
Provably Secure Password Authenticated Key Exchange
Based on RLWE for the Post-Quantum World

Jintai Ding1, Saed Alsayigh1, Jean Lancrenon2, Saraswathy RV1, and Michael Snook1

1 University of Cincinnati
2 University of Luxembourg

Abstract. Authenticated Key Exchange (AKE) is a cryptographic scheme with the aim to
establish a high-entropy and secret session key over a insecure communications network.
Password-Authenticated Key Exchange (PAKE) assumes that the parties in play share a
simple password, which is cheap and human-memorable and is used to achieve the au-
thentication. PAKEs are practically relevant as these features are extremely appealing in
an age where most people access sensitive personal data remotely from more-and-more
pervasive hand-held devices. Theoretically, PAKEs allow the secure computation and au-
thentication of a high-entropy piece of data using a low-entropy string as a starting point.
In this paper, we apply the recently proposed technique introduced in [29] to construct
two lattice-based PAKE protocols enjoying a very simple and elegant design that is an
parallel extension of the class of Random Oracle Model (ROM)-based protocols PAK
and PPK [11, 38], but in the lattice-based setting. The new protocol resembling PAK is
three-pass, and provides mutual explicit authentication, while the protocol following the
structure of PPK is two-pass, and provides implicit authentication. Our protocols rely on
the Ring-Learning-with-Errors (RLWE) assumption, and exploit the additive structure of
the underlying ring. They have a comparable level of efficiency to PAK and PPK, which
makes them highly attractive. We present a preliminary implementation of our protocols
to demonstrate that they are both efficient and practical. We believe they are suitable quan-
tum safe replacements for PAK and PPK.

Key words: Diffie-Hellman, Key Exchange, Authenticated, PAKE, RLWE

1 Introduction

Password-authenticated key exchange and dictionary attacks. Authenticated Key Exchange
(AKE) is a cryptographic service with the aim of allowing several entities to jointly establish a
high-entropy and secret session key over a completely insecure communications network. That
the protocol includes authentication of the purported peers is essential to prevent man-in-the-
middle attacks. In order to achieve this, it is required that some form of long-term authentica-
tion material already be in place prior to the exchange occurring. For instance, the entities could
each have their own public-key/secret-key pair (e.g. for STS [16], or HMQV [33]), certified by
a trusted authority, or they can all share a single symmetric key specifically dedicated to running
an AKE with which to establish other session keys (e.g. the protocols in [6]).

In Password-Authenticated Key Exchange (PAKE), it is assumed that the parties in play
share a simple password. This differs from the shared-symmetric-key case in that the pass-
word is not necessarily a cryptographically strong piece of data. Indeed, most passwords have
very low entropy so that they can retain their main advantage over strong keying material:
they are cheap and human-memorable. Moreover, these features are extremely appealing in an
age where most people access sensitive personal data remotely from more-and-more pervasive
hand-held devices. Thus, PAKEs are practically relevant. From a theoretical standpoint, they
are quite unique in that they allow the secure computation and authentication of a high-entropy
piece of data using a low-entropy string as a starting point.

2 Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook

From a security modeling perspective, the use of passwords as authentication material
presents specific challenges. A password’s low entropy makes it easy to discover by brute force,
assuming an attacker can get its hands on a piece of password-dependent data that a guess can
be checked against. Such attacks are known as dictionary attacks. There are two types: In an
offline attack, the adversary observes protocol runs - possibly also interacting with the entities
involved - and then goes offline to do password testing privately. To avoid this, the protocol
messages and session keys must look computationally independent from the password. In an
online attack, the attacker needs to be actively involved in a protocol interaction in order to
determine the verdict on its guess(es). The most natural online attack available is to simply run
the protocol with an arbitrary password guess as input, and observe whether the protocol run
succeeds or fails. It is clear that this attack is unavoidable; thus a PAKE must be designed such
that the adversary can test at most a constant (ideally, one) number of passwords per online
interaction.

PAKEs and the post-quantum world. Based on the above reasons, PAKEs have been very
heavily studied in the past three decades. Adequate formal security models have appeared [5,
11], and a plethora of protocols have been designed and analyzed (e.g., [12, 38, 28, 32, 1]). The
current pool of practical protocols3 can essentially be classified into two categories: the first
we shall call the class of Random Oracle Model (ROM)-based PAKEs (such as [5, 12, 38, 13,
27, 8, 3]), and the second, the class of Common Reference String (CRS)-based PAKEs (such
as [30, 14, 20, 24, 32]). Roughly, the protocols in the first category have very simple and elegant
designs, but rely crucially on the ROM [7] for their proofs of security, while the protocols in
the second category use sophisticated cryptographic tools4 to achieve standard-model security
(assuming a CRS is in place5). The bottom line is that the simplicity and efficiency of ROM-
based protocols (and the fact that if carefully instantiated, they are not known to have been
broken) makes them much more attractive for concrete deployment than CRS-based ones.

Searching for tools that can resist against adversaries attacking using a quantum computer
is currently one of the fundamental issues in cryptographic research. Indeed, the security of all
public-key algorithms based on classical hard problems will no longer be assured as soon as a
quantum computer of satisfactory size exists. In the US, the National Security Agency (NSA)
[41] published a webpage announcing preliminary plans for transitioning from its suite B cryp-
tographic tools to quantum resistant algorithms, which are specified by the National Institute of
Standards and Technology (NIST) and are used by NSA’s Information Assurance Directorate in
solutions approved for protecting classified and unclassified National Security Systems (NSS).
It is clear that the effort to develop quantum-resistant technologies is intensifying and, in the
immediate future, NIST, which has the authority to establish the security standards of the US
government, shall have a call to select post-quantum cryptosystem standards. Regardless of
which of the aforementioned categories they belong to, most known PAKEs rest their secu-
rity on either group-type or factoring-type complexity assumptions, making them unsuitable in
a possibly upcoming post-quantum world. Therefore, searching for PAKEs that can be based
on provably secure lattice assumptions is natural. In the current literature, as far as we know
one single PAKE stands out precisely for this reason: the Katz–Vaikuntanathan protocol [31]
relies instead on lattice-type assumptions for its security. Unfortunately, it is CRS-based, and
therefore not very efficient.

3 Some impractical yet complexity-theoretically efficient protocols have been studied, for theoretical
reasons. See e.g. [22, 40, 23].

4 In particular, they use universal hash proof systems [15] over complex languages.
5 A CRS is essentially a publicly available string to which a secret trapdoor is theoretically associated,

but never used by protocol participants. During a proof of security, the simulator gets access to this
trapdoor.

Provably Secure PAKE Based on RLWE for the PQ World 3

1.1 Our contributions

In this paper, we propose two lattice-based PAKE protocols enjoying a very simple and elegant
design that is extremely similar to that of the class of ROM-based protocols. More specifically,
our protocols can be viewed as direct analogues of the PAK and PPK [11, 38] protocols in the
lattice-based setting. The protocol resembling PAK is three-pass, and provides mutual explicit
authentication, while the protocol following the structure of PPK is two-pass, and provides
implicit authentication. Most importantly, our protocols have a comparable level of efficiency
to PAK and PPK, which makes them highly attractive.

The starting point for our construction is the recently proposed technique introduced in [29],
and used in [48] to design a lattice-based variant of the HMQV protocol. As in the latter pa-
per, our protocols rely on the Ring-Learning-with-Errors (RLWE) assumption, and exploit the
additive structure of the underlying RLWE ring. We therefore obtain two protocols which are
suitable quantum-safe replacements for PAK and PPK.

It is indeed true that we can build the PAKE protocol using RLWE in a rather straightforward
manner. Though the general structure of the proofs for our protocols is very similar to that of the
original PAK protocol’s security proof, where the security of PAK relies on an adversary being
unable to solve the Diffie–Hellman Problem, the techniques used in our paper are intricate and
completely different.

We manage to establish a full proof of security for our RLWE-PAK protocol, in the classic
security model proposed by Bellare et al. [5]. To simplify the proof, first we define the Pairing
with Errors problem, which can be reduced to the RLWE problem. This new problem is used
multiple times in the proof, which allows us to build intermediate steps to fill the gap of the
proof, which did not exist in the proof for the classical PAKE.

The complete replacement of the Diffie–Hellman core of PAK with the new lattice-based
core means that the distinguishers used in the PAK proof have to be completely replaced, and are
of no use in constructing the new distinguishers. The new distinguishers have to compensate for
the presence of the password in the protocol without being able to directly remove its influence,
as they have no access to the value of the password itself. In the proof, there are three places
where we have to build distinguishers to solve the PWE problem. Since such distinguishers are
completely new and subtle, we need to use novel methods to construct them. Only by applying
these new distinguishers are we able to link the security directly to the PWE problem.

From the construction in [29], we can use the same idea to build in a completely parallel
way a PAKE using the LWE problem instead of the RLWE problem. Here we need to use matrix
multiplications, and need to make sure that the order of multiplications is correct.

We created a proof-of-concept implementation of our new PAKE to show that our new
PAKE is efficient and practical, as well as an implementation of the implicit version to show it
is efficient and practical as well.

1.2 Related work

AKE protocol research is far too vast to describe in full, hence we only survey those portions
of it most relevant to this work. These are PAKE, and AKE based on lattice-type assumptions.
We also only consider protocols in the two-party setting.

PAKE protocols and security models. PAKE was essentially invented by Bellovin and Merritt
in [8]. The authors raised the problem of dictionary attacks in this particular setting, proposed
some protocols - most notably the Encrypted Key Exchange (EKE) protocol - and offered an
informal security analysis of their designs. Jablon [27] later proposed another protocol - Simple
Password Exponential Key Exchange (SPEKE) - avoiding some of the pitfalls of EKE, but
again with only an informal analysis.

4 Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook

The search for good security models began with the work of Lucks [35] and Halevi and
Krawczyk [25]. Laying down adequate foundations for the provable security of PAKE was
a particularly subtle task, since one cannot prevent the adversary from guessing and trying
out candidate passwords in on-line impersonation attempts, and the small size of the dictio-
nary means that the adversary’s natural advantage in succeeding at this is non-negligible. Good
models capturing this phenomenon were finally exhibited by Bellare et al. [5] and Boyko et
al. [11], building respectively on the AKE models proposed by Bellare et al. in [6] and Shoup
in [44]. The model in [5] was further refined by Abdalla et al. in [4]. The notion of universally
composable PAKE has also since been introduced by Canetti et al. [14].

A great deal of protocols have been proposed and analyzed, especially since the apparition
of adequate security models. Some extremely efficient examples include the protocols in [5, 12,
13, 11, 38, 37, 34, 27, 26, 2, 3]. On one hand, these are mostly two-or-three-pass protocols, with
very few group operations. For instance, the explicitly authenticated PAK protocol in [38] is
three-pass, and sends 2 group elements (and 2 confirmation bitstrings of length linear in the
security parameter) in total over the network. It also requires a total of only 4 exponentiations,
and 2 group multiplications. On the other hand, these protocols’ security is very heavily reliant
on idealized assumptions6. In 2001, a milestone was reached with the work of Katz et al. [30],
which showed that it is possible to provably realize PAKE in a practical way without idealized
assumptions, but at the expense of having a CRS in place. Many works generalizing and opti-
mizing this result followed, such as [28, 24, 32, 20, 19], all using a CRS. It was further shown
in [14] that without idealized assumptions, universally composable PAKE is possible only if
some other trusted setup - e.g. a CRS - is in place. However, all of these CRS-using protocols
are generally much less practical than the ROM-using ones mentioned before. While it is pos-
sible to achieve a low number of passes using a CRS - e.g. [32] is a two-pass protocol - the
number of group computations and elements sent is typically high. To our knowledge, the latest
techniques [2] discovered to reduce this still do not beat ROM-based PAKEs in efficiency. For
instance, Abdalla et al. [2] report on being able to bring the total group element and exponenti-
ation counts of the Groce-Katz protocol [24] down to 6 and 18 respectively, and those of [32]
down to 10 and 28 respectively.

Finally, some work has been devoted to determining if PAKE can be efficiently realized in
a reasonable security model with neither idealized assumptions nor any form of trusted setup.
Goldreich et al. [22] were the first to answer in the affirmative, but assuming non-concurrent
protocol executions. Their work was followed up by Nguyen et al. [40], who found a more
efficient construction, but in a weaker model. Later, Jain et al. [23] were able to further lift the
restriction on concurrent executions. These works are viewed as being mainly of theoretical
interest, as the protocols, although theoretically efficient, are far less practical then even the
CRS-based protocols.

AKE from lattices. Several works have begun addressing the problem of finding AKE proto-
cols based on lattice-type assumptions. The protocols in [43, 10, 17, 18] are essentially lattice-
based instantiations of generic constructions that use key-encapsulation mechanisms to con-
struct AKEs. Recently, this pattern was broken by the work of Zhang et al. [48], where a RLWE
analogue of the unauthenticated Diffie-Hellman protocol proposed by Ding et al. [29] was lever-
aged to build a kind of RLWE version of the HMQV protocol.

In all of these works, the authentication mechanism used is reliant on the deployment of a
public-key infrastructure. In the case of password authentication, the only known protocol to
this day appears to be that of Katz et al. [31]. It too can be viewed as a lattice-based instantiation
of a generic construction. This is because most known CRS-based frameworks for PAKE make
use of an encryption scheme that is both secure against adaptive chosen-ciphertext attacks and

6 The ROM is one of them; another is the ideal cipher model, see [5].

Provably Secure PAKE Based on RLWE for the PQ World 5

equipped with a universal hash proof system [15], and the heart of [31] is essentially a lattice-
based instantiation of such a scheme.

2 Preliminaries

2.1 Security model

Here, we review the security model from [5]. It basically models the communications between
a fixed number of users - which are clients and servers - over a network that is fully controlled
by a probabilistic, polynomial-time adversary A. Users are expected to both establish and use
session keys over this network. Therefore, A is given access to a certain number of queries
which reflect this usage. It may initialize protocol communications between user instances of
its choice, deliver any message it wants to these instances, and observe their reaction accord-
ing to protocol specification. It may also reveal session keys established by instances, thereby
modeling loss of keys through higher-level protocol use. Finally, we even allow the adversary
to obtain user passwords, in order to capture forward secrecy. We describe this formally now.

Let P be a PAKE protocol.
Security game. An algorithmic game initialized with a security parameter k is played between
a challenger CH and a probabilistic polynomial time adversaryA. CH will essentially run P on
behalf of honest users, thereby simulating network traffic for A.
Users and passwords. We assume a fixed set U of users, partitioned into two non-empty sets
C of clients and S of servers. We also assume some fixed, non-empty dictionary D of size L.
Before the game starts, for each C ∈ C a password pwC is drawn uniformly at random from
D and assigned to C outside of A’s view. For each server S ∈ S, we set pwS :=

(
f(pwC)

)
C ,

where C runs through all of C, and f is some efficiently computable one-way function specified
by P. (In our case, f will be essentially a hash of the password.) CH also generates P’s public
parameters on input 1k, and gives these to A. We assume that A is polynomial-time in k as
well. The game can then begin.
User instances. During the game, to any user U ∈ U is associated an unlimited number of user
instances Πi

U , where i is a positive integer. The adversary may activate any of these instances
using the queries listed below, causing them to initiate and run the protocol.

At any point in time, an instance Πi
U may accept. When this happens, it holds a Partner

IDentity (PID) pidiU , a Session IDentity (SID) sidiU , and a Session Key (SK) skiU . The PID is
the identity of the user that instance believes it is talking to. The SK is what Πi

U is aiming to
ultimately compute. The SID is a string which uniquely identifies the protocol run and ensuing
session in which the SK is to be used in. Without loss of generality, the SID is usually defined
as the ordered concatenation of messages sent and received by an instance, except possibly the
last message.
Queries. The queries A may make to any given instance Πi

U during the game are as follows:

– Send(U , i,M) : Causes messageM to be sent to instanceΠi
U . The instance computes what

the protocol P says, updates its state, and gives the output toA. We also assume thatA sees
if the query causes Πi

U to accept or terminate.
– Execute(C, i,S, j) : Causes P to be executed to completion between Πi

C (where C ∈ C)
and Πj

S (where S ∈ S) and hands A the execution’s transcript.
– Reveal(U , i) : Returns the SK skiU held by Πi

U to A.
– Test(U , i) : For this query to be valid, instance Πi

U must be fresh, as defined below. If this
is the case, the query causes a bit b to be flipped. If b = 1, the actual SK skUi is returned to
A; otherwise a string is drawn uniformly from the SK space and returned to A. Note that
this query can be asked only once during the game.

– Corrupt(U) : Returns
(
f(pwC)

)
C to A if U ∈ S else returns pwU to A.

6 Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook

Ending the game. Eventually, A ends the game, and outputs a single bit b′. We return to the
use of this bit in the definition of security below.

Partnering and freshness. In order to have a meaningful definition of security, we need to
introduce the notions of instance partnering and instance freshness. Essentially, an instanceΠi

U
is fresh if the adversary does not already know that instance’s SK through trivial means provided
by the security model’s queries, for instance by using a Reveal query on the instance in question.
Furthermore, since instances are supposed to be sharing keys under normal circumstances, it
also makes sense to consider freshness destroyed if an instance’s proper communicant has been
revealed as well. Thus, we need to formally define what this proper communicant is:

Definition 1. Let Πi
U and Πj

V be two instances. We shall say that Πi
U and Πj

V are partnered
if i) one is in C and one is in S, ii) both have accepted, iii) pidiU = V and pidjV = U , iv)
sidiU = sidjV =: sid and this value is not null, and v) no other instance accepts with a SID of
sid.

Capturing the notion of forward secrecy requires freshness to be carefully defined around the
corrupt query. Intuitively, if a corruption occurs after an instance has had a correct exchange
with a proper partner, then those instances’ shared session key should still remain secure. How-
ever, we cannot guarantee anything for an instance that has interacted with the adversary after
a corruption. More formally:

Definition 2. An instance Πi
U is fresh if none of the following events occur: i) Reveal(U , i)

was queried, ii) a Reveal(V, j) was queried, where Πj
V is Πi

U ’s partner, if it has one, or iii)
Corrupt(V) was queried for some V before the Test query and a Send(U , i,M) query occurs
for some M .

Definition of security. We now turn to actually measuring the adversary’s success rate in
breaking P. A’s objective is to tell apart a random string from a true SK belonging to a fresh
instance. This is the whole purpose of the Test query. Let SuccakeP (A) be the event:

“A makes a Test(U , i) query where Πi
U has terminated and is fresh and b′ = b, where b is

the bit selected when Test(U , i) was made, and b′ is the bit A output at the end of the game.”

A’s advantage is then defined as:

AdvakeP (A) = 2Pr[SuccakeP (A)]− 1

It is easy to see that if we have two protocols P and P′ then for any adversary A we have
Pr[SuccakeP (A)] = Pr[SuccakeP′ (A)] + ε if and only if AdvakeP (A) = AdvakeP′ (A) + 2ε.

2.2 Ring Learning with Errors

Ring Learning with Errors. Here, we introduce some notation and recall informally the Ring
Learning with Errors assumption, introduced in [36]. For our purpose, it will be more conve-
nient to use an assumption we call the Pairing with Errors PWE , which we state formally at
the end of the section, and which can easily be shown holds under RLWE.

We denote the security parameter k. Recall that a function f is negligible in k if for every
c > 0, there exists a N such that f(k) < 1

kc for all k > N . The ring of polynomials over Z
(respectively, Zq = Z/qZ) we denote by Z[x] (resp., Zq[x]). Let n ∈ Z be a power of 2. We
consider the ring R = Z[x]/(xn+1). For any positive q ∈ Z, we setRq = Zq[x]/(xn+1). For
any polynomial y inR orRq , we identify y with its coefficient vector in Zn or Znq , respectively.
Recall that for a fixed β > 0, the discrete Gaussian distribution over Rq (parametrized by β)

Provably Secure PAKE Based on RLWE for the PQ World 7

is naturally induced by that over Zn (centered at 0, with standard deviation β). We denote this
distribution over Rq by χβ . More details can be found in [48].

For a fixed s ∈ Rq , let As,χβ be the distribution over pairs (a, as + 2x) ∈ Rq × Rq ,
where a ← Rq is chosen uniformly at random and x ← χβ is independent of a. The Ring
Learning with Errors assumption is the assumption that for a fixed s sampled from χβ , the
distribution As,χβ is computationally indistinguishable from the uniform distribution on R2

q ,
given polynomially many samples.

In doing so we also define the norm of a polynomial to be the norm of its coefficient vector.
Then we have the following useful facts:

Lemma 1. Let R be defined as above. Then, for any s, t ∈ R, we have ‖s · t‖ ≤
√
n · ‖s‖ · ‖t‖

and ‖s · t‖∞ ≤ n · ‖s‖∞ · ‖t‖∞.

Lemma 2 ([39, 21]). For any real number α = ω(
√
log n), we have Prx←χα [‖x‖ > α

√
n] ≤

2−n+1.

We now recall the Cha and Mod2 functions defined in [48]. We denote Zq = {− q−12 , . . . ,
q−1
2 } and consider the set E := {−b q4c, . . . , b

q
4e}, i.e. the “middle” of Zq . Recall that Cha is

the characteristic function of the complement of E, which returns 0 if the input in E and 1 if it
is not in E, and that Mod2 : Zq × {0, 1} → {0, 1} is defined as:

Mod2(v, b) = (v + b · q − 1

2
) mod q mod 2.

These two functions have a fundamental features which can be seen from the following two
lemmas.

Lemma 3 ([48]). Let n be the security parameter, and let q = 2ω(logn) + 1 be an odd prime.
Let v ∈ Zq be chosen uniformly at random. For any b ∈ {0, 1} and any v′ ∈ Zq , the output
distribution of Mod2(v + v′, b) given Cha(v) is statistically close to uniform on {0, 1}.

Lemma 4 ([48]). Let q be an odd prime, v ∈ Zq and e ∈ Zq such that |e| < q/8. Then, for
w = v + 2e, we have Mod2(v,Cha(v)) = Mod2(w,Cha(v)).

They also can be extended to Rq by applying them coefficient-wise to the coefficients in Zq
that define the ring elements. In other words, for any ring element v = (v0, . . . , vn−1) ∈ Rq and
binary-vector b = (b0, . . . , bn−1) ∈ {0, 1}n, we set Cha(v) = (Cha(v0), . . . ,Cha(vn−1))
and Mod2(v,b) = (Mod2(v0, b0), . . . , Mod2(vn−1, bn−1)).
The PWE assumption. We now state the Pairing with Errors (PWE) assumption, under which
we prove that our protocols are secure. We return to the general notations of paragraph 2.2,
but using the Gaussian distribution χβ for a fixed β ∈ R∗+. For any (X, s) ∈ R2

q , we set
τ(X, s) = Mod2(Xs,Cha(Xs)). Let A be probabilistic, polynomial-time algorithm taking
inputs of the form (a,X, Y,W), where (a,X, Y) ∈ R3

q and W ∈ {0, 1}n, and outputting a
list of values in {0, 1}n. A’s objective will be for the string τ(X, s) to be in its output, where
s is randomly chosen from Rq , Y is a “small additive perturbation” of as, and W is Cha(Xs)
itself. Formally, let

AdvPWE
Rq (A) def= Pr

[
a←Rq; s←χβ ;X←Rq; e←χβ ;

Y ← as+ 2e;W←Cha(Xs) : τ(X, s) ∈ A(a,X, Y,W)
]

Let AdvPWE
Rq

(t,N) = maxA

{
AdvPWE

Rq
(A)
}

, where the maximum is taken over all adver-
saries of time complexity at most t that output a list containing at most N elements of {0, 1}n.

8 Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook

The PWE assumption states that for t and N polynomial in k, AdvPWE
Rq

(t,N) is negligible in
k.

We also have decision version of PWE problem that can be defined as follows. Clearly, if
DPWE is hard, so is PWE.

Definition 1. (DPWE) Given (a,X, Y,W, σ) ∈ Rq × Rq × Rq × {0, 1}n × {0, 1}n where
w = ChaK for some K ∈ Rq and σ = Mod2(K,w). The decision Pairing with Errors
problem (DPWE) is to decide whether K = Xs + 2g and Y = as + 2e for some s, g, and e
drawn from χβ , or (K,Y) is uniformly random in R2

q .

Before we show the reduction of the DPWE problem to the RLWE problem, we would like
to give a definition to what we called the RLWE-DH problem which can be reduced to RLWE
problem.

Definition 2. (RLWE-DH) Let Rq and χβ be defined as above. Given as input ring elements
a,X, Y, and K, where (a,X) is uniformly random in R2

q , the RLWE-DH problem is to tell if K
is X · sy + 2gy for some gy ← χβ and Y = a · sy + 2ey for some sy, ey ← χβ , or (K,Y) is
uniformly random in R2

q .

Theorem 1. Let Rq and χβ be defined as above. The RLWE-DH problem is hard to solve if
RLWE problem is hard.

Proof. Suppose that RLWE is hard and that there exists an algorithmD which can solve RLWE-
DH on input (a,X, Y,K) with non-negligible advantage. This means that D can determine if
K = X · sy + 2gy for some gy ← χβ and Y = a · sy + 2ey for some sy, ey ← χβ , or (K,Y)
is uniformly random in R2

q .
Now given two samples of a RLWE challenge (a1, b1) and (a2, b2) where both share the

same s ← χβ , using D we can build a distinguisher D that can solve the RLWE problem as
follows:

1. Set (a,X, Y,K) = (a1, a2, b1, b2).
2. Run D on input (a,X, Y,K). By construction, we have:

– b2 = a2 · s+ e2 for some e2 ← χβ and b1 = a1 · s+ e1 for some e1 ← χβ .
– Or b2 and b1 are a uniformly random from Rq .

Since D solves the RLWE-DH with non-negligible advantage, then D′ solves RLWE with non-
negligible advantage advantage as well, which contradicts the hardness of RLWE. Hence if
RLWE hard to solve then RLWE-DH is also hard to solve.

Now we show the reduction of the DPWE problem to the RLWE-DH problem by the fol-
lowing theorem.

Theorem 2. Let Rq and χβ be defined as above. The DPWE problem is hard if the RLWE-DH
problem is hard.

Proof. Suppose that RLWE-DH is hard to solve and assume that there exists an algorithm
D which can solve the DPWE problem on input (a,X, Y,w, σ) where for some K ∈ Rq ,
w = Cha(K) and σ = Mod2(K,w) with non-negligible advantage. This means that D can
determine if

1. K = Xs+ 2g and Y = as+ 2e for some s, g, and e drawn from χβ , or
2. (K,Y) is uniformly random in R2

q .

Now we can build a distinguisher D′ that, on input (a,X, Y,K), solves the RLWE-DH
problem by using D as a subroutine in the following manner:

Provably Secure PAKE Based on RLWE for the PQ World 9

1. Compute w = Cha(K) and σ = Mod2(K,w).
2. Run D to solve DPWE problem using the input (a,X, Y,w, σ).

– If D outputs 1 then K = Xs+ 2g and Y = as+ 2e for some s, g, e← χβ ,
– else (K,Y) is a uniformly random element from R2

q .

Since D solves DPWE with non-negligible advantage, it follows that D′ solves RLWE-DH
with non-negligible advantage as well, contradicting RLWE-DH’s hardness.

As a result from Theorem 1 and Theorem 2, we can say that if RLWE is a hard problem
then DPWE is also hard, and thus so is PWE.

3 Protocol description

We turn to describing the protocols RLWE-PAK and RLWE-PPK themselves, and examining
their security.

3.1 Password-Authenticated RLWE Key Exchange

Let n be a power of 2, and f(x) = xn + 1. Let q = 2ω(logn) + 1 be an odd prime such
that q mod 2n = 1. Let H1 : {0, 1}∗ → Rq be a hash function, Hl : {0, 1}∗ → {0, 1}κ for
l ∈ {2, 3} be hash functions for verification of communications, andH4 : {0, 1}∗ → {0, 1}κ be
a Key Derivation Function (KDF), where κ is the bit-length of the final shared key. We model
the hash functions and KDF as random oracles. Let a be a fixed element chosen uniformly
at random from Rq and given to all users. Let χβ be a discrete Gaussian distribution with
parameter β ∈ R∗+. We will make use of the Cha and Mod2 functions defined in [48] and
recalled above.

The function f used to compute client passwords’ verifiers is set as f = −H1(·). Our
protocol consists of the following steps, illustrated in Figure 1:

Initiation Client C randomly samples sC , eC ← χβ , computes α = asC + 2eC , γ = H1(pwC)
and m = α+ γ and sends < C,m > to party S.

Response Server S receives < C,m > from party C and checks that m ∈ Rq; if not, it aborts.
Otherwise it computes α = m + γ′ where γ′ = −H1(pwC). Server S then randomly
samples sS , eS ← χβ and computes µ = asS + 2eS and kS = α · sS .
Next, Server S computes w = Cha(kS) ∈ {0, 1}n and σ = Mod2(kS , w). Server S
sends µ, w, and k = H2(C,S,m, µ, σ, γ′) to party C and computes the value k′′ =
H3(C,S,m, µ, σ, γ′).

Initiator finish Client C checks that µ ∈ Rq , and computes kC = sC ·µ and σ = Mod2(kC , w).
Client C verifies that H2(C,S,m, µ, σC , γ′) matches the value of k received from Server S
where γ′ = −γ. If it does not, Client C ends the communication.
If it does, Client C computes k′ = H3(C,S,m, µ, σ, γ′) and derives the session key skC =
H4(C,S,m, µ, σ, γ′). It then sends k′ back to Server S.

Responder finish Finally, Server S verifies that k′ = H3(C,S,m, µ, σ, γ′) the same way
Client C verified k. If this is correct, Server S then derives the session key by comput-
ing skS = H4(C,S,m, µ, σ, γ′). Otherwise, S refuses to compute a session key.

10 Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook

Client C Server S
Input S, pwC
Sample sC , eC ← χβ
α = asC + 2eC
γ = H1(pwC)
m = α+ γ

γ′ = −H1(pwC)
Abort if m /∈ Rq
Sample sS , eS ← χβ
µ = asS + 2eS ∈ Rq
α = m+ γ′

Abort if µ /∈ Rq
kC = sCµ
σ = Mod2(kC, w)
γ′ = −γ

kS = αsS
w = Cha(kS) ∈ {0, 1}n
σ = Mod2(kS , w)
k = H2(C,S,m, µ, σ, γ′)
k′′ = H3(C,S,m, µ, σ, γ′)

Abort if k 6= H2(C,S,m, µ, σ, γ′) else
k′ = H3(C,S,m, µ, σ, γ′)
skC = H4(C,S,m, µ, σ, γ′)

Abort if k′ 6= k′′

skS = H4(C,S,m, µ, σ, γ′)

< C,m >

µ,w, k

k′

Fig. 1. Explicitly Authenticated Protocol

3.2 Correctness

Theorem 3 (Correctness). Let q be an odd prime such that q > 16β2n3/2. Let two parties, C
and S, establish a shared key by honestly following the protocol described above. Then, the two
will end with the same key with overwhelming probability.

Proof. To show the correctness of our RLWE-PAK protocol, it is sufficient to show that the key
material derived as Mod2(kC ,Cha(kS)) = Mod2(kS ,Cha(kS)). By Lemma 4, if kC and kS
are sufficiently close then we done. specifically, if |kC − kS | < q/4 then both sides have the
same value, σ. If we compare the two:

kC = sCµ = sC .(asS + 2eS)

= asC .sS + 2eSsC

kS = αsS = (asC + 2eC).sS

= asC .sS + 2eC .sS

we find that kC − kS = 2[eSsC − eC .sS] By Lemma 2, each individual eS , sC , eC , sS term
has norm less than β

√
n with overwhelming probability. Applying Lemma 1 and the triangle

inequality, we have that ‖kC − kS‖ ≤ 4β2n3/2 < q/4 with overwhelming probability. Hence
Mod2(kC ,Cha(kS)) = Mod2(kS ,Cha(kS)).

4 Proof of security for RLWE-PAK

Our proof of security follows the one in the PAK suite paper by MacKenzie [38]. We essentially
adapt it to our PWE instantiation. The objective is to show that an adversary A attacking the
system is unable to determine the SK of a fresh instance with greater advantage than that of an
online dictionary attack.

In what follows, we distinguish Client Action (CA) queries and Server Action (SA) queries.
The adversary makes a:

– CA0 query if it instructs some unused Πi
C to send the first message to some S;

– SA1 query if it sends some message to a previously unused Πj
S ;

Provably Secure PAKE Based on RLWE for the PQ World 11

– CA1 query if it sends a message to some Πi
C expecting the second protocol message;

– SA2 query if it sends some message to a Πj
S expecting the last protocol message.

For the convenience of the reader, certain events corresponding to A making password
guesses - against a client instance, against a server instance, and against a client instance and
server instance that are partnered - are defined:

– testpw(C, i,S, pw, l): for some m,µ, γ′, w and k, A makes an Hl(< C,S,m, µ, σ, γ′ >)
query, a CA0 query to Πi

C with input S and output < C,m >, a CA1 query to Πi
C with

input< µ, k, w > and anH1(pw) query returning−γ′ = ash+2eh ∈ Rq , where the latest
query is either the Hl(.) query or the CA1 query. σ = Mod2(kS , w) = Mod2(kC , w),
kS = αsS , kC = µsC and m = α − γ′. The associated value of this event is output of
Hl(.), l ∈ {2, 3, 4}.

– testpw!(C, i,S, pw): for some w and k a CA1 query with input < µ, k, w > causes a
testpw(C, i,S, pw, 2) event to occur, with associated value k.

– testpw(S, j, C, pw, l): for some m,µ, γ′, w and k A makes an Hl(< C,S,m, µ, σ, γ′ >)
query and previously made SA1 query to Πj

S with input < C,m > and output < µ, k, w >
, and an H1(pw) query returning −γ′, where σ = Mod2(kS , w) = Mod2(kC , w), kS =
αsS , kC = µsC and m = α − γ′. The associated value of this event is output of Hl(.), l ∈
{2, 3, 4} generated by Πj

S .
– testpw!(S, j, C, pw): a SA2 query to Πj

S is made with k′, where a testpw(S, j, C, pw, 3)
event previously occured with associated value k′.

– testpw∗(S, j, C, pw): testpw(S, j, C, pw, l) occurs for some l ∈ {2, 3, 4}.
– testpw(C, i,S, j, pw): for some l ∈ {2, 3, 4}, both a testpw(C, i,S, pw, l) event and a
testpw(S, j, C, pw, l) event occur, where Πi

C is paired with Πj
S and Πj

S is paired with Πi
C

after its SA1 query.
– testexecpw(C, i,S, j, pw): for some m,µ, γ′, w, A makes an Hl(< C,S,m, µ, σ, γ′ >)

query for l ∈ {2, 3, 4}, and previously made an Execute(C, i,S, j) query that generates m
and µ and anH1(pw) query returning−γ′ = ash+2eh ∈ Rq , where σ = Mod2(kS , w) =
Mod2(kC , w), kS = αsS , kC = µsC and m = α− γ′.

– correctpw: before any Corrupt query, either a testpw!(C, i,S, pw) event occurs for some
C, i and S, or a testpw∗(S, j, C, pwC) event occurs for some S, j, and C.

– correctpwexec: a testexecpw(C, i,S, j, pwC) event occurs for some C, i,S, and j.
– doublepwserver: before any Corrupt query happens, both a testpw∗(S, j, C, pw) event

and testpw∗(S, j, C, pw′) occur for some S, j, C, pw and pw′, with pw 6= pw′.
– pairedpwguess: a testpw(C, i,S, j, pwC) event occurs, for some C, i,S, and j.

Theorem 4. Let P:=RLWE-PAK, described in Figure 1, using group Rq , and with a password
dictionary of sizeL. Fix an adversaryA that runs in time t, and makes nse, nex, nre, nco queries
of type Send,Execute,Reveal,Corrupt, respectively, and nro queries to the random oracles.
Then for t′ = O(t+ (nro + nse + nex)texp):

AdvakeP (A) = nse
L

+O
(
nseAdv

PWE
Rq (t′, nro

2) +AdvDRLWE
Rq (t′, nro)

+
(nse + nex)(nro + nse + nex)

qn
+
nse
2κ

)
Proof. We study a sequence of protocols - P0,P1, · · · ,P7 - with the following properties. First
P0 = P and P7 is by design only possible to attack using natural online guessing. Secondly, we
have

AdvakeP0
(A) ≤ AdvakeP1

(A) + ε1 ≤ · · · ≤ AdvakeP7
(A) + ε7

12 Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook

where ε1, · · · , ε7 are all negligible values in k. Adding up the negligible values and counting
the success probability of the online attack in P7 then gives the desired result.

We can assume that nro and nse+nex are both≥ 1. Random oracle queries are answered in
the usual way: new queries are answered with uniformly random values, and previously made
queries are answered identically to the past response. We further assume that theH1(pw) query
is answered by the simulator by computing the response as ash + 2eh ∈ Rq , where (sh, eh)
is sampled uniformly at random from R2

q . Finally, if A makes an Hl(v) query for l ∈ {2, 3, 4}
and some v then the corresponding Hl′(v) and Hl′′(v) queries are computed and stored, where
l′, l′′ ∈ {2, 3, 4} \ {l}. A only sees the output of Hl(v), but the other two queries are still
considered to have been made by A.

We now detail our squence of protocols, and bound A’s advantage difference from each
protocol to the next.

Protocol P0: is just the original protocol P.

Protocol P1: P1 is nearly identical to P0, but is forcefully halted as soon as honest parties
randomly choose m or µ values seen previously in the execution.

Specifically, letE1 be the event that anm value generated in a CA0 or Execute query yields
an m value already seen in some previous CA0 or Execute query, an m value already used as
input in some previous SA1 query, or an m value from some previous Hl(.) query made by A.
LetE2 be the event that a µ value generated in SA1 or Execute query yields a µ from a previous
SA1 or Execute query, a µ value sent as input in some previous CA1 query, or a µ value from a
previous Hl(.) query. Setting E = E1 ∨ E2 then P1 is defined as being identical to P0 except
that the protocol halts and the adversary fails when E occurs.

Claim 1. For any adversary A,

AdvakeP0
(A) ≤ AdvakeP1

(A) + O((nse + nex)(nro + nse + nex))

qn

Proof. Consider the latestm or µ value generated. The probability that this value has previously
been generated in a Send,Execute, or random oracle query is nro+nse+nexqn . There are nse+nex
values that are required to be unique if event E does not occur. Thus, the probability of any of
the m or µ values not being unique is indeed O((nse+nex)(nro+nse+nex))

qn . Note that the cardinal
of Rq is exactly qn, and that m is random because γ is.

Protocol P2: This protocol is identical to P1 except that Send and Execute queries are
answered without using random oracles. Any random oracle queriesA subsequently makes are
answered in such a way as to be consistent with the results of these Send and Execute queries.

In more detail, the queries in P2 are now answered as follows:

– In an Execute(C, i,S, j) query, m = asm + 2em where sm, em ← ∈Rq , µ = asS + 2eS
where sS , eS ← ∈χβ , w ←∈ {0, 1}n, k, k′ ← ∈{0, 1}κ, and skiC ← skjS ← {0, 1}κ.

– In a CA0 query to instance Πi
C , m = asm + 2em where sm, em ← ∈Rq .

– In a SA1 query to instance Πj
S , µ = asS + 2eS where sS , eS ← ∈χβ , w ← {0, 1}n, and

skjS , k, k
′′←{0, 1}κ.

– In a CA1 query to instance Πi
C , do the following.

• If this query causes a testpw!(C, i,S, pwC) event to occur, then set k′ to the associated
value of the testpw(C, i,S, pwC , 3) event, and set skiC to the associated value of the
testpw(C, i,S, pwC , 4) event.

• Else if Πi
C is paired with a server instance Πj

S , set skiC ← skjS , then k′←{0, 1}κ.
• Otherwise, Πi

C aborts.
– In a SA2 query to instance Πj

S , if this query causes a testpw!(S, j, C, pwC) event to occur,
or if Πj

S is paired with a client instance Πi
C , terminate. Otherwise, Πj

S aborts.

Provably Secure PAKE Based on RLWE for the PQ World 13

– In an Hl(< C,S,m, µ, σ, γ′ >) query, for l ∈ {2, 3, 4}, if this Hl(.) query causes a
testpw(S, j, C, pwC , l) event, or testexecpw(C, i,S, j, pwC) event to occur, then output
the associated value of the event. Otherwise, output a random value from {0, 1}κ.

Claim 2. For any adversary A,

AdvakeP1
(A) = AdvakeP2

(A) + O(nro)

qn
+
O(nse)

2κ

Proof. In P1 we can see that H2(.), H3(.) andH4(.) queries are new therefore the values
skjS , k and k′′ which are created by a server instance Πj

S in the SA1 query are uniformly
chosen from {0, 1}κ, independent of anything that previously occured.Then in SA2 query, if a
testpw!(C, i,S, pwC) event occurs, or Πj

S is paired, the instance terminates, and if Πj
S is un-

paired and no testpw!(C, i,S, pwC) event occurs, then either the instance terminates or aborts.
It is easy to show that the total probability of any instance terminating in this case is at most
nse
2κ .

Also in P1, for any client instance Πi
C , either

1. a testpw!(C, i,S, pwC) event occurs, and then k′ and skiC are set to the values associated
with the testpw(C, i,S, pwC , 3) and testpw(C, i,S, pwC , 4) events respectively which are
guaranteed to occur by our orginal assumption,or

2. no testpw!(C, i,S, pwC) event occurs, but exactly one instance Πj
S is paired with Πi

C , in
which case skiC = skjS , and k′ is uniformly chosen from {0, 1}κ, independent of anything
that previously occurred (since no testpw(C, i,S, pwC , 3) event could have occurred in this
case), or

3. no testpw!(C, i,S, pwC) event occurs and no instance is paired with Πi
C then either the

instance terminates or aborts. In this case the total probability of any instance terminating
is at most nse2κ .

For any Hl(.) query, l ∈ {2, 3, 4}, either (1) it causes a testpw(S, j, C, pwC , l), or a
testexecpw(C, i,S, pwC) event to occur, in which case the output is the associated value of
the event (i.e., the k value associated with the particular event that occurs), (2) it does not
cause a testpw(C, i,S, pwC) event, but does cause a testpw(C, i,S, pwC , l) event to occur,
where the CA1 query of the event had input < µ, k > for some µ, in which case either Πi

C
terminated and the output is k, k′,or skCi or Πi

C aborted and the output is uniformly chosen
from {0, 1}κ \ {k, k′, skCj }, (3) γ′ but the adversary has not made an H1(pwC)query, or (4)
the output of Hl(.) is uniformly chosen from {0, 1}κ independent of anything that previously
occurred, since this is a new Hl(.) query. The total probability of an Hl(.) query causing the
third case above is bounded by nro

qn . The second case above where the output is fixed can only
occure when an unpaired client instance terminated with no testpw!(C, i,S, pwC) event and for
l ∈ {3, 4} if can only occur when anH2(.) query causes a second case where its output is fixed.

If an unpaired client instance Πi
C never terminates without a testpw!(C, i,S, pwC) event,

an unpaired server instanceΠj
S never terminates without a testpw!(S, j, C, pwC) event, and the

third case of the H2, H3, and H4 queries never occurs, then P2 is consistent with P1. The claim
follows.

Protocol P3: is identical to P2 except that in an Hl(< C,S,m, µ, σ, γ′ >) query, for l ∈
{2, 3, 4}, it is not checked for consistency against Execute query. So the protocol responds with
a random output instead backpatching to preserve consistency with an Execute query. Simply
there is no testexecpw(C, i,S, j, pwC) event checking.

Claim 3. For any adversary A running in time t, there is a t′ = O(t+ (nro + nse + nex)texp)
such that,

AdvakeP2
(A) ≤ AdvakeP3

(A) +AdvDRLWE
Rq (t′, nro) + 2AdvPWE

Rq (t′, nro)

14 Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook

Proof. Let E be the event that a correctpwexec event occurs then clearly P2 and P3 are in-
distinguishable if E does not occur. So if we have a probability ε for E to occur when A is
running against protocol P2 then we have Pr[SuccakeP2

(A)] ≤ Pr[SuccakeP3
(A)] + ε and thus

AdvakeP2
(A) ≤ AdvakeP3

(A) + 2ε.
Now we construct an algorithm D that attempts to solve PWE by running A on a simula-

tion of the protocol. Given (a,X, Y,W), D simulates P2 forA with these changes:

1. In an Execute(C, i,S, j) query, set m = X + (asf + 2ef) where sf , ef←Rq , µ = Y +

(asff + 2eff) where sff , eff
R
∈ χβ , and selects w ← {0, 1}n

2. WhenA finishes, for every Hl(< C,S,m, µ, σ, γ′ >) query for l ∈ {2, 3, 4}, where m and
µ were generated in an Execute query, and an H1 query returned −γ′ = ash + 2eh ∈ Rq ,
then the simulator can compute,

kS = α · (sy + sff) = (X + a(sf − sh) + 2(ef − eh)) · (sy + sff)

= X · sy + (a(sf − sh) + 2(ef − eh)) · sy + (X + a(sf − sh) + 2(ef − eh)) · sff
≈ X · sy + Y · (sf − sh) + (X + a(sf − sh) + 2(ef − eh)) · sff
= X · sy + Y · (sf − sh) + (X + γ′ + (asf + 2ef)) · sff

So,
X · sy = kS − Y · (sf − sh)− (X + γ′ + (asf + 2ef)) · sff .

And,
σ′ = Mod2(kS − Y · (sf − sh)− (X + γ′ + (asf + 2ef)) · sff ,W)

Finally, add the value of σ′ to the list of possible values for τ(X, s).

Note that during an execute query, the simulation setsm = X+(asf+2ef) instead ofm =
asm+2em and sinceX is chosen uniformly at random fromRq andm is randomized by γ then
they are definitely indistinguishable. However the simulation also sets µ = Y + (asff +2eff)
instead of it being µ = asS + 2eS which is distinguishable if someone can solve the decision
RLWE problem. As a result this simulation is indistinguishable from P2 until E occurs or
DRLWE is solved with non negligible advantage, and in former case, D adds the correct τ(X, s)
to the list. After E occurs, the simulation will be distinguishable from P2. However we do
make the assumption that A still follows the appropriate time and query bounds even if A
distinguishes the simulation from P2.

If t′ is the running time of D and since D creates a list of size nro with advantage ε then
t′ = O(t + (nro + nse + nex)texp). The claim follows from the fact that AdvPWE

Rq
(D) ≤

AdvPWE
Rq

(t′, nro).

Protocol P4: is identical to P3 except that if correctpw occurs then the protocol halts and
the adversary automatically succeeds. This causes theses changes:

1. In a CA1 query to Πi
C , if a testpw!(C, i,S, pwC) event occurs and no Corrupt query has

been made, halt and say the adversary automatically succeeds.
2. In an Hl(< C,S,m, µ, σ, γ′ >) query for l ∈ {2, 3, 4}, if a testpw∗(S, j, C, pwC) event

occurs and no Corrupt query has been made, halt and say the adversary automatically
succeeds.

Claim 4. For any adversary A,

AdvakeP3
(A) ≤ AdvakeP4

(A)

Provably Secure PAKE Based on RLWE for the PQ World 15

Proof. This change can only increase the adversary’s chances at winning the game, hence the
inequality.

Protocol P5: is identical to P4 except that if the adversary makes a password guess against
partnered client and server instances, the protocol halts and the adversary fails. Simply if a
pairedpwguess event occurs, the protocal halts and the adversary fails.We suppose that when
a query is made, the test for correctpw occurs after the test for pairedpwguess. Note that this
causes the following change: if a testpw(C, i,S, pw, l) event occurs, this should be checked
in a CA1 query, or an Hl(.) query for l ∈ {2, 3, 4} check if a testpw(C, i,S, pw) event also
occurs.

Claim 5. For any adversary A running in time t, there is a t′ = O(t+ (nro + nse + nex)texp)
such that,

AdvakeP4
(A) ≤ AdvakeP5

(A) + 2nseAdv
PWE
Rq (t′, nro)

Proof. Let E be the event that a pairedpwguess event occurs then clearly P4 and P5 are
indistinguishable if E does not occur. So if we have a probability ε for E to be occured, whenA
is running against protocol P4 then we have Pr[SuccakeP4

(A)] ≤ Pr[SuccakeP5
(A)] + ε and thus

AdvakeP4
(A) ≤ AdvakeP5

(A) + 2ε.
Now we construct an algorithm D that attempts to solve PWE by running A on a simula-

tion of the protocol. Given (a,X, Y,W), D chooses a random d ∈ {1, . . . , nse} and simulates
P4 forA with these changes:

1. In the dth CA0, say to a client instance Πi′

C , with input S, set m = X

2. In a SA1 query to server instance Πj
S with input < C,m > where there was a CA0 query

to Πi′

C (i.e. the instance with the dth CA0 query) with input S and output < C,m >, let
µ = Y + (asff + 2eff) where sff , eff ← χβ .

3. In a CA1 query to Πi′

C . If Πi′

C is unpaired, D outputs 0 and halts.
4. In a SA2 query to Πj

S , if Πj
S was paired with Πi′

C after its SA1 query, but is not now paired
with Πi′

C , no test for correctpw event is made and Πj
S aborts.

5. Run A on the simulation of P4 when if finishes, for every Hl(< C,S,m, µ, σ, γ′ >) query
for l ∈ {2, 3, 4}, where m and µ were generated in an Πi′

C query, and an H1(pw) query
returned −γ′ = ash + 2eh ∈ Rq , we can see that the simulation computes,

kS = α · (sy + sff) = (X − (ash + 2eh)) · (sy + sff)

= X · sy − (ash + 2eh) · sy + (X − (ash + 2eh)) · sff
≈ X · sy − Y · sh + (X − (ash + 2eh)) · sff
= X · sy − Y · sh + (X + γ′) · sff

So,
X · sy = kS + Y · sh − (X + γ′) · sff .

And,
σ′ = Mod2(kS + Y · sh − (X + γ′) · sff ,W)

Finally, add the value of σ′ to the list of possible values for τ(X, s).

This simulation is perfectly indistinguishable from P4 until (1) a testpw(S, j, C, pw) event
occurs, where Πj

S was paired with Πi′

C after the SA1 query, or (2) Πi′

C is not paired with
server instance when the CA1 query is made. Note that the probability of a pairedpwguess
event occuring for Πi′

C , is at least ε
nse

and this is at most the probability of an event of type
(1) occuring. Since an event of type (2) implies that pairedpwguess event would never have

16 Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook

occurred in P4 for Πi′

C (from P1). If an event of type (1) occurs, D adds the correct τ(X, s) to
the list.

Note that in either case, the simulation may be distinguishable from P4, but this doesn’t
change the fact that a pairedpwguess event will occur for Πi′

C with probability at least ε
nse

in
the simulation. However, we do make the assumption that A still follows the appropriate time
and query bounds or at least the simulator can stop A from exceeding these bounds, even if A
distinguishes the simulation from P4.Hence if t′ is the running time of D and since D creates a
list of size nro with advantage ε

nse
then t′ = O(t+ (nro + nse + nex)texp). The claim follows

from the fact that AdvPWE
Rq

(D) ≤ AdvPWE
Rq

(t′, nro).

Protocol P6: is identical to P5 except that if the adversary makes two password guesses
against the same server instance, i.e. if a doublepwserver event occurs, the protocol halts and
the adversary fails. We suppose that when a query is made, the test for pairedpwguess or
correctpw occurs after the test for doublepwserver.

Claim 6. For any adversary A running in time t, there is a t′ = O(t+ (nro + nse + nex)texp)
such that,

AdvakeP5
(A) ≤ AdvakeP6

(A) + 4AdvPWE
Rq (t′, nro

2)

Proof. Let us assume that we have a probability ε for doublepwserver event to be occured,
when A is running against a simulation of protocol P5. We build a distinguisher D to solve
PWE problem.

Now Given (a,X, Y,W), D simulates P5 forA with these changes:

1. In an H1(pw) query output X · sh + (asf + 2ef).
2. In a SA1 query to a server instance Πj

S with entry < C,m > where m ∈ Rq , set µ =
Y + (asff + 2eff) where sff , eff ← χβ .

3. Tests for correctpw(from P4) and pairedpwguess (from P5) are not made. In particular,
unpaired client instances that receive a CA1 query abort and unpaired server instances that
receive a SA2 query abort. Also,Hl(.) queries always give values that are uniformly chosen
from {0, 1}κ.

4. When A finishes, for every pair of queries of the form Hl(< C,S,m, µ, σ, γ′ >) and
Hl′(< C,S,m, µ, σ̂, γ̂′ >) for l, l′ ∈ {2, 3, 4}, where σ ∈ Rq and σ̂ ∈ Rq , there was a
SA1 query to a server instance Πj

S with input < C,m > and output < µ, k, w′ > (and thus
m ∈ Rq), an H1(pw) query returned −γ′ = Xsh + (asf + 2ef) ∈ Rq , an H1(p̂w) query
returned −γ̂′ = Xsĥ + (asf̂ + 2ef̂) ∈ Rq and sh 6= sĥ, we can see that the simulation
computes,

kS = α · (sy + sff) = (m+ γ′) · (sy + sff)

k̂S = α̂ · (sy + sff) = (m+ γ̂′) · (sy + sff)

k̂S − kS = (γ̂′ − γ′) · (sy + sff)

= (γ̂′ − γ′) · sy + (γ̂′ − γ′) · sff
= (Xsh + (asf + 2ef)− (Xsĥ + (asf̂ + 2ef̂))) · sy + (γ̂′ − γ′) · sff
= Xsy(sh − sĥ) + (a(sf − sf̂) + 2(ef − ef̂))sy + (γ̂′ − γ′) · sff
≈ Xsy(sh − sĥ) + Y · (sf − sf̂) + (γ̂′ − γ′) · sff

So,
X · sy = (k̂S − kS − Y · (sf − sf̂)− (γ̂′ − γ′) · sff) · (sh − sĥ)

−1.

Provably Secure PAKE Based on RLWE for the PQ World 17

Add,

Mod2[(k̂S − kS − Y · (sf − sf̂)− (γ′ − γ̂′) · sff) · (sh − sĥ)
−1,W]

to the list of possible values for τ(X, s).

This simulation is perfectly indistinguishable from P5 up until a doublepwserver event, a
pairedpwguess event or a correctpw event occurs, or A makes a Corrupt query. If an event
of type doublepwserver occurs, then with probability 1

2 it occurs for two passwords pw and
p̂w with sh 6= sĥ and in this case D adds the correct τ(X, s) to the list. If a correctpw event
or a pairedpwguess event occurs, then P5 will halt and the doublepwserver event would
never have occured. Also, the doublepwserver event will not occur if a Corrupt query made
by definition.

Note that in either case, the simulation may be distinguishable from P5, but this doesn’t
change the fact that a doublepwserver event will occur with probability at least ε in the simu-
lation. However, we do make the assumption thatA still follows the appropriate time and query
bounds or at least the simulator can stop A from exceeding these bounds, even if A distin-
guishes the simulation from P5. Hence if t′ is the running time of D and since D creates a list
of size nro2 with advantage ε

2 then t′ = O(t+(nro+nse+nex)texp). The claim follows from
the fact that AdvPWE

Rq
(D) ≤ AdvPWE

Rq
(t′, nro

2).

Protocol P7: is identical to P6 except that this protocol has an internal password oracle
that holds all passwords and accepts queries that examine the correctness of a given password.
Note that this internal oracle passwordoracle is not available to the adversary. So this oracle
generates all passwords during initialization. It accepts queries of the form testpw(C, pw) and
returns TRUE if pw = pwC , and FALSE otherwise. It also accepts Corrupt(U) queries whether
U ∈ S or U ∈ C. When a Corrupt(U) query made in the protocol, it is answered using
a Corrupt(U) query to the password oracle. The protocol is also test if correctpw occurs,
whenever the first testpw(C, i,S, pw) event occurs for an instanceΠi

C and password pw, or the
first testpw(S, j, C, pw) event occurs for an instance Πj

S and password pw, a testpw(C, pw)
query is made to the password oracle to see if pw = pwC .

Claim 7. For any adversary A,

AdvakeP6
(A) = AdvakeP7

(A)

Proof. By observation, P6 and P7 are perfectly indistinguishable.

Now we analyze the advantage of an adversary A against the protocol P7. From the def-
inition of P7, one can easily bounds the probability of adversary A succeeding in P7 as the
following:

Pr(SuccakeP7
(A)) ≤ Pr(correctpw) + Pr(SuccakeP7

(A) | ¬correctpw)Pr(¬correctpw)

.
Note that Pr(correctpw) ≤ nse

L if the passwords are uniformly chosen from a dictionary of
size L, because a Corrupt query occurs after at most nse queries were occurred to the password
oracle.

Next we compute Pr(SuccakeP7
(A) | ¬correctpw). Since correctpw event does not occur

then the only way forA to succeed is making a Test query to a fresh instance Πi
U and guessing

the bit used in the Test query. Note that if we can prove that the view of the adversary is not
dependent on skiU then the probability of success is exactly 1

2 and to do that we have to examine
Reveal and H4(.) queries.

18 Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook

For the first type, we know by definition of Reveal(U, i) query that there could be no one
for the fresh instance Πi

U . Also there is no Reveal(U ′, j) query for the instance
∏U ′

j which is
partnered withΠi

U . Moreover the adversary fails if more than a single client instace and a single
server instance accept with the same sid by protocol P1. Thus the output of Reveal queries is
independent of skiU .

For the second type, from P4 the unpaired client or server instance will not terminate before
a correctpw event or a Corrupt query which means an instance may only be fresh and receive
a Test query if it is partnered. However if Πi

U is partnered, H4(.) query will never reveal skiU
by P5.

So, the view of the adversary not dependent on skiU then the probability of success is exactly
1
2 . Therefore,

Pr(SuccakeP7
(A)) ≤ Pr(correctpw) + Pr(SuccakeP7

(A) | ¬correctpw)Pr(¬correctpw)
≤ Pr(correctpw) + Pr(SuccakeP7

(A) | ¬correctpw)(1− Pr(correctpw))

≤ nse
L

+
1

2
(1− nse

L
))

≤ 1

2
+
nse
2L

.

And AdvakeP7
(A) ≤ nse

L . The theorem follows from this and the Claims 1-7 above.

5 Implicit authentication

In this section, we describe a variant of the protocol that gives implicit authentication, similar to
the PPK variant on the PAK protocol. We call it the RLWE-PPK protocol. This is illustrated in
Figure 2. If either party provides an incorrect password, then the parties’ keys will not actually
match, and neither party will learn anything about the key held by the other. This effectively
prevents communication without explicitly checking for matching passwords.

5.1 RLWE-PPK

The setup is slightly different from that of RLWE-PAK. Here, we need two hash functions
H1 and H2 from {0, 1}∗ into Rq , and one KDF H3 from {0, 1}∗ into {0, 1}κ, where κ is
again the length of the derived SK. Of course, these are modeled as random oracles. Also,
the function f used to compute password verifiers for the server is instantiated as follows:
f(·) =

(
−H1(·), H2(·)

)
.

Initiation Client C randomly samples sC , eC ← χβ , computes α = asC+2eC , γ1 = H1(pwC),
γ2 = H2(pwC) and m = α+ γ1 and sends< C,m > to party S.

Response Server S receives < C,m > from party C and checks if m ∈ Rq . If not, abort;
otherwise Server S randomly samples sS , eS ← χβ and computes ν = asS + 2eS and
recovers α = m+ γ′1 where < γ′1, γ2 >. Then compute µ = ν + γ2 and kS = α · sS .
Next, Server S computes w = Cha(kS) ∈ {0, 1}n and σ = Mod2(kS , w). Server S
sends µ and w to party C and computes skS = H3(C,S,m, µ, σ, γ′1).

Initiator finish Client C receives < µ,w > from party S and checks if µ ∈ Rq . If not, it
aborts, and otherwise C recovers ν = µ−γ2, computes kC = sC ·ν and σ = Mod2(kC , w).
Finally, Client C derives the session key skC = H3(C,S,m, µ, σ, γ′1).

Provably Secure PAKE Based on RLWE for the PQ World 19

Client C Server S
Input S, pw < γ′

1, γ2 >=< −H1(pwC), H2(pwC) >

Sample sC , eC ← χβ
α = asC + 2eC
γ1 = H1(pwC)
γ2 = H2(pwC)
m = α+ γ1

Abort if m /∈ Rq
Sample sS , eS ← χβ
ν = asS + 2eS ∈ Rq
α = m+ γ′

1

Abort if µ /∈ Rq
ν = µ− γ2
kC = sCν
σ = Mod2(kC , w)
γ′
1 = −γ1
skC = H3(C,S,m, µ, σ, γ′

1)

µ = ν + γ2
kS = αsS
w = Cha(kS) ∈ {0, 1}n
σ = Mod2(kS , w)
skS = H3(C,S,m, µ, σ, γ′

1)

< C,m >

< µ,w >

Fig. 2. Implicitly Authenticated Protocol

5.2 Proof of security for RLWE-PPK

The proof of security for our Implicitly Authenticated Protocol follows the model of security in
the PAK suite paper by Mackenzie, Laboratories and Technologies [38] and it is similar to our
proof for the Explicitly Authenticated Protoco above. Therefore we don’t want to go through
the proof details. However we give a sketch of the proof. We first define some similar events to
what we have in section 4, corresponding to the adversary making a password guess against a
client instance, against a server instance, and against a client instance and server instance that
are partnered:

– testpw(C, i,S, pw): for somem,µ, γ′1, γ2, w and k,Amakes anH3(< C,S,m, µ, σ, γ′1 >
) query. The associated value of this event is skiC .

– testpw(S, j, C, pw): for somem,µ, γ′1, γ2, w and k,Amakes anH3(< C,S,m, µ, σ, γ′1 >
) query. The associated value of this event is skjS .

– testexecpw(C, i,S, j, pw): for m,µ, γ′1, γ2 and w,A makes an H3(< C,S,m, µ, σ, γ′1 >)
query, and previously made an Execute(C, i,S, j) query that generatesm and µ, anH1(pw)
query returning −γ′1 = ash + 2eh ∈ Rq , and an H2(pw) query returning γ2 = ash′ +
2eh′ ∈ Rq where σ = Mod2(kS , w) = Mod2(kC , w), kS = αsS , kC = νsC where
m = α− γ′ and µ = ν + γ2.

– correctpw: either a testpw(C, i,S, pwC) event occurs for some C, i and S, or some
testpw(S, j, C, pwC) event occurs for some S, j, and C.

– correctpwexec: a testexecpw(C, i,S, j, pwC) event occurs for some C, i,S, and j.
– doublepwserver: both a testpw(S, j, C, pw) event and testpw(S, j, C, pw′) occur for

some S, j, C, pw and pw′, with pw 6= pw′.
– doublepwclient: both a testpw(C, i,S, pw) event and testpw(C, i,S, pw′) occur for

some C, i,S, pw and pw′, with pw 6= pw′.

Now we need to show that an adversary attacking the system unable to determine the session
key of a fresh instance with greater advantage than that of an online dictionary attack.

Theorem 5. Let P=RLWE-PPK as described in Figure 2, using groupRq , and with a password
dictionary of sizeL. Fix an adversaryA that runs in time t, and makes nse, nex, nre, nco queries
of type Send,Execute,Reveal,Corrupt, respectively, and nro queries to the random oracles.
Then for t′ = O(t+ (nro + nse + nex)texp):

AdvakeP (A) = nse
L

+O

(
AdvPWE

Rq (t′, nro
2) +

(nse + nex)(nro + nse + nex)

qn

)

20 Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook

Proof. We introduce a series of protocols P0,P1, · · · ,P7 where P0 = P and P7 is a protocol
that can be only attacked by simple online guessing attack which admit a straight forward
analysis. Furthermore we should have

AdvakeP0
(A) ≤ AdvakeP1

(A) + ε1 ≤ · · · ≤ AdvakeP7
(A) + ε7

where ε1, · · · , ε7 are negligible values.
Here are some assumptions that we need in our proof. First, we assume without loss of

generality that nro ≥ 1 and nse + nex ≥ 1. We also assume that the random oracle respond
with a fresh output for any new query and a consistent one with the previous queries for not
new query. The third assumption is that H1(pw) query outputs (ash + 2eh) ∈ Rq and H2(pw)
query outputs (ash′ +2eh′) ∈ Rq where (sh, eh) and (sh′ , eh′) are known. The last assumption
is that if A made an Hl(.) query for l ∈ {1, 2} then the corresponding Hl′(.) query is made
automatically, where l′ ∈ {1, 2} \ {l}. Even though all queries are considered to be made by
A, A only sees the output of Hl(.).

Protocol P0: is just the original protocol P.
Protocol P1: is similar to P0 protocol however this protocol halts if honest parties randomly

choose m or µ values seen previously in the execution of the protocol.

Claim 8. For any adversary A we can show that

AdvakeP0
(A) ≤ AdvakeP1

(A) + O((nse + nex)(nro + nse + nex))

qn

Proof. The proof is similar to what we did to prove Claim 1 in section 4.

Protocol P2: is identical to P1 except this protocol answers Send and Execute queries
without making any random oracle queries, and following random oracle queries by A are
backpatched, while it is possible, to be proper with the results of Send and Execute queries.

Claim 9. For any adversary A,

AdvakeP1
(A) = AdvakeP2

(A) + O(nro)

qn

Proof. This claim can be proved by inspection, P1 and P2 can be distinguished only if the
adversary makes an H3(< C,S,m, µ, σ, γ′1 >) query where γ′1 = H1(pwC). However the
adversary doesn’t makes H1(.) query and the probability to make it is negligible.

Protocol P3: is identical to P2 except that in an H3(< C,S,m, µ, σ, γ′1 >) query, it is not
checked for consistency against Execute query. So the protocol responds with a random output
instead backpatching to preserve consistency with an Execute query.

Claim 10. For any adversaryA running in time t, there is a t′ = O(t+(nro+nse+nex)texp)
such that,

AdvakeP2
(A) ≤ AdvakeP3

(A) + 2AdvPWE
Rq (t′, nro)

Proof. This can be shown by using reduction from PWE similar to what we did in the proof of
Claim 3 in section 4.

Protocol P4: is identical to P3 except that if correctpw occurs then the protocol halts and
the adversary automatically succeeds.

Claim 11. For any adversary A,

AdvakeP3
(A) ≤ AdvakeP4

(A

Provably Secure PAKE Based on RLWE for the PQ World 21

Proof. This is obvious because the change here can only increase the adversary’s chances at
winning the game.

Protocol P5: is identical to P4 except that if the adversary makes two password guesses
against the same server instance, the protocol halts and the adversary fails.

Claim 12. For any adversaryA running in time t, there is a t′ = O(t+(nro+nse+nex)texp)
such that,

AdvakeP4
(A) ≤ AdvakeP5

(A) + 4AdvPWE
Rq (t′, (nro)

2)

Proof. This can be proved by using a reduction from PWE similar to what we did in Claim
6.

Protocol P6: is identical to P5 except that if the adversary makes two password guesses
against the same client instance, the protocol halts and the adversary fails.

Claim 13. For any adversaryA running in time t, there is a t′ = O(t+(nro+nse+nex)texp)
such that,

AdvakeP5
(A) ≤ AdvakeP6

(A) + 4AdvPWE
Rq (t′, nro

2)

Proof. This can be proved by using a reduction from PWE similar to what we did in Claim
6. However here we randomly plug in Y added to a random element of Rq into the output of
H2(.) queries, and X added to random element of Rq .

Protocol P7: is identical to P6 except that this protocol has an internal password oracle
that holds all passwords and accepts queries that exam the correctness of a given password.
Note that this internal oracle passwordoracle is not available to the adversary. So this oracle
generates all passwords during initialization. That changes the test for correct password guesses
from P4 as the follwoing a query is submitted to the oracle to determine if it is correct when the
the adversary makes a password guess.

Claim 14. For any adversary A,

AdvakeP6
(A) = AdvakeP7

(A)

Proof. By observation that P6 and P7 are perfectly indistinguishable.

Now we analyze the advantage of an adversary A against the protocol P7. From the def-
inition of P7, one can easily bounds the probability of adversary A succeeding in P7 as the
following:

Pr(SuccakeP7
(A)) ≤ Pr(correctpw) + Pr(SuccakeP7

(A) | ¬correctpw)Pr(¬correctpw)

.
Note that Pr(correctpw) ≤ nse

L if the passwords are uniformly chosen from a dictionary of
size L, because a Corrupt query occurs after at most nse queries were occurred to the password
oracle.

Next we compute Pr(SuccakeP7
(A) | ¬correctpw). Since correctpw event does not occur

then the only way forA to succeed is making a Test query to a fresh instance Πi
U and guessing

the bit used in the Test query. Note that if we can prove that the view of the adversary not
dependent on skiU then the probability of success is exactly 1

2 and to do that we have to examine
Reveal and H3(.) queries.

For the first type, we know by definition of Reveal(U, i) query that there could be no one
for the fresh instance Πi

U . Also there is no Reveal(U ′, j) query for the instance
∏U ′

j which is
partnered withΠi

U . Moreover the adversary fails if more than a single client instace and a single

22 Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook

server instance accept with the same sid by protocol P1. Thus the output of Reveal queries is
independent of skiU .

For the second type, from P4, an H3(.) query returns random values independent of what
previously occurred. Therefore H3(.) queries that occur after skiU is independent of skiU . So,
the view of the adversary not dependent on skiU then the probability of success is exactly 1

2 .
Therefore,

Pr(SuccakeP7
(A)) ≤ Pr(correctpw) + Pr(SuccakeP7

(A) | ¬correctpw)Pr(¬correctpw)
≤ Pr(correctpw) + Pr(SuccakeP7

(A) | ¬correctpw)(1− Pr(correctpw))

≤ nse
L

+
1

2
(1− nse

L
))

≤ 1

2
+
nse
2L

.

And AdvakeP7
(A) ≤ nse

L . The theorem follows from this and the Claims 8-14 above.

6 Implementation

We provide a proof of concept implementation for the PAKE protocol presented in this paper to
verify the practicality of the protocol. We take n = 1024, β = 8/

√
2π ≈ 3.2 and q = 232−1. and

note that this choice of parameters is suitable for use in RLWE based post quantum protocols
as explained in [10].

We use the NTL library from Shoup with C++ for the implementation, without any parallel
programming or multi threading techniques. Also, to improve the performance of the imple-
mentation, we compile NTL with NTL_GMP_LIP = on. The code is executed on a 3.40 GHz
Intel Xeon(R) CPU E5-2687W v2 and 64 GB RAM computer running on Ubuntu 14.04 LTS 64
bit system. The timings for the Initiation, Response, Initiator Finish and Responder Finish parts
of the implicit authentication and explicit authentication versions of the protocol are presented
in Table1.

Table 1. Timings of PAKE protocol as described in Fig. 1 and Fig. 2

Protocol Initiation and
Initiator Finish
(in ms)

Response and
Responder
Finish (in ms)

RLWE-PAK 4.005 4.639
RLWE-PPK 3.740 4.359

The timings presented in the table are the average of 10000 executions. The operations
mainly contributing to the time taken by the protocol are the sampling and multiplication op-
erations on both sides of the protocol. As noted earlier, we have used multiplication with FFT
for improved performance. The sampling technique used in the protocol is the sampling proce-
dure in [42] and as noted in [48], the Discrete Gaussian approximates the continuous Gaussian
extremely well when β ≥ 3.2. This proof of concept implementation is a preliminary imple-
mentation to show that the protocol presented in this paper can be practical. We believe that this
implementation can be improved further with new optimizations.

Provably Secure PAKE Based on RLWE for the PQ World 23

7 Conclusions

We have proposed two new explicitly and implicitly authenticated PAKE protocols. Our pro-
tocols are similar to PAK and PPK; however they are based on the Ring Learning with Errors
problem. Though our construction is very similar to the classical construction, the security proof
is subtle and intricate and it requires novel techniques. We provide a full proof of security of the
new protocols in the Radom Oracle Model. We also provide a proof of concept implementation
and implementation results show our protocols are practical and efficient.

In the proof, we make use of the ROM, which models hash functions as random functions.
Our proof is a classical proof of security, and may not hold against a quantum adversary. Against
such adversaries, one natural extension of the ROM is to allow the queries to be in quantum su-
perposition; this is known as the Quantum Random Oracle Model (QROM) [9]. Unfortunately,
many tricks that can be used in the ROM are hard to apply in the QROM. Therefore we leave
proving the security of our protocols in the QROM as future work. Although there are some
developing proof techniques in the QROM [47, 45, 46], more work is needed to adapt classical
proofs to this setting.

References

1. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE Password-Authenticated Key
Exchange Protocol. In: 2015 IEEE Symposium on Security and Privacy (2015)

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistinguishable under
plaintext-checkable attacks. In: Katz, J. (ed.) Public-Key Cryptography – PKC 2015, Lecture Notes in
Computer Science, vol. 9020, pp. 332–352. Springer Berlin Heidelberg (2015), http://dx.doi.
org/10.1007/978-3-662-46447-2_15

3. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient two-party password-based key
exchange protocols in the uc framework. In: Malkin, T. (ed.) Topics in Cryptology CT-RSA 2008,
Lecture Notes in Computer Science, vol. 4964, pp. 335–351. Springer Berlin Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-79263-5_22

4. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key exchange in the three-
party setting. In: Vaudenay, S. (ed.) Public Key Cryptography - PKC 2005, Lecture Notes in Computer
Science, vol. 3386, pp. 65–84. Springer Berlin Heidelberg (2005)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure Against Dictionary
Attacks. In: Preneel, B. (ed.) Advances in Cryptology – EUROCRYPT 2000. LNCS, vol. 1807, pp.
139–155. Springer (2000)

6. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) Ad-
vances in Cryptology – CRYPTO ’93. LNCS, vol. 773, pp. 232–249. Springer (1993)

7. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols.
In: Proceedings of the 1st ACM Conference on Computer and Communications Security. pp. 62–
73. CCS ’93, ACM, New York, NY, USA (1993), http://doi.acm.org/10.1145/168588.
168596

8. Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols Secure Against
Dictionary Attacks. In: 1992 IEEE Computer Society Symposium on Research in Security and Pri-
vacy, May 4-6, 1992. pp. 72–84 (1992)

9. Boneh, D., zgr Dagdelen, Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles
in a quantum world. In: ASIACRYPT. Lecture Notes in Computer Science, vol. 7073, pp. 41–69.
Springer (2011)

10. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the tls protocol from
the ring learning with errors problem. In: Security and Privacy (SP), 2015 IEEE Symposium on. pp.
553–570. IEEE (2015)

11. Boyko, V., MacKenzie, P.D., Patel, S.: Provably Secure Password-Authenticated Key Exchange Using
Diffie-Hellman. In: Preneel, B. (ed.) Advances in Cryptology – EUROCRYPT 2000. LNCS, vol.
1807, pp. 156–171. Springer (2000)

24 Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook

12. Bresson, E., Chevassut, O., Pointcheval, D.: Security Proofs for an Efficient Password-based Key
Exchange. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM Conference on Computer and Communi-
cations Security. pp. 241–250. ACM (2003)

13. Bresson, E., Chevassut, O., Pointcheval, D.: New Security Results on Encrypted Key Exchange.
In: Bao, F., Deng, R.H., Zhou, J. (eds.) Public Key Cryptography. LNCS, vol. 2947, pp. 145–158.
Springer (2004)

14. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally Composable Password-
Based Key Exchange. In: Cramer, R. (ed.) Advances in Cryptology – EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer (2005)

15. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext se-
cure public-key encryption. In: Proceedings of the International Conference on the Theory and
Applications of Cryptographic Techniques: Advances in Cryptology. pp. 45–64. EUROCRYPT
’02, Springer-Verlag, London, UK, UK (2002), http://dl.acm.org/citation.cfm?id=
647087.715842

16. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges.
Des. Codes Cryptography 2(2), 107–125 (Jun 1992), http://dx.doi.org/10.1007/
BF00124891

17. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key exchange
from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) Public Key
Cryptography PKC 2012, Lecture Notes in Computer Science, vol. 7293, pp. 467–484. Springer
Berlin Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-30057-8_28

18. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum authenticated key ex-
change from one-way secure key encapsulation mechanism. In: Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security. pp. 83–94. ASIA CCS ’13,
ACM, New York, NY, USA (2013), http://doi.acm.org/10.1145/2484313.2484323

19. Gennaro, R.: Faster and shorter password-authenticated key exchange. In: Canetti, R. (ed.) Theory of
Cryptography, Lecture Notes in Computer Science, vol. 4948, pp. 589–606. Springer Berlin Heidel-
berg (2008), http://dx.doi.org/10.1007/978-3-540-78524-8_32

20. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Biham, E.
(ed.) Advances in Cryptology EUROCRYPT 2003, Lecture Notes in Computer Science, vol. 2656,
pp. 524–543. Springer Berlin Heidelberg (2003)

21. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic con-
structions. In: Proceedings of the 40th annual ACM symposium on Theory of computing. pp. 197–
206. STOC ’08, ACM, New York, NY, USA (2008)

22. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In: Kilian, J. (ed.)
Advances in Cryptology CRYPTO 2001, Lecture Notes in Computer Science, vol. 2139, pp. 408–
432. Springer Berlin Heidelberg (2001), http://dx.doi.org/10.1007/3-540-44647-8_
24

23. Goyal, V., Jain, A., Ostrovsky, R.: Password-authenticated session-key generation on the internet
in the plain model. In: Proceedings of the 30th Annual Conference on Advances in Cryptology.
pp. 277–294. CRYPTO’10, Springer-Verlag, Berlin, Heidelberg (2010), http://dl.acm.org/
citation.cfm?id=1881412.1881432

24. Groce, A., Katz, J.: A new framework for efficient password-based authenticated key exchange. In:
Proceedings of the 17th ACM Conference on Computer and Communications Security. pp. 516–525.
CCS ’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.1145/1866307.
1866365

25. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM Trans. Inf. Syst.
Secur. 2(3), 230–268 (Aug 1999), http://doi.acm.org/10.1145/322510.322514

26. Hao, F., Ryan, P.: J-pake: Authenticated key exchange without pki. In: Gavrilova, M., Tan, C.,
Moreno, E. (eds.) Transactions on Computational Science XI, Lecture Notes in Computer Science,
vol. 6480, pp. 192–206. Springer Berlin Heidelberg (2010), http://dx.doi.org/10.1007/
978-3-642-17697-5_10

27. Jablon, D.P.: Strong Password-Only Authenticated Key Exchange. ACM SIGCOMM Computer
Communication Review 26(5), 5–26 (1996)

28. Jiang, S., Gong, G.: Password based key exchange with mutual authentication. In: Handschuh, H.,
Hasan, M. (eds.) Selected Areas in Cryptography, Lecture Notes in Computer Science, vol. 3357, pp.
267–279. Springer Berlin Heidelberg (2005)

Provably Secure PAKE Based on RLWE for the PQ World 25

29. Jintai Ding, Xiang Xie, X.L.: A simple provably secure key exchange scheme based on the learn-
ing with errors problem. Cryptology ePrint Archive, Report 2012/688 (2012), http://eprint.
iacr.org/

30. Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange Using Human-
Memorable Passwords. In: Pfitzmann, B. (ed.) Advances in Cryptology – EUROCRYPT 2001. LNCS,
vol. 2045, pp. 475–494. Springer (2001)

31. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authenticated key ex-
change from lattices. In: Matsui, M. (ed.) Advances in Cryptology ASIACRYPT 2009, Lecture
Notes in Computer Science, vol. 5912, pp. 636–652. Springer Berlin Heidelberg (2009), http:
//dx.doi.org/10.1007/978-3-642-10366-7_37

32. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key exchange. In: Ishai, Y.
(ed.) Theory of Cryptography, Lecture Notes in Computer Science, vol. 6597, pp. 293–310. Springer
Berlin Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-19571-6_18

33. Krawczyk, H.: Hmqv: A high-performance secure diffie-hellman protocol. In: Shoup, V. (ed.) Ad-
vances in Cryptology CRYPTO 2005, Lecture Notes in Computer Science, vol. 3621, pp. 546–566.
Springer Berlin Heidelberg (2005), http://dx.doi.org/10.1007/11535218_33

34. Kwon, T.: Authentication and key agreement via memorable password. In: ISOC Network and Dis-
tributed System Security Symposium (2001)

35. Lucks, S.: Open key exchange: How to defeat dictionary attacks without encrypting public keys. In:
Proceedings of the 5th International Workshop on Security Protocols. pp. 79–90. Springer-Verlag,
London, UK, UK (1998), http://dl.acm.org/citation.cfm?id=647215.720526

36. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In:
Gilbert, H. (ed.) Advances in Cryptology EUROCRYPT 2010, Lecture Notes in Computer Sci-
ence, vol. 6110, pp. 1–23. Springer Berlin Heidelberg (2010), http://dx.doi.org/10.1007/
978-3-642-13190-5_1

37. MacKenzie, P.: On the Security of the SPEKE Password-Authenticated Key Exchange Protocol.
Cryptology ePrint Archive, Report 2001/057 (2001), http://eprint.iacr.org/2001/057

38. MacKenzie, P.: The PAK Suite: Protocols for Password-Authenticated Key Exchange. DIMACS
Technical Report 2002-46 (2002), (Page 7)

39. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM
J. Comput. 37, 267–302 (April 2007)

40. Nguyen, M.H., Vadhan, S.: Simpler session-key generation from short random passwords.
In: Naor, M. (ed.) Theory of Cryptography, Lecture Notes in Computer Science, vol.
2951, pp. 428–445. Springer Berlin Heidelberg (2004), http://dx.doi.org/10.1007/
978-3-540-24638-1_24

41. NSA: (2015), https://www.nsa.gov/ia/programs/suiteb_cryptography/
index.shtml

42. Peikert, C.: An efficient and parallel gaussian sampler for lattices. Cryptology ePrint Archive, Report
2010/088 (2010), http://eprint.iacr.org/

43. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) Post-Quantum Cryptogra-
phy, Lecture Notes in Computer Science, vol. 8772, pp. 197–219. Springer International Publishing
(2014), http://dx.doi.org/10.1007/978-3-319-11659-4_12

44. Shoup, V.: On Formal Models for Secure Key Exchange. Cryptology ePrint Archive, Report 1999/012
(1999), http://eprint.iacr.org/1999/012

45. Unruh, D.: Quantum position verification in the random oracle model. In: CRYPTO. pp. 1–18.
Springer (2014)

46. Unruh, D.: Revocable quantum timed-release encryption. In: EUROCRYPT. pp. 129–146. Springer
(2014)

47. Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In: Advances
in Cryptology - Crypto 2012. Lecture Notes in Computer Science, vol. 7417, pp. 758–775. Springer
(2012)

48. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, z.: Authenticated key exchange from ideal
lattices. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015, Lecture
Notes in Computer Science, vol. 9057, pp. 719–751. Springer Berlin Heidelberg (2015), http:
//dx.doi.org/10.1007/978-3-662-46803-6_24

