
Horizontal Side-Channel Attacks and Countermeasures on
the ISW Masking Scheme?

Alberto Battistello1, Jean-Sébastien Coron2, Emmanuel Prouff3??, and Rina Zeitoun1

1 Oberthur Technologies, France
{a.battistello,r.zeitoun}@oberthur.com

2 University of Luxembourg
jean-sebastien.coron@uni.lu

3 Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA,
Laboratoire d’Informatique de Paris 6 (LIP6), Équipe PolSys, 4 place Jussieu, 75252 Paris Cedex 05, France

July 27, 2016

Abstract. A common countermeasure against side-channel attacks consists in using the mask-
ing scheme originally introduced by Ishai, Sahai and Wagner (ISW) at Crypto 2003, and further
generalized by Rivain and Prouff at CHES 2010. The countermeasure is provably secure in the
probing model, and it was showed by Duc, Dziembowski and Faust at Eurocrypt 2014 that the
proof can be extended to the more realistic noisy leakage model. However the extension only
applies if the leakage noise σ increases at least linearly with the masking order n, which is not
necessarily possible in practice.
In this paper we investigate the security of an implementation when the previous condition is
not satisfied, for example when the masking order n increases for a constant noise σ. We exhibit
two (template) horizontal side-channel attacks against the Rivain-Prouff’s secure multiplication
scheme and we analyze their efficiency thanks to several simulations and experiments.
We also describe a variant of Rivain-Prouff’s multiplication that is still provably secure in the
original ISW model, and also heuristically secure against our new attacks. Finally, we describe
a new mask refreshing algorithm with complexity O(n logn), instead of O(n2) for the classical
algorithm.

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical environment
of a cryptosystem to recover some leakage about its secrets. To secure implementations
against this threat, security developers usually apply techniques inspired from secret sharing
[Bla79, Sha79] or multi-party computation [CCD88]. The idea is to randomly split a secret
into several shares such that the adversary needs all of them to reconstruct the secret. For
these schemes, the number of shares n in which the key-dependent data are split plays the
role of a security parameter.

A common countermeasure against side-channel attacks consists in using the masking
scheme originally introduced by Ishai, Sahai and Wagner (ISW) [ISW03]. The countermea-
sure achieves provable security in the so-called probing security model [ISW03], in which
the adversary can recover a limited number of intermediate variables of the computation.
This model has been argued to be practically relevant to address so-called higher-order
side-channel attacks and it has been the basis of several efficient schemes to protect block
ciphers [BFG15,CGP+12,Cor14,CRV15,GPQ11,GPS14,PR11,RP10].

More recently, it has been shown in [DDF14] that the probing security of an imple-
mentation actually implies its security in the more realistic noisy leakage model introduced
in [PR13]. More precisely, if an implementation obtained by applying the compiler in [ISW03]

? An extended abstract will appear at CHES 2016; this is the full version.
?? Part of this work has been done at Safran Identity and Security, and while the author was at ANSSI,

France.

is secure at order n in the probing model, then [DFS15, Theorem 3] shows that the success
probability of distinguishing the correct key among |K| candidates is bounded above by
|K| · 2−n/9 if the leakage Li on each intermediate variable Xi satisfies:

I(Xi;Li) 6 2 · (|K| · (28n+ 16))−2 ,

where I(·; ·) denotes the mutual information and where the index i ranges from 1 to the total
number of intermediate variables.

In this paper we investigate what happens when the above condition is not satisfied.
Since the above mutual information I(Xi;Li) can be approximated by k/(8σ2) in the Ham-
ming weight model in F2k , where σ is the noise in the measurement (see Appendix A), this
amounts to investigating the security of Ishai-Sahai-Wagner’s (ISW) implementations when
the number of shares n satisfies:

n > c · σ

As already observed in previous works [VGS14, CFG+10], the fact that the same share (or
more generally several data depending on the same sensitive value) is manipulated sev-
eral times may open the door to new attacks which are not taken into account in the
probing model. Those attacks, sometimes called horizontal [CFG+10] or (Template) alge-
braic [ORSW12, VGS14] exploit the algebraic dependency between several intermediate re-
sults to discriminate key hypotheses.

In this paper, we exhibit two (horizontal) side channel attacks against the ISW multiplica-
tion algorithm. These attacks show that the use of this algorithm (and its extension proposed
by Rivain and Prouff in [RP10]) may introduce a weakness with respect to horizontal side
channel attacks if the sharing order n is such that n > c · σ2, where σ is the measurement
noise. While the first attack is too costly (even for low noise contexts) to make it applicable
in practice, the second attack, which essentially iterates the first one until achieving a satisfy-
ing likelihood, shows very good performances. For instance, when the leakages are simulated
by noisy Hamming weights computed over F28 with σ = 1, it recovers all the shares of a
21-sharing. We also confirm the practicality of our attack with a real life experiment on a
development platform embedding the ATMega328 processor (see Section 7). Actually, in this
context where the leakages are multivariate and not univariate as in our theoretical analyses
and simulations, the attack appears to be more efficient than expected and recovers all the
shares of a n-sharing when n > 40.

We also describe a variant of Rivain-Prouff’s multiplication that is still provably secure
in the original ISW model, and also heuristically secure against our new attacks. Our new
countermeasure is similar to the countermeasure in [FRR+10], in that it can be divided in
two steps: a “matrix” step in which starting from the input shares xi and yj , one obtains
a matrix xi · yj with n2 elements, and a “compression” step in which one uses some ran-
domness to get back to a n-sharing ci. Assuming a leak-free component, the countermeasure
in [FRR+10] is proven secure in the noisy leakage model, in which the leakage function re-
veals all the bits of the internal state of the circuit, perturbed by independent binomial noise.
Our countermeasure does not use any leak-free component, but is only heuristically secure
in the noisy leakage model (see Section 8.2 for our security analysis).

Eventually, we describe in Section 9 a new mask refreshing algorithm with complexity
O(n · log n) instead of O(n2) for the classical algorithm in [BBD+15]. A completely different
mask refreshing algorithm is described in [ADF16], with complexity only O(n); however our
new algorithm is significantly simpler. Our new mask refreshing algorithm enables to decrease
the complexity of the previous variant of Rivain-Prouff’s multiplication from O(n2 log n) to
O(n2), hence the same complexity as the original Rivain-Prouff multiplication.

2 Preliminaries

For two positive integers n and d, a (n, d)-sharing of a variable x defined over some finite field
F2k is a random vector (x1, x2, . . . , xn) over F2k such that x =

∑n
i=1 xi holds (completeness

equality) and any tuple of d − 1 shares xi is a uniform random vector over (F2k)d−1. If
n = d, the terminology simplifies to n-sharing. An algorithm with domain (F2k)n is said to
be (n − 1)th-order secure in the probing model if on input an n-sharing (x1, x2, . . . , xn) of
some variable x, it admits no tuple of n− 1 or fewer intermediate variables that depends on
x.

Calligraphic letters, like X , are used to denote finite sets (e.g. F2n). The corresponding
large letter X denotes a random variable over X , while the lower-case letter x a value over
X . The probability of an event ev is denoted by Pr[ev]. The probability distribution function
(pdf for short) of a continuous random variable X is denoted by fX(·). It will sometimes
be denoted by pX(·) if X is discrete. The pdf of the random variable X|Y is denoted by
fX|Y (·). The expectation and the variance of a random variable X are respectively denoted
by E [X] and Var [X]. The covariance between two random variables X and Y is denoted
by Cov [X,Y]. The Signal to Noise Ratio (SNR) of a univariate noisy observation L of a

random variable X defined as the signal, is defined as SNR
.
= Var[E[L|X]]

E[Var[L|X]] (where we recall

that E [L | X] and Var [L | X] are both viewed as functions of the random variable X).
The Gaussian distribution of dimension t with t-size expectation vector µ and t × t

covariance matrix Σ is denoted by N (µ, Σ). We recall that the corresponding probability
density function (pdf) is defined for every ` ∈ Rt as:

f(`) =
1√

(2π)tdet(Σ)
exp

(
−1

2
(`− µ)′ ·Σ−1 · (`− µ)

)
, (1)

where (·)′ denotes the transposition operation and det(·) denotes the matrix determinant. The
corresponding cumulative distribution function (cdf) F is defined for every (ai, bi)i∈[1..t] ∈
((R ∪ {−∞,+∞})2)t by

F (a, b) =

∫ bt

at

· · ·
∫ b2

a2

∫ b1

a1

f(`1, `2, · · · , `t) d`1d`2 · · · d`t
.
=

∫ b

a
f(`) d` , (2)

with `
.
= (`1, `2, · · · , `t), a

.
= (a1, a2, · · · , at) and b

.
= (b1, b2, · · · , bt).

If the dimension t equals 1, then the Gaussian distribution is said to be univariate and
its covariance matrix is reduced to the variable variance denoted σ2. Otherwise, it is said to
be multivariate.

The entropy H(X) of a discrete r.v. X defined over F2k aims at measuring the amount of
information provided by an observation ofX. It is defined by H(X) = −

∑
x∈F

2k
fX(x) log fX(x).

The differential entropy extends the notion of entropy to continuous, and possibly t-dimensional
random variables; contrary to the entropy, the differential entropy can be negative. In the
case of a real valued random variable L, it is defined by:

H(L) = −
∫
`∈Rt

fL(`) log(fL(`))d` . (3)

If L is a t-dimensional Gaussian r.v. with covariance matrix Σ (i.e. its pdf is defined by (1)),
then its entropy satisfies the following equality:

H(L) =
1

2
log((2πe)tdet(Σ)) . (4)

In the general case, there is no analytical expression for the differential entropy of a r.v.
X whose pdf mixes more than one Gaussian pdf. However, upper and lower bounds can be
derived [CP00].

3 Secure Multiplication Schemes

In this section, we recall the secure multiplication scheme over F2 introduced in [ISW03] and
its extension to any field F2k proposed in [RP10].

Ishai-Sahai-Wagner’s Scheme [ISW03]. Let x? and y? be binary values from F2 and
let (xi)1≤i≤n and (yi)1≤i≤n be n-sharings of x? and y? respectively. To securely compute a
sharing of c = x? · y? from (xi)1≤i≤n and (yi)1≤i≤n, the ISW method works as follows:

1. For every 1 ≤ i < j ≤ n, pick up a random bit ri,j .
2. For every 1 ≤ i < j ≤ n, compute rj,i = (ri,j + xi · yj) + xj · yi.
3. For every 1 ≤ i ≤ n, compute ci = xi · yi +

∑
j 6=i ri,j .

The above multiplication scheme achieves security at order bn/2c in the probing security
model [ISW03].

The Rivain-Prouff Scheme. The ISW countermeasure was extended to F2k by Rivain
and Prouff in [RP10]. As showed in [BBD+15], the SecMult algorithm below is secure in the
ISW probing model against t probes for n ≥ t + 1 shares; the authors also show that with
some additional mask refreshing, the Rivain-Prouff countermeasure for the full AES can be
made secure with n ≥ t+ 1 shares.

Algorithm 1 SecMult

Input: the n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x? and y? respectively
Output: the n-sharing (ci)i∈[1..n] of x? · y?
1: for i = 1 to n do
2: for j = i+ 1 to n do
3: ri,j ←$ F2k

4: rj,i ← (ri,j + xi · yj) + xj · yi
5: end for
6: end for
7: for i = 1 to n do
8: ci ← xi · yi
9: for j = 1 to n, j 6= i do ci ← ci + ri,j

10: end for
11: return (c1, c1, . . . , cn)

In Algorithm 1, one can check that each share xi or yj is manipulated n times, whereas
each product xiyj is manipulated a single time. This gives a total of 3n2 manipulations that
can be observed through side channels.

4 Horizontal DPA Attack

4.1 Problem description.

Let (xi)i∈[1..n] and (yi)i∈[1..n] be respectively the n-sharings of x? and y? (namely, we have
x? = x1 + · · · + xn and y? = y1 + · · · + yn). We assume that an adversary gets, during the
processing of Algorithm 1, a single observation of each of the following random variables for
1 ≤ i, j ≤ n:

Li = ϕ(xi) +Bi (5)

L′j = ϕ(yj) +B′j (6)

L′′ij = ϕ(xi · yj) +B′′ij (7)

where ϕ is an unknown function which depends on the device architecture, where Bi, B
′
j

are Gaussian noise of standard deviation σ/
√
n, and B′′ij is Gaussian noise with standard

deviation σ. Namely we assume that each xi and yj is processed n times, so by averaging the
standard deviation is divided by a factor

√
n, which gives σ/

√
n if we assume that the initial

noise standard deviation is σ. The random variables associated to the ith share xi and the
jth share yj are respectively denoted by Xi and Yj . Our goal is to recover the secret variable
x? (and/or y?).

4.2 Complexity Lower Bound: Entropy Analysis of Noisy Hamming Weight
Leakage

For simplicity, we first restrict ourselves to a leakage function ϕ equal to the Hamming weight
of the variable being manipulated. In that case, the mutual information I(X;L) between the
Hamming weight of a uniform random variable X defined over F2k and a noisy observation
L of this Hamming weight can be approximated as:

I(X;L) ' k

8σ2
, (8)

if the noise being modeled by a Gaussian random variable has standard deviation σ. This
approximation, whose derivation is given in Appendix A, is only true for large σ.

To recover a total of 2n shares (n shares of x? and y? respectively) from 3n2 Hamming
weight leakages (namely each manipulation leaks according to (5)-(7) with ϕ = HW), the
total amount of information to be recovered is 2n · k if we assume that the shares are i.i.d.
with uniform distribution over F2k . Therefore, since we have a total of 3n2 observations
during the execution of Algorithm 1, we obtain from (8) that the noise standard deviation
σ and the sharing order n must satisfy the following inequality for a side channel attack to
be feasible:

3 · n2 · k

8σ2
> 2n · k . (9)

We obtain an equality of the form n > c·σ2 for some constant c, as in a classical (vertical) side
channel attack trying to recover x? from n observations of intermediate variables depending
on x? [CJRR99]. This analogy between horizontal and vertical attacks has already been
noticed in previous papers like [CFG+10] or [BJPW13]. Note that in principle the constant
c is independent of the field degree k (which has also been observed in previous papers, see
for instance [SVO+10]).

4.3 Attack With Perfect Hamming Weight Observations

We consider the particular case of perfect Hamming weight measurements (no noise). We
show that even with perfect observations of the Hamming weight, depending on the finite-
field representation, we are not always guaranteed to recover the secret variable x?.

More precisely, we consider the pdf of the random variable corresponding to perfect
Hamming weight measurements:

H | Xi
.
= (HW(Xi),HW(Yj),HW(Xi · Yj)) | Xi

defined for every xi ∈ F2k and every triplet (h1, h2, h3) ∈ [0..k]3 by:

fH|Xi
((h1, h2, h3), xi)

.
= Pr[HW(Xi) = h1,HW(Yj) = h2,HW(Xi·Yj) = h3 |Xi = xi] . (10)

If the probability distributions fH|Xi=xi
are distinct for every xi ∈ F2k , then one can

recover the secret variable x? with overwhelming probability from enough measurements.

However this property depends on the finite field F2k and its representation. For example in
F24 , if the representation F24 ' F2[t]/(t

4 + t + 1) is used then it may be checked that the
finite field elements xi = t + 1 and x′i = t3 + t2 are associated to identical distributions fxi

and fx′i ; so we cannot distinguish between xi and x′i (the other field elements have distinct

probability distributions). In F28 , for the representation F28 ' F2[t]/(t
8 + t4 + t3 + t+ 1) (as

used in AES), all finite field elements have distinct probability distributions, but this is not
always the case with other irreducible polynomials.

In summary, even with perfect observations of the Hamming weight, depending on the
finite-field representation, we are not always guaranteed to recover the secret variable x?;
however for the finite field representation used in AES the attack enables to recover the
secret x? for a large enough number of observations.

4.4 Maximum Likelihood Attack: Theoretical Attack with the full ISW State

For most field representations and leakage functions, the maximum likelihood approach used
in the previous section (in particular in (10)), recovers the i-th share of x? from an observation
of Li and an observation of (L′j , L

′′
ij) for every j ∈ [1..n]. It extends straightforwardly to

noisy scenarios and we shall detail this extension in Section 5.1. However, the disadvantage
of this approach is that it recovers each share separately, before rebuilding x? and y? from
them. From a pure information theoretic point of view this is suboptimal since (1) the final
purpose is not to recover all the shares perfectly but only the shared values and (2) only 3n
observations are used to recover each share whereas the full tuple of 3n2 observations brings
more information. Actually, the most efficient attack in terms of leakage exploitation consists
in using the joint distribution of (Li, L

′
j , L
′′
ij)i,j∈[1..n] to distinguish the correct hypothesis

about x? = x1 + x2 + · · ·+ xn and y? = y1 + y2 + · · ·+ yn.
As already observed in Section 3, during the processing of Algorithm 1, the adversary

may get a tuple (`ij)j∈[1..n] (resp. (`′ij)i∈[1..n]) of n observations for each Li (resp. each L′j)
and one observation `′′ij for each L′′ij . The full tuple of observations (`ij , `

′
ij , `
′′
ij)i,j is denoted

by `, and we denote by L the corresponding random variable 1. Then, to recover (x?, y?)
from `, the maximum likelihood approach starts by estimating the pdfs fL|X?=x?,Y ?=y? for
every possible (x?, y?), and then estimates the following vector of distinguisher values for
every hypothesis (x, y):

d?
ML(`)

.
=
(
fL|(X?,Y ?)(`, (x, y))

)
(x,y)∈F2

2k

(11)

The pair (x, y) maximizing the above probability is eventually chosen.
At a first glance, the estimation of the pdfs fL|X?=x?,Y ?=y? seems to be challenging.

However, it can be deduced from the estimations of the pdfs associated to the manipulations
of the shares. Indeed, after denoting by px,y each probability value in the right-hand side
of (11), and by using the law of total probability together with the fact that the noises are
independent, we get:

22kn · px,y =
∑

x1,··· ,xn∈F2k
x=x1+···+xn

∑
y1,··· ,yn∈F2k
y=y1+···+yn

n∏
i,j=1

fLi|Xi
(`ij , xi) · fL′j |Yj

(`′ij , yj) · fL′′ij |XiYj
(`′′ij , xiyj) .

Unfortunately, even if the equation above shows how to deduce the pdfs fL|(X?,Y ?)(·, (x?, y?))
from characterizations of the shares’ manipulations, a direct processing of the probability

1 In (5)-(7), it is assumed that the observations (`ij)j∈[1..n] and (`′ij)i∈[1..n] are averaged to build a single
observation with noise divided by

√
n. This assumption is not done here in order to stay as general as

possible.

has complexity O(22nk). By representing the sum over the xi’s as a sequence of convolution
products, and thanks to Walsh transforms processing, the complexity can be easily reduced
to O(n2n(k+1)). The latter complexity stays however too high, even for small values of n and
k, which led us to look at alternatives to this attack.

5 First Attack: Maximum Likelihood Attack on a Single Matrix Row

5.1 Attack Description

In this section, we explain how to recover each share xi of x? separately, by observing the
processing of Algorithm 1. Applying this attack against all the shares leads to the full recovery
of the sensitive value x? with some success probability, which is essentially the product of
the success probabilities of the attack on each share separately.

Given a share xi, the attack consists in collecting the leakages on (yj , xi · yj) for every
j ∈ [1..n]. Therefore the attack is essentially a horizontal version of the classical (vertical)
second-order side-channel attack, where each share xi is multiplicatively masked over F2k by
a random yj for j ∈ [1..n].

The most efficient attack to maximize the amount of information recovered on Xi from
a tuple of observations `

.
= `i, (`

′
j , `
′′
ij)j∈[1..n] ←↩ L

.
= Li, (L

′
j , L
′′
ij)j∈[1..n] consists in applying a

maximum likelihood approach [CJRR99,GHR15], which amounts to computing the following
vector of distinguisher values:

dML(`)
.
=
(
fL|Xi

(`, x̂i)
)
x̂i∈F2k

(12)

and in choosing the candidate x̂i which maximizes the probability.
Let us respectively denote by f(·, ·), f ′(·, ·) and f ′′(·, ·) the pdfs fLi|Xi

(·, ·), fL′j |Yj
(·, ·) and

fL′′ij |XiYj
(·, ·). Since the variables Li | Xi = x̂i and all the variables (L′j , L

′′
ij | Xi = x̂i) are

mutually independent whatever x̂i ∈ F2k , we have:

fL|Xi
(`, x̂i) = f(`i, x̂i)

n∏
j=1

f(L′j ,L′′ij)|Xi
((`′j , `

′′
ij), x̂i) . (13)

Applying the law of total probability, the pdf of (L′j , L
′′
ij) | Xi = x̂i can moreover be developed

such that:

f(L′j ,L′′ij)|Xi
((`′j , `

′′
ij), x̂i) =

∑
y∈F

2k

f(L′j ,L′′ij)|(Xi,Yj)((`
′
j , `
′′
ij), (x̂i, y)) · pYj (y) , (14)

that is
f(L′j ,L′′ij)|Xi

((`′j , `
′′
ij), x̂i) = 2−k

∑
y∈F

2k

f ′(`′j , y) · f ′′(`′′ij , x̂i · y) , (15)

since the Yj ’s are assumed to have uniform distribution and since the variables L′j | Yj = y
and L′′ij | XiYj = x̂i · y are independent.

Eventually, each score fL|Xi
(`, x̂i) in (12) may be computed based on the following ex-

pression:

fL|Xi
(`, x̂i) = 2−nkf(`i, x̂i) ·

n∏
j=1

(∑
y∈F

2k

f ′(`′j , y) · f ′′(`′′ij , x̂i · y)
)
,

where all the distributions are Gaussian ones (and hence can be easily evaluated). Hence, an
approximation of the pdf in (12) can be deduced from the approximations (aka templates)
of the distributions associated to the manipulations of the shares Xi, Yj and XiYj .

In practice, one often makes use of the equivalent (averaged) log-likelihood distinguisher
d′ML(·) which, in our case, may be defined as:

d′ML(`) =
1

n
log dML(`) + k log 2 (16)

'

 1

n

(
log f(`i, x̂i) +

n∑
j=1

log{
∑
y∈F

2k

f ′(`′j , y) · f ′′(`′′ij , x̂i · y)}
)

x̂i∈F2k

. (17)

Remark 1. The same approach described in this section can be applied to iteratively recover
each share yj of y. The attack description can be straightforwardly deduced by exchanging
the roles of Xi and Yj (and the indices i and j). For instance, (14) becomes:

f(Li,L′′ij)|Yj
((`i, `

′′
ij), ŷj) =

∑
x∈F

2k

f(Li,L′′ij)|(Xi,Yj)((`i, `
′′
ij), (x, ŷj)) · pXi(x) . (18)

5.2 Complexity Analysis

As mentioned previously, given a share xi, the attack consists in collecting the leakages on
(yj , xi ·yj) for every j ∈ [1..n]. Therefore the attack is essentially an horizontal version of the
classical (vertical) second-order side-channel attack. In principle the number n of leakage
samples needed to recover xi with good probability (aka the attack complexity) should
consequently be n = O(σ4) [CJRR99, GHR15, SVO+10]. This holds when multiplying two
leakages both with noise having σ as standard deviation. However here the leakage on yj has a
noise with a standard deviation σ/

√
n instead of σ (thanks to the averaging step). Therefore

the noise of the product becomes σ2/
√
n (instead of σ2), which gives after averaging with n

measurements a standard deviation of σ2/n, and therefore an attack complexity satisfying
n = O(σ2), as in a classical first-order side-channel attack.

5.3 Numerical Experiments

The attack presented in Sect. 5.1 has been implemented against each share xi of a value x,
with the leakages being simulated according to (5)-(7) with ϕ = HW. For the noise standard
deviation σ and the sharing order n, different values have been tested to enlighten the relation
between these two parameters. We stated that an attack succeeds iff the totality of the n
shares xi have been recovered, which leads to the full recovery of x?. We recall that, since
the shares xi are manipulated n times, measurements for the leakages Li and L′j have noise
standard deviations σ/

√
n instead of σ. For efficiency reasons, we have chosen to work in the

finite field F24 (namely k = 4 in previous analyses).

For various noise standard deviations σ with SNR = k(2σ)−2 (i.e. SNR = σ−2 for k = 4),
Table 1 gives the average minimum number n of shares required for the attack to succeed
with probability strictly greater than 0.5 (the averaging being computed over 300 attack
iterations). The attack complexity n = O(σ2) argued in Sect. 5.2 is confirmed by the trend
of these numerical experiments. Undeniably, this efficiency is quickly too poor for practical
applications where n is small (clearly lower than 10) and the SNR is high (smaller than
1). However, it must be noticed that the attack quickly recovers 90% of the shares even for
σ = 2, 3 (see Figure 1a), and the shares which are not recovered (because they are not given
the maximum likelihood) have a good ranking. Consequently, combining this attack with one
of the Key Enumeration (KEA) techniques recently developed (see e.g. [GGP+15,MOOS15])
should significantly increase the attack efficiency.

σ (SNR) 0 (+∞) 0.2 (25) 0.4 (6.25) 0.6 (2.77) 0.8 (1.56) 1 (1)

n 12 14 30 73 160 284

Table 1: First attack: number of shares n as a function of the noise σ to succeed with
probability > 0.5

200 300 400 500 600 700 800 900 1000 1100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of shares

P
er
ce
n
ta
g
e
o
f
re
co
v
er
ed

sh
a
re
s

Basic attack Efficiency k = 4 and σ = 2, 3, 3.5

Attack 1 for noise std = 2
Attack 1 for noise std = 3
Attack 1 for noise std = 3.5

(a) Basic Attack

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of shares

P
er
ce
n
ta
g
e
o
f
re
co
v
er
ed

sh
a
re
s

Iterative attack Efficiency k = 4 and σ = 2, 3, 3.5

Attack 2 for noise std = 2
Attack 2 for noise std = 3
Attack 2 for noise std = 3.5

(b) Iterative Attack

Fig. 1: Percentage of recovered shares with respect to n for σ = 2, 3, 3.5 and k = 4

6 Second Attack: Iterative Attack

6.1 Attack Description

From the discussions in Sect. 4.4, and in view of the poor efficiency of the previous attack,
we investigated another strategy which targets all the shares simultaneously. Essentially,
the core idea of our second attack described below is to apply several attacks recursively
on the xi’s and yj ’s, and to refine step by step the likelihood of each candidate for the
tuple of shares. Namely, we start by applying the attack described in Section 5.1 in order
to compute, for every i, a likelihood probability for each hypothesis Xi = x (x ranging over
F2k); then we apply the same attack in order to compute, for every j, a likelihood probability
for each hypothesis Yj = y (y ranging over F2k) with the single difference that the probability
pXi(x) in (18) is replaced by the likelihood probability which was just computed2. Then, one
reiterates the attack to refine the likelihood probabilities (pXi(x))x∈F

2k
, by evaluating (14)

with the uniform distribution pYj (y) being replaced by the likelihood probability new-pYj (y)
which has been previously computed. The scheme is afterwards repeated until the maximum
taken by the pdfs of each share Xi and Yj is greater than some threshold β. In order to have
better results, we perform the whole attack a second time, by starting with the computation
of the likelihood probability for each hypothesis Yj = y instead of starting by Xi = x.

We give the formal description of the attack processing in Algorithm 2 (in order to have
the complete attack, one should perform the while loop a second time, by rather starting
with the computation of new-pYj (y) instead of new-pXi(x)).

6.2 Numerical Experiments

The iterative attack described in Algorithm 2 has been tested against leakages simulations
defined exactly as in Section 5.3. As previously we stated that an attack succeeds if the

2 Actually to get the probability of Xi | L instead of L | Xi, Bayes’ Formula is applied which explains the
division by the sum of probabilities in the lines 14 and 19 in Algorithm 2.

Algorithm 2 Iterative Maximum Likelihood Attack

Input: a threshold β, an observation `i of each Li, an observation `′j of each L′j and one observation `′′ij of
each L′′ij (the random variables being defined as in (5)-(7))

Output: a n-tuple of pdfs (pXi)i (resp. (pYi)i) such that, for every i ∈ [1..n], at least one x̂i (resp. ŷj)
satisfies pXi(x̂i) > β (resp. pYi(ŷj) > β)

1: for i = 1 to n do
2: for x ∈ F2k do # Initialize the likelihood of each candidate for Xi

3: pXi(x) = fLi|Xi
(`i, x)

4: end for
5: for y ∈ F2k do # Initialize the likelihood of each candidate for Yi

6: pYi(y) = fL′
i|Yi

(`′i, yi)
7: new-pYi(y) = pYi(y)
8: end for
9: end for

10: while end 6= n do
11: end← 0
12: for i = 1 to n do
13: for x ∈ F2k do # Compute/Update the likelihood of each candidate for Xi

14: new-pXi(x) = 2−(2n+1)k pXi
(x)∑

x′∈F
2k

pXi
(x′)

∏n
j=1

∑
y∈F

2k

new-pYj
(y)∑

y′∈F
2k

new-pYj
(y′) · fL′′

ij |XiYj
(`′′ij , x · y)

15: end for
16: end for
17: for i = 1 to n do
18: for y ∈ F2k do # Compute/Update the likelihood of each candidate for Yi

19: new-pYi(y) = 2−(2n+1)k pYi
(y)∑

y′∈F
2k

pYi
(y′)

∏n
j=1

∑
x∈F

2k

new-pXj
(x)∑

x′∈F
2k

new-pXj
(x′) · fL′′

ij |XiYj
(`′′ij , x · y)

20: end for
21: end for
22: for i = 1 to n do
23: if maxx(new-pXi(x)) > β and maxy(new-pYi(y)) > β then
24: end + +
25: end if
26: end for
27: end while

totality of the n shares xi have been recovered, which leads to the full recovery of x?. For
various noise standard deviations σ with SNR = k(2σ)−2, Table 2 gives the average minimum
number of shares n required for the attack to succeed with probability strictly greater than
0.5 (the averaging being computed over 300 attack iterations). The first row corresponds
to k = 4, and the second row to k = 8 (the corresponding SNRs are SNR4 = σ−2 and
SNR8 = (

√
2σ2)−1). Numerical experiments yield greatly improved results in comparison to

those obtained by running the basic attack. Namely, in F24 , for a noise σ = 0, the number of
shares required is 2, while 12 shares were needed for the basic attack, and the improvement
is even more confirmed with a growing σ: for a noise σ = 1, the number of shares required is
25, while 284 shares were needed for the basic attack. It can also be observed that the results
for shares in F24 and F28 are relatively close, the number of shares being most likely slightly
smaller for shares in F24 than in F28 . This observation is in-line with the lower bound in (9),
where the cardinality 2k of the finite field plays no role. Once again, it may be observed that
the attack quickly recovers 90% of the shares even for σ ∈ {2, 3, 3.5} (see Figure 1b), and the
shares which are not recovered (because they are not given the maximum likelihood) have a
good ranking. Consequently, combining this attack with KEA should still increase the attack
efficiency.

σ (SNR4, SNR8) 0 (+∞,+∞) 0.2 (25, 17.67) 0.4 (6.25, 4.41) 0.6 (2.77, 1.96) 0.8 (1.56, 1.10) 1 (1, 0.7071)

n (for F24) 2 2 3 6 13 25

n (for F28) 5 6 8 11 16 21

Table 2: Iterative attack: number of shares n as a function of the noise σ to succeed with
probability > 0.5 in F24 (first row) and in F28 (second row).

7 Practical Results

7.1 Setup

In order to provide real life experiments of the attack described in this work we have mounted
it against a development platform embedding the ATMega328 processor. The presence of
decoupling capacitors between the ground pins of the processor and the reference ground did
not allowed us to correctly measure the power consumption of the processor. We therefore
de-soldered the ground pins of the processor and connected them to a 20 Ohm resistor
whose other end was connected to the reference ground. After this preparation, we used
a passive probe connected to an oscilloscope in order to register the current absorbed by
the processor by measuring the difference of potential at the ends of the resistor. Thanks
to a probe bandwidth of 500MHz, we pre-filtered all the frequencies higher than 200MHz.
We moreover used a sampling rate of 100MHz on the oscilloscope as the best compromise
between accuracy and measurement trace size.

7.2 Leakage Characterization

For our implementation of Algorithm 1, the mov instruction is used to manipulate the shares
xi, yj and the multiplication results xi · yj . We therefore chose to target it in our attack
experiments. An advantage of targeting a single instruction that manipulates all the values
is that we obtain homogeneous leakages for all the manipulated data. Furthermore, the mov

instruction may be found in many different architectures and we therefore think that our
attack can be reproduced quite easily.

For the leakage characterization phase, we measured 200, 000 leakages of the mov in-
struction parametrized with randomly generated values. Each measure was composed of 340
points, which is essentially the size of a relevant sample of instantaneous measures for the
mov instruction in our setup. This campaign allowed us to characterize the leakage related
to the processing mov y,x for x ranging between 0 and 255 and for y being constant (our
implementation uses the same destination register for all the shares); more precisely, each x

was associated to a mean vector µx ∈ R340 and a covariance matrix Σx ∈ R340 × R340. The
256 means are plotted in Figure 2a. To reduce the dimension of our templates, we afterwards
estimated the signal-to-noise ratio of the acquisitions at each point in order to identify the
best points of interest for our attack. The results are plotted in Figure 2b.

0 50 100 150 200 250 300 350
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Leakage point

M
ea
n
v
a
lu
e

Means of Experimental Leakages

(a) Mean vectors of all 256 classes.

0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
SNR of Experimental Leakages

Leakage point

S
N
R

v
a
lu
e

(b) SNR on each leakage point.

Fig. 2: Results of the leakage characterization phase.

The peaks in 2b allowed us to choose a first set of points. In addition, a simple maximum
likelihood attack on each of these points separately has also been mounted in order to find
those who provided the most information. This step finally provided us with a set of 11
points to mount our attack. It may be observed that the best SNR obtained with our setup
is around 0.07 which, for our simulations, corresponds to the case k = 16 and σ = 3.75,
and k = 256 and σ = 3.2. Our experiments should therefore be compared to the simulations
plotted in the gray dot-and-dashed curve in Fig. 1a (for the basic attack) and in Fig. 1b (for
the iterative attack).

7.3 Attacks

Thanks to the characterization described in the previous section, we performed the attacks of
Sect. 5.1 and Sect. 6 against our implementation of Algorithm 1 parametrized with different
orders n.

Maximum Likelihood Attack Experiments As a first experiment we tested the attack
of Section 5.1 in order to evaluate the evolution of the rank of the correct hypothesis on a
single share xi when n varies. In 3a we plot the ranking of the correct hypothesis, in red,
among all 256 byte values, for each n between 1 and 40. The results have been obtained by
averaging the result among 100 repetitions of the same attack for each order. From 3a we can
observe that the correct hypothesis is ranked among the first 50 values as soon as n > 10.

We also observe that we need n > 35 for the correct hypothesis to be firmly ranked first by
the basic attack.

During the same attack we have also evaluated the average number of shares of x?

correctly retrieved for each order n. This allowed us to obtain an estimation of the minimum
order n required to successfully mount the attack. The result of such evaluation is depicted
in 3b. Even if n = 40 appears to be a necessary condition to directly recover all the shares,
the post-processing of our attack results with a KEA algorithm [GGP+15,MOOS15] should
allow to recover them for smaller n (n = 10 seems to be achievable at a reasonable cost).

0 5 10 15 20 25 30 35 40
260

240

210

190

170

150

120

90

60

30

1

Number of shares

A
v
er
a
g
e
R
a
n
k
o
f
co
rr
ec
t
sh
a
re

Average rank vs number of shares

(a) Avg rank of the correct hypothesis vs number
of shares.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of shares

P
ro
b
a
b
il
it
y
o
f
re
co
v
er
ed

sh
a
re
s

Recovered shares vs number of shares

(b) Avg rate of correctly retrieved shares.

Fig. 3: Results for the attack of Section 5.1 when n varies between 1 and 40.

Iterative Attack Experiments We have afterwards mounted the attack described in
Section 6 in order to measure the success probability with respect to the masking order. As
before we provide the average ranking of the correct hypothesis (in red) for different values
of the order n. Due to time constraints only 10 repetitions of the attack have been averaged.
The evolution of the rank of the correct hypothesis is depicted in 4a. As before, we also
provide the average number of shares correctly retrieved for each order n in 4b.

Even if we did not got results as smooth as for previous experiments, we can observe
an overall better detection rate for the iterative attack if we compare to the basic one (as
actually expected). Furthermore, we have averaged the results of the above attack on 10
repetitions when n = 20, 30, 40. For such order we have obtained an average number of
correctly retrieved shares of 0.88, 0.93 and 0.97, respectively. We thus remark again that by
using KEA post-processing on the results of our attack the correct hypothesis should be
recovered with a reasonable number of shares. In particular it seems reasonable to assume
that n = 10 provides better results and lower costs with respect to the basic attack.

Experiments Conclusions. We have successfully proved the effectiveness of our attack
on a real implementation using the ATMega328 processor. We obtain better results on our
experiments than those predicted by theory in 5.1 and 6 for similar SNR values. We have
investigated such behavior and we conjecture that the better results are due to the use of a
multi-variate attack on 11 points for the experimental attacks, where the theoretical results

1 2 3 4 5 6 7 8 9 10
260

200

150

100

50

0

Number of shares

A
v
g
R
a
n
k
o
f
co
rr
ec
t
sh
a
re

Average rank vs number of shares

(a) Avg rank of the correct hypothesis vs number
of shares.

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of shares

P
ro
b
a
b
il
it
y
o
f
re
co
v
er
ed

sh
a
re
s

Recovered shares vs number of shares

(b) Avg number of correctly retrieved shares.

Fig. 4: Results for the attack of Section 6 when n varies between 1 and 10.

are computed for a mono-variate attack. The more points allows for an improvement of the
global SNR which can explain the disparity between theory and practice success probabilities.

8 A Countermeasure against the previous Attacks

8.1 Description

In the following, we describe a countermeasure against the previous attack against the Rivain-
Prouff algorithm. More precisely, we describe a variant of Algorithm 1, called RefSecMult,
to compute an n-sharing of c = x? · y? from (xi)i∈[1..n] and (yi)i∈[1..n]. Our new algorithm is
still provably secure in the original ISW probing model, and heuristically secure against the
horizontal side-channel attacks described in the previous sections.

Algorithm 3 RefSecMult

Input: n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x? and y? respectively
Output: an n-sharing (ci)i∈[1..n] of x? · y?
1: Mij ← MatMult((x1, . . . , xn), (y1, . . . , yn))
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: ri,j ←$ F2k

5: rj,i ← (ri,j +Mij) +Mji

6: end for
7: end for
8: for i = 1 to n do
9: ci ←Mii

10: for j = 1 to n, j 6= i do ci ← ci + ri,j
11: end for
12: return (c1, c1, . . . , cn)

As observed in [FRR+10], the ISW and Rivain-Prouff countermeasures can be divided in
two steps: a “matrix” step in which starting from the input shares xi and yj , one obtains a
matrix xi ·yj with n2 elements, and a “compression” step in which one uses some randomness
to get back to an n-sharing ci. Namely the matrix elements (xi ·yj)1≤i,j≤n form an n2-sharing

of x? · y?:

x? · y? =

(
n∑

i=1

xi

)
·

 n∑
j=1

yj

 =
∑

1≤i,j≤n
xi · yj (19)

and the goal of the compression step is to securely go from such an n2-sharing of x? · y? to
an n-sharing of x? · y?.

Our new countermeasure (Algorithm 3) uses the same compression step as Rivain-Prouff,
but with a different matrix step, called MatMult (Algorithm 4), so that the shares xi and yj
are not used multiple times (as when computing the matrix elements xi ·yj in Rivain-Prouff).
Eventually the MatMult algorithm outputs a matrix (Mij)1≤i,j≤n which is still an n2-sharing
of x? ·y?, as in (19); therefore using the same compression step as Rivain-Prouff, Algorithm 3
outputs an n-sharing of x? · y?, as required.

Algorithm 4 MatMult

Input: the n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x? and y? respectively
Output: the n2-sharing (Mij)i∈[1..n],j∈[1..n] of x? · y?
1: if n = 1 then
2: M ← [x1 · y1]
3: else
4: X(1) ← (x1, . . . , xn/2), X(2) ← (xn/2+1, . . . , xn)

5: Y (1) ← (y1, . . . , yn/2), Y (2) ← (yn/2+1, . . . , yn)

6: M (1,1) ← MatMult(X(1),Y (1))
7: X(1) ← RefreshMasks(X(1)), Y (1) ← RefreshMasks(Y (1))
8: M (1,2) ← MatMult(X(1),Y (2))
9: M (2,1) ← MatMult(X(2),Y (1))

10: X(2) ← RefreshMasks(X(2)), Y (2) ← RefreshMasks(Y (2))
11: M (2,2) ← MatMult(X(2),Y (2))

12: M ←
[
M (1,1) M (1,2)

M (2,1) M (2,2)

]
13: end if
14: return M

As illustrated in Fig. 5, the MatMult algorithm is recursive and computes the n × n
matrix in four sub-matrix blocs. This is done by splitting the input shares xi and yj in
two parts, namely X(1) = (x1, . . . , xn/2) and X(2) = (xn/2+1, . . . , xn), and similarly Y (1) =

(y1, . . . , yn/2) and Y (2) = (yn/2+1, . . . , yn), and recursively processing the four sub-matrix

blocs corresponding to X(u) × Y (v) for 1 ≤ u, v ≤ 2. To prevent the same share xi from
being used twice, each input block X(u) and Y (v) is refreshed before being used a second
time, using a mask refreshing algorithm. An example of such mask refreshing, hereafter
called RefreshMasks, can for instance be found in [DDF14]; see Algorithm 5. Since the mask
refreshing does not modify the xor of the input n/2-vectors X(u) and Y (v), each sub-matrix
block M (u,v) is still an n2/4-sharing of (⊕X(u)) · (⊕X(v)), and therefore the output matrix
M is still an n2-sharing of x? ·y?, as required. Note that without the RefreshMasks, we would
have Mij = xi · yj as in Rivain-Prouff.

Since the RefreshMasks algorithm has complexityO(n2), it is easy to see that the complex-
ity of our RefSecMult algorithm is O(n2 log n) (instead of O(n2) for the original Rivain-Prouff
countermeasure in Alg. 1). Therefore for a circuit of size |C| the complexity is O(|C|·n2 log n),
instead of O(|C| · n2) for Rivain-Prouff. The following lemma shows the soundness of our
RefSecMult countermeasure.

Lemma 1 (Soundness of RefSecMult). The RefSecMult algorithm, on input n-sharings
(xi)i∈[1..n] and (yj)j∈[1..n] of x? and y? respectively, outputs an n-sharing (ci)i∈[1..n] of x? · y?.

Algorithm 5 RefreshMasks

Input: a1, . . . , an
Output: c1, . . . , cn such that

∑n
i=1 ci =

∑n
i=1 ai

1: for i = 1 to n do ci ← ai
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: r ← {0, 1}k
5: ci ← ci + r
6: cj ← cj + r
7: end for
8: end for
9: return c1, . . . , cn

Proof. We prove recursively that the MatMult algorithm, taking as input n-sharings (xi)i∈[1..n]
and (yj)j∈[1..n] of x? and y? respectively, outputs an n2-sharing Mij of x? · y?. The lemma
for RefSecMult will follow, since as in Rivain-Prouff the lines 2 to 12 of Alg. 3 transform an
n2-sharing Mij of x? · y? into an n-sharing of x? · y?.

The property clearly holds for n = 1. Assuming that it holds for n/2, since the Refresh-
Masks does not change the xor of the input n/2-vectors X(u) and Y (v), each sub-matrix
block M (u,v) is still an n2/4-sharing of (⊕X(u)) · (⊕X(v)), and therefore the output matrix
M is still an n2-sharing of x? · y?, as required. This proves the lemma. ut

x1
...
xn

2

xn
2
+1

...
xn

y1 . . . yn
2

yn
2
+1 . . . yn

⊗ ⊗R

R R

⊗ ⊗R

Fig. 5: The recursive MatMult algorithm, where R represents the RefreshMasks Algorithm,
and ⊗ represents a recursive call to the MatMult algorithm.

Remark 2. The description of our countermeasure requires that n is a power of two, but it
is easy to modify the countermeasure to handle any value of n. Namely in Algorithm 4, for
odd n it suffices to split the inputs xi and yj in two parts of size (n − 1)/2 and (n + 1)/2
respectively, instead of n/2.

8.2 Security Analysis.

Proven security in the ISW probing model. We prove that our RefSecMult algorithm
achieves at least the same level of security of Rivain-Prouff, namely it is secure in the ISW
probing model against t probes for n ≥ t + 1 shares. For this we use the refined security

model against probing attacks recently introduced in [BBD+15], called t-SNI security. This
stronger definition of t-SNI security enables to prove that a gadget can be used in a full
construction with n ≥ t + 1 shares, instead of n ≥ 2t + 1 for the weaker definition of t-
NI security (corresponding to the original ISW security proof). The authors of [BBD+15]
show that the ISW (and Rivain-Prouff) multiplication gadget does satisfy this stronger t-SNI
security definition. They also show that with some additional mask refreshing satisfying the
t-SNI property (such as RefreshMasks), the Rivain-Prouff countermeasure for the full AES
can be made secure with n ≥ t+ 1 shares.

The following lemma shows that our RefSecMult countermeasure achieves the t-SNI prop-
erty; we provide the proof in Appendix B. The proof is essentially the same as in [BBD+15]
for the Rivain-Prouff countermeasure; namely the compression step is the same, and for
the matrix step, in the simulation we can assume that all the randoms in RefreshMasks are
given to the adversary. The t-SNI security implies that our RefSecMult algorithm is also
composable, with n ≥ t+ 1 shares.

Lemma 2 (t-SNI of RefSecMult). Let (xi)1≤i≤n and (yi)1≤i≤n be the input shares of the
SecMult operation, and let (ci)1≤i<n be the output shares. For any set of t1 intermediate
variables and any subset |O| ≤ t2 of output shares such that t1 + t2 < n, there exist two
subsets I and J of indices with |I| ≤ t1 and |J | ≤ t1, such that those t1 intermediate
variables as well as the output shares c|O can be perfectly simulated from x|I and y|J .

Heuristic security against horizontal-DPA attacks. We stress that the previous lemma
only proves the security of our countermeasure against t probes for n ≥ t+ 1, so it does not
prove that our countermeasure is secure against the horizontal-DPA attacks described in
previous sections, since such attacks use information about n2 intermediate variables instead
of only n− 1.

As illustrated in Fig. 5, the main difference between the new RefSecMult algorithm and
the original SecMult algorithm (Alg. 1) is that we keep refreshing the xi shares and the yj
shares blockwise between the processing of the finite field multiplications xi · yj . Therefore,
as opposed to what happens in SecMult, we never have the same xi being multiplied by all
yj ’s for 1 ≤ j ≤ n. Therefore an attacker cannot accumulate information about a specific
share xi, which heuristically prevents the attacks described in this paper.

9 Mask Refreshing with Complexity O(n · logn)

In this section we describe a new mask refreshing algorithm with complexity O(n · log n)
instead of O(n2) for the classical algorithm recalled in previous section. For simplicity we
first assume that n is a power of 2; we refer to Appendix C for a generalization to arbitrary
n. Note that a completely different mask refreshing algorithm is described in [ADF16], with
complexity only O(n); however our algorithm is simpler.

As illustrated in Fig. 6, our algorithm is defined recursively. First, a pre-processing layer
LI is applied on the n input shares ai, corresponding to lines 5 to 9 of Algorithm 6 below.
Then the RefreshMasks algorithm is applied recursively on the two halves of the shares.
Eventually a post-processing layer LO is applied (same as LI), before outputting the output
shares di (it corresponds to Lines 12 to 16 in Alg. 6).

R

R

LO

c1

cn/2

cn/2+1

cn

LI

b1

bn/2

bn/2+1

bn

a1
...
an

d1...
dn

Fig. 6: Recursive definition of RefreshMasks, with the pre-processing layer LI , the two recur-
sive applications of RefreshMasks to the two halves of the shares, and the post-processing
layer LO.

Algorithm 6 RefreshMasks

Input: a1, . . . , an
Output: d1, . . . , dn such that

⊕n
i=1 di =

⊕n
i=1 ai

1: if n = 2 then
2: r ←$ {0, 1}k
3: return (a1 ⊕ r, a2 ⊕ r)
4: end if
5: for i = 1 to n/2 do
6: ri ←$ {0, 1}k
7: bi ← ai ⊕ ri
8: bn/2+i ← an/2+i ⊕ ri # bi ⊕ bn/2+i = ai ⊕ an/2+i

9: end for
10: (c1, . . . , cn/2) ← RefreshMasks(b1, . . . , bn/2)
11: (cn/2+1, . . . , cn)← RefreshMasks(bn/2+1, . . . , bn)
12: for i = 1 to n/2 do
13: ri ←$ {0, 1}k
14: di ← ci ⊕ ri
15: dn/2+i ← cn/2+i ⊕ ri # di ⊕ dn/2+i = ci ⊕ cn/2+i

16: end for
17: return (d1, . . . , dn)

Correctness. The correctness of Algorithm 6 is straightforward to verify recursively. Namely
for all 4 blocks in Fig. 6, the xor of the outputs is the same as the xor of the inputs. Therefore
globally we must have

⊕n
i=1 di =

⊕n
i=1 ai.

Complexity. Let T (n) be the complexity of RefreshMasks. We have T (n) ≤ 2 ·T (n/2)+c ·n
for some constant c. One can show recursively that T (n) ≤ 2i ·T (n/2i)+ i ·c ·n, which implies
T (n) = O(n · log n).

Security. The following lemma shows that our new RefreshMasks algorithm achieves the
same property as the previous RefreshMasks, namely t-SNI security.

Lemma 3 (t-SNI of RefreshMasks). Let (ai)1≤i≤n be the input shares of the RefreshMasks
algorithm, and let (di)1≤i≤n be the output shares. For any set of t intermediate variables and
any subset |O| ≤ tO of output shares such that t+ tO < n, there exists a subset I of indices
with |I| ≤ t, such that the distribution of those t intermediate variables as well as the output
shares d|O can be perfectly simulated from a|I .

Proof. The proof is based on the two following simple lemmas.

Lemma 4. Let a1, a2 ∈ {0, 1}k be inputs, and let r ←$ {0, 1}k. Let V be a subset of the
variables {a1, a2, r} and let O be a subset of the variables {a1⊕r, a2⊕r}. Then the variables in
V ∪O can be perfectly simulated from I1 ∈ {∅, {a1}} and I2 ∈ {∅, {a2}}, with |I1| ≤ t1+ |O|/2
and |I2| ≤ t2 + |O|/2, for some positive integers t1, t2, with t1 + t2 ≤ |V |.

Proof. If |O| = 2 or |V | ≥ 2 then we can let I1 = {a1} and I2 = {a2}. If |O| = 1 and |V | = 0
then the variable in O can be perfectly simulated by a random value. If |O| = 1 and |V | = 1,
assume without loss of generality that O = {a1 ⊕ r}; then if V = {a1} or V = {r}, we let
I1 = {a1}; if V = {a2}, we let I2 = {a2}, and we can perfectly simulate a1⊕r with a random
value. If |O| = 0 then the simulation is straightforward. ut

Lemma 5. Let a1, a2 ∈ {0, 1}k be inputs, and let r ←$ {0, 1}k. Let V be a subset of the
variables {a1, a2, r} and O ∈ {∅, {a1 ⊕ r}}. Then the variables in V ∪ O ∪ {a2 ⊕ r} can be
perfectly simulated from I ⊂ {a1, a2}, with |I| ≤ 2 · |O|+ |V |.

Proof. If |O| = 1 or |V | ≥ 2 we can take I = {a1, a2}. If |O| = 0 and |V | = 0, we can simulate
a2 ⊕ r with a random value. If |O| = 0 and |V | = 1, if V = {a1} we let I = {a1} and we can
again simulate a2⊕ r with a random value; if V = {r} or V = {a2} then we let I = {a2}. ut

We proceed with the proof of Lemma 3, by recurrence on the number n of input shares.
The case n = 2 is straightforward, and similar to Lemma 4. Namely if tO = 1 then t = 0 and
thanks to the random mask r at Line 2 we can simulate the corresponding output variable
with a random value; if t = 1 then tO = 0 and the simulation of the probed intermediate
variable is straightforward.

R1

R2

LOLI

V1V4 V2

V3

S1
1

S1
2

S2

S3

I O

Fig. 7: RefreshMasks as composition of gadgets

We now consider the algorithm with n shares. We label the gadgets from 1 to 4 starting
from right to left, with V i the corresponding probed intermediate variables (see Fig. 7). We
start with the rightmost gadget LO, with V1 the corresponding set of probed intermediate
variables. For simplicity we can assume that within V1 only the intermediate variables ri,
ci and cn/2+i are probed, and not the output variables ci ⊕ ri and cn/2+i ⊕ ri, since such
output variables can be equivalently obtained from O, for a smaller value of t, and therefore
a stronger bound for |I|.

By applying Lemma 4 on each set of intermediate variables {ci, cn/2+i, ri} and output
variables {ci⊕ri, cn/2+i⊕ri} for all 1 ≤ i ≤ n/2, and summing the inequalities, we obtain that
the gadget LO can be perfectly simulated from two sets of input indices S11 ⊂ {1, . . . , n/2}
and S12 ⊂ {n/2 + 1, . . . , n}, such that

|S11 | ≤ t1 + tO/2, |S12 | ≤ t2 + tO/2 (20)

for some positive integers t1, t2, with t1 + t2 ≤ |V1|.

We now consider the R1 and R2 gadgets, which are recursive applications of RefreshMasks
with n/2 shares. The t-SNI condition t+ tO < n for applying Lemma 3 on R1 is therefore:

|V2|+ |S11 | < n/2 (21)

and when such condition is satisfied we have from Lemma 3 that the probed intermediate
variables in V2 and the output variables in S11 can be simulated from a subset of input indices
S2 such that |S2| ≤ |V2|. Similarly the t-SNI condition for gadget R2 is:

|V3|+ |S12 | < n/2 (22)

When such condition is not satisfied for R1 or R2 we say that the corresponding gadget is
saturated. In that case, to properly simulate the probed intermediate variables and output
variables of the gadget, one must know all inputs of the gadget. As will be seen below, the
proof of Lemma 3 is based on the fact that the two gadgets R1 and R2 cannot be both
saturated, that is at least R1 or R2 must be non-saturated.

Namely consider the following two inequalities:

|V2|+ t1 + tO/2 < n/2 (23)

|V3|+ t2 + tO/2 < n/2 (24)

Using |S11 | ≤ t1 + tO/2, we have that Inequality (23) implies Condition (21) for gadget R1;
similarly using |S12 | ≤ t2 + tO/2, we have that Inequality (24) implies Condition (22) for
gadget R2. Moreover, at least one of the two inequalities (23) or (24) must be satisfied, since
otherwise, using t1 + t2 ≤ |V1|:

n ≤ |V2|+ t1 + tO/2 + |V3|+ t2 + tO/2 ≤ |V2|+ |V3|+ |V1|+ tO ≤ t+ tO

which contradicts the bound t+tO < n. As mentioned previously, this shows that the gadgets
R1 and R2 cannot be both saturated.

If both inequalities (23) and (24) are satisfied, then both gadgets R1 and R2 are non-
saturated, and by recursively applying Lemma 3 on both gadgets, we get |S2| ≤ |V2| and
|S3| ≤ |V3|. One can therefore let I = S2 ∪ S3 and simulate the LI gadget as in the real
circuit3; we then have as required:

|I| ≤ |S2|+ |S3| ≤ |V2|+ |V3| ≤ t

Assume now wlog that (23) is satisfied and (24) is not. Then R1 is non-saturated and
we can apply Lemma 3 on R1, which gives as previously |S2| ≤ |V2|. For R2 we cannot
necessarily apply Lemma 3, so we must take S3 = {n/2 + 1, . . . , n}, which means that all
inputs of R2 must be simulated. We now consider the LI gadget. We can assume wlog that
all intermediate variables probed in V4 are of the form ai, an/2+i and ri, since all output
variables ai ⊕ ri and an/2+i ⊕ ri can be probed in V2 and V3. By applying Lemma 5 for
all 1 ≤ i ≤ n/2 on each set of intermediate variables {ai, an/2+i, ri} and output variable
ai⊕ ri, where all output variables an/2+i⊕ ri must be simulated (since R2 is saturated), and
by summing the inequalities, we construct I ⊂ {1, . . . , n} such that:

|I| ≤ 2 · |S2|+ |V4| ≤ 2 · |V2|+ |V4| (25)

It remains to show that |I| ≤ t. Since by assumption (23) is satisfied and (24) is not, we
have:

|V2|+ t1 + tO/2 < n/2 ≤ |V3|+ t2 + tO/2

3 When both R1 and R2 are non-saturated, the LI gadget is actually useless.

which gives using t2 ≤ |V1|:

|V2| ≤ |V3|+ t2 ≤ |V3|+ |V1|

Then from (25) we obtain:

|I| ≤ 2 · |V2|+ |V4| ≤ |V2|+ |V3|+ |V1|+ |V4| ≤ t

as required, which terminates the proof of Lemma 3. ut

Remark 3. One can argue that our construction is somewhat minimal. Namely if we remove
the pre-processing layer LI , then the adversary can letO = {1, . . . , n/4}∪{n/2+1, . . . , 3n/4},
which implies that the first n/4 output variables of R1 must be simulated; the adversary
can then probe the remaining n/4 output variables of R1, which implies that R1 is now
saturated. Then without LI one must have |I| = n/2; with |V | = n/4 this contradicts the
bound |I| ≤ |V |, while with |O| = n/2 the condition |V |+ |O| < n is still satisfied.

Similarly, if we remove the post-processing layer LO, then the adversary can saturate R1

by letting O = {1, . . . , n/2}. Then all inputs of R1 must be known, and for each intermediate
probe at the input of R2, one must add two additional indices in I, which contradicts the
bound |I| ≤ t.

Remark 4. Using the above RefreshMasks algorithm for our countermeasure of Section 8, its
complexity becomes O(n2) instead of O(n2 · log n), hence the same complexity as the original
ISW countermeasure.

Acknowledgments. We are very grateful to the anonymous CHES reviewers for pointing
a flaw in a previous version of our countermeasure in Section 8.

References

[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers with O(1/log
n) leakage rate. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II, pages 586–615, 2016.

[BBD+15] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, and Benjamin Grégoire.
Compositional verification of higher-order masking: Application to a verifying masking compiler.
Cryptology ePrint Archive, Report 2015/506, 2015. http://eprint.iacr.org/.

[BFG15] Josep Balasch, Sebastian Faust, and Benedikt Gierlichs. Inner product masking revisited. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 486–510. Springer, 2015.

[BJPW13] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizontal and vertical side-
channel attacks against secure RSA implementations. In Ed Dawson, editor, Topics in Cryptology -
CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013, San Francisco,CA, USA,
February 25-March 1, 2013. Proceedings, volume 7779 of Lecture Notes in Computer Science, pages
1–17. Springer, 2013.

[Bla79] G.R. Blakely. Safeguarding cryptographic keys. In National Comp. Conf., volume 48, pages
313–317, New York, June 1979. AFIPS Press.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure protocols
(extended abstract). In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11–19. ACM, 1988.

[CFG+10] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and Vincent Verneuil.
Horizontal correlation analysis on exponentiation. In Miguel Soriano, Sihan Qing, and Javier
López, editors, Information and Communications Security - 12th International Conference, ICICS
2010, Barcelona, Spain, December 15-17, 2010. Proceedings, volume 6476 of Lecture Notes in
Computer Science, pages 46–61. Springer, 2010.

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and Matthieu Rivain.
Higher-order masking schemes for s-boxes. In Anne Canteaut, editor, FSE, volume 7549 of Lecture
Notes in Computer Science, pages 366–384. Springer, 2012.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches
to counteract power-analysis attacks. In Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Pro-
ceedings, pages 398–412, 1999.

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q. Nguyen and Elisa-
beth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages 441–458.
Springer, 2014.

[CP00] M.A. Carreira-Perpinan. Mode-finding for mixtures of Gaussian distributions Carreira-Perpinan.
Pattern Analysis and Machine Intelligence, IEEE Transactions, 22(11):1318–1323, November
2000.

[CRV15] Jean-Sébastien Coron, Arnab Roy, and Srinivas Vivek. Fast evaluation of polynomials over bi-
nary finite fields and application to side-channel countermeasures. J. Cryptographic Engineering,
5(2):73–83, 2015.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From probing
attacks to noisy leakage. In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 423–440, 2014.

[DFS15] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making masking security proofs
concrete - or how to evaluate the security of any leaking device. In Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 401–429,
2015.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan. Protecting
circuits from leakage: the computationally-bounded and noisy cases. In Advances in Cryptology
- EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings, pages 135–156,
2010.

[GGP+15] Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schüth, and François-Xavier Stan-
daert. Simpler and more efficient rank estimation for side-channel security assessment. In Gregor
Leander, editor, Fast Software Encryption - 22nd International Workshop, FSE 2015, Istanbul,
Turkey, March 8-11, 2015, Revised Selected Papers, volume 9054 of Lecture Notes in Computer
Science, pages 117–129. Springer, 2015.

[GHR15] Sylvain Guilley, Annelie Heuser, and Olivier Rioul. A key to success - success exponents for
side-channel distinguishers. In Alex Biryukov and Vipul Goyal, editors, Progress in Cryptology
- INDOCRYPT 2015 - 16th International Conference on Cryptology in India, Bangalore, India,
December 6-9, 2015, Proceedings, volume 9462 of Lecture Notes in Computer Science, pages 270–
290. Springer, 2015.

[GPQ11] Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater. Thwarting higher-order side channel
analysis with additive and multiplicative maskings. In CHES, pages 240–255, 2011.

[GPS14] Vincent Grosso, Emmanuel Prouff, and François-Xavier Standaert. Efficient masked s-boxes pro-
cessing - A step forward -. In David Pointcheval and Damien Vergnaud, editors, Progress in Cryp-
tology - AFRICACRYPT 2014 - 7th International Conference on Cryptology in Africa, Marrakesh,
Morocco, May 28-30, 2014. Proceedings, volume 8469 of Lecture Notes in Computer Science, pages
251–266. Springer, 2014.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against prob-
ing attacks. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, pages 463–481,
2003.

[MOOS15] Daniel P. Martin, Jonathan F. O’Connell, Elisabeth Oswald, and Martijn Stam. Counting keys
in parallel after a side channel attack. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in
Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory and Application of
Cryptology and Information Security, Auckland, New Zealand, November 29 - December 3, 2015,
Proceedings, Part II, volume 9453 of Lecture Notes in Computer Science, pages 313–337. Springer,
2015.

[ORSW12] Yossef Oren, Mathieu Renauld, François-Xavier Standaert, and Avishai Wool. Algebraic side-
channel attacks beyond the hamming weight leakage model. In Emmanuel Prouff and Patrick
Schaumont, editors, Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th Inter-

national Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume 7428 of Lecture
Notes in Computer Science, pages 140–154. Springer, 2012.

[PR11] Emmanuel Prouff and Thomas Roche. Higher-order glitches free implementation of the AES using
secure multi-party computation protocols. In Cryptographic Hardware and Embedded Systems
- CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October 1, 2011.
Proceedings, pages 63–78, 2011.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal security
proof. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings, pages 142–159, 2013.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In Cryp-
tographic Hardware and Embedded Systems, CHES 2010, 12th International Workshop, Santa
Barbara, CA, USA, August 17-20, 2010. Proceedings, pages 413–427, 2010.

[Sha79] Adi Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–613, November
1979.

[SVO+10] François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt Gierlichs, Mar-
cel Medwed, Markus Kasper, and Stefan Mangard. The world is not enough: Another look on
second-order DPA. In Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th
International Conference on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science,
pages 112–129. Springer, 2010.

[VGS14] Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert. Soft analytical side-
channel attacks. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of
Lecture Notes in Computer Science, pages 282–296. Springer, 2014.

A Mutual Information Approximation

In this section, we develop the mutual information between the Hamming weight of uniform
random variable X defined over F2k and a noisy observation L of this Hamming weight, the
noise being modeled by a Gaussian random variable with 0 mean and standard deviation σ.
By definition, we have L = HW(X) + B, with B ∼ N (0, σ2). By definition of the entropy,
we have:

H(X|L) = H(X,L)−H(L) . (26)

Given X, the distribution of L is Gaussian with standard deviation σ. The differential entropy
corresponding to a Gaussian distribution with standard deviation σ is ln(σ

√
2πe), whereas

the entropy of a uniform random variable over F2k is k. We therefore get:

H(X,L) = H(X) + H(B) = k + ln(σ
√

2πe) (27)

The distribution of L is the sum of two distributions. We can model the distribution
of HW(X) as Gaussian with standard deviation σk =

√
k/2; this is true for large k. The

sum of two independent and normally distributed random variables has a normal distribu-
tion. Moreover, its mean and variance are simply obtained by summing those of the added
variables. In our context, this gives:

H(L) ' ln

(√
(σ2k + σ2)2πe

)
' ln

(√
(k/4 + σ2)2πe

)
(28)

Combining (26)-(28) leads to:

H(X | L) ' k + ln(σ
√

2πe)− ln
(√

(k/4 + σ2)2πe
)
' k +

1

2
ln

(
σ2

k/4 + σ2

)
' k +

1

2
ln

(
1

1 + k/(4σ2)

)
' k − k

8σ2
,

after approximating ln(1−U) by −U , and k/(k + 4σ2) by k/4σ2 (which is true when σ2 � k).
Eventually, the amount of information I(X;L)

.
= H(X) − H(X | L) given by the noisy

Hamming weight leakage can be approximated for σ2 � k by:

I(X;L) ' k

8σ2

B Proof of Lemma 2

Our proof is essentially the same as in [BBD+15]. We construct two sets I and J correspond-
ing to the input shares of x? and y? respectively. We denote byMij the result of the subroutine
MatMult((x1, . . . , xn), (y1, . . . , yn)). From the definition of MatMult and RefreshMasks, it is
easy to see that each Mij can be perfectly simulated from xi and yj ; more generally any in-
ternal variable within MatMult can be perfectly simulated from xi and/or yj for some i and
j; for this it suffices to simulate the randoms in RefreshMasks exactly as they are generated
in RefreshMasks.

We divide the internal probes in 4 groups. The four groups are processed separately and
sequentially, that is we start with all probes in Group 1, and finish with all probes in Group
4.

• Group 1: If Mii is probed, add i to I and J .

• Group 2: If ri,j or ci,j is probed (for any i 6= j), add i to I and J .

Note that after the processing of Group 1 and 2 probes, we have I = J ; we denote by U the
common value of I and J after the processing of Group 1 and 2 probes.

• Group 3: If Mij ⊕ ri,j is probed: if i ∈ U or j ∈ U , add {i, j} to both I and J .

• Group 4: If Mij is probed (for any i 6= j), then add i to I and j to J . If some probe in
MatMult requires the knowledge of xi and/or yj , add i to I and/or j to J .

We have |I| ≤ t1 and |J | ≤ t1, since for every probe we add at most one index in I and J .
The simulation of probed variables in groups 1 and 4 is straightforward. Note that for i < j,
the variable rij is used in all partial sums cik for k ≥ j; moreover rij is used in rij ⊕Mij ,
which is used in rji, which is used in all partial sums cjk for k ≥ i. Therefore if i /∈ U , then
rij is not probed and does not enter in the computation of any probed cik; symmetrically if
j /∈ U , then rji is not probed and does not enter in the computation of any probed cjk.

For any pair i < j, we can now distinguish 4 cases:

• Case 1: {i, j} ∈ U . In that case, we can perfectly simulate all variables rij , Mij , Mij⊕rij ,
Mji and rji. In particular, we let rij ← F2k , as in the real circuit.

• Case 2: i ∈ U and j /∈ U . In that case we simulate rij ← F2k , as in the real circuit. If
Mij⊕ri,j is probed (Group 3), we can also simulate it since i ∈ U and j ∈ J by definition
of the processing of Group 3 variables.

• Case 3: i /∈ U and j ∈ U . In that case rij has not been probed, nor any variable cik, since
otherwise i ∈ U . Therefore rij is not used in the computation of any probed variable
(except rji, and possibly Mij ⊕ ri,j). Therefore we can simulate rji ← F2k ; moreover if
Mij ⊕ rij is probed, we can perfectly simulate it using Mij ⊕ rij = Mji ⊕ rji, since j ∈ U
and i ∈ J by definition of the processing of Group 3 variables.

• Case 4: i /∈ U and j /∈ U . If Mij ⊕ ri,j is probed, since rij is not probed and does not
enter into the computation of any other probed variable, we can perfectly simulate such
probe with a random value.

From cases 1, 2 and 3, we obtain that for any i 6= j, we can perfectly simulate any variable
rij such that i ∈ U . This implies that we can also perfectly simulate all partial sums cik when
i ∈ U , including the output variables ci. Finally, all probed variables are perfectly simulated.

We now consider the simulation of the output variables ci. We must show how to simulate
ci for all i ∈ O, where O is an arbitrary subset of [1, n] such that t1+|O| < n. For i ∈ U , such
variables are already perfectly simulated, as explained above. We now consider the output
variables ci with i /∈ U . We construct a subset of indices V as follows: for any probed Group
3 variable Mij ⊕ rij such that i /∈ U and j /∈ U (this corresponds to Case 4), we put j in V if
i ∈ O, otherwise we put i in V . Since we have only considered Group 3 probes, we must have
|U |+ |V | ≤ t1, which implies |U |+ |V |+ |O| < n. Therefore there exists an index j? ∈ [1, n]
such that j? /∈ U ∪ V ∪ O. For any i ∈ O, we can write:

ci = Mii ⊕
⊕
j 6=i

rij = ri,j? ⊕

Mii ⊕
⊕
j 6=i,j?

rij



We claim that neither ri,j? nor rj?,i do enter into the computation of any probed variable
or other ci′ for i′ ∈ O. Namely i /∈ U so neither ri,j? nor any partial sum cik was probed;
similarly j? /∈ U so neither rj?,i nor any partial sum cj?,k was probed, and the output cj?

does not have to be simulated since by definition j? /∈ O. Finally if i < j? then Mi,j? ⊕ ri,j?
was not probed since otherwise j? ∈ V (since i ∈ O); similarly if j? < i then Mj?,i ⊕ rj?,i
was not probed since otherwise we would have j? ∈ V since j? /∈ O. Therefore, since neither
ri,j? nor rj?,i are used elsewhere, we can perfectly simulate ci by generating a random value.
This proves the Lemma.

C Generalization of Mask Refreshing for Arbitrary n

In this section we describe the generalization of our new mask refreshing algorithm from
Section 9 to arbitrary n. We note that to ensure the t-SNI property such generalization is
not completely straightforward; for example if at lines 16 and 17 of Algorithm 7 below we
would replace bn/2c by dn/2e, then for n = 3 we would have d3 = a3 and the algorithm
could not be t-SNI.

Algorithm 7 RefreshMasks

Input: a1, . . . , an
Output: d1, . . . , dn such that

⊕n
i=1 di =

⊕n
i=1 ai

1: if n = 1 then
2: return (a1)
3: end if
4: if n = 2 then
5: r ←$ {0, 1}k
6: return (a1 ⊕ r, a2 ⊕ r)
7: end if
8: for i = 1 to bn/2c do
9: ri ←$ {0, 1}k

10: bi ← ai ⊕ ri
11: bbn/2c+i ← abn/2c+i ⊕ ri # bi ⊕ bbn/2c+i = ai ⊕ abn/2c+i

12: end for
13: if n mod 2 = 1 then
14: bn ← an
15: end if
16: (c1, . . . , cbn/2c) ← RefreshMasks(b1, . . . , bbn/2c)
17: (cbn/2c+1, . . . , cn)← RefreshMasks(bbn/2c+1, . . . , bn)
18: for i = 1 to bn/2c do
19: ri ←$ {0, 1}k
20: di ← ci ⊕ ri
21: dbn/2c+i ← cbn/2c+i ⊕ ri # di ⊕ dbn/2c+i = ci ⊕ cbn/2c+i

22: end for
23: if n mod 2 = 1 then
24: dn ← cn
25: end if
26: return (d1, . . . , dn)

The following Lemma shows that our new RefreshMasks algorithm is still t-SNI for arbi-
trary n.

Lemma 6 (t-SNI of RefreshMasks). Let (ai)1≤i≤n be the input shares of the RefreshMasks
operation, and let (di)1≤i≤n be the output shares. For any set of t intermediate variables and
any subset |O| ≤ tO of output shares such that t+ tO < n, there exists a subset I of indices
with |I| ≤ t, such that the distribution of those t intermediate variables as well as the output
shares d|O can be perfectly simulated from a|I .

Proof. We show how to adapt the proof of Lemma 3 to arbitrary n. The case n = 2 is the
same as previously. We now consider the algorithm with n ≥ 3 shares.

R1

R2

LOLI

V1V4 V2

V3

S1
1

S1
2

S2

S3

I O

Fig. 8: RefreshMasks as composition of gadgets

As previously we start with the LO gadget. Note that for even n the LO gadget is the
same as in the proof of Lemma 3, but for odd n there is a special wire corresponding to

dn = cn We show that for the input indices S11 and S12 required to simulate LO, we always
have:

|S11 | ≤ t1 + btO/2c, |S12 | ≤ t2 + dtO/2e (29)

for some positive integers t1, t2, with t1+ t2 ≤ |V1|; this is an adaptation of (20) for arbitrary
n. As previously we assume that within V1 only the intermediate variables ri, ci and cbn/2c+i

are probed, and not the output variables ci⊕ ri and cbn/2c+i⊕ ri, since such output variables
can be equivalently obtained from O; similarly if n mod 2 = 1, we assume that V1 does not
contain the variable dn = cn.

We first consider the LO gadget without the wire dn = cn when n mod 2 = 1, which
we denote by L′O; we denote by O′ the corresponding set of output variables that must be
simulated, and t′O = |O′|. For n = 0 mod 2 we have L′O = LO and t′O = tO. We can then
apply Lemma 4 as previously for all 1 ≤ i ≤ bn/2c on each set of intermediate variables
{ci, cbn/2c+i, ri} and output variables {ci ⊕ ri, cbn/2c+i ⊕ ri}; summing the inequalities, we
obtain that the gadget L′O can be perfectly simulated from two sets of input indices S11 ⊂
{1, . . . , bn/2c} and S ′12 ⊂ {bn/2c + 1, . . . , 2bn/2c}, such that |S11 | ≤ t1 + t′O/2 and |S ′12| ≤
t2+t′O/2 for some positive integers t1, t2, with t1+t2 ≤ |V1|. Since |S11 | and |S ′12| are integers,
we can use the bounds:

|S11 | ≤ t1 + bt′O/2c, |S ′12| ≤ t2 + bt′O/2c (30)

We now consider the full gadget LO. When n = 0 mod 2, we have L′O = LO, so we

can take S12 = S ′12; then with t′O = tO, from (30) we obtain the bounds in (29). When
n mod 2 = 1, we must consider the additional wire dn = cn. We distinguish two cases. If
n /∈ O, then we have t′O = tO, and we can take S12 = S ′12; therefore we obtain again (29).

Finally if n ∈ O, we have t′O = tO− 1, and we can take S12 = S ′12 ∪{n}. This gives from (30):

|S12 | ≤ |S ′
1
2|+ 1 ≤ t2 + b(tO − 1)/2c+ 1 ≤ t2 + dtO/2e

which gives again (29).
We now consider the R1 and R2 gadgets. For R1 the t-SNI condition is:

|V2|+ |S11 | < bn/2c (31)

and when such condition is satisfied we have that the probed intermediate variables in V2
and the output variables in S11 can be simulated from a subset of input indices S2 such that
|S2| ≤ |V2|. Similarly for gadget R2 the t-SNI condition is:

|V3|+ |S12 | < dn/2e (32)

Note that when n = 3 we can still apply Condition (31) on R1; in that cases it requires
|V2| = |S11 | = 0, and then |S2| = 0.

Consider now the following two inequalities:

|V2|+ t1 + btO/2c < bn/2c (33)

|V3|+ t2 + dtO/2e < dn/2e (34)

As previously, we have using (29) that Inequality (33) implies Condition (31) for gadget R1,
and similarly Inequality (34) implies Condition (32) for R2. And as previously, at least one of
the two inequalities (33) or (34) must be satisfied, since otherwise, using bx/2c+ dx/2e = x
for any x ∈ Z, we obtain using t1 + t2 ≤ |V1|:

n ≤ |V2|+ t1 + btO/2c+ |V3|+ t2 + dtO/2e ≤ |V2|+ |V3|+ |V1|+ tO ≤ t+ tO

which contradicts the bound t+ tO < n. This again shows that the two gadgets R1 and R2

cannot be both saturated.
If both inequalities (33) and (34) are satisfied, then both gadgets R1 and R2 are non-

saturated, and by recursively applying Lemma 3 on both gadgets, we get |S2| ≤ |V2| and
|S3| ≤ |V3|. One can therefore let I = S2 ∪ S3 and simulate the LI gadget as in the real
circuit; we then have as required:

|I| ≤ |S2|+ |S3| ≤ |V2|+ |V3| ≤ t

Assume now that (33) is satisfied and (34) is not. Then R1 is non-saturated and we
can apply Lemma 3 on R1, which gives as previously |S2| ≤ |V2|. For R2 we take S3 =
{bn/2c+ 1, . . . , n}, which means that all inputs of R2 must be simulated. We now consider
the LI gadget. By applying Lemma 5 for all 1 ≤ i ≤ bn/2c on each set of intermediate
variables {ai, abn/2c+i, ri} and output variable ai⊕ri, where all output variables abn/2c+i⊕ri
must be simulated, and by summing the inequalities, we construct I ⊂ {1, . . . , n} such that:

|I| ≤ 2 · |S2|+ |V4|+ (n mod 2) ≤ 2 · |V2|+ |V4|+ (n mod 2) (35)

where the additional term (n mod 2) comes from the wire bn = an when n mod 2 = 1; namely
we must have n ∈ I since n ∈ S3.

It remains to show that |I| ≤ t. Since by assumption (33) is satisfied and (34) is not, we
have:

|V2|+ t1 + btO/2c < bn/2c
|V3|+ t2 + dtO/2e ≥ dn/2e = bn/2c+ (n mod 2)

which gives:
|V2|+ t1 + btO/2c+ (n mod 2) < |V3|+ t2 + dtO/2e

which implies:
|V2|+ (n mod 2) < |V3|+ t2 + (tO mod 2)

and therefore:
|V2|+ (n mod 2) ≤ |V3|+ t2 ≤ |V3|+ |V1|

Then from (35) we obtain:

|I| ≤ |V2|+ |V3|+ |V1|+ |V4| ≤ t

as required.
Assume conversely that (34) is satisfied and (33) is not. Then R2 is non-saturated and

we can apply Lemma 3, which gives as previously |S3| ≤ |V3|. For R1 we take S2 =
{1, . . . , bn/2c}, which means that all inputs of R1 must be simulated. We now consider the
LI gadget. By applying Lemma 5 for all 1 ≤ i ≤ bn/2c on each set of intermediate variables
{ai, abn/2c+i, ri} and output variable abn/2c+i ⊕ ri, where all output variables ai ⊕ ri must
be simulated, and by summing the inequalities, we construct I ⊂ {1, . . . , n} such that:

|I| ≤ 2 · |S3|+ |V4| ≤ 2 · |V3|+ |V4| (36)

Namely when n mod 2 = 1, if n ∈ S3 we can put n in I, and therefore the bound (36) still
applies.

Since by assumption (34) is satisfied and (33) is not, we have:

|V2|+ t1 + btO/2c ≥ bn/2c
|V3|+ t2 + dtO/2e < dn/2e = bn/2c+ (n mod 2)

which gives:
|V3|+ t2 + dtO/2e < |V2|+ t1 + btO/2c+ (n mod 2)

which implies:
|V3| < |V2|+ t1 + (n mod 2)

and therefore:
|V3| ≤ |V2|+ t1 ≤ |V2|+ |V1|

Then from (36) we obtain as previously:

|I| ≤ 2 · |V3|+ |V4| ≤ |V3|+ |V2|+ |V1|+ |V4| ≤ t

as required. This terminates the proof of Lemma 6. ut

