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Abstract. Higher-order masking is a widely used countermeasure to make software implementa-
tions of blockciphers achieve high security levels against side-channel attacks. Unfortunately, it often
comes with a strong impact in terms of performances which may be prohibitive in some contexts.
This situation has motivated the research for efficient schemes that apply higher-order masking
with minimal performance overheads. The most widely used approach is based on a polynomial
representation of the cipher s-box(es) allowing the application of standard higher-order masking
building blocks such as the ISW scheme (Ishai-Sahai-Wagner, Crypto 2003). Recently, an alterna-
tive approach has been considered which is based on a bitslicing of the s-boxes. This approach has
been shown to enjoy important efficiency benefits, but it has only been applied to specific block-
ciphers such as AES, PRESENT, or custom designs. In this paper, we present a generic method
to find a Boolean representation of an s-box with efficient bitsliced higher-order masking. Specifi-
cally, we propose a method to construct a circuit with low multiplicative complexity. Compared to
previous work on this subject, our method can be applied to any s-box of common size and not
necessarily to small s-boxes. We use it to derive higher-order masked s-box implementations that
achieve important performance gain compared to optimized state-of-the-art implementations.

1 Introduction

One of the most widely used strategy to protect software implementations of blockciphers against side-
channel attacks consists in applying secret sharing at the implementation level. This strategy also known
as (higher-order) masking notably achieves provable security in the probing security model [ISW03] and
in the noisy leakage model [PR13,DDF14]. While designing a higher-order masking scheme for a given
blockcipher, the main issue is the secure and efficient computation of the s-box. Most of the proposed
solutions (see for instance [RP10,CRV14,CPRR15]) are based on a polynomial representation of the s-box
over the finite field F2n (where n is the input bit-length), for which the field multiplications are secured
using the ISW scheme due to Ishai, Sahai and Wagner [ISW03].

An alternative approach has recently been put forward which consists in applying higher-order mask-
ing at the Boolean level by bitslicing the s-boxes within a cipher round [GLSV15,GR16]. In the bitsliced
higher-order masking paradigm, the ISW scheme is applied to secure bitwise AND instructions which are
significantly more efficient than their field-multiplication counterparts involved in polynomial schemes.
Moreover, such a strategy allows to compute all the s-boxes within a cipher round at the same time,
which results in important efficiency gains. To the best of our knowledge, bitsliced higher-order masking
has only been applied to specific blockciphers up to now. In [GLSV15], Grosso et al. introduce new
blockciphers with LS-designs tailored to efficient masked computation in bitslice. The approach has also
been used by Goudarzi and Rivain in [GR16] to get fast implementations of two prominent blockciphers,
namely AES and PRESENT, masked at an order up to 10. However, no generic method to apply this
approach to any blockcipher has been proposed so far. In contrast several generic methods have been
published for the polynomial setting [CGP+12,CRV14,CPRR15]. Therefore, and given the efficiency ben-
efits of bitsliced higher-order masking approach, defining such a generic method is an appealing open
issue.

Finding a Boolean representation of an s-box that yields an efficient computation in the bitsliced
masking world merely consists in finding a circuit with low multiplicative complexity. The multiplicative
complexity of Boolean functions has been studied in a few previous papers [MS92,BPP00,TP14]. In
particular, optimal circuits have been obtained for some small (3-bit/4-bit/5-bit) s-boxes using SAT



solvers [CMH13,Sto16]. However no general (heuristic) method has been proposed up to now to get an
efficient decomposition for any s-box, and in particular for n-bit s-boxes with n ≥ 6.

In this paper, we introduce a new heuristic method to decompose an s-box into a circuit with low
multiplicative complexity. Our proposed method follows the same approach as the CRV and algebraic
decomposition methods used to get efficient representations in the polynomial setting [CRV14,CPRR15].
We also introduce the notion of parallel multiplicative complexity to capture the fact that several AND
gates might be bundled in a single instruction, enabling further gain in the bitslice setting [GR16].
Eventually, we describe ARM implementations of bitsliced higher-order-masked s-box layers using our
decomposition method and we compare them to optimized versions of the CRV and algebraic decom-
position methods. Our results show a clear superiority of the bitslice approach when the masking order
exceeds a certain threshold.

The paper is organized as follows. Section 2 gives some preliminaries about Boolean functions and
higher-order masking. We then introduce the notion of (parallel) multiplicative complexity and discuss
previous results as well as our contribution in Section 3. Section 4 presents our heuristic method in a gen-
eral setting as well as some s-box-specific improvements. Finally, Section 5 describes our implementations
and the obtained performances.

2 Preliminaries

2.1 Boolean Functions

Let F2 denote the field with 2 elements and let n be a positive integer. A Boolean function f with
n variables is a function from Fn2 to F2. The set of such functions is denoted Fn in this paper. Any
Boolean function f ∈ Fn can be seen as a multivariate polynomial over F2[x1, x2, . . . , xn]/(x21 − x1, x22 −
x2, . . . , x

2
n − xn):

f(x) =
∑

u∈{0,1}n
au x

u , (1)

where x = (x1, x2, . . . , xn), xu = xu1
1 · x

u2
2 · . . . · xun

n , and au ∈ F2 for every u ∈ {0, 1}n. The above
representation is called the Algebraic Normal Form (ANF).

For any family f1, f2 . . . , fm ∈ Fn, the set 〈f1, f2 . . . , fm〉 =
{∑m

i=0aifi | ai ∈ F2

}
is called the span

of the fi’s (or the space spanned by the fi’s), which is a F2-vector space. Let Mn denote the set of
monomial functions that is Mn =

{
x 7→ xu | u ∈ {0, 1}n

}
. Then, the set of Boolean functions with n

variables can be defined as the span of monomial functions, that is Fn = 〈Mn〉.
Let n and m be two positive integers, and let S be a function mapping Fn2 to Fm2 . Such a function

can be seen as a vector of Boolean functions, i.e. S(x) = (f1(x), f2(x) . . . , fm(x)) and is hence called a
vectorial (Boolean) function also known as an (n × m) s-box in cryptography. The Boolean functions
f1, f2, . . . , fm ∈ Fn are then called the coordinate functions of S.

2.2 Higher-Order Masking

Higher-order masking consists in sharing each internal variable x of a cryptographic computation into d
random variables x1, x2, . . . , xd, called the shares and satisfying x1 + x2 + · · ·+ xd = x, for some group
operation +, such that any set of d − 1 shares is randomly distributed and independent of x. In this
paper, the considered masking operation will be the bitwise addition. It has been formally demonstrated
that in the noisy leakage model, where the attacker gets noisy information on each share, the complexity
of recovering information on x grows exponentially with the number of shares [CJRR99,PR13]. This
number d, called the masking order, is hence a sound security parameter for the resistance of a masked
implementation.

The main issue while protecting a blockcipher implementation with masking is the secure computation
of the nonlinear layer applying the s-boxes to the cipher state. The prevailing approach consists in
working on the polynomial representation of the s-box over the field F2n , which is secured using the ISW
scheme [ISW03] for the field multiplications [RP10,CGP+12]. The most efficient polynomial evaluation
method in this paradigm is due to Coron, Roy and Vivek [CRV14]. The polynomial representation can also
be decomposed in functions of lower algebraic degree as recently proposed by Carlet et al. in [CPRR15].
In the quadratic case, these functions can then be efficiently secured using the CPRR scheme [CPRR14].
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2.3 Bitsliced Higher-Order Masking

A variant of polynomial methods is to apply masking at the Boolean level using bitslicing (see for
instance [DPV01,GLSV15,BGRV15]). In [GR16], the authors apply this approach to get highly efficient
implementations of AES and PRESENT with masking order up to 10. In their implementations, bitslice
is applied at the s-box level. Specifically, based on a Boolean circuit for an s-box S, one can perform
` parallel evaluations of S in software by replacing each gate of the circuit with the corresponding
bitwise instruction, where ` is the bit-size of the underlying CPU architecture. It results that the only
nonlinear operations in the parallel s-box processing are bitwise AND instructions between `-bit registers
which can be efficiently secured using the ISW scheme. Such an approach achieves important speedup
compared to polynomial methods since (i) ISW-based ANDs are substantially faster than ISW-based
field multiplications in practice, (ii) all the s-boxes within a cipher round are computed in parallel. The
authors of [GR16] propose an additional optimization. In their context, the target architecture (ARM)
is of size ` = 32 bits, whereas the number of s-boxes per round is 16 (yielding 16-bit bitslice registers).
Therefore, they suggest to group the ANDs by pair in order to perform a single ISW-based 32-bit AND
where the standard method would have performed two ISW-based 16-bit AND. This roughly decreases
the complexity by a factor up to two.3

3 Multiplicative Complexity of Boolean Functions

We shall call Boolean circuit any computation graph composed of F2-multiplication nodes (AND gates),
F2-addition nodes (XOR gates), and switching nodes (NOT gates). Informally speaking, the multiplica-
tive complexity of a Boolean function is the minimum number of F2-multiplication gates required by a
Boolean circuit to compute it. This notion can be formalized as follows:

Definition 1. The multiplicative complexity C(f1, f2, . . . , fm) of a family of Boolean functions f1, f2,
. . . , fm ∈ Fn, is the minimal integer t for which there exist Boolean functions gi, hi ∈ Fn for i ∈ [[1, t]]
such that: {

g1, h1 ∈ 〈1, x1, x2, . . . , xn〉
∀i ∈ [[2, t]] : gi, hi ∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gi−1 · hi−1〉

(2)

and
f1, f2, . . . , fm ∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gt · ht〉 . (3)

It is easy to see that any set of Boolean functions {f1, f2, . . . , fm} ⊆ Fn has multiplicative complexity
satisfying

C(f1, f2, . . . , fm) ≤ C(Mn) = 2n − (n+ 1) . (4)

Moreover, a counting argument shows that there exists f ∈ Fn such that

C(f) > 2
n
2 − n . (5)

In [BPP00], Boyar et al. provide a constructive upper bound for any Boolean function:

Theorem 1 ([BPP00]). For every f ∈ Fn, we have

C(f) ≤

{
2

n
2 +1 − n

2 − 2 if n is even,

3 · 2n−1
2 − n−1

2 − 2 otherwise.
(6)

The particular case of Boolean functions with 4 and 5 variables has been investigated by Turan and
Peralta in [TP14]. They give a complete characterization of affine-equivalence classes of these functions
and they show that every f ∈ F4 has C(f) ≤ 3 and every f ∈ F5 has C(f) ≤ 4.

Other works have focused on the multiplicative complexity of particular kinds of Boolean functions. In
[MS92], Mirwald and Schnorr deeply investigate the case of functions with quadratic ANF. In particular
they show that such functions have multiplicative complexity at most bn2 c. Boyar et al. give further upper
bounds for symmetric Boolean functions in [BPP00].

3 Packing the operands and depacking the result implies a linear overhead in the number of shares, whereas the
number of quadratic operations (the ISW-ANDs) are divided by a factor up to 2.
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3.1 Multiplicative Complexity of S-Boxes

The multiplicative complexity of an s-box S : x 7→ (f1(x), f2(x) . . . , fm(x)) is naturally defined as the
multiplicative complexity of the family of its coordinate functions. We shall also call multiplicative
complexity of a given circuit the actual number of multiplication gates involved in the circuit, so that
the multiplicative complexity of a circuit gives an upper bound of the multiplicative complexity of the
underlying s-box.

The best known circuit for the AES s-box in terms of multiplicative complexity is due to Boyar et al.
[BMP13]. This circuit achieves a multiplicative complexity of 32 which was obtained by applying logic
minimization techniques to the compact representation of the AES s-box due to Canright [Can05] (and
saving 2 multiplications compared to the original circuit).

In [CMH13], Courtois et al. use SAT-solving to find the multiplicative complexity of small s-boxes.
Their approach consists in writing the Boolean system obtained for a given s-box and a given (target)
multiplicative complexity t as a SAT-CNF problem, where the unknowns of the system are the coefficients
of the gi and hi in Definition 1. For each value of t, the solver either returns a solution or a proof that
no solution exists, so that the multiplicative complexity is the first value of t for which a solution is
returned. They apply this approach to find Boolean circuits with the smallest multiplicative complexity
for a random 3 × 3 s-box (meant to be used in CTC2 [Cou07]), the 4 × 4 s-box of PRESENT, and for
several sets of 4× 4 s-boxes proposed for GOST [PLW10]. These results have recently been extended by
Stoffelen who applied the Courtois et al. approach to find optimal circuits for various 4 × 4 and 5 × 5
s-boxes [Sto16]. These results are summarized in Table 1, where for comparison we also include known
results for AES [BMP13] and some bitslice-oriented blockciphers [DPAR00,GLSV15].

Table 1. Multiplicative complexities of various s-boxes.

S-box S size n×m C(S) Ref

Lightweight blockciphers

CTC2 3× 3 3 [CMH13]

PRESENT 4× 4 4 [CMH13]

Piccolo 4× 4 4 [Sto16]

RECTANGLE 4× 4 4 [Sto16]

CAESAR submissions

LAC 4× 4 4 [Sto16]

Minalpher 4× 4 5 [Sto16]

Prøst 4× 4 4 [Sto16]

Ascon 5× 5 5 [Sto16]

ICEPOLE 5× 5 6 [Sto16]

PRIMATEs 5× 5 {6, 7} [Sto16]

AES and Keccak

Keccak 5× 5 5 [Sto16]

AES 8× 8 ≤ 32 [BMP13]

Bitslice-oriented blockciphers

NOKEON 4× 4 4 [DPAR00]

Fantomas 8× 8 ≤ 11 [GLSV15]

Robin 8× 8 ≤ 12 [GLSV15]

The main limitation of the SAT-solving approach is that it is only applicable to small s-boxes due to
the combinatorial explosion of the underlying SAT problem, and getting the decomposition of an s-box
of size e.g. n = 8 seems out of reach. Moreover, the method is not generic in the sense that the obtained
decomposition stands for a single s-box and does not provide an upper bound for the multiplicative
complexity of s-boxes of a given size.

3.2 Our Results

We give new constructive upper bounds for the multiplicative complexity of s-boxes. As a first result, we
extend Theorem 1 to s-boxes:
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Theorem 2. For every S ∈ Fmn , we have:

C(S) ≤ min
k∈[[1,n]]

(m2k + 2n−k + k)− (m+ n+ 1) . (7)

When m = n, the min is achieved by k =
⌊n−log2 n

2

⌉
for most n ∈ N, which gives C(S) ≤ Bn with

Bn ≈
√
n 2

n
2 +1 −

(3n+ log2 n

2
+ 1
)
. (8)

Proof. Let f1, f2, . . . , fm denote the coordinate functions of S. These functions are decomposed as

fi(x1, . . . , xn) = x1 · fi,1(x2, . . . , xn) + fi,2(x2, . . . , xn) . (9)

The functions fi,1 and fi,2 are in turn decomposed as

fi,j(x2, . . . , xn) = x2 · fi,j,1(x3, . . . , xn) + fi,j,2(x3, . . . , xn) . (10)

And so on, until we get functions fi,j1,...,jk(xk+1, . . . , xn) for every j1, j2, . . . , jk ∈ {1, 2} which lie on the
space

〈xu | u = (0, . . . , 0, uk+1, . . . , un)〉

where ui ∈ {0, 1}. One can compute all the monomials xu in 2n−k − (n − k) − 1 multiplications to
derive all the fi,j1,...,jk . Each coordinate function can then be evaluated with 1 multiplication by x1,
2 multiplications by x2, 4 multiplications by x3, . . . , 2k−1 multiplications by xk, which makes a total
of 2k − 1 multiplications per coordinate functions. We hence have an evaluation of the s-box involving
m(2k − 1) + 2n−k − (n− k + 1) multiplications, from which the theorem directly holds. �

It is worth noticing that the decomposition method used to achieve the bound of Theorem 2 is
analogous to the parity-split method proposed in [CGP+12] to obtain an efficient decomposition with
respect to the multiplicative complexity over F2n (called the nonlinear complexity in [CGP+12]).

We further introduce in this paper a heuristic decomposition method achieving lower multiplicative
complexity. Our general result is summarized in the following Theorem:

Theorem 3. For every S ∈ Fmn , we have C(S) ≤ Cn,m with

Cn,m ≈
√
m 2

n
2 +1 −m− n− 1 . (11)

And in particular

Cn,n =

17 for n = 5
31 for n = 6
50 for n = 7

and Cn,n =

77 for n = 8
122 for n = 9
190 for n = 10

(12)

In the above theorem, Cn,m denote the multiplicative complexity of the generic method presented in
Section 4. We also propose non-generic improvements of this method that might give different results
depending on the s-box. Table 2 summarizes the multiplicative complexities obtained by the two above
theorems and the non-generic improved method for n × n s-boxes with n ∈ [[4, 10]]. For the latter, the
figures represent what we hope to achieve for a random s-box (that we were able to achieve for some
tested s-boxes).

Table 2. Multiplicative complexities of n× n s-boxes.

n 4 5 6 7 8 9 10

Theorem 2 8 16 29 47 87 120 190

Our generic method (Cn,n) 8 17 31 50 77 122 190

Our improved method (C∗
n,n) 7 13 23 38 61 96 145
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3.3 Parallel Multiplicative Complexity

We introduce hereafter the notion of parallel multiplicative complexity for Boolean functions and s-boxes.
We consider circuits with multiplication gates that can process up to k multiplications in parallel. The
k-parallel multiplicative complexity of an s-box is the least number of k-parallel multiplication gates
required by a circuit to compute it. We formalize this notion hereafter:

Definition 2. The k-parallel multiplicative complexity C(k)(f1, f2, . . . , fm) of a family of Boolean func-
tions f1, f2, . . . , fm ∈ Fn, is the minimal integer t for which there exist Boolean functions gi, hi ∈ Fn for
i ∈ [[1, tk]] such that:g1, h1, g2, h2, . . . , gk, hk ∈ 〈1, x1, x2, . . . , xn〉 ,

∀i ∈ [[1, t− 1]] : gik+1, hik+1, . . . , g(i+1)k, h(i+1)k

∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gik · hik〉
(13)

and

f1, f2, . . . , fm ∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gtk · htk〉 . (14)

The main motivation for introducing this notion comes from the following scenario. Assume we want
to perform m s-box computations in bitslice on an `-bit architecture, where ` > m. Then we have
to pick a circuit computing the s-box and translate it in software by replacing Boolean gates with
corresponding bitwise instructions. Since each bitsliced register contains m bits (m versions of the same
input or intermediate bit), one can perform up to k = d`/me multiplication gates with a single `-bit
AND instruction (modulo some packing of the operands and unpacking of the results). If the used circuit
has a k-parallel multiplicative complexity of t, then the resulting bitsliced implementation involve t
bitwise AND instructions. This number of AND instructions is the main efficiency criterion when such
an implementation is protected with higher-order masking which makes the k-parallel multiplicative
complexity an important parameter for an s-box in this context.

The authors of [GR16] show that the AES circuit of Boyar et al. can be fully parallelized at degree
2, i.e. its 2-parallel multiplicative complexity is 16. In appendix, we further show that a sorted version
of this circuit can achieve k-parallel multiplicative complexity of 9, 7 and 6 for k = 4, k = 8, and k = 16
respectively.

The decomposition method introduced in this paper has the advantage of being highly parallelizable.

Table 3 summarizes the obtained k-parallel multiplicative complexity C
(k)
n,n for n×n s-boxes for k ∈ {2, 4}.

Note that we always have C
(k)
n,n ∈ {dCn,n

k e, d
Cn,n

k e+ 1} which is almost optimal.

Table 3. Parallel multiplicative complexities of our method for n× n s-boxes.

n 4 5 6 7 8 9 10

Cn,n 8 17 31 50 77 122 190

C
(2)
n,n 4 9 16 25 39 62 95

C
(4)
n,n 2 5 9 13 20 31 48

4 A Heuristic Decomposition for S-boxes

In this section, we introduce a heuristic decomposition method for s-boxes that aims at minimizing the
number of F2 multiplications. The proposed method follows the same approach than the CRV decompo-
sition over F2n [x]. We first describe the proposed heuristic for a single Boolean function before addressing
the case of s-boxes.
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4.1 Decomposition of a Single Boolean Function

Let f be a Boolean function. The proposed decomposition simply consists in writing f as:

f(x) =

t−1∑
i=0

gi(x) · hi(x) + ht(x) (15)

where gi, hi ∈ 〈B〉, for some basis of functions B = {φj}|B|j=1. Assume that all the φj(x), φj ∈ B, can be
computed with r multiplications. Then the total multiplicative complexity of the above decomposition
is of r + t. We now explain how to find such a decomposition by solving a linear system.

Solving a linear system. As in the CRV method, we first sample t random functions gi from 〈B〉. This
is simply done by picking t · |B| random bits ai,j and setting gi =

∑
φj∈B ai,jφj . Then we search for a

family of t + 1 Boolean functions {hi}i satisfying (15). This is done by solving the following system of
linear equations over F2:

A · c = b (16)

where b = (f(e1), f(e2), . . . , f(e2n))T with {ei} = Fn2 and whereA is a matrix defined as the concatenation
of t+ 1 submatrices:

A = (A0|A1| · · · | At) (17)

with

Ai =



φ1(e1) · gi(e1) φ2(e1) · gi(e1) ... φ|B|(e1) · gi(e1)
φ1(e2) · gi(e2) φ2(e2) · gi(e2) ... φ|B|(e2) · gi(e2)

...
...

. . .
...

φ1(e2n) · gi(e2n) φ2(e2n) · gi(e2n) ... φ|B|(e2n) · gi(e2n)


(18)

for 0 ≤ i ≤ t− 1, and

At =



φ1(e1) φ2(e1) ... φ|B|(e1)
φ1(e2) φ2(e2) ... φ|B|(e2)

...
...

. . .
...

φ1(e2n) φ2(e2n) ... φ|B|(e2n)


(19)

It can be checked that the vector c, solution of the system, gives the coefficients of the hi’s over
the basis B. A necessary condition for this system to have a solution whatever the target vector b (i.e.
whatever the Boolean function f) is to get a matrix A of full rank. In particular, the following inequality
must hold:

(t+ 1)|B| ≥ 2n . (20)

Another necessary condition to get a full-rank matrix is that the squared basis B×B = {φi·φk | φi, φk ∈
B} spans the entire space Fn. A classic basis of the vector space is the set of monomialsMn. Therefore,
we suggest to take a basis B such that Mn ⊆ B × B. Let

B0 = {x 7→ xu, u ∈ U} with U =
{

(u1, . . . , u`, 0, . . . , 0)
}
∪
{

(0, . . . , 0, u`+1, . . . , un)
}

(21)

where ` = dn2 e and where ui ∈ {0, 1} for every i ∈ [[1, n]]. Then, we clearly have B0 × B0 = Mn. We
hence suggest taking B ⊇ B0, with B possibly larger than B0 since restraining ourselves to B = B0 could
be non-optimal in terms of multiplications for the underlying decomposition method. Indeed, (20) shows
that the more elements in the basis, the smaller t, i.e. the less multiplications gi ·hi. We might therefore
derive a bigger basis by iterating B ← B∪{φj ·φk}, where φj and φk are randomly sampled from B until
reaching a basis B with the desired cardinality.

We then have r = |B| −n− 1, where we recall that r denotes the number of multiplications to derive
B, and since x 7→ 1, x 7→ x1, . . . , x 7→ xn ∈ B requires no multiplications. By construction, we have
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|B| ≥ |B0| = 2` + 2n−` − 1, implying r ≥ 2` + 2n−` − (n + 2). Let Cn = r + t denote the number of
multiplications achieved by our decomposition method. Then, by injecting Cn in (20) we get:

(Cn − r + 1)(n+ 1 + r) ≥ 2n , (22)

that is:

Cn ≥ r +
2n

n+ 1 + r
− 1 . (23)

It can be checked that the value of r minimizing the above bound is 2
n
2 −(n−1). However, r must satisfy

r ≥ 2` + 2n−`− (n+ 2) where ` = dn2 e, which is always greater than 2
n
2 − (n− 1) for n ≥ 2. That is why

we shall define the optimal value of the parameter r (for the single-Boolean-function case) as:

ropt = 2` + 2n−` − (n+ 2) =

{
2

n
2 +1 − (n+ 2) if n even,

3 · 2n−1
2 − (n+ 2) if n odd,

(24)

which amounts to taking B = B0. The corresponding optimal value for t is then defined as:

topt =
⌈ 2n

ropt + n+ 1

⌉
− 1 (25)

which gives topt ≈ 2
n
2−1 for n even, and topt ≈ 1

3 2
n+1
2 for n odd.

Table 4. Optimal and achievable parameters for a single Boolean function.

n 4 5 6 7 8 9 10

Optimal parameters

(r, t) (2,2) (5,2) (8,4) (15,5) (22,8) (37,10) (52,16)

|B| 7 11 15 23 31 47 63

Cn 4 7 12 20 30 46 68

Achievable parameters

(r, t) (2,3) (5,3) (9,5) (16,6) (25,9) (41,11) (59,17)

|B| 7 11 16 24 34 51 70

Cn 5 8 14 22 34 52 78

In Table 4, we give the (theoretically) optimal values for (r, t) as well as the corresponding size of
the basis B and multiplication complexity Cn for n ∈ [[4, 10]]. We also give the parameter values that we
could actually achieve in practice to get a full-rank system. We observe a small gap between the optimal
and the achievable parameters, which results from the heuristic nature of the method (since we cannot
prove that the constructed matrix A is full-rank).

4.2 S-box decomposition

Let S : x 7→ (f1(x), f2(x), . . . , fm(x)) be an s-box. We can apply the above heuristic to each of the m
coordinate functions fi to get a decomposition as follows:

fi(x) =

t−1∑
j=0

gj(x) · hi,j(x) + hi,t(x), (26)

for 1 ≤ i ≤ m. Here the gj ’s are randomly sampled from 〈B〉 until obtaining a full-rank system, which
is then used to decompose every coordinate function fi. The total number of multiplications is Cn,m =
r +m · t. Then, (20) gives:

Cn,m ≥ r +m
( 2n

n+ 1 + r
− 1
)
. (27)

It can be checked that the value of r minimizing the above bound is
√
m2n − n− 1. We hence define

ropt =
⌊√

m2n
⌉
− n− 1 , (28)
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which minimizes (27) for every n ∈ [[2, 10]] and every m ∈ [[1, n]]. Moreover, this value satisfies the
constraint (20) i.e. ropt ≥ 2` + 2n−` − (n + 2) for every m ≥ 4, and in practice we shall only consider
s-boxes with m ≥ 4. The corresponding optimal value topt is then defined w.r.t. ropt as in (25), which
satisfies

topt =
⌈ 2

n
2

√
m

⌉
− 1 (29)

for every n ∈ [[2, 10]] and every m ∈ [[1, n]]. We hence get

Cn,m ≥ ropt +m · topt ≈
√
m 2

n
2 +1 − (n+m+ 1) . (30)

In Table 5, we give the (theoretically) optimal values for the parameters (r, t) as well as the corre-
sponding size of the basis B and multiplication complexity Cn,n for n × n s-boxes with n ∈ [[4, 10]]. We
also give the parameter values that we could actually achieve in practice to get a full-rank system.

Table 5. Optimal and achievable parameters for an n× n s-box.

n 4 5 6 7 8 9 10

Optimal parameters

(r, t) (3,1) (7,2) (13,3) (22,4) (36,5) (58,7) (90,10)

|B| 8 13 20 30 45 68 101

Cn,n 7 17 31 50 76 121 190

Achievable parameters

(r, t) (4,1) (7,2) (13,3) (22,4) (37,5) (59,7) (90,10)

|B| 9 13 20 30 46 69 101

Cn,n 8 17 31 50 77 122 190

In comparison to the single-Boolean-function case, the optimal size of the basis B for the s-box
decomposition is significantly bigger. This comes from the fact that a bigger basis implies a lower t for
each of the m coordinate functions (i.e. decrementing t implies decreasing Cn,m by m). We also observe
a very close gap (sometimes null) between the optimal and the achievable parameters. This tightness,
compared to the single-Boolean-function case, is most likely due to the fact that we use a bigger basis.

4.3 Improvements

We present hereafter some improvements of the above method which can be applied to get a decompo-
sition with better multiplicative complexity for a given s-box. In comparison to the above results, the
obtained system and the associated multiplicative complexity depend on the target s-box and are not
applicable to all s-boxes.

Basis update. Our first improvement of the above method is based on a dynamic update of the ba-
sis, each time a coordinate function fi(x) is computed.4 Indeed, the term gj(x) · hi,j(x) involved in the
computation of fi(x) can be reused in the computation of the following fi+1(x), . . . , fn(x). In our decom-
position process, this means that the gj · hi,j functions can be added to the basis for the decomposition
of the next coordinate functions fi+1, . . . , fn. Basically, we start with some basis B1 ⊇ B0, where B0 is
the minimal basis as defined in (21). Then, for every i ≥ 1, we look for a decomposition

fi(x) =

ti−1∑
j=0

gi,j(x) · hi,j(x) + hi,ti(x), (31)

where ti ∈ N and gi,j , hi,j ∈ 〈Bi〉. Once such a decomposition has been found, we carry on with the new
basis Bi+1 defined as:

Bi+1 = Bi ∪ {gi,j · hi,j}ti−1j=0 . (32)

4 A similar idea is used in [BMP13] to construct an efficient circuit for the inversion in F16.
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Compared to the former approach, we use different functions gi,j and we get a different matrix A for
every coordinate function fi. On the other hand, for each decomposition, the basis grows and hence the
number ti of multiplicative terms in the decomposition of fi might decrease. In this context, we obtain
a new condition for every i that is:

ti ≥
2n

|Bi|
− 1 . (33)

The lower bound on ti hence decreases as Bi grows. The total multiplicative complexity of the method
is then of:

C∗n,m = r +

m∑
i=1

ti , (34)

where r = |B1| − (n + 1) is the number of multiplications required to derive the initial basis B1. From
the above inequality, we can define the optimal sequence of ti and si = |Bi| as:

t1 = ψn(s1) and

{
si+1 = si + ti

ti+1 = ψn(si+1)
for every i > 1 (35)

where ψn : x 7→
⌈
2n

x

⌉
− 1. The sequence (si, ti) is fully determined by the cardinality of the original basis

s1 = |B1|, and we have: {
si = (ψn + Id)(i−1)(s1)

ti = ψn ◦ (ψn + Id)(i−1)(s1)
(36)

for every i ≥ 1, where Id denote the identity function. The obtained optimal complexity is then:

C∗n,m = s1 − (n+ 1) +

m∑
i=1

ψn ◦ (ψn + Id)(i−1)(s1)

= (ψn + Id)(m)(s1)− (n+ 1) .

By definition of ψn, the obtained functions (ψn + Id)(i) are sums of continued fractions with ceiling, for
which we do not have an analytic expression.

Table 6. Optimal parameters with basis-update improvement.

n |B1| r t1, t2, . . . , tn C∗
n,n

4 7 2 2,1,1,1 7

5 11 5 2,2,2,1,1 13
12 6 2,2,1,1,1 13

6 15 8 4,3,2,2,2,2 23
16 9 3,3,2,2,2,2 23

7 23 15 5,4,3,3,3,3,2 38

31 22 8,6,5,5,4,4,4,3 61
8 32 23 7,6,5,5,4,4,4,3 61

33 24 7,6,5,5,4,4,3,3 61
34 25 7,6,5,4,4,4,3,3 61

47 37 10,8,7,7,6,6,5,5,5 96
9 48 38 10,8,7,7,6,5,5,5,5 96

49 39 10,8,7,6,6,5,5,5,5 96

63 52 16,12,11,10,9,8,7,7,7,6 145
10 64 53 15,12,11,10,9,8,7,7,7,6 145

65 54 15,12,11,9,9,8,7,7,7,6 145

In Table 6, we give the (theoretically) optimal parameters5 s1 = |B1| and corresponding r = s1 −
(n + 1), t1, t2, . . . , tn, and C∗n,n for n × n s-boxes with n ∈ [[4, 10]]. When the optimal multiplicative

5 These optimal parameters are theoretical in the sense that they are only possible if the lower bound (33) is
achieved for every ti (which might not be the case in practice).
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complexity is obtained for several values of s1, we give all the obtained set of parameters. We observe
that the optimal multiplicative complexity is always achieved by starting with the minimal basis i.e. by
taking B1 = B0. It can also be obtained by taking s1 up to |B0|+ 3 depending on the values of n.

The achievable counterpart of Table 6 only exists with respect to a given s-box since the functions
gi,j ·hi,j added to the basis at each step depend on the actual s-box. But while focusing on a given s-box,
we can still improve the method as we show hereafter.

Rank drop. Our second improvement is based on the observation that even if the matrix A is not
full-rank, the obtained system can still have a solution for some given s-box. Specifically, if A is of rank
2n − δ then we should get a solution for one s-box out of 2δ in average. Hence, instead of having ti
satisfying the condition (ti + 1)|B| ≥ 2n, we allow a rank drop in the system of equations, by taking
ti ≥ 2n−δ

|Bi| − 1 for some integer δ for which solving 2δ systems is affordable. We hence hope to get smaller

values of ti by trying 2δ systems. Note that heuristically, we can only hope to achieve the above bound
if δ is (a few times) lower than the maximal rank 2n (e.g. δ ≤ 2n

4 ). We can then define the (theoretical)
optimal sequence (si, ti) and the corresponding multiplicative complexity C∗n,m from s1 = |B1| as in (35)

and (37) by replacing the function ψn for ψn,δ : x 7→ d 2
n−δ
x e − 1. As an illustration, Table 7 provides the

obtained parameters for a δ up to 32. We see that the rank-drop improvement (theoretically) saves a few
multiplications.

Table 7. Optimal parameters with basis-update and rank-drop improvements.

n δ |B1| r t1, t2, . . . , tn C∗
n,n

4 4 7 2 1,1,1,1 6

5 8 11 5 2,1,1,1,1 11
8 12 6 1,1,1,1,1 11

6 16 15 8 3,2,2,2,1,1 19
16 16 9 2,2,2,2,1,1 19

7 32 23 15 4,3,3,2,2,2,2 33
32 24 16 3,3,3,2,2,2,2 33

8 32 31 22 7,5,5,4,4,3,3,3 56
8 32 32 23 6,5,5,4,4,3,3,3 56

9 32 47 37 10,8,7,6,6,5,5,5,4 93
32 48 38 9,8,7,6,6,5,5,5,4 93

32 63 52 15,12,11,9,9,8,7,7,7,6 143
32 64 53 15,12,10,9,9,8,7,7,7,6 143

10 32 65 54 15,12,10,9,8,8,7,7,7,6 143
32 66 55 15,12,10,9,8,8,7,7,6,6 143
32 67 56 14,12,10,9,8,8,7,7,6,6 143

In practice, we observe that the condition (ti + 1)|Bi| ≥ 2n− δ is not always sufficient to get a matrix
A of rank 2n−δ. We shall then start with ti = ψn,d(|Bi|) and try to solve α ·2δ systems, for some constant
α. In case of failure, we increment ti and start again until a solvable system is found. The overall process
is summarized in Algorithm 1.

The execution time of Algorithm 1 is dominated by the calls to a linear-solving procedure (Step 6).
The number of trials is in o(nα 2δ), where the constant in the o(·) is the average incrementation of ti
(i.e. the average number of times Step 13 is executed per i). In our experiments, we observed that the
optimal value of t1 = ψn,δ(s1) is rarely enough to get a solvable system for f1. This is because we start
with the minimal basis as in the single-Boolean-function case. We hence have a few incrementations for
i = 1. On the other hand, the next optimal ti’s are often enough or incremented a single time.

4.4 Experimental results

Selected s-boxes. We used Algorithm 1 to get the decomposition of various n × n s-boxes for n ∈
[[4, 8]], namely the eight 4 × 4 s-boxes of Serpent [ABK98], the s-boxes S5 (5 × 5) and S6 (6 × 6) of
SC2000 [SYY+02], the 8×8 s-boxes S0 and S1 of CLEFIA [SSA+07], and the 8×8 s-box of Khazad [BR00].
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Algorithm 1 Improved method with exhaustive search

Input: An s-box S ≡ (f1, f2, . . . , fm), parameters s1 = |B1|, α, and δ
Output: A basis B1 and the functions {hi,j}i,j and {gi,j}i,j
1. i = 1; t1 = ψn,δ(s1)
2. do α · 2δ times:
3. if i = 1 then randomly generate B1 ⊇ B0 with |B1| = s1
4. randomly sample ti functions gi,j ∈ 〈Bi〉
5. compute the corresponding matrix A
6. if A · c = bfi has a solution then
7. store the corresponding functions {hi,j}j and {gi,j}j
8. if i = n then return B1, {hi,j}i,j , {gi,j}i,j
9. Bi+1 = Bi ∪ {hi,j · gi,j}j ; ti+1 = ψn,δ(|Bi+1|); i++

10. goto Step 2
11. endif
12. enddo
13. ti++; goto Step 2

The obtained results are summarized in Table 8. Note that we chose these s-boxes to serve as examples
for our decomposition method. Some of them may have a mathematical structure allowing more efficient
decomposition (e.g. the CLEFIA S0 s-box is based on the inversion over F256 and can therefore be
computed with a 32-multiplication circuit as the AES). We further give in appendix the obtained 2-
parallel decomposition for the s-boxes of SC2000, CLEFIA and Khazad.

Table 8. Achieved parameters for several s-boxes.

|B1| r t1, t2, . . . , tn C∗
n,n

n = 4

Serpent S2 7 2 1, 1, 0, 1 5

Serpent S7 7 2 1, 0, 1, 1 5

Serpent S1, S3–S6, S8 7 2 1, 1, 1, 1 6

n = 5

SC2000 S5 11 5 2, 2, 1, 1, 1 12

n = 6

SC2000 S6 15 8 3, 2, 2, 2, 1, 1 19

n = 8

Khazad & 31 22 11, 5, 5, 4, 4, 3, 3, 3 61
CLEFIA (S0, S1) 31 22 9, 6, 5, 4, 4, 4, 3, 3 61

31 22 11, 5, 5, 4, 4, 3, 3, 3 61

We observe that Algorithm 1 (almost) achieves the optimal parameters given in Table 7 for n ∈
{4, 5, 6}. For n = 8, we only get the optimal multiplicative complexity of the improved method with
basis update but without the rank-drop improvement (see Table 6). This might be due to the fact that
when n increases the value of δ becomes small compared to 2n and the impact of exhaustive search is
lowered.

Random s-boxes. We also applied Algorithm 1 on random s-boxes to observe the average effectiveness
of our method. Specifically, we generated 1000 s-boxes (using the Knuth shuffle algorithm) and we
decomposed each of these s-boxes using Algorithm 1 with the following parameters: n = 8, α = 8 and
δ = 16. The obtained multiplicative complexities were 59 (for 9 s-boxes), 60 (for 536 s-boxes), and 61
(455 s-boxes), which is equivalent to what we got for Khazad and CLEFIA in half of the trials and better
(by 1 or 2 multiplications) for the rest. These results are summarized in Table 9.

We also looked at the influence of the two parameters α and δ on our decomposition method. For
this purpose, we applied Algorithm 1 to 1000 random s-boxes with smaller parameters α and δ. The
results are summarized in Figure 1. We observe a mean difference of 1.68 multiplications between the
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Table 9. Results of Algorithm 1 on random s-boxes (n = 8, α = 8, δ = 16).

C∗
n,n 59 60 61

# s-boxes (over 1000) 9 536 455

two extreme pairs of parameters i.e. (α, δ) = (4, 4) and (α, δ) = (16, 8). As expected, we also see that
the δ parameter has more impact than the α parameter.
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Fig. 1. Multiplicative Complexity of Random S-boxes for n = 8

4.5 Parallelization

The proposed decomposition method is highly parallelizable. In practice, most SPN blockciphers have
a nonlinear layer applying 16 or 32 s-boxes and most processors are based on a 32-bit or a 64-bit
architecture. Therefore we shall focus our study on the k-parallel multiplicative complexity of our method
for k ∈ {2, 4}.

General method. In the general method (without improvement) described in Section 4.2, the multi-
plications between the gj ’s and the hi,j ’s can clearly be processed in parallel. Specifically, they can be
done with exactly dm·tk e k-multiplications. The multiplications involved in the minimal basis B0 = {x 7→
xu, u ∈ U} can also be fully parallelized at degree k = 2 and k = 4 for every n ≥ 4. In other words, the
k-multiplicative complexity for deriving B0 equals d r0k e for k ∈ {2, 4} where r0 = C(B0) = |B0| − (n+ 1)
(see Section 4.1). One just has to compute xu by increasing order of the Hamming weight of u ∈ U
(where U is the set defined in (21)), then taking the lexicographical order inside a Hamming weight class.
As an illustration, the 4-parallel evaluation of B0 is given for n ∈ {4, 6, 8} in Table 10.

Once all the elements of B0 have been computed, and before getting to the multiplicative terms
gj · hi,j , we have to update it to a basis B ⊇ B0 with target cardinality (see Table 5). This is done by
feeding the basis with |B| − |B0| products of random linear combinations of the current basis. In order
to parallelize this step, these new products are generated 4-by-4 from previous elements of the basis. We
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Table 10. Parallel evaluation of B0 for n ∈ {4, 6, 8}.

n = 4 n = 6

x1x2 ← x2 · x1 x1x2 ← x2 · x1 x4x6 ← x6 · x4
x3x4 ← x4 · x3 x1x3 ← x3 · x1 x5x6 ← x6 · x5

x2x3 ← x3 · x2 x1x2x3 ← x3 · x1x2
x4x5 ← x5 · x4 x4x5x6 ← x6 · x4x5

n = 8

x1x2 ← x2 · x1 x2x4 ← x4 · x2 x5x8 ← x8 · x5
x1x3 ← x3 · x1 x3x4 ← x4 · x3 x6x7 ← x7 · x6
x1x4 ← x4 · x1 x5x6 ← x6 · x5 x6x8 ← x8 · x6
x2x3 ← x3 · x2 x5x7 ← x7 · x5 x7x8 ← x8 · x7
x1x2x3 ← x3 · x1x2 x5x6x7 ← x7 · x5x6 x1x2x3x4 ← x4 · x1x2x2
x1x2x4 ← x4 · x1x2 x5x6x8 ← x8 · x5x6 x5x6x7x8 ← x8 · x5x6x7
x1x3x4 ← x4 · x1x3 x5x7x8 ← x8 · x5x7
x2x3x4 ← x4 · x2x3 x6x7x8 ← x8 · x6x7

could validate that, by following such an approach, we still obtain full-rank systems with the achievable
parameters given in Table 10. This means that for every n ∈ [[4, 10]], the k-multiplicative complexity
of the general method is d rk e + dm·tk e. The obtained results (achievable parameters) are summarized in
Table 11.

Table 11. Parallel multiplicative complexity of our general method an n× n s-box.

n 4 5 6 7 8 9 10

(r, t) (4,1) (7,2) (13,3) (22,4) (37,5) (59,7) (90,10)

|B| 9 13 20 30 46 69 101

Cn,n 8 17 31 50 77 122 190

C
(2)
n,n 4 9 16 25 39 62 95

C
(4)
n,n 2 5 9 13 20 31 48

Improved method. The parallelization of the improved method is slightly more tricky since all the
multiplicative terms gi,j · hi,j cannot be computed in parallel. Indeed, the resulting products are fed to
the basis so that they are potentially involved in the linear combinations producing the next functions
gi+1,j , hi+1,j , . . . , gm,j , hm,j . In order to fully parallelize our improved method we customize Algorithm
1 as follows. We keep a counter q of the number of products added to the basis. Each time a new fi+1 is
to be decomposed, if the current counter q is not a multiple of k, then the first q0 products gi+1,j ·hi+1,j

will be bundled with the last q1 products gi,j ·hi,j in the parallel version of our improved decomposition,
where {

q0 = (k − q) mod k
q1 = q mod k

(37)

We must then ensure that the functions {gi+1,j , hi+1,j}q0−1j=0 are independent of the few last products

{gi,j · hi,j}ti−1j=ti−q1 . This can be done at no cost for the gi+1,j ’s which can be generated without the last
q1 products, and this add a constraint on the linear system for the first q0 searched hi+1,j functions.

Experimental results. We observed in our experiments that for small values of k, the parallelization
constraint has a limited impact on Algorithm 1. We actually obtained the same parameters as in Table
8 for all the selected s-boxes (Serpent, SC2000, CLEFIA, and Khazad) for a parallelization degree of
k = 2, except for the s-box S3 of Serpent that requires 1 more multiplication. The decomposition for the
s-boxes of SC2000, CLEFIA and Khazad given in appendix have been obtained for the 2-parallel version
of Algorithm 1. For these decompositions, all the multiplications can be bundled by pair.
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We also experimented on random s-boxes for parallelization degrees k = 2 and k = 4 with parameters
n = 8, α = 8, δ = 16. These results are summarized in Table 12. We see that the obtained parallel
multiplicative complexity is only one or two parallel multiplications more that this optimal dC∗n,n/ke
(and sometimes achieves the optimal).

Table 12. Results of Algorithm 1 for random s-boxes (n = 8, α = 8, δ = 16).

Parallel mult. C∗
n,n = C

∗,(2)
n,n = C

∗,(4)
n,n =

complexities 59 60 61 31 32 16

# s-boxes (over 1000) 9 536 455 900 100 1000

5 Implementations

This section describes our implementations of a bitsliced s-box layer protected with higher-order masking
based on our decomposition method. Our implementations evaluate 16 n × n s-boxes in parallel where
n ∈ {4, 8}, and they are developed in generic 32-bit ARM assembly. They take n input sharings [x1],
[x2], . . . , [xn] defined as

[xi] = (xi,1,xi,2, . . . ,xi,d) such that

d∑
j=1

xi,j = xi (38)

where xi is a 16-bit register containing the i-th bit of the 16 s-box inputs. Our implementations then
output n sharings [y0], [y1], . . . , [yn] corresponding to the bitsliced output bits of the s-box. Since
we are on a 32-bit architecture with 16-bit bitsliced registers, we use a degree-2 parallelization for the
multiplications. Namely, the 16-bit ANDs are packed by pairs and replaced by 32-bit ANDs which are
applied on shares using the ISW scheme as explained in [GR16].

The computation is then done in three stages. First, we need to construct the shares of the elements
of the minimal basis B0, specifically [xu] for every u ∈ U , where xu denote the bitsliced register for the
bit xu, and where U is the set defined in (21). This first stage requires r0/2 32-bit ISW-ANDs, where
r0 = 2 for n = 4 and r0 = 22 for n = 8 (see Table 10).

Once the first stage is completed, all the remaining multiplications are done between linear combi-
nations of the elements of the basis. Let us denote by [ti] the sharings corresponding to the elements of
the basis which are stored in memory. After the first stage we have {[ti]} = {[xu] | u ∈ U}. Each new ti
is defined as (∑

j<i

ai,jtj

)
�
(∑
i<j

bi,jtj

)
(39)

where � denote the bitwise multiplication, and where {ai,j}j and {bi,j}j are the binary coefficients
obtained from the s-box decomposition (namely the coefficients of the functions gi,j and hi,j in the span
of the basis). The second stage hence consists in a loop on the remaining multiplications that

1. computes the linear-combination sharings [ri] =
∑
j<i ai,j [tj ] and [si] =

∑
j<i bi,j [tj ]

2. refreshes the sharing [ri]
3. computes the sharing [ti] such that ti = ri � si

where the last step is performed for two successive values of i at the same time by a call to a 32-bit ISW-
AND. The sums in Step 1 are performed on each share independently. The necessity of the refreshing
procedure in Step 2 is explained in [GR16] since an ISW multiplication of two linear combinations of the
same sharings can introduce a security flaw (see for instance [CPRR14]). As in [GR16], this refreshing
is implemented from an ISW multiplication with (1, 0, 0, . . . , 0).

Once all the basis sharings [ti] have been computed, the third stage simply consists in deriving each
output sharing [yi] as a linear combination of the [ti], which is refreshed before being returned.

15



Linear parts. We now explain how to optimize the evaluation of the linear parts of the implementation.
In fact during the evaluation of a decomposition, we need a large number of linear combinations of
elements of the basis. This linear parts have significant impacts on the performances (see Table 13)
for small masking order. Therefore, in our ARM implementation we try to propose optimization in
order to reduce as much as possible this linear overheads. To do so, we use windowing technique to
perform evaluations of elements in the basis. More precisely, the evaluation is computed with k =
cardinality of the basis

architecture size calls to a macro that performs v conditional XORS, where v is the architecture size.
In our case, since the implementation is done on a 32-bit ARM architecture, v is equal to 32 and k is at
most 4. Therefore, we test the size of the basis to perform the sound number of calls to the windowing
macro. Moreover, we also define a macro just for the computation of the first coordinate function, which
is composed of 31 conditional xors (since the first coordinate function is only composed of elements of
B0).

We compare our results with the optimized implementations from [GR16] of the CRV method [CRV14]
and the algebraic decomposition (AD) method [CPRR15]. These implementations compute four s-boxes
in parallel for n = 8 and eight s-boxes in parallel for n = 4 on a 32-bit ARM architecture. Table
13 summarizes the obtained performances in clock cycles with respect to the masking order d. It is
worth noticing that packing and unpacking the bitslice registers for the parallelization of the ISW-ANDs
implies a linear overhead in d. For d ∈ [[2, 20]], this overhead is between 4% and 6% of the overall s-box
computations for n = 8, and between 7% and 11% for n = 4 (and this ratio is asymptotically negligible).
For d = 2, the overhead slightly exceeds the gain, but for every d ≥ 3, parallelizing the ISW-ANDs
always results in an overall gain of performances.

Table 13. Performances in clock cycles.

CRV [GR16] AD [GR16] Our implementations

4× 4� s-boxes 4× 4� s-boxes 16� s-boxes

n = 8 2576 d2 + 5476 d+ 2528 2376 d2 + 3380 d+ 5780 656 d2 + 19786 d+ 5764

2× 8� s-boxes 2× 8� s-boxes 16� s-boxes

n = 4 337 d2 + 563 d+ 434 564 d2 + 270 d+ 660 59 d2 + 1068 d+ 994

We observe that our implementations are asymptotically faster than the optimized implementations
of CRV and AD methods (3.6 times faster for n = 8 and 5.7 times faster for n = 4). However, we
also see that the linear coefficient is significantly greater for our implementations, which comes from the
computation of the linear combinations in input of the ISW-ANDs (i.e. the sharings [ri] and [si]). As
an illustration, Figures 2 and 3 plots the obtained timings with respect to d. We see that for n = 4,
our implementation is always faster than the optimized AD and CRV. On the other hand, for n = 8,
our implementation is slightly slower for d ≤ 8. We stress that our implementations could probably be
improved by optimizing the computation of the linear combinations.
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The RAM consumption and code size of our implementations are given in Table 14 and compared
to those of the CRV and AD implementations from [GR16]. We believe these memory requirements to
be affordable for not-too-constrained embedded devices. In terms of code size, our implementations are
always the best. This is especially significant for n = 8 where CRV and AD needs a high amount of
storage for the lookup tables of the linearized polynomials (see [GR16]). On the other hand, we observe
a big gap between our implementations and those from [GR16] regarding the RAM consumption. Our
method is indeed more consuming in RAM because of all the [ti] sharings that must be stored while
such a large basis is not required for the CRV and AD methods, and because of some optimizations in
the computation of the linear combinations.6

Table 14. Code sizes and RAM consumptions.

CRV [GR16] AD [GR16] Our implementations

n = 8 4× 4� s-boxes 4× 4� s-boxes 16� s-boxes

Code size 27.5 KB 11.2 KB 4.6KB

RAM 80d bytes 188d bytes 644d bytes

n = 4 2× 8� s-boxes 2× 8� s-boxes 16� s-boxes

Code size 3.2 KB 2.6 KB 2.2 KB

RAM 24d bytes 64d bytes 132d bytes
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[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques with applications to
cryptology. Journal of Cryptology, 26(2):280–312, April 2013.
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A Parallelizing Multiplications of the AES S-Box

– top linear transformation –

y14 = x3 ⊕ x5 y1 = t0 ⊕ x7 y15 = t1 ⊕ x5 y17 = y10 ⊕ y11
y13 = x0 ⊕ x6 y4 = y1 ⊕ x3 y20 = t1 ⊕ x1 y19 = y10 ⊕ y8
y12 = y13 ⊕ y14 y2 = y1 ⊕ x0 y6 = y15 ⊕ x7 y16 = t0 ⊕ y11
y9 = x0 ⊕ x3 y5 = y1 ⊕ x6 y10 = y15 ⊕ t0 y21 = y13 ⊕ y16
y8 = x0 ⊕ x5 t1 = x4 ⊕ y12 y11 = y20 ⊕ y9 y18 = x0 ⊕ y16
t0 = x1 ⊕ x2 y3 = y5 ⊕ y8 y7 = x7 ⊕ y11

– middle non-linear transformation –

t2 = y12 ∧ y15 t23 = t19 ⊕ y21 t34 = t23 ⊕ t33 z2 = t33 ∧ x7
t3 = y3 ∧ y6 t15 = y8 ∧ y10 t35 = t27 ⊕ t33 z3 = t43 ∧ y16
t5 = y4 ∧ x7 t26 = t21 ∧ t23 t42 = t29 ⊕ t33 z4 = t40 ∧ y1
t7 = y13 ∧ y16 t16 = t15 ⊕ t12 z14 = t29 ∧ y2 z6 = t42 ∧ y11
t8 = y5 ∧ y1 t18 = t6 ⊕ t16 t36 = t24 ∧ t35 z7 = t45 ∧ y17
t10 = y2 ∧ y7 t20 = t11 ⊕ t16 t37 = t36 ⊕ t34 z8 = t41 ∧ y10
t12 = y9 ∧ y11 t24 = t20 ⊕ y18 t38 = t27 ⊕ t36 z9 = t44 ∧ y12
t13 = y14 ∧ y17 t30 = t23 ⊕ t24 t39 = t29 ∧ t38 z10 = t37 ∧ y3
t4 = t3 ⊕ t2 t22 = t18 ⊕ y19 z5 = t29 ∧ y7 z11 = t33 ∧ y4
t6 = t5 ⊕ t2 t25 = t21 ⊕ t22 t44 = t33 ⊕ t37 z12 = t43 ∧ y13
t9 = t8 ⊕ t7 t27 = t24 ⊕ t26 t40 = t25 ⊕ t39 z13 = t40 ∧ y5
t11 = t10 ⊕ t7 t31 = t22 ⊕ t26 t41 = t40 ⊕ t37 z15 = t42 ∧ y9
t14 = t13 ⊕ t12 t28 = t25 ∧ t27 t43 = t29 ⊕ t40 z16 = t45 ∧ y14
t17 = t4 ⊕ t14 t32 = t31 ∧ t30 t45 = t42 ⊕ tt41 z17 = t41 ∧ y8
t19 = t9 ⊕ t14 t29 = t28 ⊕ t22 z0 = t44 ∧ y15
t21 = t17 ⊕ y20 t33 = t33 ⊕ t24 z1 = t37 ∧ y6

– bottom linear transformation –

t46 = z15 ⊕ z16 t49 = z9 ⊕ z10 t61 = z14 ⊕ t57 t48 = z5 ⊕ z13
t55 = z16 ⊕ z17 t63 = t49 ⊕ t58 t65 = t61 ⊕ t62 t56 = z12 ⊕ t48
t52 = z7 ⊕ z8 t66 = z1 ⊕ t63 s0 = t59 ⊕ t63 s3 = t53 ⊕ t66
t54 = z6 ⊕ z7 t62 = t52 ⊕ t58 t51 = z2 ⊕ z5 s1 = t64 ⊕ s3
t58 = z4 ⊕ t46 t53 = z0 ⊕ z3 s4 = t51 ⊕ t66 s6 = t56 ⊕ t62
t59 = z3 ⊕ t54 t50 = z2 ⊕ z12 s5 = t47 ⊕ t65 s7 = t48 ⊕ t60
t64 = z4 ⊕ t59 t57 = t50 ⊕ t53 t67 = t64 ⊕ t65
t47 = z10 ⊕ z11 t60 = t46 ⊕ t57 s2 = t55 ⊕ t67

Fig. 4. A circuit for AES with parallelizable AND gates.

Figure 4 gives a sorted version of the AES circuit by Boyar et al. [BMP13]. One can observed 6 groups
of AND gates: a first group of 8 AND gates (in blue), 4 groups of 2 AND gates (in orange), and a last
group of 16 AND gates (in blue). Each group can be fully parallelized but two different groups cannot be
computed in parallel due to dependence between variables. We deduce that we can evaluate the circuit
based on sixteen 2-parallel AND gates, ten 4-parallel AND gates, seven 8-parallel AND gates, and six
16-parallel AND gates.
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B Decomposition for SC2000 S-Boxes

Table 15. Coefficients for SC2000 S5 s-box (C∗
n,n = 11).

Multiplication coeficients

t1 = 2 (322, 11b), (214, 43e)

t2 = 1 (603, 104)

t3 = 1 (1066, cdd)

t4 = 1 (a85, 2662)

t5 = 1 (792d, c24)

Coeficients for hi,ti
a8, 1246, 273d, 64c6, ec5

Table 16. Coefficients for SC2000 S6 s-box (C∗
n,n = 21).

Multiplication coeficients

t1 = 3 (84a1, 68a3), (9a46, 64ce), (a49b, 4cb7)

t2 = 2 (51b90, 23343), (2af45, 1ee3f)

t3 = 2 (149054, e17ff), (1ca3c9, 189d7)

t4 = 1 (293b63, 13311a)

t5 = 1 (99994c1, 7e4577)

t6 = 1 (a0855c, 5465c0)

Coeficients for hi,ti
97b, ae51, 6a316, 48a36, 511b21, 5a8e53
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C Decomposition for CLEFIA S-Boxes

Table 17. Coefficients for CLEFIA S0 s-box (C∗
n,n = 61).

Multiplication coeficients

t1 = 11 (f472bea9,2e5d8d2) (96d74bce, 26118da) (31e4d5a3, 8d9ad3) (d47ba128, 9ad6af6)
(86a6a35d, aa0789a) (f1008142, 890e7cd) (1cc88fd7, 771a63) (d1a7d41c, f005c)

(c6260311, 260405) (87ce81b6, c008c) (b005650b, 2000a)

t2 = 5 (ce21b086109, 3447639e612) (e3057cde82e, 51318ff3ffe) (ac0d8dacc03, 12c793bb0c9)
(cae22495188, 13c40402ca7) (2cdcbbe6dbd, 10b759fbb62)

t3 = 5 (83cc51cde82e, 1c8e48806ea2) (794b32dacc03, 1ffd3b17c29f) (e460dc495188, 212a7ee6df38)
(3e42e5be6dbd, 9ca5c145430) (9e621bcec5a2, 86573a01824)

t4 = 4 (3209045ace00f, 11eda53f30ea24) (30fca733d8c8d4, 15c3c269642cc8)
(1ea0cacbb6d449, 12827584edaf2) (2fbc537446e76e, 84511b9756eb)

t5 = 4 (23a866356999743, 18feb8a10a1400f) (1cef4868d528c8, 14116681c7f551e)
(22fed0d37ea90fd, e69ac71f708c55) (20ee8c294fa74e2, 140fafb4169dfdd)

t6 = 3 (1e941bd184fa92b6, 915fc497ff9f3ac) (10aea2b38f83660b, 24860f4a5c4e3b81)
(7f285b7cf0d6310, 2a1466f46583979)

t7 = 3 (5b6cb7efa2923edf, ff712171b03bb3f) (b94a2884a5b60919, 2eac271b3ee0f17b)
(2cd6acf3bb91e213, 1cfedd1b4e7d7e04)

t8 = 3 (23ecdbccdcc9331cd, 166f5a0312ddb88ea) (c8cbd0d8f08526047, 49e7cf73f7598a5d4)
(864d10a7e4d32d581, 1f9f9e9812fbf1d9f)

Coeficients for hi,ti
0,18f4c987e25,a7d2591b0,c5971f53a4c4,72330049c7,208e96d041c174d0,1010a1d831223690,2dccf30d72ed82ff
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Table 18. Coefficients for CLEFIA S1 s-box (C∗
n,n = 61).

Multiplication coeficients

t1 = 9 (e6257b10, 38b09364) (c9bb96c5, 1b038ca0) (b96b762a, 7ac5bd5) (9b7dee3f, 412414b)
(b08d8404, 34a747) (bd7b6c79, 38a456f) (d5148c9e, 363eb3) (d6667973, 1172125)

(64c477f8, 20052)

t2 = 6 (3b7b90d8404, 231383196f) (ebdfb6c79, e641833358) (1b84d948c9e, 77335cbfd)
(1a146e67973, a7721ad6ac) (104d4477f8, 62364356a9) (2e6aefc7d2d, 2124ec1cec)

t3 = 5 (fcf647948c9e, 143a6aa22edf) (d1ada0e67973, 128a78c901e0) (f325074477f8, 40d5499d8ab1)
(e59dc8fc7d2d, 42aa1ee5b043) (5ca2d9bc2e12, 24f264abde7)

t4 = 4 (b196d9ea42f3, 61a140ccccdef) (695cdeb82978, 32c596f64d131)
(54893629996ad, b39ef21a1cb17) (264339a242f92, 3a8933eb01d7)

t5 = 4 (c9740aebe24927, c70cd0bb7d675) (b01a752917e86c, 3162776207d581)
(2a0dd3e937c261, 19b30166181c5d) (d4cb12ed083c06, 15fee38dfcc08)

t6 = 4 (666b9acd497e86c, 932ef7b73781d44) (f5bada35cb7c261, 1bc7ec805987d8c)
(fd38855a8883c06, 307801f6209b88c) (c97f1f3a1f86a5b, 10861757c32a162)

t7 = 3 (69c8c586a0a81d1a, 9f1646da38bc92db) (17874491f63fdcf4, a4d32b5948ef6e62)
(b6fc5fe44924578e, 29aed9e875f57d79)

t8 = 3 (d27972171986174e8, 36baad3e01654f037) (74a812e251bde1d02, 3d43ce1f02b89d892)
(17f5f32e045fc37dc, 22d46f20555298254)

Coeficients for hi,ti
0,155370778,7d6fdb11,80340200d09e5,1020475be1714,3a1d22a4,2e3158865a0f0bd6,41326ea93efe7a0b
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D Decomposition for Khazad S-Box

Table 19. Coefficients for Khazad s-box (C∗
n,n = 61).

Multiplication coeficients

t1 = 11 (2696c4fe, d978e99) (8824bd3, 45c8c77f) (d56e4458, 10758e53) (6d82a38d, b5ab2)
(86a70e72, 24d6649) (a997da07, bcf5ce) (fcab0b4c, 3082d1) (11455741, 1e03f4)

(98ff22e6, 81008e) (9779833b, b009b) (55e33d40, 20050)

t2 = 5 (8a194f0f3, 84758955643) (330e001f778, 954fed8371) (92c5cf084ad, 5530fa8480d)
(c62e0163d92, 400af7741b) (5dc911d7727, 344e653a0e)

t3 = 5 (2f63cc8f3061, dbe37532c0e3) (f226fd72ca06, 4e2f4a11b60d) (8b3dc024185b, 12d1301f080)
(9cdc905fe060, bf465692586) (67ed9ac59715, 4883cc9814d)

t4 = 4 (210b25dbdd532, 152838521724d3) (20cbb2eefe74c7, 1de89d6a935b1b)
(2e3ac93c603a0c, 42667776e69f7) (523737b9bda01, 1ca4d025ba113)

t5 = 4 (21b1dd4395db9a6, e2ddbf10a1af54) (3d2e4b65f1aedfb, d0723550e8b961)
(5ce5a6ba963c00, 392c955f0a4187) (1006d29fc1518b5, 34d5fd635e3621)

t6 = 3 (1261b771b1acb09a, 22d274f103538fe1) (35099af6c35cd1af, e1a8a60481b7a92)
(0d31304bad0a8074, 767a5854b4f4de3)

t7 = 3 (1270c6941b602c4f, ee4994744c72140f) (c6baad94e32e5889, 2236d596143834a1)
(f794d66659d65383, 0e96ba5a7e4db908)

t8 = 3 (258caf4bef7cd853d, 58eea60a37aa6b796) (c4b233211b3b455b7, 1e16e2fcc41060084)
(64c57d66789f62cf1, 0caf5fbb225cebf8)

Coeficients for hi,ti
0,14211732da3,47413c491,102a344e52759a,19232d71e9,4adfe1400fe057f,0299119141d71539,05944481675756d6
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