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Abstract. The Learning with Rounding (LWR) problem was first in-
troduced by Banerjee, Peikert, and Rosen (Eurocrypt 2012) as a de-
randomized form of the standard Learning with Errors (LWE) problem.
The original motivation of LWR was as a building block for construct-
ing efficient, low-depth pseudorandom functions on lattices. It has since
been used to construct reusable computational extractors, lossy trapdoor
functions, and deterministic encryption.
In this work we show two (incomparable) dimension-preserving reductions
from LWE to LWR in the case of a polynomial-size modulus. Prior works
either required a superpolynomial modulus q, or lost at least a factor
log(q) in the dimension of the reduction. A direct consequence of our
improved reductions is an improvement in parameters (i.e. security and
efficiency) for each of the known applications of poly-modulus LWR.
Our results directly generalize to the ring setting. Indeed, our formal
analysis is performed over “module lattices,” as defined by Langlois and
Stehlé (DCC 2015), which generalize both the general lattice setting of
LWE and the ideal lattice setting of RLWE as the single notion M–LWE.
We hope that taking this broader perspective will lead to further insights
of independent interest.

1 Introduction

The Learning with Rounding (LWR) problem was first introduced by Banerjee,
Peikert and Rosen [BPR12] as a derandomization of the standard Learning with
Errors (LWE) problem [Reg09]. In dimension d with modulus q and a noise
distribution ψ, an LWEd,q,ψ sample for a secret s consists of a uniformly random
a ∈ Zdq and b = 〈a, s〉+ e mod q ∈ Zq, where e is small, random “noise” sampled
from ψ. By contrast, the corresponding LWRd,q,p sample in dimension d with
modulii q > p is formed by simply rounding off the lower-order bits, instead setting
a ∈ Zdq uniformly random and b = b(p/q)〈a, s〉e ∈ Zp. The initial application for
the LWR problem was as a building block in constructing efficient, low-depth
pseudorandom functions, and there have been a number of further works in this
area, cf. [BP14, BFP+15, BLMR13].

LWR can also be used to directly construct public key cryptosystems and
other “Cryptomania” cryptographic primitives [AKPW13]. In particular, con-
structions based on LWR have an important implementation advantage over
LWE. As mentioned, constructions based on LWE require sampling an error term
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from a discrete (or rounded) Gaussian distribution. While this can be accom-
plished efficiently [GPV08, Pei10], it is not nearly as efficient as the rounding
operation in LWR. More importantly, the known efficient algorithms for sampling
are not naturally “constant-time” (although they can be modified to be made
constant-time [PG13]) making an implementation potentially vulnerable to tim-
ing attacks. Moreover, it is significantly more difficult to correctly implement
cryptosystems directly based on LWE (especially without a strong understanding
of the underlying mathematics) than the simple, deterministic rounding operation
in LWR. These implementation woes are only compounded when considering
practical implementations, which must take place in the ring setting for efficiency
reasons [LPR13b].

As a result of LWR’s usefulness, there has been significant theoretical work
devoted to obtaining good reductions from LWE (and hence from worst-case hard
lattice problems) to LWR. As mentioned previously, [BPR12] first introduced
LWR, and in particular gave a reduction from LWE to LWR when the ratio of
the LWR modulii q/p is superpolynomial in the security parameter κ. In a little
more detail, for any efficiently samplable B-bounded distribution ψ (where each
noise sample e← ψ has magnitude at most B w.h.p.), any modulii q, p so that
q ≥ p · B · κω(1), and any distribution over the secret s, [BPR12] showed that
distinguishing unboundedly-many LWRd,q,p samples from uniform samples is at
least as hard as distinguishing as many LWEd,q,ψ samples from uniform.

Banerjee, Peikert and Rosen also show analogous results for the case of the
Ring Learning with Errors (RLWE) problem [LPR13a] and Ring Learning with
Rounding (RLWR), where for an appropriate choice of ring R and secret s ∈ R,
RLWER,q,ψ samples (a, b) ∈ Rq ×Rq are similarly obtained by sampling a← Rq
uniformly and e ← ψ, then setting b = a · s + e mod qR; and where RLWR
samples just round off the lower-order bits of the coefficients of ring elements,
written as polynomials in the “power basis” representation for R.

In later work, Alwen et al. [AKPW13] gave the first reduction from LWE
to LWR in the case when the modulus q is a fixed polynomial in the security
parameter κ. However to do so, their techniques introduce a number of drawbacks
not originally present in the [BPR12] reduction; namely: (i) restricting to only the
case of LWE/LWR (rather than RLWE/RLWR as well), (ii) additionally a-priori
bounding the number of LWE/LWR samples, w, for the proof to proceed, and
(iii) losing samples during the course of the reduction. More precisely, they show
the hardness of LWR with parameters d,w, q, p from the hardness of LWE with
parameters d′, w, q, ψ with ψ B-bounded, so long as d > log(q)/ log(γ) · d′ and
q ≥ γ(dwBp) for some flexible parameter γ ≥ 1., with an additional constraint
that q must be prime or have its largest prime factor greater than or equal to
γ(dwBp).

Additionally, Alwen et al. demonstrate applications of “w-bounded-sample”
LWR to constructing reusable computational extractors [DKL09], lossy trap-
door function families [PW11], and deterministic encryption [BBO07, BFOR08,
BFO08, BS14, FOR15]. In particular, any improvements in their reduction from
LWE to LWR immediately imply improvements to the security or efficiency of
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these constructions, though – unfortunately – not to lattice-based pseudorandom
function constructions, which (so far) only make use of unbounded-sample LWR
for their security proofs.

More recently, Bogdanov et al. [BGM+16] extended this line of work in a
number of ways, primarily through the novel introduction of Rényi divergence
(rather than statistical distance) in order to fine-tune their statistical analyses. Of
particular relevance to our work is their reduction to LWRd,w,q,p from LWEd′,w,q,ψ
with parameters d′, w, q, ψ so long as d > log(q) · d′ and q ≥ 2wBp, with no
special conditions on the factorization of q, and it appears that if all of the prime
factors of q are at least ρ, they only require that d > logρ(q) · d′, making it
dimension preserving for the special case that q is prime. They are also able to
give a reduction from the search version of RLWE to the search version of RLWR,
but are unable to prove any search-to-decision reduction for RLWR. It is an open
problem to recover all of the tighter parameters of [BGM+16] without losing in
the dimension, perhaps by a applying Rényi divergence based analysis rather
than our forthcoming use of statistical distance.

1.1 Our Contributions

Our main contribution is a dimension-preserving reduction from LWE to LWR
with a polynomial-sized modulus. The two somewhat incomparable reductions
described in the theorem stem from the two somewhat incomparable pre-existing
reductions from LWE to Ext–LWE; see 3 for details.

Theorem 1.1. Let κ be a security parameter on which all other parameters
depend. Let ψ be a distribution over Z for some B > 0. Let p, q = poly(κ), w =
poly(κ), d ∈ N such that q ≥ 4eBwpκ. If ∃ a probabilistic polynomial-time A
succeeding with advantage ε(κ) ≥ (κ)−c for some constant c ≥ 1 in distinguish-
ing LWRd,w,q,p from uniform, then there exists a probabilistic polynomial-time
algorithm A′

1. succeeding with advantage ε(wB)−c/4 ≥ (κwB)−c/4 in distinguishing LWEd,w,q,ψ
from uniform, as long as every prime factor of q is greater than B and ψ is
B-bounded.

2. succeeding with advantage ε(w)−c/4 ≥ (κw)−c/4 in distinguishing LWEd−c,w,q,ψ
from uniform, with no restrictions on the factors of q, as long as ψ = Dα

and D(a2+ω(log κ)) is B-bounded.

In Table 1, we give a comparison to the previous reductions, omitting constants,
negligible amounts, and O(·) symbols for readability.

Extension to Ideal and Module Lattices. Although the above reduction is written
in terms of LWE, as it turns out, we are able to prove essentially the same
reduction in the ring setting. In particular, we are able to reduce Ext–RLWE to
RLWR in a dimension-preserving manner, where here the hints for Ext–RLWE
can be arbitrary Q-linear functions of the coefficient vector. To avoid having to
repeat what is essentially the same reduction for both settings, we instead prove
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Work Unbounded
Samples (w)

Modulus (q) Advantage
Change (ε→ ε′)

Dimension
Change (d→ d′)

[BPR12] Yes Bpκω(1) ε− negl(κ) d

[AKPW13] No γBwpκ ε/(2dw) d log(γ)/ log q

[BGM+16] No Bwp (ε/qw)2 d/ logρ q

This work (1) No Bwpκ ε(wB)−c d
This work (2) No Bwpκ ε(w)−c d− c

Table 1. In this table, we have c ≤ − ln(ε)/ ln(κ), γ ≥ 1, every prime factor of q is
greater than ρ.

the reduction for the learning with errors problem over module lattices. However,
we have written the reduction in such a way that someone who is only familiar
with LWE over integer lattices can easily follow it, by simply replacing R with Z.

We are unable to prove any reductions from RLWE to the form of Ext–RLWE
described above, and leave this as a major open problem. We believe that it
should be possible without too much difficulty to prove a reduction from RLWE
to an alternative form of Ext–RLWE. Specifically, in this version one receives
the error modulo some prime ideal of qR as the “hint,” and the proof would
work for those choices of q and R such that q factors over R into the product of
prime ideals all having small norm (i.e. polynomial in the security parameter).
Briefly, such a reduction would follow the reduction from LWE to Ext–LWE by
Alperin-Sheriff and Peikert, [AP12] where the reduction guesses the value of
the error term modulo the requested prime ideal, and then modifies the RLWE
samples based on the guess so that a correct guess results in valid RLWE samples
and an incorrect guess results in uniform samples. Some care would also have to
be taken to show that the resulting samples are in fact uniform, using some of
the techniques in the search-to-decision reduction for RLWE in [LPR13a].

However, such a reduction does not appear to be useful for our goal of getting
a reduction for RLWR, at least in a manner similar to our reduction for regular
LWR, so we omit a formal proof. The problem here is that the RLWE error will
necessarily be statistically uniform modulo any small prime ideal, so we cannot
simply round each coefficient of an LWE sample in the “CRT representation”
and have any useful bound on the likelihood that the coefficient will round to
an equivalent value in the errorless version of the sample. Conversely, in the
coefficient representation and/or the canonical embedding, we will be able to
obtain useful bounds on these likelihoods, but learning the error modulo a prime
ideal will be entirely useless for dealing with the “bad” coefficients.

Instead, we define extended-LWE over the generalization of ideal lattices
(and general lattices) that have been termed module lattices [LS15]. Over module
lattices, we are able to show a reduction from M–LWE to Ext–M–LWE. This
reduction is a fairly straightforward adaptation of the LWE to Ext–LWE reduction
that can be found in [BLP+13], but requires some care since we are working over
rings that in general fail to be principal ideal domains.
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1.2 Our Approach

The connection given in each of the three previous works between LWE and LWR
ultimately stems from the fact that, except for some “bad” cases, we have that

b〈a, s〉ep = b〈a, s〉+ eep (mod q),

when e is drawn from a B-bounded distribution and q is sufficiently larger than
Bp. In Banerjee et al’s original work [BPR12], they simply set q to be superpoly-
nomially large than Bp, so that the above equation holds with all but negligible
probability, allowing an unbounded polynomial number of samples. As in the
subsequent two works [AKPW13, BGM+16], we provide a more sophisticated
bound for the case that the number of LWR samples received w is an a priori
bounded polynomial in the underlying security parameter κ.

The first insight into our reduction comes from noticing that we can tune the
number of “bad” samples allowed to the advantage ε ≥ κ−c (where c is some
constant independent of κ) of a given adversary A in attacking LWR. In this case,
by setting q ≥ CwκBp for a suitable small constant C, we can easily show that
the probability that b contains more than c “bad” elements is at most 1

2κ
−c.

Consequently, if we could find a method to transform any LWE sample with at
most c “bad” elements into an LWR sample, then we could construct A′ that
could use A to successfully attack LWE in the same dimension. Specifically, A′
would work as follows:

1. A′ queries its LWE oracle to receive back (A ∈ Zd×wq ,b). If b contains c or
more bad elements, A′ aborts.

2. ??????
3. A′ sends A a sample (A ∈ Zd×wq ,b ∈ Zwp ) within statistical distance ε/2 of

LWR.
4. Profit(able reduction)!

Of course, this reduction has a missing step-how do we successfully transform
an LWE sample with (at most) c bad elements into a valid LWR sample? Rounding
the “good” elements properly is easy, as we know that for those elements,
bbiep = b〈ai, s〉ep. But what about the “bad” elements, where it may be the case
that bbiep 6= b〈ai, s〉ep. It turns out that there is a very easy solution: we guess
them!

More formally, instead of show a reduction from LWE to LWR, we instead
show a reduction from extended-LWE (Ext–LWE) (with c hints) to LWR, and then
rely on the existing reductions from LWE to Ext–LWE to achieve a full reduction
from LWE to LWR. The Ext–LWEd,w,q,α,c problem allows one to query for the
result of c linear functions of the error vector e to be received along with the
LWE sample (A,b). In particular, we can query to learn arbitrary elements ei of
the error vector.

As a result, in order to round the “bad” elements properly, we simply make
a uniform random guess (in advance) which c elements of b might be “bad.”
With probability at least w−c ≥ 1/poly(κ), we will guess correctly, in which case
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we can simply subtract off the associated terms and then correctly round the
result. If we guess incorrectly, we abort. Note that this step requires an artificial
abort on correct guesses to ensure that the sample getting sent to A remains
distributed within ε/2 of actual LWR; see the body of the paper for details.

Organization. In Section 2 we recall various preliminary facts that we will need
for the rest of the paper. In Section 3, we extend the definition of extended LWE
to module lattices, and prove a reduction from M–LWE to Ext–LWE; this section
is standalone and may be skipped for those unfamiliar with the ring setting.
Finally, in Section 4, we give a dimension-preserving reduction from Ext–M–LWE
to M–LWR. We stress that this section has been written to be accessible to
someone only familiar with integer lattices, by simply viewing R as Z when
reading it, and noting that this makes the ring dimension parameter n = 1.

2 Preliminaries

2.1 Notation

Throughout this work, by “ring” we mean a commutative ring with identity.
We identify the elements in Zq with their coset representatives in [0, q). For an
element x ∈ Zq, we define

bxep = b(p/q) · xe,
where the latter b·e denotes standard rounding to the nearest integer. For a ring
element y ∈ Rq, the rounding operation is performed coefficient-wise.

Note that we use d and w as matrix dimensional parameters instead of n
and m used in most LWE papers, because we reserve the latter variables for the
dimension and index of cyclotomic rings, respectively. We (sometimes implicitly)
parameterize essentially all variables asymptotically in terms of κ instead of
n, since we use n to denote the dimension of a ring and it may be small; in
particular, for Z, we have n = 1.

2.2 Algebraic Number Theory Background

Here we briefly review concepts from algebraic number theory necessary for
(parts) of our work. For a more thorough background on algebraic number theory
as it applies to cryptography based on ideal lattices, see [LPR13a, LPR13b].

The Space H. When working with cyclotomic fields under the canonical embed-
ding, it is standard to work with the subspace H ⊆ Cn, where 2s2 = n is the
dimension of the field (the 2s2 notation is to account for complex conjugates),
defined as

H = {(x1, . . . , xn) ∈ Cn : xs2+j = x̄j ,∀j ∈ [s2]} ⊆ Cn.

Letting ej ∈ Cn be the vector with 1 in its jth coordinate, 0 elsewhere, we
have the following orthonormal basis for H. We let hj = 1√

2
(ej + ej+s2) and

hj+s2 =
√
−1√
2

(ej − ej+s2). This basis also shows that H is isomorphic to Rn as

an inner product space.
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Cyclotomic Fields and Rings. For a positive integer m called the index, the
mth cyclotomic number field is K = Q(ζm), where ζm is some fixed arbitrary
primitive mth root of unity (for each m, we view it abstractly and not as any
particular such root). We denote the ring of integers of K as Om = Z[ζm], and
refer to it as the mth cyclotomic ring. The minimal polynomial of ζm over Q
is the mth cyclotomic polynomial Φm(X) =

∏
i∈Z∗m

(X − ωim) ∈ Z[X], where

ωm = exp(2π
√
−1/m) ∈ C is the principal mth complex root of unity, and the

roots ωim ∈ C range over all the primitive complex mth roots of unity. Therefore,
Om is a ring extension of degree n = ϕ(m) over Z. (In particular, O1 = O2 = Z.)
Clearly, Om is isomorphic to the polynomial ring Z[X]/Φm(X) by identifying ζm
with X, and has the “power basis” {1, ζm, . . . , ζn−1

m } as a Z-basis. Note that for
m ∈ {1, 2}, we have that K = Q and R = Z.

Complex Embeddings. A cyclotomic number field K = Q(ζ) degree n has exactly
n ring embeddings σi : K → C, which can be defined by σi(ζ) = ζi for i ∈ Z∗m.
The canonical embedding is then defined as

σ(x) = (σ1(x), . . . , σm−1(x)) ∈ Cn.

We also define the trace Tr : K → Q and the (field) norm N : K → Q as
Tr(x) =

∑
σj(x), N(x) =

∏
j σj(x), and recall that the trace is a “universal”

Q-linear function, in the sense that any linear function L : K → Q can be
expressed as L(a) = Tr(r · a) for some fixed r ∈ K.

Ideals. An (integral) ideal I of R is an additive subgroup of R that is closed
under multiplication by every element of R. We denote the smallest ideal of R
containing the set S by (S), and by R/I the set of equivalence classes x+ I of R
modulo I. The norm of a (nonzero) ideal is the number of elements in R/I.

For ideals I and J of a ring R, their sum I + J = {i+ j : i ∈ I, j ∈ J}, and
their product is IJ = {

∑
k ikjk : ik ∈ I, jk ∈ J}. A prime ideal I ⊆ R is such

that if ab ∈ I, then at least one of a and b is also in I. Over the ring of integers
of any algebraic number field, any ideal of R can be represented uniquely as a
product of prime ideals. A fractional ideal I ⊆ K is a set such that dI ⊆ R is an
integral ideal for some non-zero d ∈ R. The fractional ideals of K form a group
under multiplication, and in particular we have that I · I−1 = R.

Duality. The dual of an ideal is defined as I∨ = {x ∈ K : Tr(xI) ⊆ Z}, and we
have that I∨ = I−1 · R∨. If R is the m = 2e0pe11 . . . pett th cyclotomic ring, let
g =

∏
i∈[t](1− ζpi) ∈ R and let m̂ = m/2 is m is even, m̂ = m otherwise. Then

R∨ = 〈g/m̂〉. As a result, for an element x ∈ R∨, we have that m̂x ∈ R, and that
each coefficient of m̂x is scaled up by exactly m̂. We could also scale by m̂/g to
move it into R, but this would eliminate any nice guarantees on the change in
the magnitudes of each coeficient.

Factorization of Ideals. Let q = pr ∈ Z be a prime power. In the mth cyclotomic
ring R = Om = Z[ζm] (which has degree n = ϕ(m) over Z), the ideal pR
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factors into prime ideals as follows. First write m = m̄ · pk where p - m̄. Let
e = ϕ(pk), and let d be the multiplicative order of p in Z∗m̄. Note that d divides
ϕ(m̄) = n/e. The ideal qR then factors into the product of (re)th powers of
ϕ(m̄)/d = n/(de) distinct prime ideals pi, i.e. qR =

∏
prei . Each prime ideal pi

has norm |R/pi| = pd. The factorization of qR for general q = pr11 . . . prtt then
follows by recalling the unique factorization of ideals for cyclotomic rings and
that qR = (pr11 R) . . . (prtt R).

Modules. A subset M ⊆ Kd is an R-module if it closed under addition and
multiplication by elements of R. When K is a number field and R is its ring
of integers, an R-module has a so-called pseudo-basis of linearly independent
vectors bi ∈ Kd such that M =

∑d
i=1 Ii · bi for some non-zero ideals Ik of R.

The representation of element of M with respect to a pseudo-basis unique, but
two pseudo-bases can generate the same module; however, these bases will always
have the same rank.

2.3 Lattices, Ideal Lattices and Module Lattices

A lattice L ⊆ Rn is a discrete additive subgroup consisting of all integer linear
combinations

∑
i∈m xibi, where B = (bi) is called the basis.

Under the canonical embedding, a fractional ideal I with Z-basis U =
(u1, . . . , un) becomes a rank-n ideal lattice σ(I) with basis {σ(u1), . . . , σ(un)} ⊂
H. For convenience, we often identify the ideal I with its embedded lattice.

Module lattices were first implicitly used for cryptography in [BGV12],
but were first formally investigated by Langlois and Stehlé [LS15]. For an n-
dimensional number field, they can be defined via the embedding σM : Kd → Rnd
defined by σM = (σ)i∈d, where σ is the canonical embedding. For a module lat-
tice M , the set σM (M) is a module lattice, and similarly to ideal lattices, we
often identify the module M with its embedded lattice. One can see them as a
generalization of both lattices and ideal lattices. In particular, if K = Q, then it
is easy to see that this defines an arbitrary integer lattice, while if we set d = 1,
we end up with ideal lattices.

As mentioned by Langlois and Stehlé, for an O(n)-dimensional cyclotomic
ring, 1 < d� n, cryptography based on module lattices maintain much of the
practical advantages over cryptography based on general lattices, while enjoying
potentially stronger theoretical security guarantees. In particular, for d = 1
(corresponding to ideal lattices), the Minkowski upper bound on the length of
the shortest vector is within a

√
n factor of the actual length of the shortest

vector in the lattice [LPR13a], which makes GapSVP√n for cyclotomic rings
into an easy problem. By contrast, for d ≥ 2, it is an easy exercise to show
that there exist module lattices with shortest vector shorter than Minkowski’s
upper bound by any arbitrarily large factor, and more generally, in this case
no polynomial-time algorithm is known for approximating Mod–GapSVP (i.e.
GapSVP over module lattices) to within any polynomial factor. As a result, we
may apply Peikert’s classical reduction from GapSVP to BDD in the module
lattice setting [Pei09], using the oracle reducing Mod–BDD to M–LWE found

8



in [LS15] and gain potentially more confidence in the hardness of M–LWE (for
d ≥ 2) than we can in the hardness of RLWE, for which there only exists a
quantum reduction from plausibly hard worst-case lattice problems.

2.4 Gaussian Measures

For s > 0, the n-dimensional Gaussian function ρs is defined as

ρs(x) := exp(−π‖x‖2/s2).

Normalizing this function gives the continuous Gaussian distribution Ds. More
generally, we can define DB as the distribution of Bx where x is sample from D1.
For an invertible B, DB is proportional to exp(−πxtB−tB−1x). For any B1,B2,
the sum of a sample from DB1

and DB2
is distributed as D(B1Bt1+B2Bt2)1/2 .

For an n-dimensional lattice Λ and a vector u ∈ Rn, we define the discrete
Gaussian distribution DΛ+u,s as the discrete distribution with support on the
coset Λ+ u whose probability mass function is proportional to ρs.

We require the following now standard facts about Gaussian distributions
over lattices [MR07, GPV08, BLP+13].

Lemma 2.1. Let L be a lattice with associated basis B, and let ‖B̃‖ denote the
length of the longest vector in the Gram-Schmidt orthogonalization of B. Let
s ≥ ‖B̃‖

√
ln(2n(1 + 1/ε))/π for some 0 < ε ≤ 1/2. Then

1. There is a probabilistic polynomial-time algorithm that, given c ∈ Rn outputs
a sample distributed according to DΛ+c,s.

2. The distribution of x mod Λ, where x← Ds, is within statistical distance ε/2
of the uniform distribution over cosets of Λ.

3. Let r > 0. Then if we choose x ← Dr and then choose y ← DΛ−x,s, we
have that x + y is within statistical distance 8ε of the discrete Gaussian
DΛ,(r2+s2)1/2 .

2.5 Learning with Errors

Here we formally define the learning with errors problem [Reg09] and its variants
over rings and modules. As alluded to earlier, it is sufficient to simply define mod-
ule learning with errors (M–LWE) and module learning with rounding (M–LWR),
as the ring and g eneral variants fall out as special cases.

Definition 2.2 (M–LWE Problem). Let K be some finitely generated field
extension of Q, and denote by n its dimension. Let R = OK be its ring of
integers, and let ψ be some distribution over R. Then we define the decision
version of M–LWER,d,w,q,ψ as follows.

The adversary gets (A← Rd×wq ,b ∈ Rdq), and must distinguish between the

case where b = Ats + e ∈ Rwq , where s← Rdq uniformly at random and e← ψw

and the case where b← Rwq uniformly at random.
When ψ is a spherical Gaussian, we sometimes write M–LWER,d,w,q,α to

denote M–LWER,d,w,q,Dα , and similarly for LWE and RLWE.
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Under this definition, it is easy to see that M–LWE is a generalization of both
RLWE and LWE. When d = 1, M–LWER,d,w,q,ψ is equivalent to RLWER,w,q,ψ,
while when R = Z, M–LWER,d,w,q,ψ is equivalent to LWEd,w,q,ψ.

Unlike the standard definition, the error and the secret are chosen from a
distribution over the dual ideal of the ring R∨q . However, as discussed above
in Section 2.2, we can simply scale up b by m̂ to move it into R, simplifying
notation and making the paper more accessible.

Hardness Guarantees. We have quantum worst-case to average case reduc-
tions from SIVP for module lattices for d ≥ 1, and we also have a (poten-
tially meaningful) classical reduction from GapSVP for d ≥ 2 [LS15]. There
are also many different hardness reductions for the special cases of LWE and
RLWE [Pei09, Reg09, LPR13a, BLP+13]; for details, consult the cited works.

Error Distributions. For the purposes of this paper, we will largely ignore the
specific details of the error distribution, except for in Section 3.2 (which can
be viewed in a standalone manner), where we use Gaussian distributions of the
form described in Section 2.4. For our main result, it is sufficient that the error
distribution is B-bounded.

Definition 2.3. A distribution ψ over Z is said to be B-bounded if

Pr
x←ψ

[x /∈ [−B,B]] ≤ negl(κ).

For completeness, we recall the following result of Banszcyzyk [Ban93], which
allows us to upper-bound the magnitude of the error coefficients in an LWE
sample.

Lemma 2.4 (Adaptation of [Ban93] Lemma 1.5(i)). For any lattice Λ,
r > 0, and let x← DΛ,r we have that except with probability 2−2n, ‖x‖ ≤ r

√
n.

We caution that this result cannot necessarily be used immediately as an
upper-bound of (ring) coefficients in RLWE and M–LWE if one wishes to rely on
the existing worst-case reductions from hard ideal/module lattice problems. This
is because we need bounds on the magnitude of the individual coefficients of the
error term, while the error is sampled to be short with respect to the canonical
embedding. As in general (specifically, for cyclotomic polynomial rings with an
index that is the product of many distinct small primes), the distortion between
the coefficient embedding and the canonical embedding may be superpolynomially
large in the index [Erd46], these reductions may be of less utility in such rings.
However, in the rings of index 2k (and more generally for rings of index 2kp`,
where p is a small odd prime), the distortion between the two embeddings will
be very small, and so relying on the worst-case reductions becomes meaningful.
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2.6 Learning With Rounding

The learning with rounding (LWR) problem was introduced by Banerjee, Peikert
and Rosen as a “derandomization” of LWE [BPR12]. As with learning with errors,
we will simply define the module version (M–LWR), and note that RLWR and
LWR fall out as special cases.

Definition 2.5 (M–LWR Problem). Let K be an algebraic number field of
dimension n, R = OK its ring of integers. Let q ≥ p ≥ 1, d ≥ 1 ∈ Z be integers.
Then we define the decision version of M–LWRR,d,w,q,p as follows: The adversary
gets (A← Rd×wq ,b ∈ Rwp ), and must distinguish between two cases. In the first
case, which we refer to as the M–LWR distribution,

b = bAtsep = b(p/q)Atse ∈ Rwp ,

where s← Rdq uniformly at random, while in the second case, which we refer to
use at the uniform case, b = buep, where u← Rwq uniformly at random.

Note that if p divides q, the distribution of b is truly uniform, while if p 6| q, b
will be slightly biased towards certain values modulo p.

3 Extended-LWE

In this section we define Ext–LWE and its variants, and give a security reduction
from M–LWE to Ext–M–LWE for suitable parameters.

3.1 Definitions

The Extended-LWE (Ext–LWE) problem was first introduced formally by O’Neill
et al. [OPW11], although it appeared implicitly in several earlier works. We
provide a definition of the problem in the context of module lattices (Ext–M–LWE),
following the definition of Brakerski et al. for regular Ext–LWE [BLP+13].

Definition 3.1. For a number field K with ring of integers R, dimensional
parameters d,w ∈ Z, modulus q ≥ 1, a set Z ⊆ Kd, a parameter k denoting the
number of hints received, and a distribution ψ over R, the Ext–M–LWER,d,w,q,ψ,Z,k
problem is defined as follows: The algorithm gets to choose z1, . . . , zk ∈ Z and
receives back a tuple

(A,b, (Tr(〈e, zi〉))i∈[k]) ∈ Rd×wq ×Rwq ×Qkq

The goal is to distinguish between two cases. In the first, which we refer to
as the Ext–M–LWE distribution, A is chosen uniformly at random, e ← ψw,
and b = Ats + e (mod q) for s chosen uniformly at random. The second case,
which we refer to as the uniform distirbution, is identical, except that b is chosen
uniformly at random and independently of everything else. When ψ = Dα, we
sometimes write Ext–M–LWER,d,w,q,α,Z,k to mean Ext–M–LWER,d,w,q,Dα,Z,k.

11



An explanation is in order for the use of the trace function in the definition
of the hints, which is not found in previous definitions of Ext–LWE (and indeed
has no meaning over general lattices, as TrQ/Q is the identity function). The
purpose of including the trace function is to provide a method to request any
Q-linear function of the error vector, as viewed in the coefficient embedding, as
the hints. The trace function, being a “universal” Q-linear function, allows us to
accomplish this.

In our proof below, we do not gain anything by limiting to extracting only the
trace of the inner product instead of allowing extraction the entire inner product
〈e, zi〉. However, the latter case clearly reveals strictly less information (given the
hint alone) than the former, so there may exist an alternative reduction for the
latter case that is less costly in parameters than the former. Moreover, using the
full trace allows for a nicer reduction to M–LWR in the next section, as we end
up only requesting the error coefficients we need instead of needing to request
entire ring elements.

Following Brakerski, et al, we define the quality of a set Z ⊆ Zm.

Definition 3.2. For a real ξ > 0 and a set Z ⊆ Kw, we say that Z is of quality
(ξ, t) if given any z1, . . . , zt ∈ Z, we can efficiently construct a unimodular
matrix U ∈ Zw×w such that, if U′ ∈ Zw×(w−t) is the matrix obtained from U
be removing its t leftmost columns, then all the columns of U′ are orthogonal to
span(z1, . . . , zt) and its largest singular value is at most ξ.

For our reduction in Section 4, we will have Z be the set of (scaled down by
the dimension of K) columns of the identity matrix Iw. We can easily see that
Z is of quality (1, t) for all t < w by letting U be a suitable permutation of the
rows of the identity matrix.

For this particular setting of Z, there exist two prior somewhat incomparable
reductions for Ext–LWE (over general lattices), given by Alperin-Sheriff and
Peikert [AP12] and by Brakersi et al., respectively. [BLP+13]. We state them
both here:

Lemma 3.3. There is a (transformation) reduction from LWEd,w,q,α to

1. [AP12]: Ext–LWEd,w,q,α,k, that reduces the advantage by a multiplicative
factor of at most qk.

2. [BLP+13]: Ext–LWEd+k,w,q,(α2+r2)1/2,k, where r ≥ ω(
√

logw), that reduces
the advantage by a negligible factor.

3.2 Extended-LWE Over Module Lattices

Here we show that an analogous version of the Ext–LWE reduction found in [BLP+13]
holds over module lattices as well. In order to prove this theorem, we follow the
path of Brakerski et al. [BLP+13]. We first prove the reduction to the intermedi-
ate problem “first-is-errorless-M-LWE” and then proceed to prove the reduction
from “first-is-errorless-M-LWE.” to Ext–M–LWE.
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First-Is-Errorless-LWE As in the previous work, we have the intermediate
step of “first-is-errorless” M–LWE, in which the first inner product contains no
error. The proof for this general case essentially follows that of Brakerski et al,
with a few important differences stemming from the form of R will not in general
be a Euclidean domain or even a principal ideal domain. This requires some
careful proof restructuring.

Definition 3.4. Let K be an algebraic number of field, R = OK be its ring of
integers. Let q > 1, d ≥ 2 be integers, and let ψ be a distribution over R. Then the
“first-is-errorless” version of M–LWE requires the adversary to distinguish between
two cases. In the first case, the adversary receives A ∈ Rd×wq ,b = Ats + e ∈ Rwq ,

where s ← Rdq uniformly at random and e ← (0, e′), where e′ ← ψw−1. In the
second case, b← Rmq uniformly at random.

We first prove a brief lemma relating to the probability that the greatest
common divisor of qR and the principal ideals generated by d elements chosen
uniformly at random modulo Rq is in fact all of R (making all of these ideals
coprime).

Lemma 3.5. Let q =
∏
i∈[`] p

ei
i . Let R = Om and write m = m̄ · pκii , where

p - m̄. Let fi be the multiplicative order of pi modulo m̄. Let a1, . . . , ad ← Rq
uniformly at random (strictly speaking, elements in R from some canonical set
of representatives of Rq). Then we have that R = gcd(qR, 〈a1〉, . . . , 〈ad〉) =
qR+ 〈a1〉+ . . .+ 〈ad〉, except with probability at most∑

i∈`

(
ϕ(m̄)

fi
p−d·fii

)
(3.1)

Proof. We have that the sum of all the ideals above will be equal to R unless
a1, . . . , ad all lie in some prime ideal pi of qR. Recall from 2.2 that a prime ideal
pi,j dividing piR has norm ‖R/pi,j‖ = pfii , the probability of this event is at

most p−d·fii . Equation 3.1 then follows from a simple union bound.

We now prove the reduction.

Lemma 3.6. Let d ≥ 2, w, q > 1, R = Om, ψ be an error distribution over R.
There is an efficient (transformation) reduction from M–LWER,d−1,w−1,q,ψ to the
first-is-errorless variant of M–LWER,d,w,q,ψ that reduces the advantage by at most∑
i∈`

(
ϕ(m̄)
fi

p−d·fii

)
, where fi and m̄ are as defined in Lemma 3.5.

Proof. The reduction first chooses a′ ← Rdq . If we have that qR + 〈a′1〉 + . . . +
〈a′d〉 ⊂ R, the reduction aborts. Otherwise, it finds, via a generalization of the
Euclidean algorithm [Coh96], a d × d invertible matrix R ∈ Rd×dq such that
Ra′ = (1, 0, . . . , 0)t, and sets U = R−1.

It also picks a uniform element s0 ∈ Rq.It then output as the first sample
(a′, s0). For each of the w − 1 remaining samples, we first sample (a, b) from
the given M–LWE oracle, pick a fresh uniformly random d ∈ Rq, and output
(U(d|a), b+ (s0 · d), where the vertical bar denotes concatenation.
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Conditioned on not aborting, we will verify that the output is distributed
according M–LWER,d,m,q,ψ. Combining this with the bound in Lemma 3.5 will
give our desired result.

We now verify correctness, conditioned on not aborting. First, we consider the
case that (a, b) samples are uniform and independent. In this case it is easy to
see that the outputs remain uniform, since (d|a) is uniform, U is invertible, and
each b is uniform and independent of everything else. Secondly, if the samples are
from M–LWE with respect to a secret s, it is easy to verify that the outputs are
distributed according to the first-is-errorless variant M–LWER,d,w,q,ψ with secret
s′ = Rt(s0|s) mod q. Since U is invertible modulo q and (s0|s) is uniform, so is
s′, which proves correctness.

By iterating this reduction and applying a union bound, we immediately have
the following corollary which gives a reduction to a first-t-are-errorless variant of
M–LWE. We use this corollary in the next section to reduce to Ext–M–LWE with
t hints.

Corollary 3.7. Let d > t ≥ 0, w, q > 1, R = Om, ψ be an error distribution
over R. There is an efficient (transformation) reduction from M–LWER,d−t,w−t,q,ψ
to the first-t-are-errorless variant of M–LWER,d,w,q,ψ that reduces the advantage

by at most t
∑
i∈`

(
ϕ(m̄)
fi

p
−(d−t)·fi
i

)
, where fi and m̄ are as defined in Lemma

3.5.

In order for our reduction to “first-is-errorless” M–LWE to be meaningful
when d− t is much smaller than linear in the underlying security parameter κ (as
it will be in the case we are interested in for our reduction to M–LWR), we will
require that all of the prime ideals of qR have norms superpolynomially large in
the security parameter (which makes the reduction in advantage negligible). This
is the case for many if not most practical choices of R and q. Similar conditions
were required by Ducas and Micciancio [DM14] for the ring used in their signature
scheme, although they were significantly further restricted because they needed
the prime ideals to be exponentially large in the security parameter. As in their
work, for a concrete example of choices of R and q for which this reduction is
meaningful, we can take R to have index 2k and let q = 3`. In fact, for R of
index 2k, noting that Z∗2k ≡ Z2 ⊕ Z2k−2 , we have asymptotically by the prime
number theorem for arithmetic progressions [Sop10] that 1− 1/2k−1 of all primes
(and their powers) are admissible as prime factors of the modulus q for which
the reduction is meaningful.

First-Is-Errorless to Extended-LWE We now show a reduction from “first-
t-are-errorless” M–LWE to Ext–M–LWE. The reduction primarily follows that of
Brakerski et al, with slight differences to account for the multiple samples, as
well as a correction of some small mistakes in the proof therein.

Lemma 3.8. Let Z ⊆ Kd be of quality (ξ > 0, t). Then for any n, q > 1, ε ∈
(0, 1/2), α, r ≥ (ln(2w(1 + 1/ε))/π)1/2/q, t < d, there is a (transformation)
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reduction from the first-t-are-errorless variant of M–LWER,d,w,q,α to
Ext–M–LWER,d,w,q,(α2ξ2+r2)1/2,Z,t that reduces the advantage by at most 16ε.

Proof. The reduction proceeds as follows. Given z1, . . . , zt ∈ Z, we compute the
unimodular U ∈ Zd×d that can be efficiently computed as in Definition 3.2, and
let U′ ∈ Zd×(d−t) be the matrix formed by removing the t leftmost columns
of U. We receive m samples (A ∈ Rd×wq ,b ∈ Rwq ) from our “first-t-errorless”
M–LWE oracle. We then sample f ← Dα(ξ2I−UUt)1/2 . The above distribution is

well-defined since ξ2I−U′U′t is a positive semidefinite matrix according to our
assumption on U.

The reduction then sets b̄ = Ub+f , and samples c from the discrete Gaussian
distribution Dq−1Rw−b̄,r. It then outputs

(A′ = AUt,b′ = b̄ + c, (Tr(〈zi, f + c〉))i∈[t]) ∈ Rd×wq ×Rwq ×Qtq

We now analyze correctness of the reduction. First, we have that U is invertible,
so that A′ = AUt is uniform solely over the choice of A. For the remainder
of the proof we condition on any fixed value of A′ and focus on analyzing the
distribution of the second and third components of the output.

First, consider the case that the samples received by our reduction came from
the first-t-are-errorless variant of M–LWE. Then we have that

b̄ = Ub + f = A′ts + Ue + f

We have that Ue is distributed as a continuous Gaussian DαU, so by additivity
of Gaussians, we have that Ue + f is distributed as a spherical continuous
Gaussian Dαξ. Since A′ts ∈ Rwq , we have that c is in fact distributed according to
Dq−1Rw−b̄,r. As a result, by Lemma 2.1, Ue + f + c is within statistical distance
8ε of Dq−1Rw,(α2ξ2+r2)1/2 , which shows that b′ is distributed correctly. For the
third component, since the first t elements of e are zero and the last d− t columns
of U are orthogonal to each zi, we have that

〈zi, f + c〉 = 〈zi,Ue + f + c〉,

so the third component gives the inner product of the noise with each vector zi,
as desired.

Finally, we consider the case where the samples received by our reduction are
truly uniform. Then since b is truly uniform and independent, we can view it
as being distributed as b = b̃ + e, where b̃ ∈ Rwq is truly uniform and e’s first t
coordinates are 0, and the remaining coordinates are chosen independently from
Dα. Then we have that b′ = Ub̃ + Ue + f + c, where Ue + f + c is distributed
exactly as in the case above. Since U is unimodular, we have that U(b̃ + e) is
uniform and independent over Rwq . Finally, since Ue + f + c is distributed exactly
as above, we also have that the third component output is distributed correctly,
as needed.
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4 Reducing Extended-LWE to LWR

Theorem 4.1. Let κ be a security parameter on which all other parameters
depend. Let R be the ring of integers of an algebraic number field of dimension
n = O(κ). Let ψ be an arbitrary coordinate-wise B-bounded distribution over
R for some B > 0. Let p, q, w = poly(κ), d ∈ N such that q ≥ 4eBwnκp. Let
Z ⊆ Rd be the set of vectors z such that Tr(〈z, e〉) extracts the ith coefficient of
the jth ring element of e for some i ∈ [n], j ∈ [d].

If ∃ a probabilistic polynomial-time A succeeding with advantage ε(κ) ≥ (κ)−c

for some constant c ≥ 1 in distinguishing M–LWRR,d,w,q,p from uniform, then
there exists a probabilistic polynomial-time algorithm A′ succeeding with advantage
ε(nw)−c/4 ≥ (κnw)−c/4 in distinguishing Ext–M–LWER,d,w,q,ψ,Z,c from uniform.

4.1 The Set BAD

Before stating our reduction, we define and prove some basic results about the
set BADB,q,p. This set, following the notation of [BPR12], characterizes those
elements in Zq that are within distance B of an element that rounds (with b·ep
as defined above) to a different value than it does.

Definition 4.2. For B, p, q ≥ 1, we define

BADB,q,p := {x ∈ Zq : bxep 6= bx±Bep}

The reason for the terminology is that, letting one of these elements represent
a coefficient with noise (from a B-bounded distribution) in an M–LWE sample,
it may be the case that the noiseless version of these coefficients rounds to a
different value than the noisy one, which is “bad” for our reduction.

We recall a bound on the probability that a uniform element in Zq is in
BADB,q,p.

Lemma 4.3. [AKPW13, Lemma 2.7]

Pr
x←Zq

[x ∈ BADB,q,p] ≤ 2Bp/q.

This next lemma uses a standard Chernoff bound to upper bound the proba-
bility any given number of elements in a uniformly b ∈ Rwq will be in BAD.

Lemma 4.4. Let B, q, p, κ, n, w satisfy the conditions in Theorem 4.1. Let b←
Rwq uniformly at random, and let S = {bi,j ∈ BADB,q,p}. Then for all c ≥ 1,

Pr[|S| ≥ c] ≤ κ−c/2

Proof. Let Xi be the event that bi ∈ BADB,q,p. Let X =
∑
i∈[m]Xi, µ = E[X].

First, by linearity of expectation and Lemma 4.3, we have that µ ≤ 2Bnwp/q ≤
1/(2eκ).

Let δ = c
µ − 1 > 0. Then

Pr[X > c] <

(
eδ

(1 + δ)1+δ

)µ
=

e
δc

1+δ

(1 + δ)c
≤
(

e

1 + δ

)c
= κ−c/(2c)c ≤ κ−c/2.
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4.2 Reduction

We begin by choosing which c error elements we will receive as hints, by choosing
uniformly at random c distinct elements

GUESSES := {`1, `2, . . . , `c ← [w]× [n]},

where the `ι = (iι, jι) are tuples representing the jth coefficient of the ith element
in the error vector e ∈ Rwq .

Since the trace is a “universal” Q-linear function, there exist (efficiently
computable) vectors z`1 , z`2 , . . . , z`c such that Tr(〈e, zι〉) = e`ι for all i. We
query the Ext–M–LWER,d,w,q,ψ,Z,c oracle with these vectors, receiving back (A ∈
Rd×wq ,b ∈ Rwq , (e`1 , . . . , e`c)).

Let
T = {(i, j) : bi,j ∈ BADB,q,p},

where bi,j refers to the jth coefficient of the ith ring element. We have the
following abort events.

E.1 If |T | > c, we abort.
E.2 Otherwise, if T 6⊆ GUESSES, we abort.
E.3 Otherwise, we abort with probability 1-1/

(
wn−|T |
c−|T |

)
.

Now, if we have not aborted, set ẽi,j = ei,j if (i, j) ∈ GUESSES, ẽi,j = 0. Let
b′ := bb−ẽep, where the rounding is done element-wise, and let y ← A(A,b′). A′
outputs y as its guess (where 0 corresponds to Ext–M–LWE/M–LWR, respectively,
1 to uniform).

4.3 Analysis

Here we prove correctness of the above reduction. To do so, we need to prove
two things. First, we need to show that we invoke A (i.e. we do not abort and
output a random bit) with non-negligible probability. Second, conditioned on not
aborting, we need to show that the distribution of the output sent to A is within
statistical distance at most ε/2 of the true M–LWR distribution if the oracle
samples b from Ext–M–LWE, and within distance at most ε/2 of the uniform
distribution if the oracles samples b uniformly and independently.

The following simple lemma shows that if the distribution of |T | differed
depending on whether the oracle gives samples from Ext–M–LWE or uniform,
then we would have an (alternative standalone) attack on Ext–M–LWE. As a
result, we need only consider the distribution of |T |, when the oracle outputs a
truly uniform b, where it is simpler to analyze.

Lemma 4.5. Under the Ext–M–LWER,d,w,q,ψ,Z,c assumption, we have that

|Pr[|T | > c | oracle is Ext–M–LWE]− Pr[|T | > c | oracle is uniform]| ≤ negl(n)

Proof. If there was a non-negligible difference in the two probabilities, we could
simply query the oracle and compute |T | to give an attack on Ext–M–LWER,d,w,q,ψ,Z,c
succeeding with non-negligible probability, without having to rely on A.
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We can now upper bound the probability of abort event E.1.

Lemma 4.6.

Pr[E.1 | oracle is Ext–M–LWE] ≤ negl(κ) + Pr[E.1 | oracle is uniform] ≤ ε/2

Proof. The first inequality is a direct consequence of Lemma 4.5, while the second
follows immediately from 4.4.

The next lemma shows that the distribution conditioned only on E.1 not
happening is exactly the same as the distribution conditioned on none of the
abort events happening, and that the probability of none of the abort events
happening is at least (1− ε/2)/

(
nw
c

)
.

Lemma 4.7.

Pr[¬(E.1 ∨E.2 ∨E.3)] ≥ (1− ε/2)(
nw
c

) .

Moreover, for any A∗ ∈ Rd×wq ,b∗ ∈ Rqqw ∈ Zcq, we have

Pr[(A,b) = (A∗,b∗) | ¬E.1] = Pr[(A,b) = (A∗,b∗) | ¬(E.1 ∨E.2 ∨E.3)]

Proof. First, we consider E.2. Consider any fixed possible value t for the number
of elements in BAD. For this fixed value of BAD, there are

(
nw−t
c−t

)
possible distinct

sets GUESSES of indices that cover all elements in BAD, while there are
(
nw
c

)
total possible distinct sets GUESSES of indices.

Since the elements of GUESSES are chosen uniformly and independent of
everything else, we have that

Pr[¬E.2 | ¬E.1 ∧ |BAD| = t] =
(
wn−t
c−t

)
/
(
wn
c

)
Next, by the definition of E.3,

Pr[¬E.3 | ¬(E.1 ∨E.2) ∧ |BAD| = t] = 1/
(
wn−t
c−t

)
Pr[¬E.3 ∧ ¬E.2 | ¬E.1 ∧ |BAD| = t] = 1/

(
wn
c

)
independently of |BAD| and thus independently of the value of A,b received
from the Ext–M–LWE oracle.

Pr[¬E.3 ∧ ¬E.2 | ¬E.1] = 1/
(
nw
c

)
.

Combining the above result with Lemma 4.6 gives

Pr[¬(E.1 ∨E.2 ∨E1.C)] ≥ 1− ε/2(
nw
c

)
Finally, we show that conditioned on not aborting, the samples sent to A are

distributed sufficiently close to the desired distributions.

18



Lemma 4.8. The distribution of (A,b′) sent to A is within statistical distance at
most ε/2 of the true M–LWR distribution if the oracle sampled b from Ext–M–LWE,
and uniform if it sampled it uniformly at random.

Proof. Since the reduction only ever sends (A,b′) if none of the abort events (in
particular, E.2) happen, we receive as our Ext–M–LWE hints the error coefficients
for every bi,j ∈ BADB,q,p. Let y = b− ẽ ∈ Rwq (with ẽ as defined above).

In the case the oracle samples b = Ats + e from Ext–M–LWE, we have that
every coefficient of every ring element is either errorless or it is “good”, meaning
it is not in BAD. As a result, we have that

byep = bAtsep,

so, combining with Lemmas 4.6 and 4.7 , we have that it is distributed within
distance ε/2 of M–LWR.

In the case the oracle samples b uniformly at random and independently, we
have that x̃ is independent of b, and so y remains truly uniform, making byep
have the identical distribution to the “uniform” distribution.

By Lemma 4.8 and our assumption on A, conditioned on none of the abort
events happening, A must succeed in distinguishing with advantage at least ε/2.

Combining this with Lemma 4.7 gives

ε′ ≥ ε/2(1− ε/2)(
nw
c

) ≥ ε(nw)−c/4,

as required.

This completes the reduction’s correctness proof.
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