shown that, using fuzzy
extractors, one can eliminate the noisiness of the PUF and make its output uniformly random. For
simplicity, we assume this in the body of the paper and give a detailed description in Appendix B.

A PUF-family is a pair of (not necessarily efficient) algorithms Sample and Eval. Algorithm
Sample abstracts the PUF fabrication process and works as follows. On input the security param-
eter, it outputs a PUF-index id from the PUF-family satisfying the security properties (that we
define soon) according to the security parameter. Algorithm Eval abstracts the PUF-evaluation
process. On input a challenge q, it evaluates the PUF on q and outputs the response a of length
rg, denoting the range. Without loss of generality, we assume that the challenge space of a PUF is
a full set of strings of a certain length.

Security of PUFs. Following [5], we consider only the two main security properties of PUFs:
unclonability and unpredictability. Informally, unpredictability means that the output of the PUF is
statistically indistinguishable from a uniform random string. Formally, unpredictability is modeled
via an entropy condition on the PUF distribution. Namely, given that a PUF has been measured
on a polynomial number of challenges, the response of the PUF evaluated on a new challenge still
has a significant amount of entropy. For simplicity, a PUF is unpredictable if its output on any
given input appears uniformly random.

Informally, unclonability states that in a protocol consisting of several parties, only the party
in whose possession the PUF is, can evaluate the PUF. When a party sends a PUF to a different
party, it can no longer evaluate the PUF till the time it gets the PUF back. Thus a party not in
possession of a PUF cannot predict the output of the PUF on an input for which it did not query
the PUF, unless it maliciously created the PUF. We discuss this in more detail in Appendix A.

A PUF can be modeled as an ideal functionality FPUF, which mimics the behavior of the PUF
in the real world. We formally define ideal functionalities corresponding to honestly generated and
various kinds of maliciously generated PUFs in Appendix A. We summarize these here: the model
for honestly generated PUFs and for malicious stateless/stateful PUFs has been explored in prior
work [35, 10], and we introduce the model for encapsulated PUFs.

• An honestly generated PUF can be created according to a sampling algorithm Samp, and
evaluated honestly using an evaluation algorithm Eval. The output of an honestly generated
PUF is unpredictable even to the party that created it, i.e., even the creator cannot predict
the output of an honestly generated PUF on any given input without querying the PUF on
that input.

• A malicious stateless PUF, on the other hand, can be created by the adversary substitut-
ing an Evalmal procedure of his choice for the honest Eval procedure. Whenever a (honest)

8

party in possession of this PUF evaluates the PUF, it runs the stateless procedure Evalmal(c)
instead of Eval(c) (and cannot distinguish Evalmal(c) from Eval(c) unless they are distin-
guishable with black-box access to the PUF). The output of such a PUF cannot depend on
previous queries, moreover no adversary that creates the PUF but does not possess it, can
learn previous queries made to the PUF when it was not in its possession. We adapt the
definitions from [35], where Evalmal is a polynomial-time algorithm with oracle access to Eval.
This is done to model the fact that the Evalmal algorithm can access an (honest) source of
randomness Eval, and can arbitrarily modify its output using any polynomial-time strategy.

• A malicious stateful PUF can be created by the adversary substituting a stateful Evalmal
procedure of his choice for the honest Eval procedure. Whenever a party in possession of this
PUF evaluates the PUF, it runs the stateful procedure Evalmal(c) instead of Eval(c). Thus,
the output of a stateful malicious PUF can possibly depend on previous queries, moreover an
adversary that created a PUF can learn previous queries made to the PUF by querying it, say,
on a secret input. Evalmal is a polynomial-time stateful Turing Machine with oracle access to
Eval. Again, this is done to model the fact that the Evalmal algorithm can access an (honest)
source of randomness, Eval, and arbitrarily modify its output using any polynomial-time
strategy. Malicious stateful PUFs can further be of two types:

– Bounded Stateful. Such a PUF can maintain a-priori bounded memory/state (which it
may rewrite, as long as the total memory is bounded).

– Unbounded Stateful. Such a PUF can maintain unbounded memory/state.

• A malicious encapsulating PUF can possibly encapsulate other (honestly generated)
PUFs inside it4, without knowing the functionality of these inner PUFs. Such a PUF PUFmal

can make black-box calls to the inner PUFs, and generate its outputs as a function of the
output of the inner (honest) PUFs.

This is modeled by having the adversary substitute an Evalmal procedure of his choice for the
honest Eval procedure in the PUFmal that it creates, where as usual Evalmal is a polynomial-
time Turing Machine with oracle access to Eval. Similar to the two previous bullets, this is
done to model the fact that the Evalmal algorithm can access an (honest) source of random-
ness, Eval, and arbitrarily modify its output using any polynomial-time strategy.

In addition, Evalmal can also make oracle calls to polynomially many other (honestly gen-
erated) procedures Eval1,Eval2, . . .EvalM that are contained in PUFs PUF1,PUF2, . . .PUFM ,
for any a-priori unbounded M = poly(n). These correspond to honestly generated PUFs that
the adversary may be encapsulating within its own malicious PUF. Thus on some input c,
the Evalmal procedure may make oracle calls to Eval1,Eval2, . . .EvalM on polynomially many
inputs, and compute its output as a function of the outputs of the Eval,Eval1,Eval2, . . .EvalM
procedures. Of course, we ensure that the adversary’s Evalmal procedure can make calls to
some honestly generated procedure Evali only if the adversary owns the PUF PUFi imple-
menting the Evali procedure when creating the encapsulating malicious PUF. Furthermore,
when the adversary passes such a PUF to an honest party, the adversary “loses ownership”
of PUFi and is no longer allowed to access the Evali procedure, this is similar to the unclon-
ability requirement. This is modeled by assigning an owner to each PUF, and on passing

4Since the adversary knows the code of maliciously generated PUFs, this model automatically captures
real-world scenarios where an adversary may be encapsulating other malicious PUFs inside its own.

9

an outer (encapsulating) PUF to an honest party, the adversary must automatically pass all
the inner (encapsulated) honest PUFs. Whenever an honest party is in possession of such
an adversarial PUF PUFmal and evaluates it, it receives the output of Evalmal. When the
adversary is allowed to construct encapsulating PUFS, we restrict all PUFs to be stateless.
Therefore the model with encapsulating PUFs is incomparable with the model with bounded-
stateful malicious PUFs. Further details on the modeling of malicious stateless PUFs that
may encapsulate other stateless PUFs, are provided in Appendix A.

To simplify notation, we write PUF ← Sample(1K), r = PUF(c) and assume that PUF is a
deterministic function with random output.

2.2 UC Secure Computation

The UC framework, introduced by [6] is a strong framework which gives security guarantees even
when protocols may be arbitrarily composed. In Appendix C, we give a formal definition of the
UC framework.

Commitments. A UC-secure commitment scheme UC-Com consists of the usual commitment
and decommitment algorithms, along with (straight-line) procedures allowing the simulator to ex-
tract the committed value of the adversary and to equivocate a value that the simulator committed
to. We denote these by (UC-Com.Commit, UC-Com.Decommit,UC-Com.Extract,UC-Com.Equivocate).
A formal definition of UC secure Commitments can be found in Appendix D. Damg̊ard and Sca-
furo [11] realized unconditional UC secure commitments using stateless PUFs, in the malicious
stateful PUF model. However, the scheme of [11] is insecure when adversarial parties create mali-
cious encapsulated PUFs. In Appendix K, we construct a UC secure commitment scheme that is
secure in the malicious stateless encapsulated PUF model.

OT. Ideal 2-choose-1 oblivious transfer (OT) is a two-party functionality that takes two inputs
m0,m1 from a sender and a bit b from a receiver. It outputs mb to the receiver and ⊥ to the
sender. We use Fot to denote this functionality. The ideal oblivious transfer(OT) functionality
Fot and the ideal commitment functionality Fcom are formally defined in Appendix C. Given UC
oblivious transfer, it is possible to obtain UC secure two-party computation of any functionality.
These results were obtained in prior works and are stated for completeness in Appendix I.

3 Unconditional UC Security with (Malicious) Stateless PUFs

As a warm up, we start by considering malicious stateless PUFs as in [10] and we strengthen their
protocol in order to achieve security even when the simulator does not have access to a malicious
PUF that is in possession of the adversary that created it.

Construction. Let n denote the security parameter. The protocol Π1 in Figure 2 UC-securely
and unconditionally realizes 2-choose-1 OT in the malicious stateless PUF model, between a sender
S and receiver R, with the following restrictions:

1. The random variables (x0, x1) are chosen by S independently of PUFs
5.

5This is fixed later by using coin-tossing to generate (x0, x1), see Section 4.

10

2. A (malicious) R returns to S the same PUF, PUFs that it received6.

We enforce these restrictions in this section only for simplicity and modularity purposes. We remove
them in Section 4 and Section 6 respectively.

Our protocol makes black-box use of a UC-commitment scheme, denoted by the algorithms
UC-Com.Commit and UC-Com.Decommit. We use UC-Com.Commit(a, b) to denote a commitment
to the concatenation of strings a and b. UC-secure commitments can be unconditionally realized
in the malicious stateless PUF model [11]. Formally, we prove the following theorem:

Theorem 1. The protocol Π1 in Figure 2 unconditionally UC-securely realizes Fot in the malicious
stateless PUF model.

This protocol is essentially the protocol of Dachman-Soled et al. [10], modified to enable correct
extraction of the sender’s input. The protocol as specified in [10], even though private, does not
allow for straight-line extraction of the sender’s input messages, unless one is willing to make the
strong assumption that the simulator can make queries to a (malicious) PUF that an adversary
created, even when this malicious PUF is in the adversary’s possession (i.e., the adversary is forced
not to update nor to damage/destroy the PUF).

Our main modification is to have the sender commit to his values (x0, x1) using a UC-secure
commitment scheme. In this case, it is possible for the simulator to extract (x0, x1) in a straight-
line manner from the commitment, and therefore extract the sender’s input while it remains hidden
from a real receiver. The rest of the proof follows in the same manner as [10]; recall that we already
gave an overview in Section 1.3. We defer the formal proofs of correctness and security of this
protocol to Appendix E.

4 UC-Security with (Bounded-Stateful Malicious) PUFs

Overview. A malicious stateful PUF can generate outputs as a function of its previous input
queries. For the (previous) protocol in Figure 2, note that in Step 2, SimS makes two queries (c1, c2)
to the PUF such that (c1 ⊕ c2) = (x1 ⊕ x2), where (x1, x2) are the sender’s random messages. On
the other hand, an honest receiver makes two queries (c1, c2) to the PUF such that (c1 ⊕ c2) = rv,
for an independent random variable rv.

Therefore, when combined with the sender’s view, the joint distribution of the evaluation queries
made to the PUF by SimS , differs from the joint distribution of the evaluation queries made to the
PUF by an honest receiver. Thus, a malicious sender can distinguish the two worlds by having a
malicious stateful PUF compute a reply to c2 depending on the value of the previous challenge c1.
We will call these attacks of Type I. In this section, we will describe a protocol secure against all
possible attacks where a stateful PUF computes responses to future queries as a function of prior
queries.

A stateful PUF created by the sender can also record information about the queries made by
the receiver, and replay this information to a malicious sender when he inputs a secret challenge.
For PUFs with bounded state, we view these as ‘leakage’ attacks, by considering all information

6In Section 6, we consider an even stronger model where R may encapsulate PUFs within a possibly
malicious P̂UFs. P̂UFs externally forwards some queries to PUFs and forwards the outputs to the evaluator,
while possibly replacing some or all of these outputs with other arbitrary values. We note that this covers
the case where the receiver generates P̂UFs malicious and independently of PUFs.

11

Inputs: Sender S has private inputs (m0,m1) ∈ {0, 1}2n and Receiver R has
private input b ∈ {0, 1}.

1. Sender Message: S does the following:

• Generate a PUF PUFs : {0, 1}n → {0, 1}n.

• Choose a pair of random strings (x0, x1)
$←{0, 1}2n.

• Send PUFs and (t0, t1) = UC-Com.Commit(x0, x1) to R.

2. Receiver Message: R does the following:

• Choose a pair of random strings (c0, c1)
$←{0, 1}2n.

• Compute r0 = PUFs(c0), r1 = PUFs(c1).

• Set c = cp and r = rp for p
$←{0, 1}.

• Store the pair (c, r) and send PUFs to S.

3. Sender Message:

• S sends (x0, x1) = UC-Com.Decommit(t0, t1) to R.

4. Receiver Message: R does the following:

• Abort if the decommitment does not verify correctly.

• Compute and send val = c⊕ xb to S.

5. Sender Message:

• S computes S0 = m0⊕PUFs(val⊕x0), S1 = m1⊕PUFs(val⊕x1) and sends
(S0, S1) to R.

Outputs: S has no output. R outputs mb which is computed as (Sb ⊕ r).

Figure 2: Protocol Π1 for 2-choose-1 OT in the malicious stateless PUF model.

recorded and replayed by a PUF as leakage. We will call these attacks of Type II. We describe a
protocol secure against general bounded stateful PUFs (i.e., secure against attacks of both Type I
and Type II) in Section 5.

Our Strategy. Let ` denote a polynomial upper bound on the size of the memory of any
malicious PUF created by the sender S. Our strategy to obtain secure oblivious transfer from any

12

PUF with `-bounded state is as follows: We use (the same) PUFs created by the sender, to execute
K = Θ(`) oblivious transfers in parallel. In our new protocol in Figure 3, we carefully intersperse
an additional round of coin tossing with our basic protocol from Figure 2, to obtain security against
attacks of Type I.

Specifically, we modify the protocol of Figure 2 as follows: instead of having S generate the ran-
dom strings (x0, x1), we set the protocol up so that both S and the receiver R generate XOR shares
of (x0, x1). Furthermore, R generates his shares only after obtaining the PUF and a commitment
to sender shares from S. In such a case, the PUF created by S must necessarily be independent of
the receiver shares and consequently, also independent of (x0, x1).

Recall from Section 3, that the simulator against a malicious sender succeeds if it can obtain the
output of the PUF to queries of the form (c, c⊕x0⊕x1) for a random c, whereas an honest receiver
can only make queries of the form (c1, c2) for randomly chosen (c1, c2). Since (x0, x1) appear to be
distributed uniformly at random to the PUF, the distributions of (c, c ⊕ x0 ⊕ x1) and (c1, c2) are
also statistically indistinguishable to the PUF7. Therefore, the sender simulator succeeds whenever
the honest receiver does not abort and this suffices to prove security against a malicious sender.

Finally, we note that the simulation strategy against a malicious receiver remains similar to one
of Section 3, even if the receiver has the ability to create PUFs with unbounded state.

Construction. The protocol ΠK in Figure 3 allows us to use an `-bounded stateful PUF to
obtain K secure (but one-sided leaky) oblivious transfers, such that a malicious sender can obtain
at most ` bits of additional universal leakage on the joint distribution of the receiver’s choice input
bits (b1, b2, . . . bK). Our protocol makes black-box use of a UC-commitment scheme, denoted by
the algorithms UC-Com.Commit and UC-Com.Decommit8. UC-secure commitments can be uncon-
ditionally realized in the malicious stateful PUF model [11].

Theorem 2. The protocol ΠK unconditionally UC-securely realizes K instances of OT(F [⊗K]
ot)

in an `-bounded-stateful PUF model, except that a malicious sender can obtain at most ` bits of

7We assume the simulator can control which simulator queries the adversary’s PUF records (but an
honest party cannot). Indeed, without our assumption, if a stateful PUF recorded every simulator query, a
malicious sender on getting back PUFs may observe the correlation between queries (c, c′) recorded by the
PUF when the simulator queried it, versus two random queries when an actual honest party queried it. Ours
is a natural assumption and obtaining secure OT remains extremely non-trivial even with this assumption.
We note that this requirement can be removed using standard secret sharing along with cut-and-choose,
but at the cost of a more complicated protocol with a worse OT production rate. For completeness, we
describe this protocol in Appendix L.

8The UC framework (and its variants) seemingly fail to capture the possibility of transfer of physical
devices like PUFs across different protocols, to the best of our knowledge. Within our OT protocol, we
invoke the ideal functionality for UC-secure commitments. Thus, we would like to ensure that our UC-
secure commitment scheme composes with the rest of the protocol even if PUFs created in the commitment
scheme are used elsewhere in the OT protocol and vice versa. In our protocol, the only situation where such
an issue might arise, is if one of the parties in the main OT protocol, later maliciously passes a PUF that it
received from the honest party during a commitment phase. This is avoided by requiring all parties to return
the PUFs to their original creator at the end of the decommitment phase. Note that this does not violate
security even if the PUFs are malicious and stateful. The creating party, like in previous works [11, 10] can
probe a random point before sending the PUF, and then check this point again on receiving the PUF, to
ensure that they received the correct PUF. Generic results attempting to model UC security in presence of
physical devices that can be transferred across different protocol executions have been presented in [4, 26].

13

Repeat the following protocol K times in parallel for fresh private inputs (mi
0,m

i
1) of

the sender and bi of the receiver for i ∈ [K].
Inputs: Sender S has private inputs (m0,m1) = (mi

0,m
i
1) ∈ {0, 1}2n and Receiver

R has private input b = bi ∈ {0, 1}.

1. Sender Message: S does the following.

• Generate a PUF PUFs : {0, 1}n → {0, 1}n.(Use the same PUF for all the
K parallel sessions).

• Choose a pair of random strings (x0, x1)
$←{0, 1}2n.

• Send PUFs and (t0, t1) = UC-Com.Commit(x0, x1) to R.

2. Receiver Message: R does the following.

• Choose a pair of random strings (c0, c1)
$←{0, 1}2n.

• Compute r0 = PUFs(c0), r1 = PUFs(c1).

• Set c = cp and r = rp for p
$←{0, 1} and store the pair (c, r).

• Pick and send (x̂0, x̂1)
$←{0, 1}2n along with PUFs, to S.

3. Sender Message:
S sends (x0, x1) = UC-Com.Decommit(t0, t1) to R.

4. Receiver Message: If UC-Com.Decommit(t0, t1) does not verify, abort. Else,
compute and send val = c⊕ xb⊕x̂b to S.

5. Sender Message: S does the following.

• Compute

S0 = m0 ⊕ PUFs(val⊕ x0⊕x̂0) and S1 = m1 ⊕ PUFs(val⊕ x1⊕x̂1).

• Send (S0,S1) to R.

Outputs: S has no output. R outputs mb which is computed as (Sb ⊕ r).

Figure 3: Protocol ΠK for K 2-choose-1 OTs (with at most `-bounded leakage) in the
malicious stateful PUF model. The changes from the protocol in Figure 2 are underlined.

additional universal leakage on joint distribution of the receiver’s choice bits over all F [⊗K]
ot .

Correctness is immediate from inspection.We defer the full proof of security to Appendix F.

14

5 One-Sided Correlation Extractors with Malicious Security

From Section 4, in the `-bounded stateful PUF model, we obtain K leaky oblivious transfers, such
that the sender can obtain ` bits of universal leakage on the joint distribution of the receiver’s
choice bits over all K oblivious transfers.

Because OT is reversible [45], it suffices to consider a reversed version of the above setting, i.e.,
where the receiver can obtain ` bits of additional universal leakage on the joint distribution of all
the sender’s messages over all K oblivious transfers. More formally, the leakage model we consider
is as follows:

One-Sided Leakage Model for Correlation Extractors. Here, we begin by describing
our leakage model for OT correlations formally, and then we define one-sided correlation extractors
for OT. Our leakage model is as follows:

1. K-OT Correlation Generation Phase: For i ∈ [K], the sender S obtains (xi0, x
i
1) ∈

{0, 1}2 and the receiver R gets (bi, x
i
bi

).

2. Corruption and Leakage Phase: A malicious adversary corrupts the receiver and sends
a leakage function L : {0, 1}K → {0, 1}tR . It receives L({(xi0, xi1)}i∈[K]).

Let (X,Y) be a random OT correlation (i.e., X = (x0, x1), Y = (r, xr), where (x0, x1, r) are sampled
uniformly at random.) We denote a tR-leaky version of (X,Y)K described above as ((X,Y)K)[tR].

Definition 1 ((n, p, tR, ε) One-Sided Malicious OT-Extractor). An (n, p, tR, ε) one-sided ma-
licious OT-extractor is an interactive protocol between 2 parties S and R with access to ((X,Y)n)[tR]

described above. The protocol implements p independent copies of secure oblivious transfer instances
with error ε.

In other words, we want the output oblivious transfer instances to satisfy the standard ε-
correctness and ε-privacy requirements for OT. In more detail, the correctness requirement is that
the receiver output is correct in all p instances of OT with probability at least (1− ε). The privacy
requirement is that in every instance of the output OT protocol, a corrupt sender cannot output
the receiver’s choice bit, and a corrupt receiver cannot output the ‘other message’ of the sender
with probability more than 1

2 + ε.

Theorem 3 (Extracting a Single OT). There exists a (2`+2n+1, 1, `, 2−n) one-sided OT extractor
according to Definition 1.

Theorem 4 (High Production Rate). There exists a (2`+2n, n
log2 n

, `, 1
n logn) one-sided OT extrac-

tor according to Definition 1.

We prove these theorems by giving a construction and proof of security of such extractors in
the following sections. We will make use of strong seeded extractors in our construction, and we
define such extractors below.

Definition 2 (Strong seeded extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called a
strong seeded extractor for entropy k if for any (n, k)-source X and an independent random variable

Y that is uniform over {0, 1}d, it holds that (Ext(X,Y), Y) ≈ (Um, Y).

15

Here, Um is a random variable that is uniformly distributed overm bit strings and is independent
of Y , namely (Um, Y) is a product distribution. In particular, it is known [24, 42, 15] how to
construct strong seeded extractors for any entropy k = Ω(1) with seed length d = O(log n) and
m = 0.99k output bits.

Construction. In Figure 4, we give the basic construction of an OT extractor that securely
obtains a single oblivious transfer from K = (2` + 2n) OTs, when a receiver can obtain at most `
bits of universal leakage from the joint distribution of sender inputs over all the OTs.

Let E : {0, 1}K×{0, 1}n → {0, 1} be a strong randomness (K, 2−n)-extractor for seed
length d = O(n).
Inputs: Sender S has inputs (x0, x1) ∈ {0, 1}2n and receiver R has input b ∈ {0, 1}.
Given: K = 2` + 2n OTs, such that a malicious receiver can obtain additional `
bits of leakage on the joint distribution of all sender inputs.

1. Invoking OT Correlations:

• For i ∈ [K], S picks inputs mi
0,m

i
1

$←{0, 1}.
• For i ∈ [K], S invokes the ith OT on input mi

0,m
i
1.

• For i ∈ [K], R invokes the ith OT on input (the same) choice bit b.

2. Sender Message:

• S picks random seed s
$← {0, 1}d for the strong seeded extrac-

tor E , and computes M0 = E .Ext(m1
0||m2

0||m3
0 . . .m

K
0 , s) and M1 =

E .Ext(m1
1||m2

1||m3
1 . . .m

K
1 , s), where || denotes the concatenation operator.

• S sends y0 = M0 ⊕ x0, y1 = M1 ⊕ x1 to R, along with seed s.

3. Output: R computes xb = yb ⊕ E .Ext(m1
b||m2

b||m3
b . . . ||mK

b , s).

Figure 4: (2`+ 2n, 1, `, 2−n) One-Sided Malicious Correlation Extractor.

Correctness is immediate from inspection. Intuitively, the protocol is secure against ` bits of
universal (joint) leakage because setting K = 2`+ 2n still leaves n bits of high entropy even when
the receiver can obtain 2`+ n bits of leakage. Moreover, with ` bits of additional universal leakage
over all pairs of sender inputs (m1

0,m
1
1,m

2
0, m

2
1, . . .m

K
0 ,m

K
1), the strong seeded extractor extracts

an output that is statistically close to uniform, and this suffices to mask the sender input.
We defer the formal proof of security of our protocol to Appendix G.

High Production Rate: It is possible to obtain an improved production rate at the cost of higher
simulation error. This follows using techniques developed in prior work [44, 23], and the details
can be found in Appendix H.

16

6 UC Secure Computation in the Malicious Encapsulation
Model

Let us consider the stateless protocol described in Section 3. In this protocol, the receiver must
query PUFs that he obtained from the sender on a random challenge c, before returning PUFs to
the sender. A malicious receiver cannot have queried PUFs on both c and (c ⊕ x0 ⊕ x1), because
(x0⊕x1) is chosen by the sender, independently and uniformly at random, and is revealed only after
the receiver has returned PUFs. If a malicious receiver was restricted to honestly returning the PUF
generated by the sender, by unpredictability of PUFs, the output of PUFs on (c ⊕ x0 ⊕ x1) would
be a completely unpredictable uniform random variable from the point of view of the receiver, and
this sufficed to prove sender security.

However, if a malicious receiver had no such restriction, it could possibly generate a malicious

PUF P̂UF of his own and give it to the sender, in place of the sender’s PUF that it was actually

supposed to return. The output of P̂UF would no longer remain unpredictable to the receiver and
this would lead to a total break of security. As already pointed out in [10], this can be fixed by
having the sender make “test queries” to the PUF he generates, before sending the PUF to the

receiver. Indeed, when P̂UF is generated by the receiver independently of PUFs, the response of

P̂UF on the sender’s random test query will not match the response of PUFs and the sender will
catch such a cheating receiver with overwhelming probability.

However there could be a different attack: a malicious receiver can construct P̂UF encapsulating

PUFs, such that P̂UF redirects all test queries to PUFs (and outputs the value output by PUFs on
the evaluation query), whereas it maliciously answers all protocol queries. In order to rule this out,
we ensure that the protocol queries (i.e., the input c that the receiver must query PUFs with) are
generated uniformly at random, by using coin-tossing, combined with cut-and-choose tests to ensure
that they are properly used. This is done carefully to ensure that the test queries and protocol

queries are identically distributed in the view of P̂UF (and are revealed only after the receiver has

sent P̂UF to the sender).

This ensures that if a maliciously generated P̂UF correctly answers all test queries, then with
overwhelming probability it must necessarily have answered at least one evaluation query correctly
according to the output of PUFs. At this point, an OT combiner is used to obtain one secure
instance of OT.

Let the security parameter be n. The protocol in Figure 5 UC-securely realizes 2-choose-1 OT
in a stronger model, where a malicious party is allowed to create malicious PUFs that encapsulate
other honest PUFs (see Section 2.1). We emphasize that our protocol does not require that honest
parties must have the capability to encapsulate PUFs, yet it is secure even when adversarial parties
can create encapsulated PUFs. The protocol uses a UC-commitment scheme, secure in the malicious
stateless encapsulated PUF model. We use Com to denote the ideal functionality for such a scheme.
We construct such a scheme in Section 7.

17

Inputs: Sender S has private inputs (m0,m1) ∈ {0, 1}2n and ReceiverR has private
input b ∈ {0, 1}.

1. Coin Flip I: For i ∈ [n], R picks ci1
$←{0, 1}n, sends di = UC-Com.Commit(ci1)

to S. S chooses ci2
$←{0, 1}n, sends ci2 to R. R computes ci = ci1 ⊕ ci2.

2. Sender Message: S generates PUFs : {0, 1}n → {0, 1}n, and does:

• Test Queries: For each i ∈ [n], choose TQi
$←{0, 1}n and compute TRi =

PUFs(TQi). Store the pair (TQi,TRi).

• For each i ∈ [n], choose a pair of random strings (xi0, x
i
1)

$←{0, 1}2n. Com-
pute (ti0, t

i
1) = UC-Com.Commit(xi0, x

i
1). Send (ti0, t

i
1) and PUFs to R.

3. Receiver Message: For each i ∈ [n], choose a random string (ci0)
$← {0, 1}n

and obtain ri = PUFs(ci), ri0 = PUFs(ci0). Abort if PUFs aborts, else send PUFs

to S. For i ∈ [n], pick and send (x̂i0, x̂
i
1)

$←{0, 1}2n.

4. Sender Message: S does the following.

• Verification of TQ: For each i ∈ [n], if TRi 6= PUFs(TQi), abort.

• For each i ∈ [n], send (xi0, x
i
1) = UC-Com.Decommit(ti0, t

i
1) to R.

5. Receiver Message: Abort if UC-Com.Decommit(ti0, t
i
1) does not verify for any

i ∈ [n]. Else pick bi
$←{0, 1}, compute and send vali = ci ⊕ xibi ⊕ x̂ibi to S.

6. Cut-and-choose:

• Coin Flip II: S picks rS
$←{0, 1}2K , sends tS = UC-Com.Commit(rS). R

picks and sends rR
$←{0, 1}2K . S sends rS = UC-Com.Decommit(tS), and

(S,R) use (rS ⊕ rR) to pick a subset I of indices i ∈ [n], of size K
2 .

• For i ∈ [I], R sends ci1 = UC-Com.Decommit(di).

• Verification: S computes ci = ci1⊕ci2 and checks if either vali = ci⊕xi0⊕x̂i0
OR vali = ci ⊕ xi1 ⊕ x̂i1. If not, S aborts.

7. Receiver Message: For each i ∈ [n] \ I, R sends bci = bi ⊕ b to S.

8. Sender Message: S computes S0 = m0
⊕

i∈n\I PUFs(vali ⊕ xibci ⊕ x̂ibci),

S1 = m1
⊕

i∈n\I PUFs(vali ⊕ xi1−bci ⊕ x̂i1−bci). S sends (S0, S1) to R.

Outputs: S has no output. R outputs mb := (Sb ⊕ r1 ⊕ . . .⊕ rn).

Figure 5: OT in the malicious stateless PUF model with encapsulation. We underline all
differences from the protocol in the stateless malicious PUF model.

Though the commitment scheme we construct is UC-secure, it is not immediately clear that
it composes with the rest of the OT protocol for the same reasons as were described in Section 4.

18

Namely, the UC framework seemingly does not capture the possibility of transfer of PUFs across
sub-protocols, thus we would like to ensure that our UC-commitment scheme composes with the
rest of the protocol even if PUFs created for the commitment scheme are used elsewhere.

Like in Section 4, this can be resolved by requiring both parties to return PUFs back to the
respective creators at the end of the decommitment phase, and the creators performing simple
verification checks to ensure that the correct PUF was returned. If any party fails to return the
PUF, the other party aborts the protocol. Therefore, parties cannot pass off PUFs used by some
party in a previous sub-protocol as a new PUF in a different sub-protocol.

Correctness.

Claim 1. For all (m0,m1) ∈ {0, 1}2 and b ∈ {0, 1}, the output of R equals mb.

Proof. If b = 0, bci = bi for all i, and the receiver computes:
m′0 = S0

⊕
i∈n\I r

i = S0

⊕
i∈n\I PUFs(c

i) = S0

⊕
i∈n\I PUFs(vali ⊕ xibi)

= m0

⊕
i∈n\I PUFs(vali ⊕ xibci)

⊕
i∈n\I PUFs(vali ⊕ xibi) = m0.

If b = 1, 1− bci = bi for all i, and the receiver computes:
m′1 = S1

⊕
i∈n\I r

i = S1

⊕
i∈n\I PUFs(c

i) = S1

⊕
i∈n\I PUFs(vali ⊕ xibi)

= m1

⊕
i∈n\I PUFs(vali ⊕ xi1−bci)

⊕
i∈n\I PUFs(vali ⊕ xibi) = m1.

We defer the formal proof of security of our protocol to Appendix J.

7 UC Commitments in the Malicious Encapsulation Model

In this section we construct unconditional UC commitments using stateless PUFs. The model
we consider is incomparable with respect to the one of [11] since in our model an adversary can
encapsulate honest PUFs (see Section 2.1) when creating malicious stateless encapsulated PUFs.
Note that the protocol does not require any honest party to have the ability to encapsulate PUFs,
but is secure against parties that do have this ability.

We note that it suffices to construct an extractable commitment scheme that is secure against
encapsulation. Indeed, given such a scheme, Damg̊ard and Scafuro [11] show that it is possible
to compile the extractable commitment scheme using an additional ideal commitment scheme, to
obtain a UC commitment scheme that is secure in the malicious stateless PUF model. Since the
compiler of [11] does not require any additional PUFs at all, if the extractable commitment and the
ideal commitment are secure against encapsulation attacks, then so is the resulting UC commitment.

Extractable Commitments. We describe how to construct an extractable bit commitment
scheme ExtCom = (ExtCom.Commit,ExtCom.Decommit,ExtCom.Extract) that is secure in the mali-
cious stateless PUFs model with encapsulation. We start with the extractable commitment scheme
of [11] that is secure against malicious PUFs in the non-encapsulated setting. They crucially rely
on the fact that the initial PUF (let’s call it PUFr) sent by the receiver can not be replaced by
the committer (as that would be caught using a previously computed test query). To perform ex-
traction, the simulator against a malicious committer observes the queries made by the committer
to PUFr and extracts the committer’s bit. However, in the encapsulated setting, the malicious

committer could encapsulate the receiver’s PUF inside another PUF (let’s call it P̂UFr) that, for

19

all but one query, answers with the output of PUFr. For the value that the committer is actually

required to query on, P̂UFr responds with a maliciously chosen value. Observe that in the protocol
description, this query is chosen only by the committer and hence this is an actual attack. There-

fore, except with negligible probability, all the receiver’s test queries will be answered by P̂UFr with
the output of the receiver’s original PUF PUFr. On the other hand, since the target query is no

longer forwarded by P̂UFr to the receiver’s original PUF, the simulator does not get access to the
target query and hence can not extract the committer’s bit.

To overcome this issue, we develop a new technique that forces the malicious committer to
reveal the target query to the simulator (but not to the honest receiver). After the committer

returns P̂UFr, the receiver creates a new PUF (let’s call it PUFR). Now, using the commitment,

the receiver queries PUFR on two values, one of which is guaranteed to be the output of P̂UFr
on the target query. The receiver stores these two outputs and sends PUFR to the committer.

The malicious committer now has to query PUFR with P̂UFr’s output on his target query and
commit to the value that is given in output by PUFR (using an ideal commitment scheme). In the
decommitment phase, using the previously stored values and the committer’s input bit, the receiver
can verify that the committer indeed queried PUFR on the correct value. Observe that since the
receiver has precomputed the desired output, the malicious committer will not be able to produce
an honest decommitment if he tampers with PUFR and produces a different output. Therefore, the
malicious committer must indeed query PUFR and this can be observed by the simulator and used
to extract the committer’s bit. Our scheme is described in Figure 6. We show that this scheme is
correct, statistically hiding, and extractable; and give further details in Appendix K.

8 Acknowledgements

Research supported in part by “GNCS - INdAM”, EU COST Action IC1306, NSF grants 1065276,
1118126 and 1136174, US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM
Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award,
Teradata Research Award, and Lockheed-Martin Corporation Research Award. This material is
based upon work supported in part by DARPA Safeware program. The views expressed are those
of the authors and do not reflect the official policy or position of the Department of Defense or the
U.S. Government.

The work of the 4th author has been done in part while visiting UCLA.
We thank the anonymous reviewers for valuable comments, and in particular for suggesting

some important updates to our functionality for encapsulated PUFs.

References

[1] Agrawal, S., Ananth, P., Goyal, V., Prabhakaran, M., Rosen, A.: Lower bounds in the hardware
token model. In: Theory of Cryptography - 11th Theory of Cryptography Conference, TCC
2014, San Diego, CA, USA, February 24-26, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8349, pp. 663–687. Springer (2014)

[2] Armknecht, F., Moriyama, D., Sadeghi, A., Yung, M.: Towards a unified security model for
physically unclonable functions. In: Topics in Cryptology - CT-RSA 2016 - The Cryptogra-

20

Inputs: Committer C has private input b ∈ {0, 1} and receiver R has no input.
Commitment Phase:

1. Receiver Message: R does the following:

• Generate a PUF PUFr : {0, 1}3n → {0, 1}3n.

• Test Queries : For each i ∈ [n], choose TQi
$← {0, 1}3n, and compute

TRi = PUFr(TQi). Store the pair (TQi,TRi). Send PUFr to C.
2. Committer Message: C does the following:

• Generate a PUF PUFs : {0, 1}n → {0, 1}3n.
• For each i ∈ [n], choose si ∈ {0, 1}n. Compute σsi = PUFs(si) and
σri = PUFr(σsi). Send PUFs,PUFr to R.

3. Receiver Message: R does the following:

• Verification : For each i ∈ [n], if TRi 6= PUFr(TQi), abort.

• For each i ∈ [n], choose a random string ri
$←{0, 1}3n and send ri to C.

4. Committer Message: C does the following: If b = 0, set ci = σsi for i ∈ [n],
else set ci = (σsi ⊕ ri) for i ∈ [n]. Send ci to R.

5. Receiver Message: R does the following:

• Generate a PUF PUFR : {0, 1}3n → {0, 1}3n.
• For i ∈ [n], set yi = PUFR(PUFr(ci)), zi = PUFR(PUFr(ci ⊕ ri)), send

PUFR to C.
6. Committer Message: For each i ∈ [n], C computes xi = PUFR(σri). C

computes and sends ti = IdealCom.Commit(xi) to R.

Decommitment Phase:

1. Committer Message: C does the following:

• Send b to R and for each i ∈ [n], send si, IdealCom.Decommit(xi) to R.

2. Receiver R does the following:

• For any i ∈ [n], if IdealCom.Decommit(xi) does not verify, output ⊥.
• If b = 0, ci = PUFs(si) and xi = yi for all i ∈ [n], output 0, else ⊥.
• If b = 1, ci = (PUFs(si)⊕ ri) and xi = zi for all i ∈ [n], output 1, else ⊥.

Figure 6: Protocol for Extractable Commitment in the malicious stateless PUF model with
encapsulation.

21

phers’ Track at the RSA Conference 2016, San Francisco, CA, USA, February 29 - March 4,
2016, Proceedings. Lecture Notes in Computer Science, vol. 9610, pp. 271–287. Springer (2016)

[3] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In: Proceedings of the twentieth annual ACM sympo-
sium on Theory of computing. pp. 1–10. ACM (1988)

[4] Boureanu, I., Ohkubo, M., Vaudenay, S.: The limits of composable crypto with transferable
setup devices. In: Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’15, Singapore, April 14-17, 2015. pp. 381–392. ACM
(2015)

[5] Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable functions
in the universal composition framework. In: Rogaway, P. (ed.) CRYPTO. Lecture Notes in
Computer Science, vol. 6841, pp. 51–70. Springer (2011)

[6] Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: Foundations of Computer Science (FOCS’01). pp. 136–145 (2001)

[7] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup.
In: Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007, Amsterdam,
The Netherlands, February 21-24, 2007, Proceedings. Lecture Notes in Computer Science, vol.
4392, pp. 61–85. Springer (2007)

[8] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 19–23, 2001)

[9] Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation using
tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 545–
562. Springer, Heidelberg, Germany, Istanbul, Turkey (2008)

[10] Dachman-Soled, D., Fleischhacker, N., Katz, J., Lysyanskaya, A., Schröder, D.: Feasibility and
infeasibility of secure computation with malicious pufs. In: Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 8617, pp. 405–420. Springer
(2014)

[11] Damg̊ard, I., Scafuro, A.: Unconditionally secure and universally composable commitments
from physical assumptions. In: Advances in Cryptology - ASIACRYPT 2013 - 19th Inter-
national Conference on the Theory and Application of Cryptology and Information Security,
Bengaluru, India, December 1-5, 2013, Proceedings, Part II. Lecture Notes in Computer Sci-
ence, vol. 8270, pp. 100–119. Springer (2013)

[12] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

[13] Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T.: General statistically secure com-
putation with bounded-resettable hardware tokens. In: Theory of Cryptography - 12th Theory
of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 9014, pp. 319–344. Springer (2015)

22

[14] Döttling, N., Mie, T., Müller-Quade, J., Nilges, T.: Implementing resettable uc-functionalities
with untrusted tamper-proof hardware-tokens. In: TCC. pp. 642–661 (2013)

[15] Dvir, Z., Kopparty, S., Saraf, S., Sudan, M.: Extensions to the method of multiplicities, with
applications to kakeya sets and mergers. SIAM J. Comput. 42(6), 2305–2328 (2013)

[16] Eichhorn, I., Koeberl, P., van der Leest, V.: Logically reconfigurable pufs: memory-based
secure key storage. In: Proceedings of the sixth ACM workshop on Scalable trusted computing.
pp. 59–64. STC ’11, ACM, New York, NY, USA (2011)

[17] Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cam-
bridge, UK (2001)

[18] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems.
SIAM Journal on computing 18(1), 186–208 (1989)

[19] Goldwasser, S., Micali, S., Wigderson, A.: How to play any mental game, or a completeness
theorem for protocols with an honest majority. In: Proc. of the Nienteenth Annual ACM
STOC. vol. 87, pp. 218–229 (1987)

[20] Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-
proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326.
Springer, Heidelberg, Germany, Zurich, Switzerland (Feb 9–11, 2010)

[21] Goyal, V., Maji, H.K.: Stateless cryptographic protocols. In: Ostrovsky, R. (ed.) IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA,
USA, October 22-25, 2011. pp. 678–687. IEEE Computer Society (2011)

[22] Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Fpga intrinsic pufs and their use for ip
protection. In: CHES. pp. 63–80 (2007)

[23] Gupta, D., Ishai, Y., Maji, H.K., Sahai, A.: Secure computation from leaky correlated ran-
domness. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216,
pp. 701–720. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015)

[24] Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness extractors
from parvaresh–vardy codes. J. ACM 56(4) (2009)

[25] Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using standards-
martcards. In: Proceedings of the 2008 ACM Conference on Computer and Communications
Security, CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008. pp. 491–500 (2008)

[26] Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in the tamper
proof hardware model under minimal complexity. In: Theory of Cryptography Conference
(TCC’16-B), to appear. LNCS, Springer, Heidelberg, Germany (2016)

[27] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Extracting correlations. In: 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009,
Atlanta, Georgia, USA. pp. 261–270. IEEE Computer Society (2009)

[28] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently.
In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 17–21, 2008)

23

[29] Järvinen, K., Kolesnikov, V., Sadeghi, A., Schneider, T.: Efficient secure two-party computa-
tion with untrusted hardware tokens (full version). In: Towards Hardware-Intrinsic Security -
Foundations and Practice, pp. 367–386 (2010)

[30] Järvinen, K., Kolesnikov, V., Sadeghi, A., Schneider, T.: Embedded SFE: offloading server
and network using hardware tokens. In: Financial Cryptography and Data Security, 14th
International Conference, FC 2010, Tenerife, Canary Islands, January 25-28, 2010, Revised
Selected Papers. pp. 207–221 (2010)

[31] Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Barcelona, Spain (May 20–
24, 2007)

[32] Koçabas, Ü., Sadeghi, A.R., Wachsmann, C., Schulz, S.: Poster: practical embedded remote
attestation using physically unclonable functions. In: ACM Conference on Computer and
Communications Security. pp. 797–800 (2011)

[33] Kolesnikov, V.: Truly efficient string oblivious transfer using resettable tamper-proof tokens.
In: Theory of Cryptography, 7th Theory of Cryptography Conference, TCC 2010, Zurich,
Switzerland, February 9-11, 2010. Proceedings. pp. 327–342 (2010)

[34] Lindell, Y., Pinkas, B.: A proof of security of yaos protocol for two-party computation. Journal
of Cryptology 22(2), 161–188 (2009)

[35] Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure computation
with (malicious) physically uncloneable functions. In: Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings. Lecture Notes in Computer Sci-
ence, vol. 7881, pp. 702–718. Springer (2013)

[36] Pappu, R.S., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science 297,
2026–2030 (2002)

[37] Pappu, R.S.: Physical One-Way Functions. Ph.D. thesis, MIT (2001)

[38] Rührmair, U.: On the security of puf protocols under bad pufs and pufs-inside-pufs attacks.
Cryptology ePrint Archive, Report 2016/322 (2016), http://eprint.iacr.org/

[39] Sadeghi, A.R., Visconti, I., Wachsmann, C.: Enhancing rfid security and privacy by physi-
cally unclonable functions. In: Sadeghi, A.R., Naccache, D. (eds.) Towards Hardware-Intrinsic
Security, pp. 281–305. Information Security and Cryptography, Springer Berlin Heidelberg
(2010)

[40] Sadeghi, A.R., Visconti, I., Wachsmann, C.: Puf-enhanced rfid security and privacy. In: Work-
shop on Secure Component and System Identification (SECSI) (2010)

[41] Standaert, F.X., Malkin, T.G., Yung, M.: Does physical security of cryptographic devices need
a formal study?(invited talk). In: International Conference on Information Theoretic Security.
pp. 70–70. Springer (2008)

[42] Ta-Shma, A., Umans, C.: Better condensers and new extractors from parvaresh-vardy codes.
In: Proceedings of the 27th Conference on Computational Complexity, CCC 2012, Porto,
Portugal, June 26-29, 2012. pp. 309–315. IEEE (2012)

24

http://eprint.iacr.org/

[43] Tuyls, P., Batina, L.: Rfid-tags for anti-counterfeiting. In: CT-RSA. pp. 115–131 (2006)

[44] Vadhan, S.P.: Constructing locally computable extractors and cryptosystems in the bounded-
storage model. Journal of Cryptology 17(1), 43–77 (Jan 2004)

[45] Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) EURO-
CRYPT. Lecture Notes in Computer Science, vol. 4004, pp. 222–232. Springer (2006)

A Formal Models for PUFs

While we discuss the physical behaviour of PUFs, and their various properties in detail in Ap-
pendix B, here, we describe the formal modelling of various honest, malicious and encapsulating
PUFs.

We model honest PUFs similar to prior work. The ideal functionality for honest PUFs is
described in Figure 7. We assume that in situations where Pi is required to send a message of the
form (. . . , Pi, . . .), the ideal functionality checks that the message is indeed coming from party Pi,
if not the ideal functionality FHPUF turns into waiting state.

Modeling Malicious PUFs. We model malicious PUFs as in [35]. Their ideal functional-
ity is parameterized by two PUF families in order to handle honestly and maliciously generated
PUFs: The honestly generated family is a pair (Samplenormal,Evalnormal) and the malicious one is
(Samplemal,Evalmal). Whenever a party Pi initializes a PUF, then it specifies if it is an honest or
a malicious PUF by sending mode ∈ {nor,mal} to the functionality FPUF. The ideal functionality
then initialises the appropriate PUF family and it also stores a tag nor or mal representing this
family. Whenever the PUF is evaluated, the ideal functionality uses the evaluation algorithm that
corresponds to the tag.

The handover procedure is identical to the original formulation of Brzuska et al., where each
PUF has a status flag ∈ {trans(R), notrans} that indicates if a PUF is in transit or not. A PUF
that is in transit can be queried by the adversary. Thus, whenever a party Pi sends a PUF to Pj ,
then the status flag is changed from notrans to trans and the attacker can evaluate the PUF. At
some point, the attacker sends readyPUF to the ideal functionality to indicate that it is not querying
the PUF anymore. The ideal functionality then hands the PUF over to Pj and changes the status
flag back to notrans. The party Pj may evaluate the PUF. Finally, when the attacker sends the
message receivedPUF to the ideal functionality, then FPUF sends receivedPUF to Pi in order to notify
Pi that the handover is over. The ideal functionality for malicious PUFs is shown in Figure 8. We
refer the reader to [35] for more details on the different properties of malicious PUFs.

We additionally allow malicious PUFs to maintain poly(n) a-prior bounded memory. This is
done by allowing Evalmal to be a stateful procedure.

25

FHPUF uses PUF family P = (Sample,Eval) with parameters (rg, dnoise, dmin,m). It runs
on input the security parameter 1K , with parties P = {P1, . . . , Pn} and adversary S.

• When a party P̂ ∈ P∪{S} writes (initPUF, sid, P̂) on the input tape of FHPUF, FHPUF

checks whether L already contains a tuple (sid, ∗, ∗, ∗, ∗):
– If this is the case, then turn into the waiting state.

– Else, draw id← Samplemode(1
K) from the PUF family. Put (sid, id, P̂ , notrans)

in L and write (initializedPUF, sid) on the input tape of P̂ .

• When party Pi writes (evalPUF, sid, Pi, q) on FHPUF’s input tape, FHPUF checks if
there exists a tuple (sid, id, Pi, notrans) in L.

– If not, then turn into waiting state.

– Else, run a ← Evalmode(1
K , id, q). Write (responsePUF, sid, q, a) on Pi’s input

tape.

• When a party Pi sends (handoverPUF, sid, Pi, Pj) to FHPUF, check if there exists a
tuple (sid, ∗, Pi, notrans) in L.

– If not, then turn into waiting state.

– Else, modify the tuple (sid, id, Pi, notrans) to the updated tuple (sid, id, ⊥,
trans(Pj)). Write (invokePUF, sid, Pi, Pj) on Pi’s input tape.

• When the adversary sends (evalPUF, sid, Pi, q) to FHPUF, check if L contains a tuple
(sid, id, ⊥, trans(∗)).

– If not, then turn into waiting state.

– Else, run a← Evalmode(1
K , id, q) and return (responsePUF, sid, q, a) to Pi.

• When the adversary sends (readyPUF, sid, Pi) to FHPUF, check if L contains the tuple
(sid, id, mode, ⊥, trans(Pj)).

– If not found, turn into the waiting state.

– Else, change the tuple (sid, id, mode, ⊥, trans(Pj)) to (sid, id, Pi, notrans)
and write (handoverPUF, sid, Pi) on Pj ’s input tape and store the tuple
(receivedPUF, sid, Pi).

• When the adversary sends (receivedPUF, sid, Pi) to FHPUF, check if the tuple
(receivedPUF, sid, Pi) has been stored. If not, return to the waiting state. Else,
write this tuple to the input tape of Pi.

Figure 7: The ideal functionality FHPUF for honest PUFs.

26

FMPUF uses PUF families P1 = (Samplenormal,Evalnormal) with parameters
(rg, dnoise, dmin,m), and P2 = (Samplemal,Evalmal). It runs on input the security parameter
1K , with parties P = {P1, . . . , Pn} and adversary S.

• When a party P̂ ∈ P∪{S} writes (initPUF, sid, mode, P̂) on the input tape of FMPUF,
where mode ∈ {normal, mal}, then FMPUF checks whether L already contains a
tuple (sid, ∗, ∗, ∗, ∗): If this is the case, then turn into the waiting state. Else, draw
id ← Samplemode(1

K) from the PUF family. Put (sid, id, mode, P̂ , notrans) in L and
write (initializedPUF, sid) on the input tape of P̂ .

• When party Pi ∈ P writes (evalPUF, sid, Pi, q) on FMPUF’s input tape, check if there
exists a tuple (sid, id, mode, Pi, notrans) in L. If not, then turn into waiting state.
Else, run a← Evalmode(1

K , id, q). Write (responsePUF, sid, q, a) on Pi’s input tape.

• When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a
tuple (sid, ∗, ∗, Pi, notrans) in L. If not, then turn into waiting state. Else, modify
the tuple (sid, id, mode, Pi, notrans) to the updated tuple (sid, id, mode, ⊥, trans(Pj)).
Write (invokePUF, sid, Pi, Pj) on Pi’s input tape to indicate that a handover occurred
between Pi and Pj .

• When the adversary sends (evalPUF, sid, Pi, q) to FMPUF, check if L contains a tuple
(sid, id, mode, ⊥, trans(∗)) or (sid, id, mode, Pi, notrans). If not, then turn into waiting
state. Else, run a← Evalmode(1

K , id, q) and return (responsePUF, sid, q, a) to Pi.

• When the adversary sends (readyPUF, sid, Pi) to FMPUF, check if L contains the
tuple (sid, id, mode, ⊥, trans(Pj)). If not found, turn into the waiting state. Else,
change the tuple (sid, id, mode, ⊥, trans(Pj)) to (sid, id, mode, Pj , notrans) and write
(handoverPUF, sid, Pi) on Pj ’s input tape and store the tuple (receivedPUF, sid, Pi).

• When the adversary sends (receivedPUF, sid, Pi) to FMPUF, check if the tuple
(receivedPUF, sid, Pi) has been stored. If not, return to the waiting state. Else,
write this tuple to the input tape of Pi.

Figure 8: The ideal functionality FMPUF for malicious PUFs.

Modeling Encapsulating PUFs. We model malicious PUFs that can encapsulate function-
alities as in [35, 9]. This functionality formalizes the intuition that an honest user can create a PUF
implementing a random function, but an adversary given the PUF can only observe its input/output
characteristics.

27

FE-PUF uses PUF families P1 = (Samplenormal,Evalnormal) with parameters
(rg, dnoise, dmin,m), and P2 = (Samplemal,Evalmal). It runs on input the security parameter
1K , with parties P = {P1, . . . , Pn} and adversary S corrupting some parties.

• When a party Pi ∈ P∪{S} writes (initPUF, sid, mode, Pi) on the input tape of FE-PUF,
where mode ∈ {normal, mal}, then FE-PUF checks whether L already contains a
tuple (sid, id, ∗, ∗, ∗, ∗) for some id. If it does, turn to waiting state. Else, draw
id ← Samplemode(1

K) from the PUF family. Put (sid, id, mode, Pi, notrans) in L and
write (initializedPUF, sid) on the input tape of Pi. If any of the checks failed, turn to
waiting state.

• When the adversary Pi writes reassign(sid, sid′, Pi) on the input tape of FE-PUF, check
if there exists a tuple (sid, id, mode, Pi, notrans), and check that L does not already
contains a tuple (sid, id, ∗, ∗, ∗, ∗) for some id. If either of the conditions are not met,
turn to waiting state. Else, replace the first tuple with (sid′, id, mode, Pi, notrans).

• When the adversary Pi writes (encapPUF, sid, sid′, Pi) on the input tape of FE-PUF,
check if there exist tuples (sid, ∗, ∗, Pi, notrans) and (sid′, ∗, ∗, Pi, notrans). If such
tuples exist, set owner(sid) = sid′ a.

• When party Pi sends (handoverPUF, sid, Pi, Pj) to FE-PUF, check if there exists a tuple
(sid, ∗, ∗, Pi, notrans) in L. If not, then turn into waiting state. Else, modify the tuple
(sid, id, mode, Pi, notrans) to (sid, id, mode, ⊥, trans(Pj)). Write (invokePUF, sid, Pi, Pj)
on Pi’s input tape b.

• When a party Pi ∈ P∪ {S} writes (evalPUF, sid, Pi, q) on FE-PUF’s input tape, check
if there exists a tuple (sid, id, mode, Pi, notrans) or (sid, id, mode,⊥, trans(∗)) in L.
If not, then turn into waiting state. Else, run a ← Evalmode(1

K , id, q). Write
(responsePUF, sid, q, a) on Pi’s input tape.

• The Evalmal procedure can either makes calls to Evalnormal, or can write
(evalPUF, sid∗, sid, q∗) on FE-PUF’s input tape. If Evalmal writes (evalPUF, sid∗, sid, q∗)
on FFE-PUF

’s input tape, check if owner(sid∗) = sid. If not, turn to waiting state.
Else, like the previous bullet, check if there exists a tuple (sid∗, id, mode, Pi, notrans)
or (sid∗, id, mode,⊥, trans(∗)) in L. If not, then turn into waiting state. Else, run
a← Evalmode(1

K , id, q) and return (responsePUF, sid∗, q, a) as output to sid.

• When the adversary sends (readyPUF, sid, Pi) to FE-PUF, check if L contains
(sid, id, mode, ⊥, trans(Pj)). If not, turn into waiting state. Else, change
(sid, id, mode, ⊥, trans(Pj)) to (sid, id, mode, Pj , notrans), write (handoverPUF, sid, Pi)
on Pj ’s input tape and store (receivedPUF, sid, Pi).

• When the adversary sends (receivedPUF, sid, Pi) to FE-PUF, check if
(receivedPUF, sid, Pi) has been stored. If not, return to waiting state. Else,
write this tuple to the input tape of Pi.

aIntuitively, when a (malicious) party encapsulates a PUF, this sets the outer PUF as owner of the
inner PUF. Even the adversary can access the inner PUF via evaluation queries to outer PUF. This step
permits multiple iterative encapsulations.

bHandover does not change the owner (outer PUF) of an (inner) encapsulated PUF.

Figure 9: The ideal functionality FE-PUF for malicious PUFs that may encapsulate PUFs.

28

FE-PUF models the PUF (sent by party Pi to party Pj) encapsulating some functionality Mij .
The changes from the previous definition [35] that we make is that Mij is now an oracle machine
(instead of a functionality) which can make evaluation calls to other PUFs itself. The ideal func-
tionality for malicious PUFs that could possibly encapsulate honest PUFs, is described in Figure 9.
FE-PUF models the following sequence of events: (1) a party Pi samples a random PUF from the
challenge space, (2) Pi then gives this PUF to another party Pj (the receiver) who can use the PUF
as a black-box implementing Mij , (3) On giving Mij , Pi loses oracle access to all PUFs of which it
was previously the owner but which Mij has oracle access to. Figure 9 has the formal description
of FE-PUF based on such an algorithm Mij .

We assume that every PUF has a single calling procedure known as its owner. This owner can
either be a party, or another PUF (in the case of adversarially generated PUFs). This models (refer
to the first bullet in Figure 9) the fact that an adversary that receives a PUF implementing Mxy can
either keep the PUF to make calls later or incorporate the functionality of this PUF in a black-box
manner into another (maliciously created) PUF, but cannot do both. The evaluation procedure for
a malicious encapsulating outer PUF, carefully checks that the outer PUF has ownership of inner
PUFs (refer the second bullet in Figure 9), before allowing the malicious outer evaluation procedure
oracle access to any inner PUF. The handover operation (described in the third bullet in Figure 9)
is similarly carefully modified to ensure that the party that receives an encapsulated PUF can only
access the inner PUF via evaluation queries to the outer PUF. Each PUF is uniquely identified by
an identifier known as id.

Finally, we note that our model may also allow an adversary to “dismount” a PUF, i.e., separate
out its inner component PUFs. For simplicity, we choose to not formalize this requirement. Our
protocols trivially remain secure in this model since we never require the honest parties to hand
over any “encap”-PUFs back to the adversary, where an “encap”-PUF is a malicious PUF that may
be encapsulating honest PUFs.

B Physically Unclonable Functions: Modeling

In this section we describe PUFs, mostly following definitions given in [5]. A PUF is a noisy physical
source of randomness, whose randomness property comes from an uncontrollable manufacturing
process. A PUF is evaluated with a physical stimulus, called the challenge, and its physical output,
called the response, is measured. Since the processes involved are physical, the function implemented
by a PUF can not (necessarily) be modeled as a mathematical function, neither can be considered
computable in PPT. Moreover, the output of a PUF is noisy, namely, querying a PUF twice with
the same challenge, could yield to different outputs. The mathematical formalization of a PUF due
to [5] is the following.

A PUF-family P is a pair of (not necessarily efficient) algorithms Sample and Eval, and is
parameterized by the bound on the noise of PUF’s response dnoise and the range of the PUF’s
output rg. Algorithm Sample abstracts the PUF fabrication process and works as follows. On
input the security parameter, it outputs a PUF-index id from the PUF-family satisfying the security
property (that we define soon) according to the security parameter. Algorithm Eval abstracts the
PUF-evaluation process. On input a challenge q, it evaluates the PUF on q and outputs the response
a of length rg. The output is guaranteed to have bounded noise dnoise, meaning that, when running
Eval(1K , id, q) twice, the Hamming distance of any two responses a1, a2 is smaller than dnoise(K).
Without loss of generality, we assume that the challenge space of a PUF is a full set of strings of a

29

certain length.

Definition 3 (Physically Unclonable Functions). Let rg denote the size of the range of the PUF
responses of a PUF-family and dnoise denote a bound of the PUF’s noise. P = (Sample,Eval) is a
family of (rg, dnoise)-PUF if it satisfies the following properties.

• Index Sampling. Let IK be an index set. On input the security parameter K, the sampling
algorithm Sample outputs an index id ∈ IK following a not necessarily efficient procedure.
Each id ∈ IK corresponds to a set of distributions Did. For each challenge q ∈ {0, 1}K , Did

contains a distribution Did(q) on {0, 1}rg(K)
. Did is not necessarily an efficiently sampleable

distribution.

• Evaluation. On input the tuple (1K , id, q), where q ∈ {0, 1}K , the evaluation algorithm Eval

outputs a response a ∈ {0, 1}rg(K)
according to distribution Did(q). It is not required that

Eval is a PPT algorithm.

• Bounded Noise. For all indexes id ∈ IK , for all challenges q ∈ {0, 1}K , when run-
ning Eval(1K , id, q) twice, the Hamming distance of any two responses a1, a2 is smaller than
dnoise(K).

In the paper we use PUFid(q) to denote Did(q). When not misleading, we omit id from PUFid,
using only the notation PUF.
Security of PUFs. We assume that PUFs enjoy the properties of unclonability and unpredictabil-
ity. Unpredictability is modeled via an entropy condition on the PUF distribution. Namely, given
that a PUF has been measured on a polynomial number of challenges, the response of the PUF
evaluated on a new challenge has still a significant amount of entropy. Notice that unpredictability
as defined here implies mild forms of unclonability [5]. In the following we recall the concept of
average min-entropy.

Definition 4 (Average min-entropy). The average min-entropy of the measurement PUF(q) con-
ditioned on the measurements of challenges Q = (q1, . . . , qpoly(n)) is defined by

H̃∞(PUF(q)|PUF(Q))

= − log
(
Eak←PUF(qk)[max

a
Pr
[

PUF(q) = a|a1 = PUF(q1), . . . , apoly(n) = PUF(qpoly(n))
]
]
)

= − log
(
Eak←PUF(qk)[2

H∞(PUF(q)=a|a1=PUF(q1),...,apoly(n)=PUF(qpoly(n))]
)

where the probability is taken over the choice of id from IK and the choice of possible PUF responses
on challenge q. The term PUF(Q) denotes a sequence of random variables PUF(q1), . . . ,PUF(qpoly(n))
each corresponding to an evaluation of the PUF on challenge qk, for 1 ≤ k ≤ poly(n).

Unpredictability. A (rg, dnoise)-PUF family P = (Sample,Eval) for security parameter K is

(dmin(K),m(K))-unpredictable if for any q ∈ {0, 1}K and challenge list Q = (q1, . . . , qpoly(n)), one
has that, if for all 1 ≤ k ≤ poly(n) the Hamming distance satisfies disham(q, qk) ≥ dmin(K), then
the average min-entropy satisfies H̃∞(PUF(q)|PUF(Q)) ≥ m(K), where PUF(Q) denotes a sequence
of random variables PUF(q1), . . . ,PUF(qpoly(n)) each corresponding to an evaluation of the PUF on
challenge qk. Such a PUF-family is called a (rg, dnoise, dmin,m)-PUF family.

30

Fuzzy Extractors. The output of a PUF is noisy, that is, feeding it with the same challenge
twice may yield distinct, but still close, responses. Fuzzy extractors of Dodis et al. [12] are applied
to the outputs of the PUF to convert such noisy, high-entropy measurements into reproducible
randomness.

Let U` denote the uniform distribution on `-bit strings. Let M be a metric space with the
distance function dis: M×M→ R+.

Definition 5 (Fuzzy Extractors). A (m, `, t, ε)-fuzzy extractor is a pair of efficient randomized
algorithms (FuzGen,FuzRep). The algorithm FuzGen on input w ∈M, outputs a pair (p, st), where

st ∈ {0, 1}` is a secret string and p ∈ {0, 1}∗ is a helper data string. The algorithm FuzRep, on
input an element w′ ∈M and a helper data string p ∈ {0, 1}∗ outputs a string st. A fuzzy extractor
satisfies the following properties.

• Correctness. For all w,w′ ∈M, if dis(w,w′) ≤ t and (st, p)
$← FuzGen, then FuzRep(w′, p) =

st.

• Security. For any distribution W on the metric space M, that has min-entropy m, the first
component of the random variable (st, p), defined by drawing w according to W and then
applying FuzGen, is distributed almost uniformly, even given p, i.e., SD((st, p), (U`, p)) ≤ ε.

Given a (rg(K), dnoise(K), dmin(K),m(K))-PUF family with dmin(K) = o(K/ logK), a matching
fuzzy extractor has as parameters `(K) = K and t(K) = dnoise(K). The metric space M is the
range {0, 1}rg with Hamming distance disham. We call such PUF family and fuzzy extractor as
having matching parameters, and the following properties are guaranteed.

• Well-Spread Domain. For all polynomial p(K) and all set of challenges q1, . . . , qp(K), the
probability that a randomly chosen challenge is within distance smaller than dmin with any
qk, for 1 ≤ k ≤ K is negligible.

• Extraction Independence. For all challenges q1, . . . , qp(K), and for a challenge q such that
dis(q, qk) > dmin for 1 ≤ k ≤ p(K), it holds that the PUF evaluation on q and subsequent
application of FuzGen yields an almost uniform value st even if p is observed.

• Response consistency. Let a, a′ be the responses of PUF when queried twice with the

same challenge q, then for (st, p)
$← FuzGen(a) it holds that st← FuzRep(a′, p).

Unclonability. We define unclonability as in [5]. Consider an adversary A that wishes to
clone a PUF PUF1 sampled from a PUF family PUF while having access to several other PUFs
PUF2, . . . ,PUFn from the same family. A family PUF is said to be clonable if there exists a proba-
bilistic polynomial time algorithm (PPT) A such that for all PPT distinguishers D, the advantage
of the distinguisher in the following game is negligible in λ.
Unc(PUF,A, λ)

• Learning Phase: Proceeding adaptively, the adversary A has access to an oracle Sample
which, given an index i, draws a PUF PUFi from the family according to Sample as well as
to Eval oracles that evaluate PUFi. The index of the first sampling query is denoted by i0.

31

• Challenge Phase: Eventually, we withdraw the adversarys possibility to query PUFi0 by
withdrawingA’s access to the Eval oracle of PUFi0 . A can now be queried with input challenge
values c. For all challenges c, A is required to output answers r that are (computationally)
indistinguishable from answers given by PUFi0 . That is, for any distinguisher D that is given
two oracles that are either both equal to the Eval algorithm of PUFi0 , or one oracle is A and
one oracle is the Eval algorithm of PUFi0 , the advantage of D is equal to:

Pr[DPUFi0
,A = 1]− Pr[DPUFi0

,PUFi0 = 1].

Definition 6. (Unclonability) A family of PUFs PUF = (Sample,Eval) is said to be unclonable if
it is not clonable.

C The UC Framework and the Ideal Functionalities

For simplicity, we define the two-party protocol syntax, and then informally review the two-party
UC-framework, which can be extended to the multi-party case. For more details, see [6].

Protocol syntax. Following [18] and [17], a protocol is represented as a system of probabilistic
interactive Turing machines (ITMs), where each ITM represents the program to be run within a
different party. Specifically, the input and output tapes model inputs and outputs that are received
from and given to other programs running on the same machine, and the communication tapes
model messages sent to and received from the network. Adversarial entities are also modeled as
ITMs.

The construction of a protocol in the UC-framework proceeds as follows: first, an ideal func-
tionality is defined, which is a “trusted party” that is guaranteed to accurately capture the desired
functionality. Then, the process of executing a protocol in the presence of an adversary and in a
given computational environment is formalized. This is called the real-life model. Finally, an ideal
process is considered, where the parties only interact with the ideal functionality, and not amongst
themselves. Informally, a protocol realizes an ideal functionality if running of the protocol amounts
to “emulating” the ideal process for that functionality.

Let Π = (P1, P2) be a protocol, and F be the ideal-functionality. We describe the ideal and
real world executions.

The real-life process. The real-life process consists of the two parties P1 and P2, the environ-
ment Z, and the adversary A. Adversary A can communicate with environment Z and can corrupt
any party. When A corrupts party Pi, it learns Pi’s entire internal state, and takes complete control
of Pi’s input/output behavior. The environment Z sets the parties’ initial inputs. Let REALΠ,A,Z
be the distribution ensemble that describes the environment’s output when protocol Π is run with
adversary A.

We also consider a G-hybrid model, where the real-world parties are additionally given access to
an ideal functionality G. During the execution of the protocol, the parties can send inputs to, and
receive outputs from, the functionality G. We will use REALGΠ,A,Z to denote the distribution of the
environment’s output in this hybrid execution.

32

The ideal process. The ideal process consists of two “dummy parties” P̂1 and P̂2, the ideal
functionality F , the environment Z, and the ideal world adversary Sim, called the simulator. In
the ideal world, the uncorrupted dummy parties obtain their inputs from environment Z and
simply hand them over to F . As in the real world, adversary Sim can corrupt any party. Once
it corrupts party P̂i, it learns P̂i’s input, and takes complete control of its input/output behavior.
Let IDEALFSim,Z be the distribution ensemble that describes the environment’s output in the ideal
process.

Definition 7. (UC-Realizing an Ideal Functionality) Let F be an ideal functionality, and Π be a
protocol. We say that Π UC-realizes F in the G-hybrid model if for any hybrid-model PPT
adversary A, there exists an ideal process expected PPT adversary Sim such that for every PPT
environment Z:

{IDEALF,Sim,Z(n, z)}n∈N,z∈{0,1}∗ ∼ {REALGΠ,A,Z(n, z)}n∈N,z∈{0,1}∗ (1)

Note that the above equation, says that in the ideal world, the simulator Sim has no access to
the ideal functionality G. However, when G is a set-up assumption, this is not necessarily true and
the simulator may have access to G even in the ideal world. Indeed, there exist different formulations
of the UC framework, capturing different requirements on the set-assumptions (e.g., [7, 5]). In [7]
for example, the set-up assumption is global, which means that the environment has direct access
to the set-up functionality G. Hence, the simulator Sim needs to have oracle access to G as well.
In [5] they assume that Sim cannot simulate (program) a PUF, and thus it needs access to the
ideal functionality FPUF. [5] however restricts the access of the environment to FPUF. Z has not
permanent access to FPUF.

Oblivious Transfer Functionality. Oblivious Transfer (OT) is a two-party game in which
a sender holds a pair of strings (s0, s1), and a receiver needs to obtain one string according to its
input bit b. The transfer of the desired string is oblivious in the sense that the sender does not know
the string obtained by the receiver, while the receiver obtaining one string gains no information
about the other one. The OT Functionality Fot is shown in Fig. 10.

Functionality Fot

Fot running with an oblivious sender S a receiver R and an adversary Sim proceeds as
follows:

• Upon receiving a message (send, sid, s0, s1, S,R) from S where each s0, s1 ∈ {0, 1}K ,
record the tuple (sid,s0, s1) and send (send, sid) to R and Sim. Ignore any subse-
quent send messages.

• Upon receiving a message (receive, sid, b) from R, where b ∈ {0, 1} send (sid, sb) to
R and Sim and halt. (If no (send,·) message was previously sent do nothing).

Figure 10: The Oblivious Transfer Functionality Fot.

33

Commitment Functionality. The ideal functionality for a commitment scheme as presented
in [8], is depicted in Fig. 11.

Functionality Fcom

Fcom running with parties P1, . . . , Pm and an adversary Sim proceeds as follows:

• Commitment Phase: Upon receiving a message (commit, sid, Pi, Pj , b) from Pi

where b ∈ {0, 1}, record the tuple (sid, Pi, Pj , b) and send the message (receipt,
sid, Pi, Pj) to Pj and Sim. Ignore any subsequent commit messages.

• Decommit Phase: Upon receiving (open,sid, Pi, Pj) from Pi, if the tuple
(sid, Pi, Pj , b) is recorded then send (open,sid, Pi, Pj , b) to Pj and to Sim and halt.
Otherwise ignore the message.

Figure 11: The Commitment Functionality Fcom.

D UC-Secure Commitments

We denote by Faux an auxiliary setup functionality accessed by the real world parties and the
extractor.

Definition 8. (Ideal Commitment Scheme in the Faux-hybrid model). A commitment scheme run by
two parties - the sender S and receiver R is a tuple of PPT algorithms Com = (Commit,Decommit)
(which may be interactive) having access to an ideal setup functionality Faux, implementing the fol-
lowing two-phase functionality. Given an input b ∈ {0, 1} to S, in the first phase called commitment
phase, S runs the algorithm Commit on input b to produce the commitment c and sends this to R.
In the second phase, called the decommitment phase, S runs the algorithm Decommit on inputs
(b, c) to produce an output (d, b) that is sent to R. R finally outputs “accept” or “reject” depending
on the values of (c, d, b). Com is an ideal commitment scheme if it satisfies the following.

1. Completeness: For any b ∈ {0, 1}, if S and R are honest, R accepts the commitment c
and the decommitment (d, b) with probability 1.

2. Statistical Hiding: For any malicious receiver R∗, after the commitment phase, the view
of R∗ when S commits to bit 0 is statistically indistinguishable from the view of R∗ when S
commits to bit 1.

3. Statistical Binding: For any malicious committer S∗, there exists a negligible function
ε, such that S∗ succeeds in the following game with probability at most ε(n) where n is
the security parameter: On security parameter n, S∗ interacts with R in the commitment
phase to obtain the commitment c. Then, in the decommitment phase, in one case S∗ runs
Decommit(0, c) to produce (d0, 0) and in the other case runs Decommit(1, c) to produce (d1, 1).
S∗ succeeds if R outputs ”accept” in both cases.

34

Definition 9 (Interface Access to an Ideal Functionality Faux). Let π = (P1,P2) be a two party
protocol in the Faux-hybrid model. That is, parties P1 and P2 need to query the ideal functionality
Faux in order to carry out the protocol. An algorithmM has interface access to the ideal functionality
Faux with respect to protocol π if all queries made by either party P1 or P2 to Faux during the protocol
execution can be observed (but not answered) byM andM has oracle access to Faux. Consequently,
Faux can be a non programmable and non PPT functionality.

Definition 10 (Ideal Extractable Commitment Scheme in the Faux Model). ExtCom = (ExtCom.Commit,
ExtCom.Decommit,ExtCom.Extract) is an Ideal Extractable Commitment Scheme in the Faux model
if (ExtCom.Commit,ExtCom.Decommit) is an ideal commitment scheme and there exists a straight
line strict polynomial time extractor E having interface access to Faux, that runs the commitment
phase only and outputs a value b∗ ∈ {0, 1,⊥} such that, for all malicious committers S∗, the
following properties are satisfied:

1. Simulation: The view generated by the interaction between E and S∗ is statistically indis-
tinguishable from the view generated when S∗ interacts with the honest receiver R.

2. Extraction: Let c be a valid output of the commitment phase run between S∗ and E. If E
outputs ⊥, then the probability that S∗ will provide an accepting decommitment is negligible.

3. Binding: If b∗ 6= ⊥, then the probability that S∗ decommits to a bit b 6= b∗ is negligible.

Definition 11 (Ideal Equivocal Commitment Scheme in the Faux Model). EqvCom = (EqvCom.Commit,
EqvCom.Decommit,EqvCom.Equivocate) is an Ideal Equivocal Commitment Scheme in the Faux

model if (EqvCom.Commit,EqvCom.Decommit) is an ideal commitment scheme and there exists a
straight line strict polynomial time simulator Sim having interface access to Faux, that runs the com-
mitment phase only such that, for all malicious receivers R∗, the following properties are satisfied:

1. Simulation: The view generated by the interaction between Sim and R∗ is statistically in-
distinguishable from the view generated when R∗ interacts with the honest committer S.

2. Equivocation: Let c be a valid output of the commitment phase run between Sim and R∗.
For all b ∈ {0, 1}, probability that Sim generates an invalid decommitment of c with respect
to b is negligible.

3. Hiding: Let c be a valid output of the commitment phase. The probability that R∗ can
compute b ∈ {0, 1} just given c such that there exists a decommitment of c with respect to
input b is ε-close to 1

2 where ε is a negligible function.

Definition 12 (UC-Secure Commitment Scheme in the Faux Model). UC-Com = (UC-Com.Commit,UC-Com.Decommit,UC-Com.Extract,UC-Com.Equivocate)
is a UC-Secure Commitment Scheme in the Faux model if:
(UC-Com.Commit,UC-Com.Decommit,UC-Com.Extract) is an ideal extractable commitment scheme
and, (UC-Com.Commit,UC-Com.Decommit,UC-Com.Equivocate) is an ideal equivocal commitment
scheme according to the above definitions.

E Proof of Security for OT in Malicious Bounded Stateless
PUF Model

In this section, we give the formal proof of Theorem 1.

35

Claim 2 (Correctness). For all (m0,m1) ∈ {0, 1}2n and b ∈ {0, 1}, the output of R equals mb.

Proof. The honest receiver computes Sb⊕r = (mb ⊕ PUFs(val⊕ xb))⊕r = (mb ⊕ PUFs(c⊕ xb ⊕ xb))⊕
r = (mb ⊕ PUFs(c))⊕ r = mb ⊕ r ⊕ r = mb.

Receiver Security. Let the environment be denoted by ZS . Initially, the environment chooses
a bit b ∈ {0, 1} and sends it to the honest receiver R as his input. The strategy for the simulator
SimS against a malicious sender is described in Figure 12.

1. Sender Message:

• SimS obtains (t0, t1) = UC-Com.Commit(x0, x1) along with PUFs from ZS .

2. Receiver Message:
SimS does the following:

• Run UC-Com.Extract(t0, t1) to obtain (x′0, x
′
1).

• Choose a random string c
$←{0, 1}n.

• Compute r = PUFs(c) and r′ = PUFs(c⊕ x′0 ⊕ x′1).

• Store the pairs (c, r) and (c⊕ x′0 ⊕ x′1, r
′) and send PUFs to ZS .

3. Sender Message:

• ZS sends (x0, x1) = UC-Com.Decommit(t0, t1) to SimS .

4. Receiver Message:
SimS does the following:

• If (x′0, x
′
1) 6= (x0, x1), abort.

• Compute and send val = c⊕ x0 to ZS .

5. Sender Message:

• ZS sends (S0,S1) to SimS .

6. Message to Fot:

• SimS computes m0 = (S0 ⊕ r) and m1 = (S1 ⊕ r′).

• Send (m0,m1) to Fot which then outputs mb to the receiver.

Figure 12: Simulation strategy against a malicious sender.

Claim 3. The simulation against a malicious sender is statistically secure for the strategy given in

36

Figure 12.

Proof. Let random variable abort denote whether the protocol is aborted in step 4. The view of ZS is

the joint distribution
(

PUFs, abort, val,mb

)
. We show that this view is statistically indistinguishable

in the real and ideal worlds.
PUFs is created by ZS . Note that in step 2, SimS uses the honest receiver strategy to return

PUFs. Therefore, PUFs received by ZS is identical in both worlds. In the real world, the protocol
aborts in step 4 only if the decommitment does not verify. In the ideal world, SimS aborts in step 4
only if the values (x′0, x

′
1) 6= (x0, x1). The extraction property of the commitment scheme guarantees

that if the real world does not abort, then in the ideal world (x′0, x
′
1) = (x0, x1) with probability

at least (1 − 2−n), and vice versa. Hence, the value of the abort variable is (1 − 2−n)-close in the
real and ideal worlds even conditioned on the previous view. The real and ideal views are clearly
statistically indistinguishable conditioned on aborting. Next, we also show that the views in the
real and ideal world are statistically indistinguishable conditioned on not aborting.

Observe that SimS uses honest receiver strategy to choose a random string c. Moreover, since
the sender cannot predict prior receiver queries to PUFs even given PUFs, c is identically distributed
in both worlds. Since PUFs is stateless and independent of (x0, x1), the distribution of simulator
queries is identically distributed to honest receiver queries. Additionally, observe that in the case of
the honest receiver, he queries the PUF on two random strings and picks one of them as his desired
string c based on the value of p. Therefore, the PUF can not self-destruct after the first query it
receives and thus in the ideal world, the simulator can query it on both c and c⊕ x′0 ⊕ x′1.

Now, val = (c⊕x0) in the ideal world and val = (c⊕xb) in the real world, but c acts as a random
mask (i.e., there exists c′ = (c ⊕ x0 ⊕ x1) that is statistically indistinguishable from c). Thus, val
is statistically indistinguishable in both worlds. For the same reason, (c⊕ x1) in the ideal world is
also statistically indistinguishable from the random variable val in the real world.

It remains to show that mb (forwarded to ZS by the honest receiver) is identical in both worlds.
Equivalently, we must prove that both m0 and m1 are extracted correctly by the simulator. It is
straightforward to see that m0 = S0 ⊕ PUFs(val ⊕ x0) is correct. Moreover, because of the sender
simulation strategy, m1 = S1⊕PUFs(val⊕x1) = S1⊕PUFs(c⊕x0⊕x1) is correctly extracted. This
completes the proof.

Sender Security. Let the environment be denoted by ZR. Initially, the environment chooses a
pair of messages {m0,m1} ∈ {0, 1}2n and sends it to the honest sender S as his input. The strategy
for the simulator SimR against a malicious receiver is described in Figure 13.

37

1. Sender Message:
SimR does the following:

• Generate a PUF PUFs.

• Choose a pair of random strings (x0, x1)
$←{0, 1}2n.

• Send (t0, t1) = UC-Com.Commit(x0, x1) along with PUFs to ZR.

2. Receiver Message:

• ZR returns PUFs to SimR.

3. Sender Message:
SimR does the following:

• Choose a pair of random strings (x0, x1)
$←{0, 1}2n.

• Send (x0, x1) = UC-Com.Equivocate(t0, t1) to ZR.

4. Receiver Message:

• ZR sends val to SimR.

5. Message to Fot:
SimR does the following:

• Record C where C = {c1, c2, . . . , cpoly(n)} is the set of queries made by ZR
to PUFs.

• If ∃ c ∈ C, b′ ∈ {0, 1} such that val = c⊕xb′ , set b = b′. Else, set b
$←{0, 1}.

• Send b to Fot and obtain mb.

6. Sender Message:
SimR does the following:

• Compute Sb = mb ⊕ PUFs(val⊕ xb).

• Compute Sb = y ⊕ PUFs(val⊕ xb) where y
$←{0, 1}n.

• Send (S0,S1) to ZR.

Figure 13: Simulation strategy against a malicious receiver.

Claim 4. The simulation against a malicious receiver is statistically secure for the strategy given
in Figure 13.

Proof. The view of ZR is the joint distribution
(

PUFs, (t0, t1), (x0, x1), (S0,S1)
)

. We show that

38

this view is statistically indistinguishable in the real and ideal worlds. First, note that SimR uses
the honest sender’s strategy to generate PUFs. Therefore, PUFs received by ZR is identical in
both worlds. Also, observe that SimR uses the honest sender’s strategy to choose and commit to
a pair of uniform random strings (x0, x1). Since (t0, t1) are commitments to this pair of random
strings, (t0, t1) are statistically indistinguishable in both worlds even given PUFs. The decommit-
ment (x0, x1) in step 3 is statistically indistinguishable in the real and ideal worlds because of the
equivocation property of UC-Com.

Recall that C = {c1, c2, . . . , cpoly(n)} is the set of queries made by ZR to PUFs. If (val⊕x0), (val⊕
x1) ∈ C, then there exists ci, cj ∈ C such that (ci ⊕ cj) = (x0 ⊕ x1). However, since (x0, x1) are
chosen by SimR uniformly at random and independent of all previous messages sent or received,

Pr [∃ ci, cj ∈ C s.t (ci ⊕ cj) = (x0 ⊕ x1)] = |C|2
2n ≤ 1

2n/2 .

Thus, there exists at most one b such that (val⊕xb) ∈ C except with probability 1
2n/2 . Note that

SimR extracts b by comparing (val⊕ x0) and (val⊕ x1) with every ci ∈ C. Therefore, Sb, computed
as Sb = mb ⊕ PUFs(val⊕ xb) in both worlds is at most 1

2n/2 -far even given the previous view.
It remains to show that Sb is close in the real and ideal worlds even given the previous view.

Note that (val ⊕ xb) /∈ C. Since PUFs is unpredictable, ZR cannot learn the output of PUFs on
(val ⊕ xb) without having queried it and since PUFs is unclonable, ZR cannot create a clone of
PUFs and query it on (val⊕ xb) after having sent back PUFs in step 2. Therefore, PUFs(val⊕ xb) is
(1− 2−n/2)-close to uniform, and Sb is (1− 2−n/2)-close to uniform even given the previous view.
Thus, Sb is statistically independent from the rest of ZR’s view, unless ZR queried PUFs on a value
which it can guess with probability only 2−n. This completes our proof.

F Proof of Security for OT in Malicious Bounded Stateful
PUF Model

In this section, we give the formal proof of Theorem 2.

Claim 5 (Correctness). For all (m0,m1) ∈ {0, 1}2n and b ∈ {0, 1}, the output of R equals mb.

Proof. R outputs (Sb ⊕ r), where Sb = mb ⊕ PUFs(val⊕ xb ⊕ x̂b) = mb ⊕ PUFs(c) = mb ⊕ r. Thus,
R outputs mb.

Receiver Security. Let the environment be denoted by ZS . The environment chooses a bit
b ∈ {0, 1} and sends it to the honest receiver as his input. The strategy for the simulator SimS
against a malicious sender is described in Figure 14.

39

Repeat the following protocol K times in parallel for fresh inputs.
Given: Malicious stateful PUFs.

1. Sender Message: Obtain PUFs and (t0, t1) from ZS .

2. Receiver Message: SimS does the following.

• Obtain (x0, x1) using UC-Com.Extract(t0, t1).

• Pick (x̂0, x̂1)
$←{0, 1}2n (following honest strategy).

• Choose a pair of random strings (c0, c1)
$← {0, 1}2n such that (c0 ⊕ c1) =

(x0 ⊕ x1 ⊕ x̂0 ⊕ x̂1).

• Compute r0 = PUFs(c0), r1 = PUFs(c1).

• Set c = cp and r = rp for p
$←{0, 1} and store the pair (c, r).

• Send (x̂0, x̂1) with PUFs, to ZS .

3. Sender Message: Sa sends (x0, x1) = UC-Com.Decommit(t0, t1) to SimS .

4. Receiver Message: SimS does the following.

• If UC-Com.Decommit(t0, t1) does not verify, abort. Else, pick b
$← {0, 1}

and compute val = c⊕ xb ⊕ x̂b.

• Send (val) to ZS .

5. Simulator Message to Fot: Obtain (S0, S1) from ZS .

• Compute m0 = S0 ⊕ PUFs(val⊕ x0 ⊕ x̂0).

• Compute m1 = S1 ⊕ PUFs(val⊕ x1 ⊕ x̂1).

• Send (m0,m1) to Fot, such that Fot sends mb to the honest receiver.

aWe abuse notation in some places and use S and ZS interchangeably. Similarly, for R and ZR.

Figure 14: Sender simulation forK 2-choose-1 OTs (with at most ` leakage) in the malicious
stateful PUF model.

Claim 6. The sender simulation is statistically secure, for the strategy in Figure 14.

Proof. Since the pairs (x̂0, x̂1) are chosen independently of PUFs, in the view of a (possibly stateful)
PUFs, the distribution of simulator queries are statistically indistinguishable from the distribution
of honest sender queries, thus the probability of aborting in Step 2 (owing to a malicious aborting
stateful PUFs) is statistically close in both the worlds.

The simulator follows honest receiver strategy for all the next messages. By correctness of
UC-Com.Extract(·) and because the distribution of PUFs queries are statistically indistinguishable

40

in the real and ideal worlds; it follows (using a similar argument as Section 3) that the simulator
extracts (m0,m1) correctly, conditioned on not aborting in Step 2. This proves that the view of the
malicious sender is close in the real and ideal worlds, except the receiver queries to PUFs (which
may be recorded by a malicious stateful PUFs). However, since PUFs can have at most ` bits of
state, it obtains at most ` bits joint leakage over all K OTs.

Repeat the following protocol K times in parallel for fresh inputs.
Given: Malicious stateful PUFs.

1. Sender Message: The simulator SimR follows honest sender strategy to:

• Generate a PUF PUFs : {0, 1}n → {0, 1}n.

• Choose a pair of random strings (x0, x1)
$←{0, 1}2n.

• Compute (t0, t1) = UC-Com.Commit(x0, x1) and send (t0, t1) to ZR.

• Send PUFs to ZR.

2. Receiver Message:

ZR sends (x̂0, x̂1)
$←{0, 1}2n along with PUFs, to SimR.

3. Sender Message: SimR follows honest sender strategy to send (x0, x1) =
UC-Com.Decommit(t0, t1) to ZR.

4. Receiver Message: Obtain val from ZR.

5. Simulator Message to Ideal OT: SimR does the following.

• If there exists b′ such that for each query to PUFs by ZR, val and x ∈
{(x0 ⊕ x̂0), (x1 ⊕ x̂1)}, val = c⊕ xb′ ⊕ x̂b′), set b = b′. Else set b = 1.

• Send b to Fot and obtain output mb. Pick mb̄
$←{0, 1}.

6. Sender Message:

• Compute: S0 = m0⊕PUFs(val⊕x0⊕x̂0), and S1 = m1⊕PUFs(val⊕x1⊕x̂1).

• Send (S0,S1) to ZR.

Figure 15: Receiver Simulation for K OTs (with ≤ ` leakage).

Sender Security. Let the environment be denoted by ZR. The environment chooses a pair
of messages {m0,m1} and sends them to the honest sender as his input. The simulation strategy
SimR against a malicious receiver is described in Figure 15.

Claim 7. The receiver simulation is statistically secure for the strategy in Figure 15.

41

Proof. Recall that the only modification in this section is to add security against a sender that
maliciously creates stateful PUFs. The argument against a malicious receiver remains essentially
the same.

Following the same arguments as Section 3 , we can now show that the simulator extracts the
correct input bit b in Step 5, such that the distribution of (Sb, Sb̄) is at most 2−

n
2 -far in the real

and ideal worlds.

This completes the proof of Theorem 2.

G One-Sided Correlation Extractors with Malicious Secu-
rity: Proofs

In this section, we give the proof of security of the one-sided malicious OT-extractor described in
Figure 4.

Correctness.

Claim 8. For all (m0,m1) ∈ {0, 1}2 and b ∈ {0, 1}, the output of R equals xb.

Proof. The receiver computes: yb ⊕ E .Ext(m1
b ||m2

b ||m3
b . . .m

K
b , s)

= xb ⊕ E .Ext(m1
b ||m2

b ||m3
b . . .m

K
b , s)⊕ E .Ext(m1

b ||m2
b ||m3

b . . .m
K
b , s) = xb.

Receiver Security. Let the environment be denoted by ZS . The environment chooses a bit
b ∈ {0, 1} and sends it to the honest receiver as his input. The strategy for the simulator SimS
against a malicious sender is described in Figure 16.

Let E : {0, 1}K×{0, 1}n → {0, 1} be a strong randomness (K, 2−n)-extractor for seed
length d = O(n).

1. Invoking OT Correlations:

• For i ∈ [K], S sends input mi
0,m

i
1 to the ith OT.

• For i ∈ [K], SimS honestly emulates the ith OT, and sets receiver input
(the same) choice bit b.

2. Sender Message:

• SimS obtains (y0, y1, s) from S.

• For b ∈ {0, 1}, SimS computes xb = yb ⊕ E .Ext(m1
b||m2

b||m3
b . . . ||mK

b , s).

• SimS sends (x0, x1) to Fot, which generates the output for R.

Figure 16: Sender Simulator for Malicious Correlation Extractor.

42

Claim 9. The simulation against a malicious receiver is perfectly secure for the strategy given in
Figure 16.

Proof. Since the sender obtains no message from the receiver, it suffices to show that the simulator
correctly extracts the sender’s input. Note that the simulator extracts y0⊕E .Ext(m1

0||m2
0||m3

0 . . .m
K
0 , s)

which equals x0, and y0 ⊕ E .Ext(m1
1||m2

1||m3
1 . . .m

K
1 which equals x1. Thus, extraction occurs cor-

rectly, and the joint distribution (x0, x1, b, xb) is identical in the real and ideal worlds.

Sender Security. Let the environment be denoted by ZR. The environment chooses inputs
(x0, x1) ∈ {0, 1}2 and sends them to the honest sender as his input. The strategy for the simulator
SimR against a malicious receiver is described in Figure 17.

Let E : {0, 1}K×{0, 1}n → {0, 1} be a strong randomness (K, 2−n)-extractor for seed
length d = O(n).

1. Invoking OT Correlations:

• For i ∈ [K], SimR picks inputs mi
0,m

i
1

$← {0, 1}2 and sends (mi
0,m

i
1) as

input to the ith OT.

• Receiver Leakage. R requests L as an `-bit leakage function on
the joint distribution of (m1

0,m
1
1,m

2
0,m

2
1, . . .m

K
0 ,m

K
1). SimR sends

L(m1
0,m

1
1,m

2
0,m

2
1, . . .m

K
0 ,m

K
1) to R.

• For i ∈ [K], SimR obtains inputs bi (not necessarily all equal) from R.
SimR honestly emulates the ith OT and outputs mi

bi
to R.

2. Sender Message:

• SimR finds the value of bit ∈ {0, 1} such that |{i : bi = bit}| ≤ `+ n.

• SimR sends bit′ = 1 − bit to Fot and obtains xbit′ . It picks random seed
s and compute ybit′ = E .Ext(m1

bit′
||m2

bit′
||m3

bit′
. . . ||mK

bit′
, s) ⊕ xbit′ . It sets

ybit
$←{0, 1}, and sends (s, y0, y1) to R.

Figure 17: Receiver Simulator for Malicious Correlation Extractor.

Claim 10. The simulation against a malicious sender is statistically secure for the strategy given
in Figure 17.

Proof. Until Step 1, the view of the receiver is identical in the real and ideal worlds, because the
simulator follows honest sender strategy. Note that for any receiver strategy ZR, there must exist
some bit ∈ {0, 1} such that |{i : bi = bit}| ≤ ` + n. SimR sends bit′ = (1 − bit) to Fot and obtains
xbit′ . It uses honest sender strategy to compute ybit′ . Thus, ybit′ is identically distributed in the
real and ideal worlds.

43

Moreover, with ` bits of additional universal leakage over all pairs of sender inputs (m1
0,m

1
1,m

2
0,

m2
1, . . .m

K
0 ,m

K
1), the receiver obtains ≤ 2` + n bits of entropy over the K = (2` + 2n) bit string

(m1
bit||m2

bit|| . . .mK
bit).

The distribution of the seed s is identical in the real and simulated worlds, because SimR follows
honest sender strategy. Therefore, (E .Ext((m1

bit||m2
bit|| . . .mK

bit), s), s) is at most 2−n far from (Un, s),
where Un denotes the uniform distribution over {0, 1} (which is the distribution from which ybit is
picked by SimR). Therefore, ybit is at most 2−n-far in the real and ideal worlds.

H High Production Rate

Here, we show how to obtain an improved production rate at the cost of higher simulation error. We
sample small disjoint subsets with sufficiently high entropy, and then run the protocol in Figure 4
independently on these subsets to obtain a single OT from each subset.

In our case, we use the trivial sub-sampling technique of picking random indices with suitable
probability. In case a sample repeats itself, we discard it and re-sample. We work in the setting
where N/2− ` ≥ K. Our main technical lemma is the following.

Imported Lemma 1 (Sub-sampling [44, 23]). Let (A[n], L) be a joint distribution such that, there

exists a constant µ ∈ {0, 1} such that, H̃∞(A[n], L) ≥ µn. For every constant ε ∈ (0, µ) and

ρ = ω(log n), there exists an efficient algorithm which outputs (S1, . . . Sm) ∈
(
2[n]
)[m]

such that
m = n/ρ and with probability 1− negl(n), the following holds:

1. Large and Distinct: There exists a constant λ ∈ {0, 1} such that |Si| = λρ. We have Si∩Sj =
φ, for all i, j ∈ [m] and i 6= j.

2. High Entropy: H̃∞(Si+1|S[i], L) ≥ (µ− ε)|Si+1.

Now, the result of Theorem 4 can be obtained as a direct application of Imported Lemma 1.
We will be working in the setting when N

2 −` ≥ n. Now, we apply Imported Lemma 1 to obtain the

disjoint sets S1, S2, . . . Sm for m = n/log2n and ρ = log2 n. Next, we apply the protocol in Figure 4
to each of the sets independently for the following choice of parameters: n′ = |Si| = λρ, t′R =

(tRn + ε)|Si|. Then, the simulation error is bounded by 2−θ(log2 n) = negl(n).

I From UC Oblivious Transfer to UC Two-Party Computa-
tion

In this section, we show that given UC oblivious transfer, we can obtain UC secure two party
computation of any functionality. This section is taken almost verbatim from [10]. The main idea
is to first construct a semi-honest secure two-party computation protocol using Yaos garbled-circuit
protocol, and to then apply the compiler of Ishai, Prabhakaran, and Sahai [28].
Semi-honest secure two-party computation. Lindell and Pinkas presented a proof for Yao’s
two-party secure-computation protocol[34]. They show how to instantiate the garbling part of the
protocol with a private-key encryption scheme having certain properties. In addition, the authors
show that any pseudorandom function is sufficient to instantiate such a private-key encryption
scheme. Our main observation is that we can replace the pseudorandom function with a PUF. This

44

has already been observed before by Brzuska et al. [5] in a different context. With this observation,
we can apply the result of [34] to obtain a protocol for semi-honest secure two-party computation
based on PUFs only (and no computational assumptions).

Imported Theorem 1. Let f be any functionality. Then there is a (constant-round) protocol that
securely computes f for semi-honest adversaries in the (FPUF,Fot)- hybrid model.

We omit the proof since it follows easily from prior work.

Universally composable two-party computation. In the next step we apply the IPS
compiler[28], a black-box compiler that takes as input

• an “outer” MPC protocol π with security against a constant fraction of malicious parties.

• an “inner” two-party protocol ρ, in the Fot-hybrid model, where the security of ρ only needs
to hold against semi-honest parties.

and outputs a two-party protocol φπ,ρ which is secure in the Fot-hybrid model against malicious
corruptions.
In our setting, we must be careful to give information-theoretic instantiations of the outer and in-
ner protocols so that our final protocol φπ,ρ will be unconditionally secure in the Fot-hybrid model.
Fortunately, we may instantiate the outer protocol, π, with the seminal BGW protocol [3] and may
instantiate the inner protocol, ρ, with the semi-honest version of the two-party GMW protocol [19]
in the Fot-hybrid model.
Let ψ denote any OT-protocol described in this paper and let ψφπ,ρ(f) denote the IPS-compiled pro-
tocol which makes subroutine calls to ψ instead of Fot and computes the functionality f . Therefore,
using the above theorem, along with the UC composition theorem, we obtain the following result:

Imported Theorem 2. For any functionality f , protocol ψφπ,ρ(f) securely computes f in the
(FPUF,Faux)-hybrid model.

J UC Computation with Encapsulated Malicious PUFs: Proofs

In this section, we describe the proof of security of the UC secure OT protocol in the malicious
encapsulated stateless PUF model shown in 5.

Receiver Security. Let the environment be denoted by ZS . The environment chooses bit
b ∈ {0, 1} and sends it to the honest receiver as his input. The strategy for simulator SimS against
a malicious sender is described in Figure 18.

Claim 11. The sender simulation is statistically secure, for the strategy in Figure 18.

Proof. Since the pairs (x̂i0, x̂
i
1) are chosen independently of PUFs and the simulator follows honest

receiver strategy for all other messages, the view of the sender is statistically indistinguishable in
both worlds. By the correctness of UC-Com.Extract(·) and because the distribution of PUFs queries
is statistically indistinguishable in the real and ideal worlds; it follows (using a similar argument
as Section 3) that the simulator extracts (m0,m1) correctly, conditioned on not aborting in Step
2.

45

1. Coin Flipping: For each i ∈ [n], SimS does the following:

• Choose ci1
$←{0, 1}n and send di = UC-Com.Commit(ci1) to ZS .

• Obtain ci2 from ZS and compute ci = ci1 ⊕ ci2.

2. Sender Message: SimS obtains PUFs and (ti0, t
i
1) for i ∈ [K], from ZS .

3. Receiver Message: SimS does the following.

• Obtain (xi0, x
i
1) using UC-Com.Commit(ti0, t

i
1). For all i ∈ [n], pick (x̂i0, x̂

i
1)

$←
{0, 1}2n

2

.

• For each i ∈ [n], set ci0 = (ci ⊕ xi0 ⊕ xi1 ⊕ x̂i0 ⊕ x̂i1). Compute rri0 =
PUFs(ci0), rri = PUFs(ci). Send PUFs to ZS .

4. Sender Message: Obtain (xi0, x
i
1) = UC-Com.Decommit(ti0, t

i
1) from ZS .

5. Receiver Message: SimS does the following using honest receiver strategy.

• For each i ∈ [n], if UC-Com.Decommit(ti0, t
i
1) does not verify, abort. Else

pick bi
$←{0, 1}, compute vali = ci ⊕ xibi Send (val1, val2, . . . , valn) to ZS .

6. Cut-and-choose: SimS follows honest receiver strategy.

• Obtains tS from ZS . SimS picks and sends rR
$← {0, 1}2K . SimS obtains

rS = UC-Com.Decommit(tS) from S and (S,SimS) use (rS ⊕ rR) to pick
a subset I of indices i ∈ [n], of size K

2 .

• For i ∈ [I], SimS sends ci1 = UC-Com.Decommit(di).

7. Receiver Message: SimS picks b′
$← {0, 1}, and for all i ∈ [n] \ I, sends

bci = bi ⊕ b′.

8. Sender Message: Obtain (S0, S1) from ZS .

• Compute m0 = S0
⊕

i∈n\I PUFs(vali ⊕ xibci ⊕ x̂ibci) and m1 =

S1
⊕

i∈n\I PUFs(vali ⊕ xi1−bci ⊕ x̂i1−bci). Note that SimS knows, for each i,

PUFs(vali ⊕ xi0 ⊕ x̂i0) and PUFs(vali ⊕ xi1 ⊕ x̂i1).

• Send (m0,m1) to Fot, such that Fot sends mb to the honest receiver.

Figure 18: Sender simulation for malicious stateless PUFs with encapsulation.

46

Sender Security. Let the environment be denoted by ZR. The environment chooses inputs
(m0,m1) ∈ {0, 1}K and sends them to the honest sender as his input. The strategy for simulator
SimR against a malicious receiver is described in Figure 19.

Claim 12. The receiver simulation is statistically secure, for the strategy in Figure 19.

Proof. Let random variable abort denote whether the protocol is aborted in step 4. The view of

ZR is
(

PUFs, (ti0, t
i
1), abort, (xi0, x

i
1), (x̂i0, x̂

i
1), (S0,S1)

)
for all i ∈ [n]. We show that this view is

statistically indistinguishable in the real and ideal worlds. First, note that SimR uses the honest
sender’s strategy to generate PUFs. Therefore, PUFs received by ZR is identical in both worlds.
Also, observe that, for all i ∈ [n], SimR uses the honest sender strategy to choose and commit
to pair of uniform random strings (xi0, x

i
1). Since (ti0, t

i
1) are commitments to this pair of random

strings, (ti0, t
i
1) are statistically indistinguishable in both worlds even given PUFs. Observe that the

protocol aborts only if any of the test queries do not verify. Since all the test queries are picked from
an identical distribution in both worlds (independent of sender input) and the entire view of the
receiver is statistically indistinguishable so far, the probability of verification is statistically close in
both worlds. Hence, the value of the abort variable is statistically close. Conditioned on aborting,
the view is statistically indistinguishable in both worlds and it remains to show that the view is
close even conditioned on not aborting in Step 4. For every i ∈ [n], the decommitment (xi0, x

i
1)

in step 3 is statistically indistinguishable in the real and ideal worlds because of the equivocation
property of UC-Com.

Recall that C = {c1, c2, . . . , cpoly(n)} is the set of queries made by ZR to PUFs. If there exists

i ∈ [n] such that (vali⊕xi0), (vali⊕xi1) ∈ C, then there exists ci, cj ∈ C such that (ci⊕cj) = (xi0⊕xi1).
However, since (xi0, x

i
1) are chosen by SimR uniformly at random and independent of all previous

messages sent or received, Pr [∃ ci, cj ∈ C s.t (ci ⊕ cj) = (xi0 ⊕ xi1)] = |C|2
2n ≤ 1

2n/2 .

Thus, there exists at most one b such that (vali⊕ xib) ∈ C for all i except with probability 1
2n/2 .

Note that SimR extracts b by comparing, for every i ∈ [n], (vali ⊕ xi0) and (vali ⊕ xi1) with every
ci ∈ C. Therefore, Sb, computed as Sb = mb ⊕ PUFs(val1 ⊕ x1

b) ⊕ . . . ⊕ PUFs(valn ⊕ xnb) in both
worlds is at most 1

2n/2 -far even given the previous view.
It remains to show that Sb is close in the real and ideal worlds even given the previous view.

Note that for all i ∈ [n], (vali ⊕ xi
b
) /∈ C except with probability 1

2n/2 . We split the rest of our
analysis into two cases.

Case 1 : Suppose ZR returned the original PUFs in step 2. Since PUFs is unpredictable,
ZR cannot learn the output of PUFs on (vali ⊕ xi

b
) without having queried it and since PUFs is

unclonable, ZR cannot create a clone of PUFs and query it on (vali ⊕ xi
b
) after having sent back

PUFs in step 2. Therefore, PUFs(vali ⊕ xi
b
) is at least (1− 2−n/2)-close to uniform and hence Sb is

at least (1− 2−n/2)-close to uniform even given the previous view.

Case 2 : Suppose ZR returned a different malicious stateless PUF P̂UF s in step 2 that possibly

internally encapsulated PUFs. In step 6, SimR makes n queries to P̂UF s to compute Sb. These

queries are (vali⊕xi
b
) for each i ∈ [n]. Equivalently, these queries are (ci, ci⊕xi0⊕xi1). We note that

ci is chosen to be an independent random variable via coin flipping (and therefore, (ci ⊕ xi0 ⊕ xi1)
is also an independent random variable). Furthermore, because of the cut-and-choose test, R must
use this correctly generated ci in most parallel executions (i.e., for most indices i). Therefore even
though vali is known to (and can be selected by) ZR, the distribution of the evaluation queries is

uniformly random even from the point of view of P̂UF s.

47

1. Coin Flipping: For each i ∈ [n], SimR obtains di from R, extract ci1 =

UC-Com.Extract(di). It picks and sends ci2
$←{0, 1}n to ZR.

2. Sender Message: SimR follows honest sender strategy to do the following.

• Generate a PUF PUFs : {0, 1}n → {0, 1}n.

• Test Queries : For each i ∈ [n], choose TQi
$← {0, 1}n and compute

TRi = PUFs(TQi). Store the pair (TQi,TRi).

• For i ∈ [n], choose a pair of random strings (xi0, x
i
1)

$← {0, 1}2n. Compute
(ti0, t

i
1) = UC-Com.Commit(xi0, x

i
1). Send (ti0, t

i
1) and PUFs to ZR.

3. Receiver Message: Obtain P̂UF s and (x̂i0, x̂
i
0) for i ∈ [n] from ZR.

4. Sender Message: SimR follows honest sender strategy to do the following.

• Verification: For each i ∈ [n], if TRi 6= P̂UFs(TQi), abort.

• For each i ∈ [n], send (xi0, x
i
1) = UC-Com.Decommit(ti0, t

i
1) to ZR.

5. Receiver Message: Obtain (val1, val2, . . . , valn) from ZR.

6. Cut-and-choose: SimR follows honest sender strategy to do the following.

• SimR picks rS
$← {0, 1}2K and sends tS = UC-Com.Commit(rS) to ZR.

SimR obtains rR from ZR. SimR sends rS = UC-Com.Decommit(tS) to
ZR, and (SimR,ZR) use (rS ⊕ rR) to pick a subset I of indices of size K

2 .

• For all i ∈ [I], obtain ci1 from ZR and check that the decommitment is
correct.

• SimR uses honest strategy to compute ci = ci1 ⊕ ci2, and check if either
vali = ci ⊕ xi0 ⊕ x̂i0 or vali = ci ⊕ xi1 ⊕ x̂i1. If not, SimR aborts.

7. Receiver Message: For each i ∈ [n] \ I, obtain bci from ZR.

8. Sender Message: SimR does the following.

• For each i ∈ [n], recall that SimR already extracted ci1, and can compute
ci = (ci1 ⊕ ci2). Then SimR computes xi = (ci ⊕ vali), and if xi = xi0, sets
bi = 0 else sets bi = 1. Set b = 0 if

∑
i∈[n]\I(bci ⊕ bi) ≤ n

2 else set b = 1.

• Send b to Fot and obtain mb. Set m1−b ← {0, 1}K . Compute bci = bi⊕b.

• Compute S0 = m0
⊕

i∈n\I PUFs(vali ⊕ xibci ⊕ x̂ibci), S1 =

m1
⊕

i∈n\I PUFs(vali ⊕ xi1−bci ⊕ x̂i1−bci). Send (S0, S1) to ZR.

Figure 19: Receiver Simulation for malicious stateless PUFs with encapsulation.
48

SimR makes n test queries in the verification phase in step 3, each of which is chosen in-
dependently of all other variables, and uniformly at random. These queries appear statistically
indistinguishable from random to ZR, since by the unclonability property, a (malicious) party can-
not predict previous parties’ queries to a PUF that it did not create. Conditioned on the protocol
not aborting, the output of PUFr must be identical to the output of PUFs on all n test queries.
We will show that conditioned on the receiver not aborting after the cut-and-choose in the real
execution, the simulator is able to extract the correct bit b.

First of all, conditioned on not aborting, with overwhelming probability, in all but
√
n of the

indices in [n] \ I, the receiver did send vali = ci ⊕ xi0 ⊕ x̂i0 or vali = ci ⊕ xi1 ⊕ x̂i1. In all these

instances, the simulator is able to extract a bit b. We now show that the output of P̂UF s on
vali ⊕ (xi0 ⊕ x̂i0) ⊕ (xi1 ⊕ x̂i1) is statistically unpredictable to the receiver in all but

√
n of these

remaining instances.
Now, because of statistical hiding of the sender’s commitment to (xi0, x

i
1), the encapsulated PUF

P̂UF s is independent of vali⊕(xi0⊕ x̂i0)⊕(xi1⊕ x̂i1). Therefore, vali⊕(xi0⊕ x̂i0)⊕(xi1⊕ x̂i1) is identically
distributed as a test query and either the sender will thus abort with overwhelming probability, or

the receiver is only able to learn the output of P̂UF s on vali ⊕ (xi0 ⊕ x̂i0)⊕ (xi1 ⊕ x̂i1) in at most
√
n

executions.
Then the bit b, which is extracted as the maximum of all possible values of b over various

indices i, can be wrongly extracted from at most O(
√
n) indices, with overwhelming probability.

Therefore, b is extracted correctly by the simulator with overwhelming probability. At this point,
since the simulator uses honest sender strategy to create sets (S0, S1) the view of the receiver
remains statistically close.

K UC Commitments with Encapsulated Malicious PUFs:
Full Proofs

Recall that Damg̊ard and Scafuro [11] construct UC commitments using stateless PUFs, secure in
the malicious stateful PUF model. Their scheme becomes insecure when parties are allowed to
create malicious encapsulated PUFs. In this section, we construct UC commitments using stateless
PUFs, that are secure in an incomparable model, where an adversary can encapsulate honest PUFs
(see Section 2.1), to create malicious stateless encapsulated PUFs. Note that the protocol does not
require any party to have the ability to encapsulate PUFs, but is secure against parties that do
have this ability.

We begin by observing that it suffices to construct an extractable commitment scheme that
is secure against encapsulation. Given such a scheme, Damg̊ard and Scafuro [11] show that it
is possible to compile the extractable commitment scheme using an additional ideal commitment
scheme, to obtain a UC commitment scheme that is secure in the malicious stateless PUF model.
Since the compiler in [11] doesn’t require any additional PUFs at all, if the extractable commitment
and the ideal commitment are secure against encapsulation attacks, then so is the resulting UC
commitment. We also observe that the unconditional ideal commitment scheme in [35] is already
secure against malicious unbounded stateful PUFs that may be encapsulating honest PUFs. We
describe this ideal commitment scheme next.

49

Ideal Commitments. Let n denote the security parameter. We describe an ideal bit com-
mitment scheme IdealCom = (IdealCom.Commit, IdealCom.Decommit) from [35] in Figure 20, that is
statistically hiding and binding even in the malicious fully stateful PUF model.

Inputs: Committer C has private input b ∈ {0, 1} and Receiver R has no input.

Commitment Phase

1. Committer Message: C does the following:

• Generate a PUF PUFs : {0, 1}n → {0, 1}3n.

• Choose a random string s
$←{0, 1}n.

• Compute σs = PUFs(s).

• Send PUFs to R.

2. Receiver Message: R picks and sends a random string r
$←{0, 1}3n to C.

3. Committer Message: C does the following:

• If b = 0, set c = σs. Else if b = 1, set c = (σs ⊕ r).

• Send c to R.

Decommitment Phase

1. Committer Message: C sends (s, b) to R.

2. Receiver R does the following:

• If b = 0 and c = PUFs(s), output 0.

• Else if b = 1 and c = PUFs(s)⊕ r, output 1.

• Else, output ⊥.

Figure 20: Protocol for Ideal Commitment in the malicious stateless PUF model with
encapsulation.

Claim 13. The protocol in Figure 20 is an ideal bit commitment scheme in the encapsulated mali-
cious stateless PUF model.

In this scheme, only a single PUF is used that is created by the committer and sent to the
receiver. Since the receiver never needs to send any PUF to the committer, creating an encapsulated
PUF does not help the receiver in the protocol. Moreover, since the committer already itself creates
the (possibly malicious) PUF it sends to the receiver, the committer binding argument holds even
if C creates an encapsulated PUF.

50

Thus, this scheme is secure against PUF encapsulation attacks.
Now, we prove correctness and security of the extractable commitment scheme described in

Figure 6.

Completeness: It can be observed from the protocol description that for any b ∈ {0, 1}, if C
and R are honest, the receiver R accepts the decommitment with probability 1.

Statistical Binding: Consider a malicious committer C∗. We will show that the probability
of C∗ breaking the binding property of the commitment is negligible. In order to break binding,
after committing to a bit b, C∗ must provide a decommitment to b such that R accepts it. In
order to provide a valid decommitment for b = 1, for all i ∈ [n], C∗ must find si, s

′
i ∈ {0, 1}n such

that PUFs(si) = PUFs(s′i) ⊕ ri, where ri
$← {0, 1}3n is chosen randomly by the receiver. That is,

PUFs(si) ⊕ PUFs(s′i) = ri. The total number of possible pairs of strings (si, s
′
i) is 22n. So, the

number of possible values for PUFs(si)⊕ PUFs(s′i) is 22n. However, the number of possible choices
for the random string ri is 23n. Therefore, for each index i, the probability that C∗ can cheat is at
most 2−n, and therefore the probability that the committer violates binding, is negligible.

Statistical Hiding: We want to argue that the view of any malicious receiver R∗ (that may
possibly encapsulate PUFs), the view of R∗ at the end of the commitment phase is statisti-
cally close when the honest committer C commits to 0 versus 1. The view of the receiver is
{PUFs,PUFr, c1, . . . , cn, t1, . . . , tn}.

In both cases, C generates PUFs honestly, and therefore PUFs is identically distributed. C
returns the same PUFr that he got from R∗ in step 1 and since PUFs are stateless, PUFr is
identically distributed in both cases even given PUFs.

Since si is chosen uniformly at random by C for all i, PUFs(si) and (PUFs(si)⊕ri) are identically
distributed irrespective of R∗’s choice of ri. Hence, ci is identically distributed in both cases for all
i ∈ [n] even given the previous view.

By the hiding property of IdealCom, ti = IdealCom.Commit(xi) is statistically indistinguishable
in both cases for all i ∈ [n] even given the previous view.

Extraction: Consider a malicious committer C∗ with input some bit b ∈ {0, 1}. The strategy
for the straight line polynomial time extractor E against a malicious committer is described in
Figure 21. Since E follows the honest receiver’s strategy, the view of the malicious committer C∗
when interacting with E is identical to the view of C∗ when interacting with the honest receiver.

First, we prove that if E outputs ⊥, then the probability that C∗ will provide an accepting
decommitment is negligible. Let Q = {Q1, . . . ,Qpoly(n)} be the set of queries made by C∗ to PUFR.

Suppose C∗ provides an accepting decommitment of b = 0. Since the decommitment accepts,
we know that for all i ∈ [n], xi = yi. However, since yi is the output of an honest PUF generated by
E and yi is already known to E, by the unpredictability of PUFs, except with negligible probability,
unless C∗ queries PUFR, yi is distributed uniformly at random in the view of C∗. Observe that
encapsulating or changing PUFR doesn’t help since PUFR is never sent back to E. Now, since
E outputs ⊥, there does not exist (q1, . . . , qn) ∈ Q such that for all i ∈ [n], PUFR(qi) = yi.
Therefore, there exists at least i ∈ [n] such that xi 6= yi except with negligible probability which is
a contradiction.

51

Suppose C∗ provides an accepting decommitment of b = 1. Since the decommitment accepts,
we know that for all i ∈ [n], xi = zi. However, since zi is the output of an honest PUF generated by
E and zi is already known to E, by the unpredictability of PUFs, except with negligible probability,
unless C∗ queries PUFR, zi is distributed uniformly at random in the view of C∗. Observe that
encapsulating or changing PUFR doesn’t help since PUFR is never sent back to E. Now, since
E outputs ⊥, there does not exist (q1, . . . , qn) ∈ Q such that for all i ∈ [n], PUFR(qi) = zi.
Therefore, there exists at least i ∈ [n] such that xi 6= zi except with negligible probability which is
a contradiction.

Next, we prove that if E outputs b∗ 6= ⊥, then the probability that C∗ decommits to a bit b 6= b∗

is negligible. First, observe that encapsulating or changing PUFR doesn’t help since PUFR is never
sent back to E.

• Case 1: b∗ = 0. Suppose C∗ decommits to b = 1. Since the decommitment is accepting,
for all i ∈ [n], IdealCom.Decommit(xi) verifies correctly, ci = (PUFs(si) ⊕ ri) and xi = zi.

Now, we know that for all i ∈ [n], zi = PUFR(P̂UFr(ci ⊕ ri)). Therefore, there exists

(q1, . . . , qn) ∈ Q such that qi = P̂UFr(ci ⊕ ri) = P̂UFr(PUFs(si)). Also, since b∗ = 0,
there exists (q1, . . . , qn) ∈ Q such that for all i ∈ [n], PUFR(qi) = yi. We know that

zi = PUFR(P̂UFr(ci)). Therefore, qi = P̂UFr(ci) = P̂UFr(PUFs(si)⊕ ri).

• Case 2: b∗ = 1. Suppose C∗ decommits to b = 0. Since the decommitment is accepting,
for all i ∈ [n], IdealCom.Decommit(xi) verifies correctly, ci = PUFs(si) and xi = yi. Now, we

know that for all i ∈ [n], yi = PUFR(P̂UFr(ci)). Therefore, there exists (q1, . . . , qn) ∈ Q such

that qi = P̂UFr(ci) = P̂UFr(PUFs(si)). Also, since b∗ = 1, there exists (q1, . . . , qn) ∈ Q such

that for all i ∈ [n], PUFR(qi) = zi. We know that zi = PUFR(P̂UFr(ci ⊕ ri)). Therefore,

qi = P̂UFr(ci ⊕ ri) = P̂UFr(PUFs(si)⊕ ri).

In both cases, there exists (q1, . . . , qn) ∈ Q such that qi = P̂UFr(PUFs(si) ⊕ ri). Since ri is

chosen uniformly at random by E after P̂UFr was sent by C∗, C∗ could not have queried P̂UFr
on (PUFs(si) ⊕ ri) before sending P̂UFr. So, the only way C∗ might be able to know the output

of P̂UFr on (PUFs(si) ⊕ ri) is if C∗ sends an encapsulated PUF P̂UFr in step 2 that encapsulates
PUFr. Note that E makes n test queries in the verification phase in step 3, each of which is chosen
independently of all other variables, and uniformly at random. These queries are not known to C∗
since we assume that a (malicious) party cannot predict previous parties’ queries to a PUF that it

did not create. Conditioned on the protocol not aborting, the output of P̂UFr must be identical to
the output of PUFr on all n test queries.

Also, since ri is chosen uniformly at random by E after P̂UFr was sent by C∗, the queries
(PUFs(si)⊕ ri) for i ∈ [n] are distributed uniformly at random, and identically as the test queries,

from the point of view of P̂UFr. Given a set of 2n queries each of which appear to be uniformly

random to P̂UFr, the probability that it correctly picks the answers to the n test queries to all
be equal to the output of PUFr, and the answers to the n evaluation queries to all be different, is

1

(2n
n)
≤ 1

2n . Therefore, the probability that C∗ decommits to b 6= b∗ is 1

(2n
n)
≤ 1

2n which is negligible.

UC-Secure Commitments from Extractable Commitments. We import the follow-
ing theorem from [11], which allows us to obtain UC-secure commitments in the malicious encap-
sulated stateless PUF model, based on the ideal commitment and the extractable commitment
described above.

52

1. Receiver Message: E does the following:

• Generate a PUF PUFr : {0, 1}3n → {0, 1}3n.

• Test Queries : For each i ∈ [n],

– Choose TQi
$←{0, 1}3n.

– Compute TRi = PUFr(TQi).

– Store the pair (TQi,TRi).

• Send PUFr to C∗.

2. Committer Message: C∗ sends PUFs, P̂UFr to E.

3. Receiver Message: E does the following:

• Verification : For each i ∈ [n], if TRi 6= P̂UFr(TQi), abort.

• For each i ∈ [n], choose a random string ri
$←{0, 1}3n and send ri to C∗.

4. Committer Message: C∗ sends (c1, . . . , cn) to E.

5. Receiver Message: E does the following:

• Generate a PUF PUFR : {0, 1}3n → {0, 1}3n.

• For each i ∈ [n], compute yi = PUFR(P̂UFr(ci)), zi = PUFR(P̂UFr(ci⊕ri)).

• Send PUFR to C∗.

6. Committer Message: C∗ sends (t1, . . . , tn) to E.

7. Extraction: E does the following:

• Let Q = {Q1, . . . ,Qpoly(n)} be the set of queries made by C∗ to PUFR.

• If there exists (q1, . . . , qn) ∈ Q such that PUFR(qi) = yi for all i ∈ [n],
output b∗ = 0.

• Else, if there exists (q1, . . . , qn) ∈ Q such that PUFR(qi) = zi for all i ∈ [n],
output b∗ = 1.

• Else output ⊥.

Figure 21: Extraction Strategy E for UC-Com.

53

Imported Theorem 3. [11] If UC-Com is an ideal extractable commitment scheme in the Faux-
hybrid model, and IdealCom is an ideal commitment scheme in the Faux-hybrid model, there exists an
unconditional UC-secure commitment scheme in the Faux-hybrid model, where Faux is an auxiliary
setup functionality accessed by the real world parties and the simulator or extractor.

L Bounded Stateful PUFs with a Non-Rewinding Simulator

In this section, we modify the protocol from Section 4 so that the simulator does not have to rewind
the stateful PUF. In order to achieve this, we will use an (n, k) threshold secret sharing scheme,
and we now define that below before describing the protocol.

Definition 13 ((n, k) Threshold Secret Sharing). An (n, k) threshold secret sharing scheme
consists of two algorithms (Share,Recon). The algorithm Share takes as input a secret message m
and outputs a set of n shares. The algorithm Recon takes as input a set of shares and outputs the
secret message m if the size of the set is at least k. The security guarantee is that the secret message
m is impossible to recover from a set of shares with size less than k.

Let (Share,Recon) be a (K/2,K/2) threshold secret sharing scheme. The protocol ΠK in Fig-
ure 22 allows us to use an `-bounded stateful PUF to obtain K secure (but leaky) oblivious transfers,
such that a malicious sender can obtain at most ` bits of additional universal leakage on the joint
distribution of the receiver’s choice input bits (b1, b2, . . . bK). This scheme removes the additional
assumption on the simulator, in particular, the simulator is no longer required to have the ability
to rewind a (malicious, stateful) PUF. This is done by combining standard secret sharing with
cut-and-choose techniques. For clarity, we omit the cut-and-choose from the description of the pro-
tocol in Figure 22, and only prove the security of the protocol against any fully malicious sender,
and a special-malicious receiver. The special-malicious receiver is allowed to behave maliciously
everywhere except in Step 4 of the experiment, where the receiver is required to be semi-honest. It
is easy to see that this semi-honest behavior can be enforced via a standard cut-and-choose on the
views of the receiver.

Theorem 5. The protocol ΠK unconditionally UC-securely realizes F [⊗K]
ot in an `-bounded-stateful

PUF model, except that a malicious sender can obtain at most ` bits of additional universal leakage

on joint distribution of the receiver’s choice bits over all F [⊗K]
ot .

Correctness.

Claim 14. For all (m0,m1) ∈ {0, 1}2n and b ∈ {0, 1}, the output of R equals mb.

Proof. R outputs (Sb⊕Recon(r1, . . . , rK/2)), where: Sb = mb⊕Recon(PUFs(val1⊕x1
b⊕x̂1

b), . . . ,PUFs(valK/2⊕
x
K/2
b ⊕ x̂

K/2
b)) = mb ⊕ Recon(r1, . . . , rK/2). Thus, R outputs mb.

Receiver Security. Let the environment be denoted by ZS . The environment chooses a bit
b ∈ {0, 1} and sends it to the honest receiver as his input. The strategy for the simulator SimS
against a malicious sender is described in Figure 23.

Claim 15. The sender simulation is statistically secure, for the strategy in Figure 23.

54

Inputs: Sender S has private inputs (m0,m1) ∈ {0, 1}2n and R has private input
b ∈ {0, 1}.

1. Sender Message: S does the following.

• Generate a PUF PUFs : {0, 1}n → {0, 1}n.

• For each i ∈ [K] :

– Choose a pair of random strings (xi0, x
i
1)

$←{0, 1}2n.

– Send (ti0, t
i
1) = UC-Com.Commit(xi0, x

i
1) to R.

• Send PUFs to R.

2. Receiver Message:

• For each i ∈ [K], R does the following: Choose a random string (ci)
$←

{0, 1}n and compute ri = PUFs(ci). Store the pair (ci, ri). Pick and send

(x̂i0, x̂
i
1)

$←{0, 1}2n.

• Send PUFs to S.

3. Sender Message:
For each i ∈ [K], S sends (xi0, x

i
1) = UC-Com.Decommit(ti0, t

i
1) to R.

4. Receiver Message: For each i ∈ [K], R does the following :

• If UC-Com.Decommit(t0, t1) does not verify, abort.

• Else, compute and send vali = ci ⊕ xib ⊕ x̂ib to S.

5. Sender Message: S does the following:

• Consider the values {PUFs(vali⊕xi0⊕x̂i0)}K/2
i=1 as a set of shares and compute

s0 = Recon(PUFs(val1 ⊕ x1
0 ⊕ x̂1

0), . . . ,PUFs(valK/2 ⊕ x
K/2
0 ⊕ x̂

K/2
0)).

• Compute s1 = Recon(PUFs(val1⊕x1
1⊕x̂1

1), . . . ,PUFs(valK/2⊕x
K/2
1 ⊕x̂

K/2
1)).

• Compute S0 = (m0 ⊕ s0), S1 = (m1 ⊕ s1) and send (S0,S1) to R.

Outputs: S has no output. R outputs mb := (Sb ⊕ Recon(r1, . . . , rK/2)).

Figure 22: Protocol ΠK for K 2-choose-1 OTs (with at most ` leakage) in the malicious
stateful PUF model.

55

1. Sender Message: Obtain PUFs and (ti0, t
i
1) for each i ∈ [K] from S.

2. Receiver Message: For each i ∈ [K], SimS does the following.

• Obtain (xi0, x
i
1) using UC-Com.Extract(ti0, t

i
1).

• Pick (x̂i0, x̂
i
1)

$←{0, 1}2n (following honest strategy).

• Choose a random string (ci)
$←{0, 1}n.

• If i ≤ K/2, compute ri = PUFs(ci). Else, compute ri = PUFs(ci ⊕ xi0 ⊕
x̂i0 ⊕ xi1 ⊕ x̂i1).

• Store the pair (ci, ri) and send (x̂0, x̂1) to S.

Send PUFs to S.

3. Sender Message: For each i ∈ [K], SimS obtains (xi0, x
i
1) =

UC-Com.Decommit(ti0, t
i
1) from S.

4. Receiver Message: SimS picks b
$← {0, 1} and then, for each i ∈ [K], SimS

does the following.

• If UC-Com.Decommit(ti0, t
i
1) does not verify, abort.

• Else, compute vali = ci ⊕ xib ⊕ x̂ib.

• Send (val)i to S.

5. Simulator Message to Fot: Obtain (S0,S1) from S.

• Compute mb = Sb ⊕ Recon(r1, . . . , rK/2).

• Compute m1−b = S1−b ⊕ Recon(rK/2+1, . . . , rK).

• Send (m0,m1) to Fot, such that Fot sends mb to the honest receiver.

Figure 23: Sender simulation forK 2-choose-1 OTs (with at most ` leakage) in the malicious
stateful PUF model.

56

Proof. First, observe that for each i, the pairs (x̂i0, x̂
i
1) and the string ci are chosen uniformly at

random and independently of PUFs. Therefore, the simulator’s queries are independent of PUFs
and not correlated. Thus, in the view of a (possibly stateful) PUFs, the distribution of simulator
queries are statistically indistinguishable from the distribution of honest sender queries, and the
probability of aborting in Step 2 (owing to a malicious aborting stateful PUFs) is statistically close
in both the worlds.

The simulator follows honest receiver strategy for all the next messages. By correctness of
UC-Com.Extract(·), correctness of the secret sharing scheme and because the distribution of PUFs
queries are statistically indistinguishable in the real and ideal worlds; it follows (using a similar
argument as Section 3) that the simulator extracts (m0,m1) correctly, conditioned on not aborting
in Step 4. This proves that the view of the malicious sender is close in the real and ideal worlds,
except the receiver queries to PUFs (which may be recorded by a malicious stateful PUFs). However,
since PUFs can have at most ` bits of state, it obtains at most ` bits joint leakage over all K OTs.

Sender Security. Let the environment be denoted by ZR. The environment chooses a pair
of messages {m0,m1} and sends them to the honest sender as his input. We consider a special-
malicious receiver, i.e., a receiver that is malicious in all steps except Step 4. The simulation
strategy SimR against a malicious receiver is described in Figure 24.

Claim 16. Assuming that the receiver is semi-honest in step 4, the receiver simulation is statisti-
cally secure for the strategy in Figure 15.

Proof. Following the same arguments as in Appendix F , we can show that the simulator extracts
the correct input bit b in Step 5, such that the distribution of (Sb, Sb̄) is at most 2−

n
2 -far in the

real and ideal worlds.

57

Given: Malicious stateful PUFs.

1. Sender Message: The simulator SimR follows honest sender strategy to:

• Generate a PUF PUFs : {0, 1}n → {0, 1}n.

• For each i ∈ [K]:

– Choose a pair of random strings (xi0, x
i
1)

$←{0, 1}2n.

– Compute (ti0, t
i
1) = UC-Com.Commit(xi0, x

i
1) and send (ti0, t

i
1) to ZR.

• Send PUFs to ZR.

2. Receiver Message:

For each i ∈ [K], ZR sends (x̂i0, x̂
i
1)

$←{0, 1}2n to SimR. ZR also sends PUFs to
SimR.

3. Sender Message: SimR follows honest sender strategy to do the following:
For each i ∈ [K], send (xi0, x

i
1) = UC-Com.Decommit(ti0, t

i
1) to ZR.

4. Receiver Message: For each i ∈ [K], obtain vali from ZR.

5. Simulator Message to Ideal OT: SimR does the following.

• If there exists b′ such that for each query to PUFs by ZR, vali and xi ∈
{(xi0 ⊕ x̂i0), (xi1 ⊕ x̂i1)}, vali = ci ⊕ xib′ ⊕ x̂ib′ , set b = b′. Else set b = 1.

• Send b to Fot and obtain output mb. Pick mb̄
$←{0, 1}.

6. Sender Message:

• Compute: s1 = Recon(PUFs(val1 ⊕ x1
1 ⊕ x̂1

1), . . . ,PUFs(valK ⊕ xK1 ⊕ x̂K1)).

• Compute S0 = (m0 ⊕ s0), S1 = (m1 ⊕ s1) and send (S0,S1) to ZR.

Figure 24: Receiver Simulation for K OTs (with ≤ ` leakage).

58

	Introduction
	UC security based on Physically Unclonable Functions
	Our Contributions
	Our Techniques
	Organization

	Preliminaries
	Physically Unclonable Functions
	UC Secure Computation

	Unconditional UC Security with (Malicious) Stateless PUFs
	UC-Security with (Bounded-Stateful Malicious) PUFs
	One-Sided Correlation Extractors with Malicious Security
	UC Secure Computation in the Malicious Encapsulation Model
	UC Commitments in the Malicious Encapsulation Model
	Acknowledgements
	References
	Formal Models for PUFs
	Physically Unclonable Functions: Modeling
	The UC Framework and the Ideal Functionalities
	UC-Secure Commitments
	Proof of Security for OT in Malicious Bounded Stateless PUF Model
	Proof of Security for OT in Malicious Bounded Stateful PUF Model
	One-Sided Correlation Extractors with Malicious Security: Proofs
	High Production Rate
	From UC Oblivious Transfer to UC Two-Party Computation
	UC Computation with Encapsulated Malicious PUFs: Proofs
	UC Commitments with Encapsulated Malicious PUFs: Full Proofs
	Bounded Stateful PUFs with a Non-Rewinding Simulator

