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Abstract

Radio-Frequency Identification (RFID) tags have been widely used as a low-cost wireless
method for detection of counterfeit product injection in supply chains. In order to adequately
perform authentication, current RFID monitoring schemes need to either have a persistent online
connection between supply chain partners and the back-end database or have a local database
on each partner site. A persistent online connection is not guaranteed and local databases on
each partner site impose extra cost and security issues. We introduce a new method in which
we use 2-3kb Non-Volatile Memory (NVM) in RFID tags themselves to function as a very small
“encoded local database”. Our method allows us to get rid of local databases and there is no
need to have any connection between supply chain partners and the back-end database except
when they want to verify products.

We formally define black-box software unclonability and prove our scheme to satisfy this
property. To this purpose, we introduce a simple “XOR-ADD” function and prove it is hard
to predict its challenge-response behavior if given only one challenge response pair. The XOR-
ADD function with control logic can be implemented using at most 170 gates. This implies that
our scheme is compatible with the strict power consumption constraints of cheap EPC Class 1
Gen 2 RFIDs.
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1 Introduction
Counterfeit product injection into the supply chain causes important problems for both supply chain
partners and final consumers bringing billions of dollars financial losses to people and companies
each year. The International Chamber of Commerce expected the value of counterfeit goods globally
would exceed 1.7 trillion dollars in 2015 [1]. Making supply chain management secure is a crucially
important task.

In order to detect counterfeit product injection into the supply chain Radio-Frequency Identifi-
cation (RFID) tags have been used as a low-cost wireless identification method. In an RFID-based
supply chain each product is equipped/tagged with an RFID tag which has a unique identifier
(ID). RFID tag readers allow to record information in the RFID tags themselves and read this
information at a later moment in the supply chain. This infrastructure provides an automated
process of scanning and tracking products, which in turn facilitates detection of fake RFID tags
used by adversaries to tag counterfeit products [2].

The main challenge in designing an RFID based monitoring infrastructure/scheme is how it
can detect injection of fake RFID tags. Here we do not aim to protect against physical attacks
where the adversary spends time to separate a tag from a legitimate genuine product and applies
it to a fake or counterfeit object: Separating an RFID tag from a genuine product while in transit
through the supply chain or after arrival at the customer is costly/risky as this means that for a
significant amount of time the product needs to be in possession of the attacker in order to perform
the separation attack and this significantly increases his exposure of being detected. Therefore, the
economically motivated adversary is discouraged to put such an attack in practice for most supply
chains. Even though this tag separation and re-apply attack is certainly possible, in general, it
does not imply business risk [3, 4].

The challenge is in how to protect against the adversary who is able to clone or counterfeit the
RFID tags themselves as such clones can be applied to counterfeit products by the adversary in a
safe location for the adversary. Again, we do not aim to protect against physical attacks where the
adversary spends a significant amount of time to physically clone a legitimate RFID tag or even
software clone a legitimate RFID tag by using side channel analysis (of power consumption, heat
map, microscope scanning, etc.) and programming an adversarial RFID tag with the collected
information. For the economically motivated adversary physical inspection of (the non-volatile
memory of) an RFID tag (which transits a supply chain) in order to produce a malicious clone is
too time-consuming and therefore too risky.

The RFID monitoring scheme needs to protect against the adversary who is in possession of a
legitimate RFID tag, who may listen to legitimate readers interacting with the legitimate RFID
tag, and who may use his own reader to interact with the legitimate RFID tag for a very short time
interval in order to collect information with which an adversarial (or adversarially produced) RFID
tag can be (quickly) programmed (after which it can be attached/applied to a counterfeit product
and injected into the supply chain). This attack allows an adversary to use legitimate RFID tags
as black-boxes, i.e., by interacting with and exploiting the wireless communication interface of
legitimate RFID tags. Adversarially produced RFID tags are programmed (“software-clone”) with
the purpose to pass future authentication protocols when in transit through the supply chain. In
this paper we call this a black-box software cloning attack and we show that black-box software
unclonability is realizable in current standardized cheap RFID technology together with an ultra
lightweight algebraic trick.

In related work, see section 2 and Table 1, we give a detailed overview of the current state of the
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art in RFID monitoring scheme design. Most solutions are either not black-box software unclonable
or need to be implemented using too many gates thereby violating strict power constraints in
existing RFID technology. Only the “XOR scheme” [5] (slightly enhanced) and the “Trace scheme”
[6] are black-box software unclonable and allow implementation with existing RFID tag technology.

Generally, each RFID monitoring scheme needs a back-end database to store product data, tag
information, and RFID reader events, such as the data that is sent or written into RFID tags and
the data that is read from RFID tags. This data is needed to trace and verify a tag/product.
Therefore, there must be a persistent online connection between readers and the back-end system.
This is not always the case due to limited or no internet connectivity. As an alternative method local
databases are used to temporarily store reader’s events. These local databases must be integrated
into the back-end database. Maintenance cost and security of the local databases are two main
disadvantages. Eliminating the need for local databases has been recognized as a central problem
in secure RFID monitoring scheme design.

Contributions: In this paper we provide LightSource, a black-box software unclonable RFID
monitoring scheme. Our first version is based on implementing a PRNG; at a cost of a larger
additional RFID tag circuitry still implementable with existing RFID technology, it outperforms
the XOR scheme in that it requires an order less communication between tags, readers, and back-end
server, and it outperforms the Trace scheme in that fake tags can be distinguished from legitimate
tags (which reduces the cost of having to test or discard legitimate products).

Our final version replaces the PRNG with a one-time pad stored in NVM; it uses a very small
number of gates at the cost of needing 2-3kb NVM in RFID tags. The advantage of this second
scheme is that it exploits the idea of pushing all the to-be-recorded trace information into a RFID
tag’s NVM, i.e., we observe that the supply chain partners do not need any local databases, the
tags themselves can be thought of as implementing very small-sized local databases. This implies
that during usual reader and RFID tag interactions, no communication with the back-end server
is needed at all. Only when a supply chain node, in our model just one of the exit nodes, needs to
perform an authentication protocol, help from the back-end system is needed. I.e., the stored trace
information is transmitted in encoded form to the back-end server who can verify authenticity of
the complete path (which includes all previous reader interactions) taken by the RFID tag in the
supply chain graph. This is the minimal available connectivity required for a RFID monitoring
scheme.

Both versions of LightSource use a “XOR-ADD” function which can be implemented using only
170 gates and for which we prove it generates “software unclonable responses”. We formally define
this new security property and show how it implies black-box software unclonability in our schemes.
LightSource stands for ultra lightweight clone detection of RFID tags from “software unclonable
responses”. It can be used for dynamic supply chains (i.e. partners regularly join and leave the
chain), deals with product recalls, and copes with miswriting (by RFID readers).

Organization: In section 2 we explain related work and compare different solutions with Light-
Source. In section 3 we model RFID monitoring schemes for supply chain management, and we
detail the adversarial model. In section 4 we introduce and define “software unclonable responses”
and show and prove the “XOR-ADD” trick as a concrete implementation. Based on software un-
clonable responses we explain our novel approach LightSource for detection of cloned RFID tags
in supply chains in section 5, where we also provide implementation details and simulation results.
We conclude with section 6.
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Table 1: Comparison of RFID tag monitoring schemes
Crypto based Key

evolving
PUF XOR [5] Trace

[6]
LightSource
PRNG-based

LightSource
NVM-based

HW req. Circuit overhead
(gates)

AES 2400 [8]
SHA-1 5500 [9]

180-300 500-
1000 [10]

100&
2-3kb NVM

N 1770 170&
2-3kb NVM

Compatibility with
RFID technology

N Y Y Y Y Y Y

Authentication

Black-box software
unclonable

Y N N [11] Y Y Y Y

Distinguish fake
from genuine

Y N Y† Y N Y Y

Performance
Online comm with
server (bits per
RFID per supply
chain node)

200-400 250-350 200 2100 150 164 rec.→0?;

aut.→<1920

Reader-Tag com-
munication (bits
per RFID per
supply chain node)

200-400 250-350 200 2100 112 164 rec.→156;

aut.→<1920

Local partner
databases

Y Y Y Y Y Y N*

Initialization Fast Fast Slow Fast Fast Fast Slow

Privacy Track preserving Y Y Poss.‡ Y Poss.‡ Poss.‡ Poss.‡
Trace preserving Y Y Y Y Y Y Y

* Authentication only needs to happen at exit nodes where back-end server communication is required.
‡ By storing pseudonyms in NVM.
? Recording process.
† If we assume the PUF can not be software cloned.

2 Related Work and Comparison
Trace-based anti-counterfeiting solutions were primarily developed for the pharmaceutical industry;
Koh et al. [7] suggested to record track and trace data of pharmaceutical product tags to create
drug history. Staake et al. [2] discussed the usage of track and trace data in RFID enabled supply
chains for counterfeit detection and stressed the attack possibilities when partners are not willing to
record or share tracking data and emphasized its negative effects on counterfeit detection solutions.
Followed by this initial research, several RFID-based counterfeit detection methods were proposed
that can be classified into two categories:

Cryptographic Verification Based Counterfeit Detection: Counterfeit detection based on
cryptographic verification aims at making black-box software cloning (see section 3.2 for a precise
definition) hard by using embedded cryptographic primitives such as an encryption scheme, (keyed)
hash function, PRNG, etc. Authentication is done by sending a random nonce as challenge to a
tag, receiving back from the tag the keyed hash (or encrypted value) of the nonce with a shared
secret, and verifying the hash (or encryption) based on knowledge of the shared secret. These
methods require extra hardware resources which increases the cost of RFID tags [12]; as a rule of
thumb every extra 1,000 gates costs 1 cent [13]; a hash function like SHA-1 takes roughly 5,500
gates [9], and hardware implementations of AES-128 take on the order of 2,400 gates [8]; solutions
using lightweight cryptographic primitives require > 2000 gates and are studied in [3, 8, 14, 15];
hash-based schemes are studied in [4, 16–19].

Citing “RFID protocols must be lightweight, taking into account the severe constraints imposed
on the available power (induced at the antenna), the extremely limited computational capabilities,
the small memory size, and the characteristics of the IC design (e.g., the number of gates available
for security code)” [20,21] and “few gates – on the order of hundreds – remain for security function-
ality” [22] indicate that only very lightweight solutions can successfully be implemented in current
RFID technology and that the above above methods require too many gates (> 2000). This ex-
plains the crypto-based column in Table 1: the only hurdle to adoption is the lack of compatibility
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with current RFID technology.
In order to bring authentication circuitry on the RFID side down to at most 2000 gates three

approaches have been developed: key-evolving RFID schemes, PUF based RFID schemes, and the
XOR operation-based scheme (the middle columns in Table 1). We explain each technique in more
detail below:

Key-evolving RFID schemes [23–26] have been introduced by Peris-Lopez et al. [26] and allow
ultralightweight cryptography in that the additional circuit overhead is only in the 100s of gates.
During authentication the RFID tag computes (1) a response given a challenge using a shared
secret and a couple basic bit wise operations and (2) evolves the shared secret to a new one
(which is synchronized with the authentication server). To the extend of our knowledge all of
the suggested schemes are shown to be broken with respect to full “disclosure attacks” that leak
the underlying evolving secret [27–30]; in our framework key-evolving schemes are not black-box
software unclonable, see Table 1. The main reason is that none of the suggested schemes proved or
legitimized their security with respect to a formal definitional framework.

PUF-based RFID schemes [10,31,32] also have a much lower complexity (100s of gates). RFID
tags embed a Physical Unclonable Function (PUF) which upon receiving a challenge creates a re-
sponse [31]. An ideal PUF is one which implements a random function from challenges to responses
which is hard to predict or learn. The back-end authentication server stores a list of challenge-
response pairs for each RFID PUF. Each time an RFID tag is being authenticated, the reader sends
a challenge which has not been used previously. The tag transmits the corresponding PUF response
back to the reader which forwards it to the back-end system. The back-end system compares the
received value from the tag against the stored list of challenge-response pairs. If there is a match,
the tag is verified. Even though PUF technology seems quite attractive as the PUF circuit overhead
is quite minimal, Becker [11] has demonstrated a cloning attack on a commercial PUF-based RFID
tag with only 4 protocol executions, which takes less than 200 ms. In other words PUFs do not
offer black-box software cloning resistance, see Table 1 (unless an interface for extracting a shared
noiseless key, which minimally implements a hash function and error correction with > 2000 gates,
is added).

Juels [5] proposes a XOR operation-based scheme where circuit overhead due to cryptographic
primitives is eliminated. It implements a challenge-response scheme which make use of a XOR
operation: Each tag shares a list of secret triples (ai, bi, ci)mi=1 with the back-end system. Upon
receiving a query by a reader, the tag selects the next pseudonym ai from its list. A genuine reader
(who obtains bi and ci from the back-end system) authenticates itself by sending bi. By verifying bi,
the tag will now send the shared secret ci in order to authenticate itself to the reader. The scheme
releases a different pseudonym ai upon each query in order to protect against a tracking attack;
each tag has not one single identity ID but uses a list of identities or pseudonyms ai which are
discarded once having been used, this gives track privacy in that RFID identities remain private so
that RFID tags cannot be tracked through the supply chain by an adversary.

Nevertheless, RFID tags can only store a limited amount of secret triples and these can be
queried and listened to by an adversary during m reader RFID tag interactions. This allows an
adversary to obtain (ai, bi, ci)mi=1; the ai values can now be used to track the product and this
violates track privacy, even worse the triples themselves allow the adversary to program a software
clone and this breaks black-box software unclonability.

To solve this issue, Juels [5] introduces the following improvement to prevent a tracking attack:
A tag’s pseudonyms are refreshed by legitimate readers; Once an ai is used, the triple (ai, bi, ci)
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is zeroed out and the reader refreshes all (aj , bj , cj) (including the all-zero (ai, bi.ci)) by having
the RFID tag XOR each triple with a random string dj received from the reader. During a next
reader interaction the new ai+1 is used and the protocol continues as described above. The technique
eliminates the use of an expensive hash or encryption, however, at the cost of extra communication.
As [5] explains track privacy is guaranteed if the adversary can at most listen to m−1 interactions.
If m interactions are eavesdropped, then a linear combination of the exchanged bit strings can solve
for the current triples (aj , bj , cj) and track privacy as well as black-box software unclonability is
broken.

In Table 1, we enhance the XOR scheme by making m large enough (personal communication
with industry indicates m = 16 should be sufficient) and use an irreversible monotonic increasing
counter in the RFID tag to limit the allowed number of reader interactions to m− 1. Notice that
this leads to an increased communication cost.

Evolving tag trace based counterfeit detection: Evolving tag trace based counterfeit detec-
tion mechanisms have been proposed in [6, 33–36]. The main idea is to create and store a path
history of “reader events” for each RFID tag; when exiting the supply chain the back-end system
verifies whether the tag went though a valid path which corresponds to the supply chain graph.
Reader events are generally stored in local databases that are synchronized with the back-end sys-
tem. Lehtonen et al. [34] presents probabilistic techniques to enable clone detection in incomplete
traces caused by both tag misreading and partners not sharing tag information. By assuming that
events generated by cloned tags are rare, such events can be detected by understanding the process
that generates legitimate reader events.

Current state-of the-art originated from Zanetti et al. [36] who presents a detection mechanism
that is based on verifying the correctness of consecutive shipping and receiving operations using
process and location information in tag events. Each time a tag is queried by a reader, an event is
created and stored in the reader’s local database. This approach does not write to the tag memory
which only contains the tag ID. Clone detection is done at the exit point of the supply chain and
is defined as a trace that is not consistent with the supply chain graph.

Zanetti et al. [6] improve [36] by using tag memory together with local databases. In this
method, each tag stores two values: a random variable (called tail) and a pointer. Whenever an
RFID tag reaches a reader, the reader reads all data in the tag, then creates and stores an event
in it’s local database. Each event includes, the tag ID, a time stamp T , the tail, and the pointer
value p. Next the reader randomizes only the symbol in the tail which is pointed at by p and
increases the pointer value p. These changes are written to the tag memory. At the exit point all
events of all local databases are aggregated in a centralized server (the back-end system). Events
related to legitimate tags diverge from those of cloned tags; this is used to decide whether a tag
passes authentication or not. This approach detects clone injection, however, one cannot distinguish
between a genuine tag and its cloned version. This means that not only the cloned product but
also the legitimate product will need to be filtered out, which is costly.

Our Approach: Our first scheme implements the challenge-response authentication of crypto-
graphic verification based counterfeit detection using a PRNG with a new ultra lightweight XOR-
ADD trick which generates “software unclonable responses” (see next section). Our lightweight
primitive is in this regard information theoretically secure and allows us to prove black-box soft-
ware cloning resistance. The PRNG only leads to an additional 1600 gates. The XOR-ADD trick
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costs less than 170 gates. As indicated in the table, at the price of 1770 gates our PRNG-based
scheme is at the edge of being compatible with RFID technology. If compared with the XOR
scheme we reduce the communication by an order of magnitude, and if compared with the Trace
scheme we can reliably distinguish fake from legitimate tags (saving the cost of testing or discarding
legitimate products).

The PRNG-based scheme needs server communication during each reader interaction and this
requires local partner databases as explained in the introduction. Our second scheme replaces the
PRNG by initializing a 2-3kb RFID tag memory with random nonces and this allows us to design
an evolving tag trace based counterfeit detection scheme which does not use any local database:
Each RFID tag records itself all the events necessary for its authentication and consistency of their
complete history of reader interactions throughout the supply chain. Only once at an exit node the
authentication protocol is executed and this requires back-end server communication. This implies
that supply chain partners do not need to worry about internet connectivity problems. Performing
authentication at exit nodes is flexible with respect to when the authentication is done; e.g., someone
delivering or installing a product can wait for a couple of minutes till internet connectivity is back.

We notice that any scheme (including ours without sacrificing the no local databases property)
can be made to preserve track privacy by complementing solutions with the idea of pseudonyms:
Each RFID tag stores, instead of a single ID, a list of random pseudonyms ID1, ID2, . . .. When
asked to authenticate itself, the RFID tag uses the next (irreversibly) pseudonym in its list which
has not yet been used. The back-end server looks up the pseudonym in its database so that it
can be connected to the actual ID of the tag. For completeness, trace privacy is concerned with
keeping RFID states private as these can otherwise be read out and teach the honest-but-curious
supply chain partner data related to the path taken by the RFID tag through the supply chain. In
LightSource we use a cheap one-time-pad trick to preserve trace privacy.

3 Background and Adversarial Model

3.1 RFID-Based Supply Chain

A supply chain is a network of partners such as manufacturers, retailers, transporters and distrib-
utors that cooperate in the production, delivery and sale of a particular product. Each product
enters the supply chain at a start node, travels through several other nodes and finally sinks at an
exit node where the product is delivered to the client. The supply chain does not end its life cycle
when the product is delivered to the client; a product (e.g. because of misdelivery) can be recalled
and can reenter the supply chain at a recall node. Conceptually, a supply chain can be represented
by a directed graph with several start (source) and several exit (sink) nodes (each supply chain
partner may control several nodes).

An RFID-based supply chain is enhanced by RFID technology to promote real-time monitoring
of products while traveling through the supply chain. This improves supply chain visibility which
aids the targeted product recalls, regulation of production rate, enforcement of safety regulations
and counterfeit detection. An RFID-based monitoring scheme consists of the following components:

RFID tags: An RFID tag is a wireless transmitter attached to a product. In general, it consists
of a small microchip with an RF antenna, basic functional capabilities and limited memory. Each
RFID tag includes a 96-bits Electronic Product Code (EPC) which serves as a unique identifier
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(ID) for the physical object to which the tag is attached; it consists of an 8-bit version EPC, a 28-
bits manufacturer identifier, a 24-bits product identifier, and a 36-bits item serial number. In this
paper we call the 36-bits item serial number the tag ID. RFID tags come in different flavors: RFID
tags can be read-only, write-once read-many, or write-many read-many. Based on the powering
method, an RFID tag may be passive, i.e. it does not have any power source of its own and derives
its power from the RFID reader, active, i.e. it has its own power source (battery) and can initiate
communication with reader, or semi-passive, i.e. it has its own power source but does not initiate
communication with readers. EPC Class 1 Gen 2 RFID tags are low-cost passive write-many read-
many tags that have a minimum memory of 256 bits, with possible extension to more tag memory.
EPC Class 1 Gen 2 RFID tags are used in practice in RFID-based supply chains.

RFID reader: RFID readers represent the nodes in a supply chain graph. An RFID reader is
a network connected device with an antenna with which the reader is able to communicate with
RFID tags over a radio frequency channel and transmit power to RFID tags.

Algorithm 1 Read Command
1: function Read(ID)
2: State = GetState(ID); /*From the RFID’s NVM*/
3: Compute on State;
4: Return, i.e. transmit, a computed value;
5: end function

Algorithm 2 Write Command
1: function Write(ID, x)
2: State = GetState(ID); /*From the RFID’s NVM*/
3: Compute on State with x;
4: Update State acordingly;
5: end function

Readers communicate with an RFID tag with identity ID through read and write interfaces
with the general structure as described in Algorithms (1) and (2). It is also possible to have e.g. a
combined write and read interface by extending the write function with a final step which returns,
i.e. transmit, a computed value. A reader can only communicate with an RFID tag through
these read and write commands (other commands can be transmitted to an RFID tag but we
do not consider those here as they do not affect the security of our protocols). We notice that
wireless transmission between tag and reader is imperfect and can lead to misreading or miswriting
respectively. A misread happens when the data of a tag is not read by the reader while a miswrite
happens when a reader is not able to successfully write data to a tag.

Uncompromised readers engage with RFID tags through Write(ID,x) in order to record trace
information. In our NVM-based scheme we exploit this feature in the extreme where we record in
RFID tags unabbreviated/full trace information including reader identity, time of communication,
and message authentication code.

Readers have the following secret and identifying information:

• Reader identities are denoted by RID.
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• Reader secret keys are denoted by RK.

In our NVM-based scheme a reader with identity RID and secret key RK takes its own version of
real time T , computes the message authentication code

HMAC = MACRK(RID||T ||ID),

computes the pair
x = ([RID||T ], HMAC),

and writes x to the RFID tag. This process is characterized in Algorithm (3).

Algorithm 3 Recording Full Trace Information at RFID Tags
1: function RecordReaderInteraction(RID, ID)
2: RK = GetKey(RID);
3: T = GetLocalTime(RID);
4: x = ([RID||T ],MACRK(RID||T ||ID));
5: Write(ID, x);
6: end function

Trusted Server: A back-end system, a.k.a trusted server, constitutes a database DB which
contains data related to the tags and their corresponding products. Each reader is connected to
the back-end system over a secure channel; we assume that the back-end system shares secret keys
with each of the readers.

Each product enters the supply chain at a start node and travels through the supply chain until
it arrives at an exit point. We assume start nodes are trusted and initialize RFID tags on behalf
of the trusted server; a general format of an initialization protocol from the perspective of a reader
is given in Algorithm 4.

Algorithm 4 Initialization Protocol
1: function Initialize(RID, ID)
2: Fuse ID in RFID tag;
3: Compute values xj according to some security parameter λ; /*May depend on random coin

flips and ID*/
4: T = GetLocalTime(RID);
5: Write(ID, xj) for all j;
6: Update DB with (ID, [RID, T, (x1, x2, . . .)]; /* By using secure communication with the

server; ID is now a “valid identity” */
7: end function

Whenever the authenticity of a product with RFID tag needs to be verified, in particular,
we always verify authenticity at exit nodes, then the trusted server engages in an authentication
protocol with the RFID tag using a reader as intermediary. From a reader’s perspective, our
protocols have the structure as described in Algorithm 5.

We notice that misreading and miswriting may lead to failing to authenticate a legitimate RFID
tag or lead to authenticating a cloned/fake RFID tag. The authentication protocol should minimize
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Algorithm 5 Authentication Protocol
1: function Authentication(RID, ID)
2: Get random challenge x from the server;
3: Write(ID, x);
4: y ← Read(ID);
5: Transmit y to the server;
6: Server verifies y w.r.t. x and its data base DB;
7: Server transmits back to RID whether authentication passes;
8: Return pass or fail according to server’s response;
9: end function

the probabilities of these false negatives and positives, in particular, authentication of a cloned/fake
RFID tag should only happen with negligible probability.

The basic functionality of an RFID monitoring scheme is defined by the read and write com-
mands, the recording algorithm, and the initialization and authentication protocols. It applies to
static as well as dynamic supply chains (in a static supply chain the supply chain graph is fixed
while in a dynamic supply chain the supply chain graph may be dynamically evolve over time, in
particular, the partners in the chain can vary from one market opportunity to another).

3.2 Adversarial Model

The adversary’s goal is to inject counterfeit products into the supply chain without being detected
by the back-end system. We assume it is too risky for the adversary to engage in involved in the
following physical attacks with legitimate RFID tags while these are in transit through the supply
chain or are at their final customer destination:

Remove and reapply attack: The adversary removes the legitimate tag from a genuine product
and reapplies it to a counterfeit product [16,31].

Side channel attack: The adversary has access to the RFID tag and collects information over side
channels or probes the wires of the tag in order to learn the tag’s secret data and model it’s
behavior [37].

The adversary may engage in short interactions with legitimate RFID tags through their
read/write interfaces while they are in transit through the supply chain or are at their final customer
destination. We assume that the trusted server has implemented an uncompromised back-end sys-
tem, that the trusted server and readers have shared keys used for secure communication, and
that only a small portion of readers are possibly compromised by the adversary. We assume that
manufacturing and initialization of RFID tags is trusted implying that all legitimate RFID tags
behave according to their functional spec (in particular, the read and write commands are correct)
and have valid IDs.

We define black-box software cloning resistance by an adversarial game in which an attacker
attempts to exploit his freedom in terms of black-box access to legitimate RFID tags through their
read/write interfaces to program a fake RFID to pass authentication in the supply chain. We
will explain how the game can be generalized to include adversarial access to a small portion of
compromised readers. The game is detailed in Algorithm 6:
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Algorithm 6 Black-Box Software Cloning Game
1: function SoftwareCloningGame(A)
2: For j ∈ J with |J | = poly(λ), let IDj be such that
3: it would pass ← Authentication(RIDj , IDj),
4: where RIDj identifies the last legitimate reader with which IDj had interaction;
5: Let H be the history of all communication through the read and write interfaces between

any RFID tag and any reader;
6: (ReadSim(.),WriteSim(.),RID′)← ARead(IDj),Write(IDj , .)((RIDj)j∈J , H);
7: Inject a tag S with (ReadSim(.),WriteSim(.)) in the supply chain at reader node RID′;
8: if S exits the supply chain being authenticated then
9: b = 1;

10: else
11: b = 0;
12: end if
13: Return b;
14: end function

• In lines 2, 3, and 4 we intercept poly(λ) legitimate (since they would pass authentication)
RFID tags with identities IDj , j ∈ J . The reader with identity RIDj represents the most
recent reader with which RFID tag IDj had an interaction. RIDj represents the node in the
supply chain graph where the adversary intercepts IDj . In line 3 we say that authentication
of IDj with reader RIDj would pass if the authentication protocol were executed (we do
not explicitly execute this protocol in the software cloning game as this would unnecessarily
restrict the adversary as he may intercept legitimate RFID tags from nodes which do not
perform authentication).

• In line 5 we let H denote the history of all communication through the read and write
interfaces between any RFID tag and any reader. As these interactions can possibly be
listened to by an adversary, we assume these records to be unprotected and public.

• In line 6 the adversary, defined by a probabilistic polynomial time (ppt) algorithm A outputs a
simulator defined by two ppt algorithms ReadSim(.) and WriteSim(.). These two algorithms
represent the read/write interface of a fake tag as the algorithms themselves can be hardcoded
(or programmed into) an adversarial RFID tag. In order to create the simulator, A makes
use of the poly(λ) legitimate tags with knowledge of interaction history H; this is expressed
by giving A oracle access to Read(IDj) and Write(IDj , .) and giving A input H. Here, we
note that the legitimate tags have state which is updated on reads/writes. So, the order of
read and write commands with which the legitimate tags are being accessed matters. Finally,
A outputs RID′ which is used in line 7 to inject the fake RFID tag at node RID′.

The adversary wins if SoftwareCloningGame(A) returns b = 1. We say the RFID monitor-
ing scheme defined by Read(.), Write(., .), RecordReaderInteraction(., .), Initialize(., .),
and Authentication(., .) with security parameter λ (implicitly used in each of these algorithms)
is black-box software cloning resistant if the adversary wins SoftwareCloningGame(A) with
negl(λ) probability. In practice we are not interested in an asymptotic guarantee, therefore in our
security analysis we provide a concrete (exponentially small in λ) upper bound on the probability
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of a winning adversary.
The above defines the hardness of passing authentication with a fake RFID tag. On the flip side,

we also need a correctness requirement: Any non-malicious (legitimate) RFID tag should reliably
pass authentication whenever being engaged in an instance of the authentication protocol. Here
the authentication protocol should be able to deal with a small fraction of reader miswrites and
misreads in earlier interactions of the RFID tag with readers (before the current interaction with
the reader which executes the authentication protocol). We do not formally define the notion of
correctness; we will address correctness separately for our schemes.

Within our adversarial model, the above notions of black-box software cloning resistance and
correctness imply that a RFID monitoring scheme satisfying these notions is able to distinguish
legitimate RFID tags from fake RFID tags. Also we notice that if a RFID tag fails authentication
then black-box software cloning resistance and correctness imply that the tag must be an adver-
sarial one which was injected at some node RID′ in the supply chain. As in most other schemes
LightSource has the additional property that the authentication protocol is able to determine the
injection point of fake RFID tags.

The software cloning game can be generalized to include adversarial access to a small portion
of compromised readers: In lines 2, 3, and 4 we also define a set of compromised readers and we
assume in line 5 A has access to their execution traces as part of history H. We will address
compromised readers separately for our schemes.

Finally, since any RFID tag can be destroyed, Denial of Service (DoS) attacks are not part of
our adversarial model.

4 Software Unclonable Responses
Both our RFID monitoring schemes are based on a new primitive which we define and give a
concrete instantiation of in this section.

Definition 1. A function Fk(x) outputs software unclonable responses if there exists a ppt algorithm
Gen(.) such that for any ppt pair (A0,A1), the probability that
SoftwareUnclRespGame(A0,A1) (see Algorithm 7) returns 1 is negl(λ).

In Algorithm 7 the attacker is allowed to ask for one output/response of function Fk(.) for some
random “secret key” k. Based on a response Fk(x′) the attacker tries to learn as much as possible
about k so that he can build a ppt simulator S which predicts/simulates Fk(.). The probability
that the simulator predicts the correct response for random inputs should be negligible.

Our RFID tags will use this primitive for authentication by generating a new “secret key”
and corresponding software unclonable response based on a reader-supplied input/challenge. This
restricts an adversary, who only has black-box access to RFID tags, to only obtain one response per
key. Based on just this information, the attacker must try to create/program a fake RFID with a
simulator which correctly predicts responses in order to pass authentication. We will show that the
black-box software unclonable resistance of our schemes reduce to the security of the underlying
function F as defined in Definition 1.

There are numerous heavy weight solutions for functions with software unclonable responses
based on standard cryptography. The main problem is to design and prove the security of an ultra
lightweight solution as this is needed in our supply chain management application. Below we prove
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Algorithm 7 Software Unclonable Response Game
1: function SoftwareUnclRespGame(A0,A1)
2: k ← Gen(1λ);
3: x′ ∈ {0, 1}λ ← A0(1λ);
4: S ← A1(x′, Fk(x′)); /*S is a ppt algorithm*/
5: x ∈ {0, 1}λ is a random input;
6: if S(x) = Fk(x) then
7: b = 1;
8: else
9: b = 0;

10: end if
11: Return b;
12: end function

that the “XOR-ADD” function

F(k0,k1)(x) = (k0 + x)⊕ k1, for k0, k1, x ∈ {0, 1}λ, (1)

where + is binary addition with carry (truncated after λ bits) and where ⊕ represents XOR, is
such a ultra lightweight solution. (Notice that the XOR function Fk(x) = k⊕x and ADD function
Fk(x) = k + x do not offer solutions as k can be extracted from a pair (x′, Fk(x′)).)

In the remainder of this section, we prove the next theorem. The proof is stand-alone and can be
skipped if the reader wants to proceed with the next section which explains our RFID monitoring
schemes.

Theorem 1. For any ppt pair (A0,A1), the probability that SoftwareUnclRespGame(A0,A1)
for F(k0,k1)(x) = (k0 + x)⊕ k1, k0, k1, x ∈ {0, 1}λ, returns 1 is ≤ 0.85λ.

Suppose the adversary knows the pair (x′, F(k0,k1)(x′)) and wants to built a simulator which
predicts F(k0,k1)(x) for random x. We notice that for

z = F(k0,k1)(x′)⊕ F(k0,k1)(x),
v = k0 + x′,

w = x− x′,

z ⊕ v = w + v. (2)

Also, notice that given x′, since k0 is random, v is random, and since x is random, w is ran-
dom. These observations can be used to show that predicting F(k0,k1)(x) for a randomly selected
input x based on (x′, F(k0,k1)(x′)) where F is defined by (1) is equivalent to predicting z in (2)
for a randomly selected input w and unknown/random v. This implies that the probability of
SoftwareUnclRespGame(A0,A1) returning 1 is at most the probability of ZWGame(A) (see
Algorithm 8) returning 1 maximized over A, which is equal to

2−λ
∑
w

max
z
Probv∈{0,1}λ [z ⊕ v = v + w] (3)

= 2−λ
∑
w

max
z

|{v : z ⊕ v = v + w}|
2λ .
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We will design an algorithm which given w finds the z which maximizes this probability (this
algorithm can be directly translated in an optimal simulator S in ZWGame(A) and Software-
UnclRespGame(A0,A1)).

Algorithm 8 Finding z based on w
1: function ZWGame(A)
2: v ∈ {0, 1}λ is a random input;
3: S ← A(v); /*on input w, S finds z which maximizes |{v : z ⊕ v = v + w}|*/
4: w ∈ {0, 1}λ is a random input;
5: if S(w)⊕ v = w + v then
6: b = 1;
7: else
8: b = 0;
9: end if

10: Return b;
11: end function

Algorithm 9 computes for input (z, w) the set {v : z ⊕ v = v + w} represented as either the
empty set ∅ or a string v ∈ {0, 1, ∗} where ∗ can take on any bit value. So, the cardinality of set
{v : z ⊕ v = v + w} is equal to 2c where c is the number of ∗ symbols in the output v of the
algorithm. The algorithm shortens the initial bit string w and z to smaller substrings of w and z
of equal length throughout the recursive calls while producing a representation v ∈ {0, 1, ∗}.

The algorithm distinguishes between the following cases. First, if |w| = |z| = 1, then w = α
and z = β for some α, β ∈ {0, 1}. In order to satisfy (2) β ⊕ v = α + v. Since + is addition with
carry with truncation, α+ v = α⊕ v. Hence, {v : z ⊕ v = w + v} = {0, 1} which is represented by
the string ∗.

Second, if |w| = |z| ≥ 2, then w = w′α1α0 and z = z′β1β0 for some bit strings w′ and z′, and
bits α1, α0, β1, β0 ∈ {0, 1}. Similarly, let v = v′γ1γ0. Then, z ⊕ v = v + w is equivalent to

β0 ⊕ γ0 = α0 ⊕ γ0 and (4)
(z′β1)⊕ (v′γ1) = (w′α1) + (v′γ1) + (0|w′|(α0 · γ0)), (5)

where α0 · γ0 represents bit multiplication and is equal to the carry of α0 + γ0. Equation (4) is the
projection of z ⊕ v = v + w on the first bit and equation (5) is the projection of z ⊕ v = v + w on
the remaining bits. If β0 6= α0, then (4) cannot be satisfied and {v : z⊕v = v+w} = ∅. If β0 = α0,
then we distinguish the cases β0 = 0 and β0 = 1.

For β0 = α0 = 0, any γ0 solves (4) and equation (5) simplifies to

(z′β1)⊕ (v′γ1) = (w′α1) + (v′γ1).

This means that application of SolutionSpace(z′β1, w
′α1) yields a representation v ∈ {0, 1, ∗} of

all the solutions for (5). Concatenating v with the wild card ∗ (expressing that γ0 can be any bit
value) in line 17 gives a representation of {v : z ⊕ v = v + w}.

For β0 = α0 = 1, any γ0 solves (4) and equation (5) simplifies to

(z′β1)⊕ (v′γ1) = (w′α1) + (v′γ1) + (0|w′|γ0). (6)
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Algorithm 9 Outputs the set {v : z ⊕ v = v + w}
1: function SolutionSpace(z, w) /* defined for |z| = |w| ≥ 1 */
2: if |w| = |z| = 1 then
3: α = w; β = z;
4: if α 6= β then
5: Return ∅;
6: else
7: Return ∗;
8: end if
9: else/* n = |w| = |z| ≥ 2 */

10: w′α1α0 = w with α1, α0 ∈ {0, 1};
11: z′β1β0 = w with β1, β0 ∈ {0, 1};
12: if α0 6= β0 then Return ∅;
13: else/* α0 = β0 */
14: if β0 = 0 then
15: z = z′β1; w = w′α1;
16: v =SolutionSpace(z, w);
17: Return v∗;
18: else/*β0 = 1*/
19: z = z′β1; w = w′α1 + 0|w′|(β1 ⊕ α1);
20: v =SolutionSpace(z, w);
21: Return v(β1 ⊕ α1);
22: end if
23: end if
24: end if
25: end function
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The projection of (6) is equivalent to the equation β1 ⊕ γ1 = α1 ⊕ γ1 ⊕ γ0, i.e.,

γ0 = β1 ⊕ α1.

Substituting this in (6) gives the equivalent equation

(z′β1)⊕ (v′γ1) = ((w′α1) + (0|w′|(β1 ⊕ α1))) + (v′γ1).

This means that the application of

SolutionSpace(z′β1, (w′α1) + (0|w′|(β1 ⊕ α1)))

yields a representation v ∈ {0, 1, ∗} of all the solutions for (5). Concatenating v with γ0 = β1 ⊕ α1
in line 21 gives a representation of {v : z ⊕ v = v + w}.

As an invariant of algorithm 9 one can prove by induction in the length λ = |z| ≥ 1 that, if
{v : z ⊕ v = v + w} 6= ∅, then

|{v : z ⊕ v = v + w}| = 2λ−wt(z̄), (7)

where wt(z̄) is the Hamming weight of z̄ and z = α′z̄ with α′ ∈ {0, 1}. Maximizing the probability
in (3) given w is therefore equivalent to finding, given w, the minimal wt(z̄) among all z for which
{v : z ⊕ v = v + w} 6= ∅.

Let w = w′01j0a with a ≥ 0 and j ≥ 1. We distinguish two cases: j = 1 and j ≥ 2. If j = 1,
then w = w′010a. By applying lines 12-17 a times and applying lines 18-19 the (a+ 1)th time for
α0 = β0 = 1 and α1 = 0 shows that z must have the form z = z′β110a otherwise no solution for
z⊕v = v+w exists. The recursive call in line 20 uses a new z = z′β1 and w = w′β1. If β1 = 1, then
the new w equals w = w′1 and wt(z̄) = 2 +wt(z̄′) if |w′| = |z′| ≥ 1, and wt(z̄) = 1 if |w′| = |z′| = 0.
If β0 = 0, then the new w equals w = w′0 and wt(z̄) = 1 + wt(z̄′) if |w′| = |z′| ≥ 1, and wt(z̄) = 1
if |w′| = |z′| = 0.

If j ≥ 2, then w = w′01i110a for some i ≥ 0. By applying lines 12-17 a times and applying lines
18-19 the (a+ 1)th time for α0 = β0 = 1 and α1 = 1 shows that z must have the form z = z′β110a
for some bit β1 otherwise no solution for z ⊕ v = v + w exists. The recursive call in line 20 uses a
new z = z′β1 and a new w = w′01i1+0|w′|+1+i(β1⊕1). If β1 = 1, then the new w equals w = w′01i1
and wt(z̄) = 2 + wt(z̄′) if |w′| = |z′| ≥ 1, and wt(z̄) = 1 if |w′| = |z′| = 0. If β0 = 0, then the new
w equals w = w′10i+1 and wt(z̄) = 1 + wt(z̄′) if |w′| = |z′| ≥ 1, and wt(z̄) = 1 if |w′| = |z′| = 0.

For both cases, one can show that wt(z̄) is minimized for β0 = 0 and z = z′010a. Given the
above analysis the number of ones in z̄ as a function f(.) of w is equal to f(w′01j0a) = 1 + f(w′0)
for j = 1 and f(w′01j0a) = 1 + f(w′10j−1) for j ≥ 2. By using similar arguments we can also
derive f(1j0a) = 0 for j = 1 and f(1j0a) = 1 for j ≥ 1. Since a ≥ 0 is arbitrary, we obtain
the recursion f(w′01j0a) = 1 + f(w′) for j = 1 and f(w′01j0a) = 1 + f(w′1) for j ≥ 2. Since
f(w′) ≤ f(w′1) (the recursion shows that if w′ = w′′1 then f(w′) = f(w′′1), and if w′ = w′′0 then
f(w′) = f(w′′) = f(w′′01)− 1 = f(w′1)− 1), we get the inequality

f(w′01j0a) ≥ 1 + f(w′) for j ≥ 1

with f(1j0a) = 0 for j = 1 and f(1j0a) = 1 for j ≥ 1. So, the minimal weight z as a function of w
is at least the number of maximal length substrings 1j0 with j ≥ 1 in w̄. (Notice that this implies
the minimal weight is at most λ/2.) For completeness, algorithm 10 computes the z of minimal
weight given w; this algorithm will be used by the adversary to construct a simulator.
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Algorithm 10 Computing a z̄ with {v : z ⊕ v = v + w} 6= ∅ of minimal weight
1: function MinimalWeightSol(w)
2: if w = 1j0a for some j ≥ 1 and a ≥ 0 then
3: if j = 1 then
4: Return 0a;
5: else
6: Return 0j−210a;
7: end if
8: end if
9: if w = w′01j0a for some j ≥ 1 and a ≥ 0 then

10: if j = 1 then
11: z =MinimalWeightSol(w′);
12: else
13: z =MinimalWeightSol(w′1);
14: end if
15: Return z0j10a;
16: end if
17: end function

Let Wh, h ≤ λ/2, be the number of bit strings w̄ ∈ {0, 1}λ−1 of the form

w̄ = 0a011+a101+a2 . . . 11+a2h−10a2h

with |w| = λ and ai ≥ 0 for all i. The previous analysis shows that for w̄ ∈ Wh, wt(z̄) ≥ h.
Together with (7) we obtain

2−λ
∑
w

max
z

|{v : z ⊕ v = v + w}|)
2λ ≤ 2−(λ−1)

λ/2∑
h=0
|Wh|2−h.

We notice that the mapping from w̄ in Wh to

0a010a110a21 . . . 0a2h−110a2h ∈ {0, 1}λ

is a bijective mapping from Wh to strings in {0, 1}λ with exactly 2h ones. This proves Wh =
( λ
2h
)

and

2−(λ−1)
λ/2∑
h=0
|Wh|2−h = 2−(λ−1)

λ/2∑
h=0

(
λ

2h

)
2−h

= 2−λ
(

λ∑
h=0

(
λ

h

)
√

2−h +
λ∑
h=0

(
λ

h

)
(−
√

2)−h
)

=

1 + 1√
2

2

λ +

1− 1√
2

2

λ ≈ 0.85λ.

This proves the main bound in the theorem.
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5 LightSource
In this section we present the PRNG based and the NVM based flavors of LightSource.

5.1 PRNG-Based Flavor

Algorithm 11 PRNG-Based Initialization Protocol
1: function Initialize(RID, ID)
2: Choose random PRNG seed S;
3: Fuse ID and store seed S in RFID tag;
4: Initialize ctr = 0;
5: T = GetLocalTime(RID);
6: Update DB with (ID, [RID, T, S]);
7: end function

Algorithm 12 PRNG-Based Authentication Protocol
1: function Authentication(RID, ID)
2: Get random challenge x from the server;
3: (ID, cnt, z)←WriteRead(ID, x);
4: Transmit (ID, cnt, z) to the server;
5: Server looks up ID in DB and retrieves (ID, cnt′, S′);
6: if cnt ≤ cnt′ + τ then /* threshold τ ≥ 0 */
7: Return fail;
8: else
9: Forward S′ using PRNG over cnt− cnt′ iterations;

10: (k′0, k′1) = S′;
11: if z = (k′0 + x)⊕ k′1 then
12: cnt′ = cnt;
13: Return pass;
14: else
15: Return fail;
16: end if
17: end if
18: end function

The initialization protocol for the RFID tag monitoring scheme is given in algorithm 11 where
each RFID tag obtains a unique initial seed and identity (in our protocols and algorithms the
instruction Ŝ =PRNG(S) means that the PRNG updates its state to a new state Ŝ based on a
current state S and for simplicity we assume that Ŝ also represents the random bit string produced
by the PRNG). The authentication protocol is described in algorithm 12 and uses the write-and-read
command of algorithm 13 to implement a challenge-response protocol. The RFID tag applies the
XOR-ADD function to a random challenge x. Since the challenge x is random and the key (k0, k1)
cannot be distinguished from random because it is extracted from the output of the PRNG, we
may apply Theorem 1 and conclude that the XOR-ADD function is used in our protocols generate

19



Algorithm 13 PRNG-Based Write and Read Command
1: function WriteRead(ID, x)
2: (S, cnt) =GetState(ID); /* current state PRNG and counter */
3: S =PRNG(S); /* PRNG computes a new pseudo random state */
4: cnt++;
5: (k0, k1) = S;
6: Return (ID, cnt, (k0 + x)⊕ k1);
7: end function

software unclonable responses with probability ≥ 1 − 0.85λ = 1 − 2−15. By assuming that the
probability of being able to distinguish the PRNG output from true random is very small, we can
show that an adversary can win the black-box cloning game with probability at most 2−15 (as each
challenge is random with respect to previous ones, recorded histories of interactions cannot help
the adversary). As an example, a most successful strategy for an attacker is to:

1. Intercept a legitimate tag and challenge it with some string x′ (based on A0) using the write
and read command. This teaches (ID, cnt, (k0 + x′)⊕ k1).

2. Let the legitimate tag proceed through the supply chain. When challenged next during an
authentication protocol with a reader, cnt ≥ cnt′ + 2 at the start of the authentication
protocol. If the threshold τ is set large enough in order to accommodate for misreads and
miswrites, then the legitimate challenge will still authenticate.

3. The attacker can build a simulator using x′ and
(ID, cnt, (k0 + x′)⊕ k1) (based on A1) and use this to program a fake tag.

4. The fake tag is attached to a counterfeit product and inserted just before a (in our model
trusted) exit point. If the simulator predict the correct response during the authentication
at the exit point, then the attacker has won the black-box software cloning game.

In practice, the probability of winning is small enough and discourages an economically motivated
adversary from trying to physically interact with on average 215 ≈ 32000 legitimate RFID tags
before one can be successfully cloned. Also, notice that only after participation in an authentication
protocol at an exit node, the adversary will know whether his counterfeit product with cloned tag
passes authentication – on average he will lose out on about 31999 illegally inserted products before
one successfully exits the supply chain.

5.2 NVM-Based Flavor

Instead of using a PRNG, we initialize RFID tag memory with a pseudo random string (kj0, k
j
1, k

j
2)n−1
j=0

stored in M0,M1, ...,Mn−1 (each Mj stores a triple (kj0, k
j
1, k

j
2)) together with a pointer p set to

index 0 and mode bit s = 1 set to “recording mode”: Algorithm 14 describes the initialization;
it uses the write command executing lines 2-9 (after fabrication s = 0 by default) as detailed in
algorithm 15.

After initialization, the write command can only execute line 2 with lines 11-16. Notice that
the pseudo random bit strings (k0, k1, k2) stored in Mp during initialization is used to (a) execute
the XOR-ADD function with (k0, k1) for the second half of the input x1 and store the result back
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Algorithm 14 NVM-Based Initialization Protocol
1: function Initialize(RID, ID)
2: Fuse ID in RFID tag;
3: Random seed S;
4: (kj0, k

j
1, k

j
2)n−1
j=0 ←PRNG(S);

5: T = GetLocalTime(RID);
6: Write(ID, (kj0, k

j
1, k

j
2)) for j = 0 to j = n− 1;

7: Update DB with (ID, [RID, T, S]);
8: end function

into Mp, and (b) use k2 as a one-time pad to obfuscate the first half of the input x0 and store
the result back into Mp (left-over bits in Mp are reset back to 0 so that no bits of (k0, k1, k2)
are explicitly revealed). The recording algorithm 3 stays as is: during recording reader events
x = (x0, x1) = ([RID||T ],MACRK(RID||T ||ID)) are written to the RFID tag.

Algorithm 15 NVM-Based Write Command
1: function Write(ID, x)
2: (M0,M1, ...,Mn−1, p, s) =GetState(ID);
3: if s = 0 then /* Initialization mode */
4: Mp = x;
5: p+ +;
6: if p = n then
7: p = 0;
8: s = 1;
9: end if

10: else/* Recording mode */
11: (k0, k1, k2) = Mp;
12: if p < n then
13: (x0, x1) = x; /* x0 represents RID and T , x1 represents their MAC */
14: Mp = ((k0 + x1)⊕ k1, x0 ⊕ k2, 0);
15: p+ +;
16: end if
17: end if
18: end function

The authentication protocol depicted in algorithm 16 uses the read command detailed in algo-
rithm 17. The read command only returns the content of the RFID tag’s memoryM0,M1, ...,Mp−1
up to the index indicated by its pointer p. This means that during a black-box cloning attack none
of the secret information (kj0, k

j
1, k

j
2)n−1
j=p stored in Mp, . . . ,Mn−1 leaks.

We consider that the adversary can use the history of interactions H to learn a list of pairs

x = (x0, x1) = ([RID||T ],MACRK(RID||T ||ID))

for various RID and times T that were used when written to his intercepted legitimate tags IDj ,
j ∈ J . By reading out IDj , j ∈ J , the adversary learns the information

((x0, x1), ((k0 + x1)⊕ k1, x0 ⊕ k2))
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for all the memory entries stored in each of the tags during the recording protocol. This teaches
(x1, (k0 + x1)⊕ k1) with x0 and k2. (8)

At first glance, this seems that the attacker is able to use H to choose (in A0) a “good” candidate
x′1. However, MAC values are related to both the tag ID and the reader RID which limits the
adversaries choice to only the MACs associated to cloned tag ID. If such an old MAC is used,
then since it includes the timestamp, the time sequence will not be consistent which is detected by
the server in the authentication protocol. Therefore, we can use the same λ = 64 and the same
security analysis of the PRNG-based solution to conclude the same security level.

Algorithm 16 NVM-Based Authentication Protocol
1: function Authentication(RID, ID)
2: RecordReaderInteraction(RID, ID);
3: (p,M0,M1, ...,Mp−1) =Read(ID);
4: Server obtains (ID, [RID′, T, S]) from DB;
5: Server: (kj0, k

j
1, k

j
2)p−1
j=0 ←PRNG(S);

6: for j=0..p-1 do
7: Server: (zj , yj , .) = Mj ;
8: Server: (RIDj , Tj) = yj ⊕ kj2 and looks up RKj ;
9: Server: bj ← (zj ≡ (MACRKj (RIDj ||Tj ||ID) + kj0)⊕ kj1);

10: end for
11: if (bj ≡ False) then
12: Try again in line 2; /* The reader engaging in the authentication protocol should not

suffer from any misread or miswrite */
13: end if
14: Server: Checks whether the sequence of Tj is ascending for bj ≡ True;
15: Server: Let m be the number of missing nodes and let e be the number of bj ≡ False;
16: if the above checks pass and m+ e is “small enough” then
17: Return Accept
18: else
19: Return Reject
20: end if
21: end function

Algorithm 17 NVM-Based Read Command
1: function Read(ID)
2: (M0,M1, ...,Mn−1, p, s) =GetState(ID);
3: Return (p,M0,M1, ...,Mp−1);
4: end function

5.3 Implementation and Simulation

Figure 1 shows the main design features of LightSource. The gray diagonal blocks show the addi-
tional modules for the NVM-based flavor and the blocks with solid color show the extra modules
for PRNG-based flavor.
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Figure 1: LightSource architecture: shaded blocks indicate the additional hardware in the RFID
for LightSource scheme.

NVM-based scheme: The XOR-ADD function is implemented using a 38 gates for 8-bit
parallel adder and 8 gates XORs; each message is split into 8-bit blocks and the XOR-ADDing
process is repeated λ/8 times. The control logic is 120 gates: 53 gates for an 11-bit adder, 36
gates for an 11-bit comparator, 22 gates for two 11-bit multiplexers, and 9 other gates. For the
write command, each process demands three clock cycles thus in total we need 3λ/8 clock cycles
to calculate the result data; for λ = 64 this takes less than 24 ns. In addition, we use 3kb RFID
tag NVM as well as an 11-bit register.

Communication during recording takes 156 bits: a 36-bit tag ID; a 36-bit reader ID, 20-bit time
stamp (valid for a 1/2 min clock for 1 year after which the reader key needs to be refreshed and
clock needs to be reset), and a 64-bit MAC. Communication during authentication takes < 1920
bits: a 96-bits EPC, and up to 16 reader ID (personal communication with industry indicates the
length of a supply chain path is ≤ 16), time stamp, MAC combinations taking 16 · 120 = 1920 bits.
Since 1920 bits seems a lot, we simulated the NVM-based scheme by implementing initialization
and authentication protocols in C# using Microsoft SQL Server Express 2012 on a standard laptop
(with Windows 10 OS, CPU Core i7-4712HQ, 16GB RAM, and 1TB 5400rpm HDD). Updating the
server database for 107 RFID tags during initialization happened at 1538 RFIDs per second of which
91.2% of the time data was inserted into the database. Authenticating 107 RFID tags happened at
6495 RFIDs per second of which 99% of the time data was retrieved from the database. Concluding,
even with a standard laptop’s HW, initialization gives only 10% overhead and authentication gives
only 1% overhead due to our scheme on top of standard database operations.

PRNG-based scheme: We suggest to use a PRNG which has passed the NIST randomness
test suite in addition to Gen2 standard’s statistical tests, see [38,39]. The PRNG as described in [39]
has a 64 bits seed producing 32 bits pseudo random numbers per cycle and can be implemented in
hardware with less than 1600-gates. Besides the PRNG, we assume RFID tags have a monotonic
counter and implement our XOR-ADD function. This gives 38 gates for the XOR-ADD ALU and
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120 gates for the control logic. Reader interaction requires 224 bits: a 96-bits EPC, 64-bit MAC
as challenge, and a 64 bits response.

6 Conclusion
We improved over state-of-the-art RFID monitoring schemes by solving the problem of how to
eliminate the need for local partner databases. Based on an ultra lightweight XOR-ADD function
with a new provable secure property, our schemes are black-box software unclonable and can be
implemented using current RFID technology.
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