
On the Impossibility of Merkle Merge Homomorphism

Yuzhe Tang†

Syracuse University
Syracuse, NY 13244

†ytang100@syr.edu

1. INTRODUCTION
This work considers a theoretic problem of merging the digests of

two ordered lists “homomorphically.” This problem has potential

applications to efficient and verifiable data outsourcing, which is

especially desirable in the public cloud computing where the cloud

is not trustworthy. We consider the case of merge-sort as it is fun-

damental to many cloud-side operations, such as database join [4],

data maintenance [1], among others.

Informally, a merge-homomorphic digest enables that the digest

of an ordered list, merged from two sublists, is computable from

the digests of the two sublists. We present the formal definition of

a merge-homomorphic digest (§ 2).

We then examine the feasibility of using Merkle hash tree or

MHT [3] to construct the merge-homomorphic digest (§ 3). Our

theoretic result is that we proved the impossibility of merge-

homomorphism for MHT (§ 3.2) by contradiction to the definition

of collision-resistant hashes.

This negative result is useful to understanding the limitations for

designing a merge-homomorphic digest and might shed lights for

a correct construction in the future.

2. MERGE-HOMOMORPHIC DIGEST
DEFINITION 2.1 (ORDER-SENSITIVE DIGEST). Let MO be

the domain of records; the length of record is bound by k(MO).
Let MS be the domain of lists of records from MO and with order

sensitivity – to the same set of records, lists of different orderings

differ. A digest function D(L) on message space MS is a collision-

resistant order-sensitive digest function (or CROD), if the collision

resistance property applies to the order-sensitive lists in MS; that

is, for any list L ∈ MS , it is computationally unfeasible to find a

different list L′ such that D(L) = D(L′).

For instance, a hash chain constructed on top of an ordered list is

a CROD. And so is a Merkle hash binary tree constructed on an

ordered list in MS .

DEFINITION 2.2 (MERGE-HOMOMORPHIC DIGEST).

Consider a CROD D(L) on domain MS . Let + be a binary

Conference Location

function on elements in the domain of D(·). CROD D(L) has the

merge-homomorphism property (or is merge-homomorphic) if

∀L1, L2 ∈ MS , the following equation always holds:

D(merge(L1, L2)) = D(L1) + D(L2) (1)

Here, merge(L1, L2) is a merge operation of two ordered lists L1

and L2.

3. THE CASE OF MHT FOR MERGE-

HOMOMORPHISM
We first present the preliminary on Merkle hashes tree before for-

mally proving our impossibility results.

3.1 Preliminary: Merkle hash tree
DEFINITION 3.1 (COLLISION-RESISTANT HASH). A cryp-

tographic hash functions is collision resistant, which means that

for any u, it is computationally unfeasible to find a different value

u′ such that H(u) = H(u′). In here, we consider a cryptographic

hash H(·) takes a variable-length input u and generates a

fixed-length output z = H(u).

DEFINITION 3.2. A Merkle hash tree (MHT) is constructed by

the following rules: for any two lists, L < L′,1 MH(L‖L′) =
H(MH(L)‖MH(L′)). Here MH(·) denotes the root hash of the

MHT, H(·) is a cryptographic hash function, and ‖ is concatena-

tion on sets or Merkle hash strings.

3.2 Impossibility of Merkle merge-

homomorphism
LEMMA 3.3. Cryptographic hash can not be collision free to

all input values. That is, there must exist value u, such that there

exist value u′ and H(u) = H(u′).

The proof sketch of Lemma 3.3 is due to Definition 3.1; the input

space of a hash is much larger than the output space of the hash;

hence there must be collisions.

THEOREM 3.4. An MHT can not be merge-homomorphic.

That is, there exists no polynomial-time operation + such that

MH(merge(L1, L2)) = MH(L1) + MH(L2).

PROOF. We prove the theorem by contradicting the merge-

homomorphism to Lemma 3.3.

1This means the largest element in L is smaller than the smallest
element in L′.



Due to Lemma 3.3, there exist a value x with collision, that is,

there is another value y such that H(x) = H(y). Without loss

of generality, we assume x < y. We denote by L1 and L2 two

single-element lists respectively containing x and y; L1 = {x}
and L2 = {y}. Therefore:

MH(L2) = H(y) = H(x) = MH(L1)

Assuming there is an MHT with merge-homomorphism:

MH(merge(L1, L2)) = MH(L1) + MH(L2)

= MH(L1) + MH(L1)

= MH(merge(L1, L1))

= MH(L1) = H(x) (2)

On the other hand, we have:

MH(merge(L1, L2)) = MH({x, y})

= H(H(x)‖H(y))

= H(H(x)‖H(x)) (3)

By combining Equation 2 and Equation 3, we have H(x) =
H(H(x)|H(x)), hence another collision.2

Thus, from the existence of collision between x and y, we find

another collision of x whose value can be easily derived from

x, H(x)|H(x). Because there must be at least one value with

collision (Lemma 3.3), we find a contradiction to hash collision-

resistance (Definition 3.1).

We note our result is generic and applies to other “integrity tree” [2]

which, comparing Merkle hash tree, use other digest functions (e.g.

MAC) than hash.

Acknowledgement
The author would thank Dr. Hugo Krawczyk for discussion in the

early stage of the work.

4. REFERENCES
[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A

distributed storage system for structured data (awarded best

paper!). In OSDI, pages 205–218, 2006.

[2] R. Elbaz, D. Champagne, C. H. Gebotys, R. B. Lee, N. R.

Potlapally, and L. Torres. Hardware mechanisms for memory

authentication: A survey of existing techniques and engines.

Trans. Computational Science, 4:1–22, 2009.

[3] R. C. Merkle. A certified digital signature. In Proceedings on

Advances in Cryptology, CRYPTO ’89, 1989.

[4] Y. Zhang, J. Katz, and C. Papamanthou. Integridb: Verifiable

SQL for outsourced databases. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications

2It is easy to see x 6= H(x)|H(x) as they are on different domains:
By the definition of cryptographic hash, the input domain (x) can
be arbitrarily larger than the output domain (H(x)).

Security, Denver, CO, USA, October 12-6, 2015, pages

1480–1491, 2015.


	Introduction
	merge-homomorphic digest
	The Case of MHT for merge-homomorphism
	Preliminary: Merkle hash tree
	Impossibility of Merkle merge-homomorphism

	References

