
Collapse-binding quantum commitments

without random oracles∗

Dominique Unruh
University of Tartu

August 23, 2016

Abstract. We construct collapse-binding commitments in the standard model.
Collapse-binding commitments were introduced in (Unruh, Eurocrypt 2016) to model
the computational-binding property of commitments against quantum adversaries,
but only constructions in the random oracle model were known.

Furthermore, we show that collapse-binding commitments imply selected other
security definitions for quantum commitments, answering an open question from
(Unruh, Eurocrypt 2016).
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1 Introduction

Commitment schemes are one of the most fundamental primitives in cryptography.
A commitment scheme is a two-party protocol consisting of two phases, the commit
and the open phase. The goal of the commitment is to allow the sender to transmit
information related to a message m during the commit phase in such a way that the
recipient learns nothing about the message (hiding property). But at the same time,
the sender cannot change his mind later about the message (binding property). Later,
in the open phase, the sender reveals the message m and proves that this was indeed
the message that he had in mind earlier (by sending some “opening information” u).
Unfortunately, it was shown by [11] that the binding and hiding property of a commitment
cannot both hold with statistical (i.e., information-theoretical) security even when using
quantum communication. Thus, one typically requires one of them to hold only against
computationally-limited adversaries. Since the privacy of data should usually extend far
beyond the end of a protocol run, and since we cannot tell which technological advances
may happen in that time, we may want the hiding property to hold statistically, and thus
are interested in computationally binding commitments. Unfortunately, computationally
binding commitments turn out to be a subtle issue in the quantum setting. As shown in
[1], if we use the natural analogue to the classical definition of computationally binding
commitments (called “classical-style binding”),1 we get a definition that is basically
meaningless (the adversary can open the commitment to whatever message he wishes).
[16] suggested a new definition, “collapse binding” commitments, that better captures
the idea of computationally binding commitments against quantum adversaries. This
definition was shown to perform well in security proofs that use rewinding.2 (They
studied classical non-interactive commitments, i.e., all exchanged messages are classical,
but the adversary is quantum.)

We describe basic idea of “collapse-binding” commitments: When committing to a
message m using a commitment c, it should be impossible for a quantum adversary to
produce a superposition of different messages m that he can open to. Unfortunately, this
requirement is too strong to achieve (at least for an statistically hiding commitment).3

Instead, we require something slightly weaker: Any superposition of different messages m
that the adversary can open to should look like it is a superposition of only a single
message m. Formally, if the adversary produces a classical commitment c, and a
superposition of openings m,u in registers M,U , the adversary should not be able
to distinguish whether M is measured in the computational basis or not measured.
That is, for all quantum-polynomial-time A,B, the circuits (a) and (b) in Figure 1

1This definition, called classical-style style binding in [16], roughly states, that it is computationally
hard to find a commitment c, two messages m 6= m′ and corresponding valid opening informations u, u′.

2We do not claim that they will work in every rewinding-based proof, but [16] showed their usefulness
in the construction of arguments of knowledge. The proof of their construction did involve the quantum
rewinding techniques from [17] and [14].

3The adversary can initialize a register M with the superposition of all messages, run the commit
algorithm in superposition, and measure the resulting commitment c. Then M will still be in superposition
between many different messages m which the adversary can open c to.
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Figure 1: For collapse-binding commitments, (a) and (b) should be indistinguishable, i.e., Pr[b = 1]
negligibly close in both cases. For collapsing hash functions, (c) and (d) should be indistinguishable.

are indistinguishable (assuming A only outputs superpositions that contain only valid
openings).

[16] showed that collapse-binding commitments avoid various problems of other
definitions of computationally binding commitments in the quantum setting. In particular,
they compose in parallel and are well suited for proofs that involve rewinding (e.g., when
constructing zero-knowledge arguments of knowledge).

[16] further showed that in the quantum random oracle model, collapse-binding,
statistically hiding commitments can be constructed. However, they left open two big
questions:

• Can collapse-binding commitments be constructed in the standard model? That is,
without the use of random oracles?

• One standard minimum requirement for commitments (called “sum-binding” in
[16]) is that for quantum-polynomial-time A, p0 + p1 ≤ 1 + negligible where pb is
the probability that A opens a commitment to b when he learns b only after the
commit phase. Surprisingly, [16] left it open whether the collapse-binding property
implies the sum-binding property.

First contribution: collapse-binding commitments in the standard model.
We show that collapse-binding commitments exist in the standard model. More precisely,
we construct a non-interactive, classical commitment in the public parameter model
(i.e., we assume that some parameters are globally fixed), for arbitrarily long messages
(the length of the public parameters and the commitment itself do not grow with the
message length), statistically hiding, and collapse-binding. The security assumption is
the existence of lossy trapdoor functions [13] with lossiness rate > 1

2 , or alternatively

that SIVP and GapSVP are hard for quantum algorithms to approximate within Õ(dc)
factors for some constant c > 5.

The basic idea of our construction is the following: In [16], it was shown that
statistically hiding, collapse-binding commitments can be constructed from “collapsing”
hash functions (using a classical construction from [6, 9]). A function H is collapsing if an
adversary that outputs h and a superposition M of H-preimages of h cannot distinguish
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whether M is measured or not. That is, the circuits (c) and (d) in Figure 1 should
be indistinguishable. So all we need to construct is a collapsing hash function in the
standard model.

To do so, we use a lossy trapdoor function (we do not actually need the trapdoor part,
though). A lossy function Fs : A→ B is parametrized by a public parameter s. There
are two kinds of parameters, which are assumed to be indistinguishable: We call s lossy
if |imF | � |A|, that is, if its image is very sparse. We call s injective if Fs is injective.

If s is injective, then it is easy to see that Fs is collapsing: There can be only one
preimage of Fs on register M , so measuring M will not disturb M . But since lossy and
injective s are indistinguishable, it follows that Fs is also collapsing for lossy s. Note,
however, that Fs is not yet useful on its own, because its range B is much bigger than A,
while we want a compressing hash functions (output smaller than input).

However, for lossy s, |imFs| � |A|. Let hr : B → C be a universal hash function,
indexed by r, with |imFs| � |C| � |A|. We can show that with overwhelming probability,
hr is injective on imFs, for suitable choice of C. Hence hr is collapsing (on imFs). The
composition of two collapsing functions is collapsing, thus H(r,s) := hr ◦ Fs is collapsing
for lossy s. (Note that imFs is not an efficiently decidable set. Fortunately, we can
construct all our reductions such that we never need to decide that set.)

Thus far, we have found a collapsing H(r,s) : A → C that is compressing. But we
need something stronger, namely a collapsing hash function {0, 1}∗ → C, i.e., applicable
to arbitrary long inputs. A well-known construction (in the classical setting) is the
Merkle-Damg̊ard construction, that transforms a compressing collision-resistant function
H into a collision-resistant one with domain {0, 1}∗. We prove that the Merkle-Damg̊ard
construction also preserves the collapsing property. (This proof is done by a sequence of
games that each measure more and more about the hashed message m, each time with a
negligible probability of being noticed due to the collapsing property of Hk.) Applying
this result to H(r,s), we get a collapsing hash function MD(r,s) : {0, 1}∗ → C. And from
this, we get collapse-binding commitments.

We present our results with concrete security bounds, and our reductions have only
constant factors in the runtime, and the security level only has an O(message length)
factor.

We stress that the security proof for the Merkle-Damg̊ard construction has an ad-
ditional benefit: It shows that existing hash function like SHA-2 [12] are collapsing,
assuming that the compression function is collapsing (which in turn is suggested by the
random oracle results in [16]). Since we claim that collapsing is a desirable and natural
analogue to collision-resistance in the post-quantum setting, this gives evidence for the
post-quantum security of SHA-2.

Second contribution: Collapse-binding implies sum-binding. In the classical
setting, it relatively straightforward to show that a computationally binding bit commit-
ment satisfies the (classical) sum-binding condition. Namely, assume that the adversary
breaks sum-binding, i.e., p0 + p1 ≥ 1 + non-negligible. Then one runs the adversary,
lets him open the commitment as m = 0 (which succeeds with probability p0), then
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rewinds the adversary, and lets him open the same commitment as m = 1 (which
succeeds with probability p1). So the probability that both runs succeed is at least
p0 + p1 − 1 ≥ non-negligible, which is a contradiction to the computational binding
property.

Since collapse-binding commitments work well with rewinding, one would assume that
a similar proof works using the quantum rewinding technique from [14]. Unfortunately,
existing quantum rewinding techniques do not seem to work.

To show that a collapse-binding commitment is sum-binding, another proof technique
is needed. The basic idea is, instead of simulating two executions of the adversary
(opening m = 0 and opening m = 1) after each other, we perform the two executions in
superposition, controlled by a register M , initially in state |+〉. This entangles M with
the execution of the adversary and thus disturbs M . It turns out that the disturbance of
M is greater if we measure which bit the adversary opens than if we do not. This allows
us to distinguish between measuring and not measuring, breaking the collapse-binding
property.

The same proof technique can be used to show that a collapse-binding string commit-
ment satisfies the generalization of sum-binding presented in [3]. (In this case we have to
use a superposition of a polynomial-number of adversary executions.)

Possibly the technique of “rewinding in superposition” used here might be a special
case of a more general new quantum rewinding technique (other than [17, 14]), we leave
this as an open question.

On the necessity of public parameters. Our commitment scheme assumes the
existence of public parameters. This raises the question whether these are necessary.
We argue that it would be unlikely to be able to construct non-interactive, statistically
hiding, computationally binding commitments without public parameters (not even
only classically secure ones) from standard assumptions other than collision-resistant
or collapsing hash functions. Namely, such a commitment can always be broken by
a non-uniform adversary. (Because the adversary could have a commitment and two
valid openings hardcoded.) Could there be a such a commitment secure only against
uniform adversaries, based on some assumption X? That is, a uniform adversary breaking
the commitment could be transformed into an adversary against assumption X. All
cryptographic proof techniques that we are aware of would then also transform a non-
uniform adversary breaking the commitment into a non-uniform adversary breaking X.
Since a non-uniform adversary breaking the commitment always exists, it follows that X
must be an assumption that cannot be secure against non-uniform adversaries. The only
such assumptions that we are aware of are (unkeyed) collision-resistant and collapsing
hash functions.4 Thus it is unlikely that there are non-interactive, statistically hiding,
computationally binding commitments without public parameters based on standard
assumptions different from those two. (We are aware that the above constitutes no proof,
but we consider it a strong argument.) We know how to construct such commitments from

4By unkeyed hash function, we mean a function that depends only on the security parameter. Such a
function might be collision-resistant against uniform adversaries, but not against non-uniform ones.
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collapsing hash functions [16]. We leave it as an open problem whether such commitments
can be constructed from collision-resistant hash functions.

Of course, it might be possible to have interactive statistically-hiding collapse-binding
commitments. In fact, our construction can be easily transformed into a two-round
scheme by letting the recipient choose the public parameters. This does not affect the
collapsing property (because for that property we assume the recipient to be trusted), nor
the statistical hiding property (because the proof of hiding did not make any assumptions
about the distribution of the public parameters).

Related work. Security definitions for quantum commitments were studied in a number
of works: What we call the “sum-binding” definition occurred implicitly and explicitly in
different variants in [2, 11, 7, 4]. Of these, [11] showed the impossibility of statistically
satisfying that definition (thus breaking [2]). [7] gave a construction of a statistically
hiding commitment based on quantum one-way permutations (their commitment sends
quantum messages). [4] gives statistically secure commitments in the multi-prover
setting. [3] generalizes the sum-binding definition for string commitments, arriving at a
computational-binding definition we call CDMS-binding. (Both sum-binding and CDMS-
binding are implied by collapse-binding as we show in this paper.) [5] gives another
definition of computational-binding (called Q-binding in [16]; see there for a discussion
of the differences to collapse-binding commitments). They also show how to construct
Q-binding commitments from sigma-protocols. (Both their assumptions and their security
definition seem incomparable to ours; finding out how their definition relates to ours is
an interesting open problem.) [18] gives a statistical binding definition of commitments
sending quantum messages and shows that statistically binding, computationally hiding
commitments (sending quantum messages) can be constructed from pseudorandom
permutations (and thus from quantum one-way functions, if the results from [10] hold in
the quantum setting, as is claimed, e.g., in [19]). [16] gave the collapse-binding definition
that we achieve in this paper; they showed how to construct statistically hiding, collapse-
binding commitments in the random oracle model. [1] showed that classical-style binding
does not exclude that the adversary can open the commitment to any value he chooses.
[16] generalized this by showing that this even holds for certain natural constructions
based on collision-resistant hash functions.

Organization. In Section 2, we give some mathematical preliminaries and crypto-
graphic definitions. In Section 3, we recall the notions of collapse-binding commitments
and collapsing hash functions, with suitable extensions to model public parameters and
to allow for more refined concrete security statements. We also state some known or
elementary facts about collapse-binding commitments and collapsing hash functions there.
In Section 4 we show that the Merkle-Damg̊ard construction allows us to get collapsing
hash functions with unbounded input length from collapsing compression functions. In
Section 5 we show how to construct collapsing hash functions from lossy functions (or
from lattice assumptions). Combined with existing results this gives us statistically hiding,
collapse-binding commitments for unbounded messages, interactive and non-interactive.
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In Section 6 we show that collapse-binding implies the existing definitions of sum-binding
and CDMS-binding. In the appendix (pages ??ff.) we give proofs for getting concrete
security bounds. Those proofs use the same techniques as the proofs in the main body,
but are somewhat less readable due to additional calculations and indices.

2 Preliminaries

Given a function f : X → Y , let im f = f(X) denote the image of f .
Given a distribution D on a countable set X, let suppD denote the support of

D, i.e., the set of all values that have non-zero probability. The statistical distance
between two distributions or random variables X,Y with countable range is defined as
1
2

∑
a

∣∣Pr[X = a]− Pr[Y = a]
∣∣.

Let λ denote the empty word.
We assume that all algorithms and parameters depend on an integer η > 0, the

security parameter (unless a parameter is explicitly called “constant”). We will keep this
dependence implicit (i.e., we write A(x) instead of A(η, x) for an algorithm A, and ` instead
of `(η) for an integer parameter `). When calling an adversary (quantum-)polynomial-time,
we mean that the runtime is polynomial in η.

We do not specify whether our adversaries are uniform or non-uniform. (I.e., whether
the adversary’s code may depend in an noncomputable way on the security parameter.)
All our results hold both in the uniform and in the non-uniform case.

Definition 1 (Universal hash function) A universal hash function is a function fam-
ily hr : X → Y (with r ∈ R) such that for any x, x′ ∈ X with x 6= x′, we have

Pr[hr(x) = hr(x
′) : r

$← R] = 1/|Y |.

We define lossy functions, which are like lossy trapdoor functions [13], except that we
do not require the existence of a trapdoor.

Definition 2 (Lossy functions) A collection of (`, k)-lossy functions consists of a
PPT algorithm SF and polynomial-time computable deterministic function Fs on {0, 1}`
and a message space Mk such that:

• Existence of injective keys: There is a distribution Dinj such that for any s ∈
suppDinj we have that Fs is injective. (We call such a key s injective.)

• Existence of lossy keys: There is a distribution Dlossy such that for any s ∈
suppDlossy we have that |imFs| ≤ 2`−k. (We call such a key s lossy.)

• Hard to distinguish injective from lossy: For any quantum-polynomial-time adver-
sary A, the advantage

∣∣Pr[A(s) = 1 : s ← Dinj ] − Pr[A(s) = 1 : s ← Dlossy ]
∣∣ is

negligible.
• Hard to distinguish lossy from S: For any quantum-polynomial-time adversary A,

the advantage
∣∣Pr[A(s) = 1 : s← Dlossy ]− Pr[A(s) = 1 : s← SF ]

∣∣ is negligible.
The parameter k is called the lossiness of Fs.
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This is a weakening of the definition of lossy trapdoor functions from [13]. Our
definition does not require the existence of trapdoors, and also does not require that
lossy or injective keys can be efficiently sampleable. (We only require that keys that are
indistinguishable from both lossy and injective keys can be sampled efficiently using SF .)

If k/` ≥ K for some constant K, and ` ∈ ω(log η), we say that the lossy function has
lossiness rate K.

Any “almost-always lossy trapdoor function” (Sldtf , Fldtf , F
−1
ldtf) in the sense of [13] is

a lossy function in the sense of Definition 2.5

[13] shows that for any constant K < 1, there is an almost-always lossy trapdoor
function with lossiness rate K based on the LWE assumption for suitable parameters.
[13] further shows that almost-always (`, k)-lossy trapdoor functions with lossiness rate
K exist if SIVP and GapSVP are hard for quantum algorithms to approximate within
Õ(dc) factors, where c = 2 + 3

2(1−K) + δ for any desired δ > 0. The same thus holds

for lossy functions in our sense. Furthermore, the construction from [13] has keys that
are indistinguishable from uniformly random, hence we can choose SF to simply return

s
$← {0, 1}`s for suitable `s.

6

3 Collapse-binding commitments and collapsing hash func-
tions

We reproduce the relevant results from [16] here. Note we have extended the definitions
in two ways: We include a public parameter k ← P. And we give additional equivalent
definitions for a more refined treatment of the concrete security of commitments.

Commitments. A commitment scheme consists of three algorithms (P, com, verify).
k ← P chooses the public parameter. (c, u) ← com(k,m) produces a commitment

5To see that, let Dinj be the distribution of the first output (i.e., discarding the trapdoor) of the
injective key sampler Sldtf(η, 1) conditioned on outputting an injective key. Let Dlossy be the distribution
of the first output of the lossy key sampler Sldtf(η, 0) conditioned on outputting a lossy key. Let SF
return the first output of Sldtf(η, 0) (or Sldtf(η, 1)). Let Fk(x) := Fldtf(k, x). For those choices, it is easy
to see that (SF , Fk) satisfies Definition 2.

6This is not explicitly mentioned in [13], but can be seen as follows: [13] constructs a matrix encryption
scheme whose ciphertexts are pairs of matrices (A,C′) over Zq for a suitable prime q. We can see those
ciphertexts as a tuple s′ ∈ Znq for some n. The proof of Lemma 6.2 in [13, full version] shows that
the matrix encryption scheme produces ciphertexts that are indistinguishable from uniformly random

s′
$← Znq .

The lattice-based lossy trapdoor function from [13] uses a ciphertext of that lossy encryption scheme

as its key. Thus a key is indistinguishable from s′
$← Znq . Hence we can choose SF to simply return a

uniformly random s′
$← Znq .

To get an SF that returns s
$← {0, 1}`s instead, we let SF choose s ∈ {0, . . . , 2` − 1}n and set

s′i := si mod q. For sufficiently large `, this changes the distribution of s′ only by a negligible amount.
Then s can be encoded as an `s-bitstring with `s := n`. (Since this way of sampling s′i is “oblivious”, i.e.,
given s′i we can efficiently find randomness si that leads to that s′i, the security of the lossy function is
not affected by outputting si as the key instead of s′i.)
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c for a message m, and also returns opening information u to be revealed later.
ok ← verify(k, c,m, u) checks whether the opening information u is correct for a given
commitment c and message m (if so, ok = 1, else ok = 0).

Definition 3 (Collapse-binding) For algorithms (A,B), consider the following games:

Game1 : k ← P, (S,M,U, c)← A(k), m←M(M), b← B(S,M,U)

Game2 : k ← P, (S,M,U, c)← A(k), b← B(S,M,U)

Here S,M,U are quantum registers. M(M) is a measurement of M in the computational
basis.

We call an adversary (A,B) c.b.-valid for verify iff for all k, Pr[verify(k, c,m, u) =
1] = 1 when we run (S,M,U, c)← A(k) and measure M in the computational basis as m,
and U in the computational basis as u.

A commitment scheme is collapse-binding iff for any quantum-polynomial-time ad-
versary (A,B) that is c.b.-valid for verify,

∣∣Pr[b = 1 : Game1] − Pr[b = 1 : Game2]
∣∣ is

negligible.

The only difference to the definition from [16] is that we have introduced a public
parameter k chosen by P. The proofs in [16] are not affected by this change.

For stating concrete security results (i.e., with more specific claims about the runtimes
and advantages of adversaries than “polynomial-time” and “negligible”), we could simply
call

∣∣Pr[b = 1 : Game1] − Pr[b = 1 : Game2]
∣∣ the advantage of the adversary (A,B).

However, we find that we get stronger results if we directly specify the advantage of
an adversary that attacks t commitments simultaneously.7 This leads to the following
definition of advantage. (A reader only interested in asymptotic results may ignore this
definition. The main body of this paper will provide statements and proofs with respect
to the simpler asymptotic definitions. Concrete security proofs are given in the appendix.)

Definition 4 (Collapse-binding – concrete security) For algorithms (A,B), con-
sider the following games:

Game1 : k ← P, (S,M1, . . . ,Mt, U1, . . . , Ut, c1, . . . , ct)← A(k),

m1 ←M(M1), . . . , mt ←M(Mt),

b← B(S,M1, . . . ,Mt, U1, . . . , Ut)

Game2 : k ← P, (S,M1, . . . ,Mt, U1, . . . , Ut, c1, . . . , ct)← A(k),

b← B(S,M1, . . . ,Mt, U1, . . . , Ut)

7We could simply analyze all schemes for adversaries that attack a single commitment at a time,
and then invoke the parallel composition theorem from [16] to get the advantage when attacking t
commitments. That theorem will then introduce a factor t in the advantage. ([16] states the theorem
without concrete security bounds, but they are easily extracted from the proof.) In contrast, a direct
analysis for t commitments may give better bounds, since the advantages we get in this paper do not
depend on t.
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Here S,M1, . . . ,Mt, U1, . . . , Ut are quantum registers. M(Mi) is a measurement of Mi in
the computational basis.

We call an adversary (A,B) t-c.b.-valid for verify iff for all k,
Pr[∀i. verify(k, ci,mi, ui) = 1] = 1 when we run (S,M1, . . . ,Mt, U1, . . . , Ut, c1, . . . , ct)←
A(k) and measure all Mi in the computational basis as mi, and all Ui in the computational
basis as ui.

For any adversary (A,B), we call
∣∣Pr[b = 1 : Game1] − Pr[b = 1 : Game2]

∣∣ the
collapse-binding-advantage of (A,B) against (P, com, verify).

Lemma 5 A commitment scheme (P, com, verify) is collapse-binding iff for any
polynomially-bounded t, and any quantum-polynomial-time adversary (A,B) that is
t-c.b.-valid for verify, the collapse-binding-advantage of (A,B) against (P, com, verify) is
negligible.

This follows from the parallel composition theorem from [16].

In [16], two different definitions of collapse-binding were given. The second definition
does not require an adversary to be valid (i.e., to output only valid openings) but instead
measures whether the adversary’s openings are valid. We restate the equivalence here in
the public parameter setting, the proof is essentially unchanged.

Lemma 6 (Collapse-binding, alternative characterization) For a commitment
scheme (P, com, verify), and for algorithms (A,B), consider the following games:

Game1 : k ← P, (S,M,U, c)← A(k), ok ← Vc(M,U), x←Mok (M), b← B(S,M,U)

Game2 : k ← P, (S,M,U, c)← A(k), ok ← Vc(M,U), b← B(S,M,U)

Here Vc is a measurement whether M,U contains a valid opening. Formally Vc is defined
through the projector

∑
m,u

verify(k,c,m,u)=1
|m〉〈m| ⊗ |u〉〈u|. Mok is a measurement of M in

the computational basis if ok = 1, and does nothing if ok = 0 (i.e., it sets m := ⊥ and
does not touch the register M).

(P, com, verify) is collapse-binding iff for all polynomial-time adversaries (A,B),∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible.

Hash functions. A hash function is a pair (P,Hk) of a parameter sampler P and a
function Hk : X → Y for some range X and domain Y . Hk is parametric in the public
parameter k ← P. (Typically, Y consists of fixed length bitstrings, and X consists of
fixed length bitstrings or {0, 1}∗.)

Definition 7 (Collapsing) For algorithms A, B, consider the following games:

Game1 : k ← P, (S,M, h)← A(k), m←M(M), b← B(S,M)

Game2 : k ← P, (S,M, h)← A(k), b← B(S,M)

10



Here S,M are quantum registers. M(M) is a measurement of M in the computational
basis.

For a family of sets Mk, we call an adversary (A,B) valid on Mk for Hk iff for all k,
Pr[Hk(m) = c ∧ m ∈Mk] = 1 when we run (S,M, h)← A(k) and measure M in the
computational basis as m. If we omit “on Mk”, we assume Mk to be the domain of Hk.

A function H is collapsing (on Mk) iff for any quantum-polynomial-time adversary
(A,B) that is valid for Hk (on Mk),

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible.

In contrast to [16] we have added the public parameter k. Furthermore, we have
extended the definition to allow to specify the set Mk of messages the adversary is allowed
to use. This extra expressiveness will be needed for stating some intermediate results.

Analogously to case of commitments, we give a definition of advantage for a t-session
adversary to get more precise results.

Definition 8 (Collapsing – concrete security) For algorithms A, B, and an inte-
ger t, consider the following games:

Game1 : k ← P, (S,M1, . . . ,Mt, h1, . . . , ht)← A(k),

m1 ←M(M1), . . . , mt ←M(Mt),

b← B(S,M1, . . . ,Mt)

Game2 : k ← P, (S,M1, . . . ,Mt, h1, . . . , ht)← A(k),

b← B(S,M1, . . . ,Mt)

Here S,M1, . . . ,Mt are quantum registers. M(Mi) is a measurement of Mi in the
computational basis.

For a family of sets Mk, we call an adversary (A,B) t-valid on Mk for Hk iff for all k,
Pr[∀i. Hk(mi) = ci ∧ mi ∈Mk] = 1 when we run (S,M1, . . . ,Mt, h1, . . . , ht) ← A(k)
and measure all Mi in the computational basis as mi. If we omit “on Mk”, we assume
Mk to be the domain of Hk.

We call adv :=
∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]

∣∣ the collapsing-advantage of
(A,B) against (P, Hk).

Lemma 9 A hash function (P,Hk) is collapsing (on Mk) iff for any polynomially-
bounded t, and any quantum-polynomial-time adversary (A,B) that is t-valid for Hk (on
Mk), the collapsing-advantage of (A,B) against (P, Hk) is negligible.

This follows from the parallel composition theorem for hash functions from [16].

Constructions of commitments. In [16] it was shown that the statistically hiding
commitment from Halevi and Micali [9] (which is almost identical to the independently
and earlier discovered commitment by Damg̊ard, Pedersen, and Pfitzmann [6]) is collapse-
binding, assuming a collapsing hash function. We restate their results with respect to
public parameters, the proofs are essentially unchanged.
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Definition 10 (Unbounded Halevi-Micali commitment [9]) Let (P,Hk) with
Hk : {0, 1}∗ → {0, 1}` be a hash function. Let L := 6`+ 4. Let hr : {0, 1}L → {0, 1}` with
r ∈ {0, 1}`r be an universal hash function.

We define the unbounded Halevi-Micali commitment (P, comHMu , verifyHMu) as:
• P is the same parameter sampler as in (P, Hk).
• comHMu(k,m): Pick r ∈ {0, 1}`r and u ∈ {0, 1}L uniformly at random, conditioned

on hr(u) = Hk(m).8 Compute h := Hk(u). Let c := (h, r). Return commitment c
and opening information u.

• verifyHMu(k, c,m, u) with c = (h, r): Check whether hr(u) = Hk(m) and h = Hk(u).
If so, return 1.

We define the statistical hiding property in the public parameter model. We use an
adaptive definition where the committed message may depend on the public parameter.

Definition 11 (Statistically hiding) Fix a commitment (P, com, verify) and an ad-
versary (A,B). Let

pb := Pr[b′ = 1 : k ← P, (S,m0,m1)← A(k), (c, u)← com(k,mb), b
′ ← B(S, c)].

We call |p0 − p1| the hiding-advantage of (A,B). We call (P, com, verify) statistically
hiding iff for any (possibly unbounded) (A,B), the hiding-advantage is negligible.

Theorem 12 (Security of the unbounded Halevi-Micali commitment)
(P, comHMu , verifyHMu) is statistically hiding and collapse-binding.

We state this lemma with concrete security bounds in Theorem 34. See also there for
a proof of the statistical hiding property. ([16] shows it only with respect to non-adaptive
adversaries.)

Miscellaneous facts. These simple facts will be useful throughout the paper.

Lemma 13 Let Mk be a family of sets. Assume that Pr[Hk is not injective on Mk :

k
$← P] is negligible. Then (P, Hk) is collapsing on Mk.

We state and prove this lemma with concrete security bounds in Lemma 35.

Lemma 14 Fix hash functions (P, fk) and (P, gk) with the same P and with polynomial-
time computable fk. If (P, fk) is collapsing and (P, gk) is collapsing on im fk, then
(P, gk ◦ fk) is collapsing.

We state this lemma with concrete security bounds in Lemma 36.

Lemma 15 If P1 and P2 are computationally indistinguishable, and (P1, Hk) is collaps-
ing, then (P2, Hk) is collapsing.

We state and prove this lemma with concrete security bounds in Lemma 37.

8In general, this can be computationally hard. However, should hr be a universal hash function where
this is hard, one can replace hr by h′(r,t) defined as h′(r,t)(x) := t⊕ hr(x). This function is still a universal
hash function, and sampling r, t, u is easy.
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4 Security of Merkle-Damg̊ard hashes

For this section, fix a hash function (P, Hk) with Hk : {0, 1}`in → {0, 1}`out and `in > `out .
Let `block := `in − `out . Fix some bitstring iv ∈ {0, 1}`out (may depend on the security
parameter). Fix a message space M with |M| ≥ 2 (e.g., M = {0, 1}∗). Fix a function
pad : M→ ({0, 1}`block )∗.

Definition 16 (Iterated hash) We define the iterated hash IHk : ({0, 1}`block )∗ →
{0, 1}`out as IHk(λ) := iv for the empty word λ and IHk(m‖m′) := Hk(IHk(m)‖m′) for
m ∈ ({0, 1}`block )∗ and m′ ∈ {0, 1}`block .

Definition 17 (Merkle-Damg̊ard) We call pad a Merkle-Damg̊ard padding iff pad
is injective and for any x, y ∈M with x 6= y, we have that pad(x) is not a suffix of pad(y)
(in other words, pad(M) is a suffix code).9

We define the Merkle-Damg̊ard construction MDk : M → {0, 1}`out by MDk :=
IHk ◦ pad.

Note that IHk and MDk depend on the choice of Hk, iv , and pad , but we leave this
dependence implicit for brevity.

Lemma 18 (Security of iterated hash) Let M̃ ⊆ ({0, 1}`block )∗ be a suffix code with
|M̃| ≥ 2. If (P,Hk) is a polynomial-time computable collapsing hash function, then
(P, IHk) is collapsing on M̃.

A concrete security variant of this lemma is proven in Lemma 38. The proof is very
similar, but somewhat less readable due to additional indices and technical details.

We sketch the idea of the proof: What we have to show is that, if the adversary
classically outputs IHk(m), we can measure m on register M without the adversary
noticing. We show this by successively measuring more and more information about the
message m on M , each time noting that the additional measurement is not noticed by
the adversary. First, measuring IHk(m) does not disturb M because IHk(m) is already
known. Note that IHk(m) = Hk(IHk(m

′)‖m) for m =: m′‖m. Thus, we have measured
the image of IHk(m

′)‖m under Hk. Since Hk is collapsing, we know that, once we have
measured the hash of a value, we can also measure that value itself without being noticed.
Thus we can measure IHk(m

′)‖m (this value will be called step0(m) in the full proof).
Now we use the same argument again: IHk(m

′) = Hk(IHk(m
′′)‖m′) for m′ =: m′′‖m′.

Since we know classically IHk(m′), we can measure IHk(m′′)‖m′ (this value will be called
step1(m)). Now we already have measured the two last blocks m′‖m of m without
being noticed. We can continue this way, until we have all of m. Since in each step, the
adversary did not notice the measurement, he will not notice if we measure all of m.

There is one hidden problem in the above argument: We claimed that given IHk(m′),
we have that IHk(m

′) = Hk(IHk(m
′′)‖m′). This is only correct if m′ is not empty! So,

9Commonly, stronger conditions are placed on pad , see, e.g., [8, Def. 8.7]. However, “suffix-code” and
“injective” turns out to be sufficient. For example, the padding using in SHA-256 [12] is a Merkle-Damg̊ard

padding for M = {0, 1}≤264−1 according to our definition.
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the above measurement procedure will implicitly measure whether m′ is empty (and
similarly for the values m′′ etc. that are measured afterwards). Such a measurement
might disturb the state. Here the assumption comes in that M̃ is a suffix code. Namely,
since we know m such that m = m′‖m, we can tell whether m ∈ M̃ (then m′ must be
empty) or m /∈ M̃ (then m′ cannot be empty). Thus we already know whether m′ is
empty, and measuring this information will not disturb the state. Similarly, we deduce
from m′‖m whether m′′ is empty, etc.

We now give the formal proof:

Proof of Lemma 18. Assume a polynomial-time adversary (A,B) that is valid for IHk

on M. Let Game1 and Game2 be the games from Definition 7 for adversary (A,B). Let

ε :=
∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]

∣∣. (1)

We will need to show that ε is negligible.
We have λ /∈ M̃. (λ denotes the empty word.) Otherwise, we would have M̃ = {λ}

since M̃ is a suffix code, which contradicts |M̃| ≥ 2.
For a multi-block message m ∈ ({0, 1}`block )∗, let |m| denote the number of `block -bit

blocks in m. (I.e., |m| is the bitlength of m divided by `block .) Let mi denote the i-th
block of m, and let m−i denote the i-th block from the end (i.e., m−i = m|m|−i+1).
Let m≥−i denote all the blocks in m starting from m−i (i.e., m≥−i consists of the last
i blocks of m). Let m<−i denote the blocks before m−i. (I.e., m = m<−i ‖m≥−i for
i ≤ |m|.)

Let B be a polynomial upper bound on the number of blocks in the message m output
by A on register M .

For a function f , let Mf (M) denote a measurement that, given a register M that
contains values |m〉 in superposition, measures f(m), but without measuring more
information than that. Formally,Mf is a projective measurement consisting of projectors
Py (y ∈ im f) with Py =

∑
m:f(m)=y|m〉〈m|.

For m ∈ M̃, we define

partiali(m) :=

{
(⊥,m) (if |m| ≤ i)
(IHk(m<−i),m≥−i) (if |m| > i)

(The function partiali also depends on k, but we leave that dependence implicit.) Intu-
itively, partiali(m) represents a partial evaluation of IHk(m), with the last i blocks not
yet processed.

Note that partiali(m) always contains enough information to compute IHk(m). And
the larger i is, the more about m is revealed. In fact, learning partial0(m) is equivalent
to learning IHk(m), and learning partialB(m) is equivalent to learning m as the following
easy to verify facts show:

Fact 1 partial0(m) = (IHk(m), λ) for all m ∈ M̃.

Fact 2 partialB(m) = (⊥,m) for all m ∈ M̃ with |m| ≤ B.
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We will need one additional auxiliary function stepi, defined by stepi(m) :=
IHk(m<−(i+1))‖m−(i+1) for |m| ≥ i + 1. (And stepi(m) := ⊥ if |m| ≤ i.) Intuitively,
stepi(m) is the input to last call of Hk when computing partiali(m). The following facts
are again easy to verify using the definition of partiali, stepi, and IHk:

Fact 3 If partiali(m) = (h, s) and h 6= ⊥, then Hk(stepi(m)) = h.

Fact 4 From (partiali(m), stepi(m)) one can compute partiali+1(m) and vice versa.
Formally: there are functions f , g such that for all m ∈ M̃, f(partiali(m), stepi(m)) =
partiali+1(m) and g(partiali+1(m)) = (partiali(m), stepi(m)).

In a sense, partiali(m) interpolates between the knowledge of only IHk(m) (case
i = 0), and full knowledge of m (case i = B). (Cf. Facts 1, 2.) We make this more formal
by defining the following hybrid game for i = 0, . . . , B:

Gamehybi : k ← P, (S,M, h)← A(k),

(h′, s)←Mpartiali(M),

b← B(S,M).

(Here Mpartiali is Mf as defined above with f := partiali.)

Consider Gamehyb0 . By assumption, (A,B) is valid for IHk on M̃, so we have that
the register M contains superpositions of states |m〉 with IHk(m) = hj and m ∈ M̃. By
Fact 1, this implies that the measurement Mpartial0(M) will always yield the outcome
(h′, s) = (h, λ). Hence the measurement Mpartial0(M) has a deterministic outcome.

Thus, the probability of b = 1 in Gamehyb0 does not change if we omit the measurements
y ←Mpartiali(M). Thus

Pr[b = 1 : Gamehyb0 ] = Pr[b = 1 : Game2]. (2)

Consider GamehybB . By assumption, A outputs only states on M which are superposi-
tions of |m〉 with m ∈ M̃ and |m| ≤ B. Thus, by Fact 2, (h′, s) ←MpartialB(M) is a
complete measurement in the computational basis. Hence

Pr[b = 1 : GamehybB ] = Pr[b = 1 : Game1]. (3)

From (1,2,3), we get∣∣Pr[b = 1 : Gamehyb0 ]− Pr[b = 1 : GamehybB ]
∣∣ = ε. (4)

For i = 0, . . . , B we now define an adversary (A∗i , B
∗) against Hk.

Algorithm A∗i (k) runs:
• (S∗,M∗, h∗)← A(k).
• (h′, s)←Mpartiali(M

∗).
• Initialize M with |0`in 〉.
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(h′, i) (h′, i)

P A B

A Mpartiali Ustepi Ustepi B

Ustepi M Ustepi

h′, or Hk(0) if h′ = ⊥

A B

Ustepi Ustepi

h∗

b
M∗ M∗

(h′, s)

S∗ S∗

M∗ M∗

M|0`in 〉

S

h

(if h′ 6= ⊥) (if h′ 6= ⊥)(Gamei1
only)

m

k

A∗i B∗

Figure 2: The adversary (A∗i , B
∗) in games Gamei1 and Gamei2. Depicted is Gamei1. Gamei2 is derived

by omitting the measurement M in the middle.

• If h′ 6= ⊥:
– Apply Ustepi to M∗,M .
– h := h′.

• If h′ = ⊥:
– Let h := Hk(0

`in ).
• Let S := S∗,M∗, h′, i. (That is, all those registers and classical values are combined

into a single register S.)
• Return (S,M, h).

Here Ustepi refers to the unitary transformation |x〉|y〉 7→ |x〉|y ⊕ stepi(x)〉. See the left
dashed box in Figure 2 for a circuit-representation of A∗i .

Algorithm B∗(S,M) runs:
• Let S∗,M∗, h′, i := S.
• If h′ 6= ⊥: apply Ustepi to M∗,M .
• Run b← B(S∗,M∗).
• Return b.

See the left dashed box in Figure 2 for a circuit-representation of B∗.

Claim 1 (A∗i , B
∗) is valid.

We show this claim: After the measurement (h′, s)←Mpartiali(M
∗), we have that

M∗ contains a superposition of |m〉 with partiali(m) = (h′, s). If h′ = ⊥, then A∗i
initializes M with |0`in 〉 and sets h := Hk(0

`in ). Thus in this case, M trivially contains
a superposition of |m〉 with Hk(m) = h. If h′ 6= ⊥, then by Fact 3, M∗ contains a
superposition of |m〉 with Hk(stepi(m)) = h′ = h. Then A∗ initializes M with |0`in 〉 and
applies Ustepi to M∗,M . Thus after that, M is in a superposition of |m〉 with Hk(m) = hj .
Concluding, in both cases M is in a superposition of |m〉 with Hk(m) = h, thus (A∗i , B

∗)
is valid and the claim follows.

Let Gamei1 denote Game1 from Definition 7, but with adversary (A∗i , B
∗) and hash

function (P, Hk). Analogously Gamei2. Figure 2 depicts both games.
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Claim 2 Pr[b = 1 : Gamei2] = Pr[b = 1 : Gamehybi ].

We show this claim: In Gamei2, no measurement occurs between the invocation of
Ustepi by A∗i and the invocation of Ustepi by B∗. (Cf. Figure 2.) Since Ustepi is an
involution, those two invocations cancel out. Thus only the invocations of P, A,Mpartiali ,

and B remain. This is exactly Gamehybi . This shows the claim.

Claim 3 Pr[b = 1 : Gamei1] = Pr[b = 1 : Gamehybi+1].

We show the claim: Note that in Gamei1, after the measurement Mpartiali , on the
registers M∗,M , we have the following sequence of operations if h′ 6= ⊥:

M is initialized with |0`in 〉. Ustepi is applied to M∗,M . M is measured in the
computational basis (outcome m). Ustepi is applied to M∗,M . M is discarded.

This is equivalent to just executing m←Mstepi(M
∗).

Furthermore, if h = ⊥, then the sequence of operations is simply: Initialize M with
|0`in 〉. Measure M . Discard M . This is equivalent to doing nothing. And doing nothing
is equivalent to m ← Mstepi(M

∗) in case h′ = ⊥. (Because in that case, M∗ is in a
superposition of |m〉 with |m| ≤ i, and thus stepi(m) = ⊥, and hence the outcome of
Mstepi is deterministic.)

Thus Gamei1 is equivalent to the following Gamei1∗ (in the sense that Pr[b = 1] is the
same in both games):

Gamei1∗ : k ← P, (S∗,M∗, h∗)← A(k),

(h′, s)←Mpartiali(M
∗), m←Mstepi(M

∗),

b← B(S∗,M∗).

By Fact 4, measurements Mpartiali(M
∗) and Mstepi(M

∗) have the same effect on M∗

as Mpartiali+1
(M∗). (The measurement outcome may be different, but we do not use

the measurement outcome in our games.) Thus Gamei1∗ is equivalent to Gamei1∗∗ (in the
sense that Pr[b = 1] is the same in both games):

Gamei1∗∗ : k ← P, (S∗,M∗, h∗)← A(k),

(h′, s)←Mpartiali+1
(M∗),

b← B(S∗,M∗).

But Gamei1∗∗ is the same as Gamehybi+1, except that S,M, h are renamed to S∗,M∗, h∗.

Hence Pr[b = 1] is the same in Gamei1 and Gamehybi+1, the claim follows.

Let A∗ pick i
$← {0, . . . , B − 1} and then run A∗i . From Claim 1, it follows that

(A∗, B∗) is valid, too. Let Game∗1 denote Game1 from Definition 7, but with adversary
(A∗, B∗) and hash function (P, Hk). Analogously Game∗2.

Since (P, Hk) is collapsing by assumption, and (A∗, B∗) is valid and polynomial-time,
we have that ε∗ :=

∣∣Pr[b = 1 : Game∗1]− Pr[b = 1 : Game∗2]
∣∣ is negligible.
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Then we have:

ε∗ =
∣∣Pr[b = 1 : Game∗1]− Pr[b = 1 : Game∗2]

∣∣
=

1

B

∣∣∣B−1∑
i=0

Pr[b = 1 : Gamei1]−
B−1∑
i=0

Pr[b = 1 : Gamei2]
∣∣∣

(∗)
=

1

B

∣∣∣B−1∑
i=0

Pr[b = 1 : Gamehybi+1]−
B−1∑
i=0

Pr[b = 1 : Gamehybi ]
∣∣∣

=
1

B

∣∣∣Pr[b = 1 : GamehybB ]− Pr[b = 1 : Gamehyb0 ]
∣∣∣ (4)

=
ε

B
.

Here (∗) follows from Claims 2 and 3.
Since ε∗ is negligible, ε = Bε∗ is negligible. �

Theorem 19 (Security of Merkle-Damg̊ard) Assume that pad is a polynomial-time
computable Merkle-Damg̊ard padding. If (P, Hk) is a polynomial-time computable collaps-
ing hash function, (P,MDk) is collapsing.

A concrete security statement is given in Theorem 20.

Proof. Since pad is a Merkle-Damg̊ard padding, we have that pad is injective and im pad
is a suffix code. Since the domain of pad is M, and |M| ≥ 2 by assumption, |im pad | ≥ 2.
Thus by Lemma 18, (P, IHk) is collapsing on im pad .

Since pad is injective, (P, pad) is collapsing by Lemma 13.
Since MDk = IHk ◦ pad , by Lemma 14, (P,MDk) is collapsing. �

Concluding, we also state Theorem 19 in its concrete security variant. Let τH denote
an upper bound on the time needed for evaluating Hk. Let τpad(`) denote an upper
bound on the time for computing pad(m) for |m| ≤ `. Let `pad (`) denote an upper bound
on |pad(m)| for |m| ≤ `. (|·| refers to the length in bits.)

Theorem 20 (Concrete security of Merkle-Damg̊ard) Assume that pad is a
Merkle-Damg̊ard padding.

Let (A,B) be a τ -time adversary, t-valid for MDk on M, with collapsing-advantage ε
against (P,MDk).

Then there is a (τ+O(tτpad (`A)+t`pad (`A)τH/`block ))-time adversary (A∗, B∗), t-valid
for Hk, with collapsing-advantage ≥ ε`block/`pad (`A) against (P, Hk).

The proof is given on page 40.

5 Collapsing hashes in the standard model

In the following, let (SF , Fs) be am (`in , k)-lossy function with Fs : {0, 1}`in → {0, 1}`mid .
Let hr : {0, 1}`mid → {0, 1}`out be a universal hash function (with key r ∈ {0, 1}`seed ). Let
Dinj and Dlossy be as in Definition 2.
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We will often write F(r,s) and h(r,s) for Fs and hr to unify notation (one of the
parameters will be silently ignored in this case).

Construction 1 (Collapsing compression function) We define the parameter sam-

pler Pinj to return (r, s) with r
$← {0, 1}`seed , s← Dinj . We define the parameter sampler

Plossy to return (r, s) with r
$← {0, 1}`seed , s← Dlossy . We define the parameter sampler

PH to return (r, s) with r
$← {0, 1}`seed , s← SF .

We define the hash function H(r,s) : {0, 1}`in → {0, 1}`out by H(r,s) := h(r,s) ◦ F(r,s).

Note that we are mainly interested in the case where `out < `in . Otherwise, H(r,s)

could simply be chosen to be an injective function which is always collapsing (Lemma 13).
Furthermore, note that Pinj and Plossy are not necessarily polynomial-time. The final

construction will use PH , but we need Pinj and Plossy to state intermediate results.

Lemma 21 If (SF , Fs) is a lossy function, then (Plossy , F(r,s)) is collapsing.

Proof. For (r, s)← Pinj , F(r,s) is always injective. Hence by Lemma 13, (Pinj , F(r,s)) is
collapsing.

Since (SF , Fs) is a lossy function, we have that Dinj and Dlossy are computationally
indistinguishable. Hence Pinj and Plossy are computationally indistinguishable.

Thus by Lemma 15, (Plossy , F(r,s)) is collapsing. �

Lemma 22 If (SF , Fs) is a lossy function with lossiness rate K, and if `out/`in ≥ c >
2− 2K for some constant c, (Plossy , h(r,s)) is collapsing on imF(r,s).

Proof. We first compute the probability that h(r,s) is not injective on imF(r,s).

Pr[h(r,s) is not injective on imF(r,s) : (r, s)← Plossy ]

(∗)
=
∑
s

Pr[Dlossy = s] Pr[h(r,s) is not injective on imF(r,s) : r
$← {0, 1}`seed ]

≤
∑
s

Pr[Dlossy = s]
∑

x,y∈imFs
x 6=y

Pr[h(r,s)(x) = h(r,s)(y) : r
$← {0, 1}`seed ]

(∗∗)
≤
∑
s

Pr[Dlossy = s]
∑

x,y∈imFs
x 6=y

1

2`out

(∗∗∗)

≤
∑
s

Pr[Dlossy = s]
(2`in−k)2

2`out

= 22`in−2k−`out =: ε. (5)

Here (∗) uses the fact that (r, s)← Plossy is the same as r
$← {0, 1}`seed , s← Dlossy . And

(∗∗) is by definition of universal hash functions. And (∗∗∗) follows from the fact that for
any s in the support of Dlossy , imFs = imF(r,s) has size at most 2`in−k (recall that k is
the lossiness of Fs).
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Since (SF , Fs) has lossiness rate K, we have k ≥ K`in by definition, and `in is
superlogarithmic. Remember that `out/`in ≥ c. Then

ε = 22`in−2k−`out ≤ 22`in−2K`in−c`in = 2(2−2K)`in−c`in = 2−d`in for d := c−(2−2K).

Since by assumption, c and K are constants and c > 2− 2K, we have that d > 0 is a
constant. Since `in is superlogarithmic, this implies that ε ≤ 2−d`in is negligible.

From (5) and Lemma 13, we then have that (Plossy , h(r,s)) is collapsing on imF(r,s).
�

Theorem 23 If (SF , Fs) is a polynomial-time computable lossy function with lossiness
rate K, and if `out/`in ≥ c > 2− 2K for some constant c, then (PH , H(r,s)) is collapsing.

We state the concrete security in Theorem 41.

Proof. By Lemma 21, (Plossy , F(r,s)) is collapsing. By Lemma 22, (Plossy , h(r,s)) is
collapsing on imF(r,s). By Construction 1, H(r,s) = h(r,s) ◦ F(r,s). Thus, by Lemma 14,
(Plossy , H(r,s)) is collapsing.

Since (SF , Fs) is a lossy function, Dlossy and SF are computationally indistinguishable.
Hence Plossy and PH are computationally indistinguishable. Hence by Lemma 15,
(PH , H(r,s)) is collapsing. �

Theorem 24 Assume `in > `out . Let MD(r,s) be the Merkle-Damg̊ard construction
applied to H(r,s) (using a Merkle-Damg̊ard padding pad).

If (SF , Fs) is a polynomial-time computable lossy function with lossiness rate K, and
hr is polynomial-time computable, and if `out/`in ≥ c > 2− 2K for some constant c, then
(PH ,MD(r,s)) is collapsing.

We state the concrete security in Theorem 42.

Proof. By Theorem 23, (PH , H(r,s)) is collapsing. Then by Theorem 19, (PH ,MD(r,s)) is
collapsing. �

Theorem 25 Assume `in > `out . Let MD(r,s) be the Merkle-Damg̊ard construction ap-
plied to H(r,s). Let (comHMu , verifyHMu) denote the unbounded Halevi-Micali commitment
using MD(r,s).

If (SF , Fs) is a polynomial-time computable lossy function with lossiness rate K, and
hr is polynomial-time computable, and if `out/`in ≥ c > 2− 2K for some constant c, then
(PH , comHMu , verifyHMu) is statistically hiding and collapse-binding.

Proof. By Theorem 24, (PH ,MD(r,s)) is collapsing. Then by Theorem 12,
(PH , comHMu , verifyHMu) is statistically hiding and collapse-binding. �
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Note that if K > 1
2 , we have 2− 2K < 1. Then hr, c can always be chosen to satisfy

the conditions of Theorem 24 and Theorem 25 (namely `out/`in ≥ c > 2 − 2K and
`in > `out).

For completeness, we now give the concrete security variant of Theorem 25 here.
The proof is immediate from the concrete security results Theorem 34 and Theorem 42.
Let τF denote the time needed for evaluating F(r,s). Let τh denote the time needed for
evaluating h(r,s). Let τ ′h denotes an upper bound on the time needed for computing the
universal hash function from Definition 10. For a given adversary (A,B), let `A be a upper
bound on the length of each message output by A on the registers Mi (cf. Definition 8).

Theorem 26 Assume `in > `out . Let MD(r,s) be the Merkle-Damg̊ard construction ap-
plied to H(r,s). Let (comHMu , verifyHMu) denote the unbounded Halevi-Micali commitment
using MD(r,s).

Then any adversary against (PH , comHMu , verifyHMu) has hiding-advantage ≤
2−`out−1.

Let (A,B) be a τ -time adversary t-c.b.-valid for verify with collapsing-advantage ε
against (PH , comHMu , verifyHMu).

Then there are (τ + O(tτpad(`A) + t`pad(`A)(τF + τh)/(`in − `out) + `seed + tτ ′h))-
time adversaries C1, . . . , C6, such that C1, C2, C3 distinguish SF and Dlossy with some
advantages ε1, ε2, ε3, and C4, C5, C6 distinguish Dinj and Dlossy with some advantages

ε4, ε5, ε6, and ε ≤ (22`in−2k−`out + 2
∑6

i=1 εi) ·
`pad (`A)

(`in−`out ) .

By using existing constructions of lossy functions, we further get:

Theorem 27 If SIVP and GapSVP are hard for quantum algorithms to approximate
within Õ(dc) factors for some c > 5, then there is a collapsing hash function with domain
{0, 1}∗ and codomain {0, 1}`out for some `out , as well as a non-interactive, statistically
hiding, collapse-binding commitment schemes with message space {0, 1}∗.

Furthermore, the hash function and the commitment scheme can be chosen such that
their parameter sampler P returns a uniformly random bitstring.

Proof. [13] shows that almost-always lossy trapdoor functions with lossiness rate K < 1
exist if SIVP and GapSVP are hard for quantum algorithms to approximate within
Õ(dc) factors, where c = 2 + 3

2(1−K) + δ for any desired δ > 0. Almost-always lossy
trapdoor functions are in particular lossy functions. If c > 5, we can chose some constant
K > 1

2 such that c = 2 + 3
2(1−K) + δ for some δ > 0. Thus there is a lossy function

with constant lossiness rate K > 1
2 . Hence by Theorem 24 and Theorem 25 there are a

collapsing hash function (PH , H(r,s)) and a non-interactive collapse-binding statistically
hiding commitment (PH , comHMu , verifyHMu).

PH returns (s, r) with s← SF and r
$← {0, 1}`seed . Furthermore, as discussed after

Definition 2, the lossy function (SF , Fs) can be chosen such that SF returns uniformly
random keys s. In that case PH returns a uniformly random bitstring. �
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Interactive commitments without public parameters. The above text analyzed
non-interactive commitments using public parameters. We refer to the introduction
for the reason why it is unlikely that we can get rid of the public parameters in the
non-interactive setting. However, in the interactive setting, we get the following result:

Theorem 28 If lossy function with lossiness rate K > 1
2 exist, or if SIVP and GapSVP

are hard for quantum algorithms to approximate within Õ(dc) factors for some c > 5,
then there is a collapse-binding10 statistically-hiding commitment scheme with two-round
commit phase and non-interactive verification, without public parameters.

Proof. Let (PH , comHMu , verifyHMu) be the commitment scheme analyzed above.
We construct an interactive commitment scheme as follows: To commit to a message

m, the recipient runs k ← PH and sends k to the committer. Then the committer
computes (c, u)← comHMu(k,m) and sends c. To open to m, the committer sends u, and
the verifier checks whether verifyHMu(k, c,m, u) = 1.

It is easy to see that if (PH , comHMu , verifyHMu) is collapse-binding, so is the resulting
interactive scheme. (In the collapse-binding game, the verifier is honest. Hence it is
equivalent whether the verifier or PH picks k.)

In general, having the verifier pick k may break the hiding property of the commitment.
However, the proof of the hiding property of (PH , comHMu , verifyHMu) (see Theorem 34)
reveals that that commitment is statistically hiding for any choice of k. Thus the
interactive commitment is statistically hiding. �

6 Collapse-binding implies sum-binding

For the remainder of this section, let (P, com, verify) be a commitment scheme with
message space {0, 1}. (I.e., a bit commitment.)

A very simple and natural definition of the binding property for bit commitment
schemes is the following one (it occurred implicitly and explicitly in different variants in
[2, 11, 7, 3, 4]): If an adversary produces a commitment c, and is told only afterwards
which bit m he should open it to, then p0 + p1 ≤ 1 + negligible. Here p0 is the probability
that he successfully opens the commitment to m = 0, and p1 analogously. This definition
is motivated by the fact that a perfectly binding commitment trivially satisfies p0 + p1 ≤
1 + negligible.

Definition 29 (Sum-binding) For any adversary (C0, C1) and m ∈ {0, 1}, let

pm(C0, C1) := Pr[verify(k, c,m, u) = 1 : k ← P, (S, c)← C0(k), u← C1(S,m)].

Here S is a quantum register, and c a classical value. We call adv := p0 + p1 − 1 the
sum-binding-advantage of (C0, C1). (With adv := 0 if the difference is negative.)

A commitment is sum-binding iff for any quantum-polynomial-time (C0, C1), adv is
negligible.

10We refer to [16] for the definition of “collapse-binding” for interactive commitments.
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Unfortunately, this definition seems too weak to be useful (see [16] for more discussion),
but certainly it seems that the sum-binding property is a minimal requirement for a
bit commitment scheme. Yet, it was so far not known whether collapse-binding bit
commitments are sum-binding. In this section, we will show that collapse-binding bit
commitments are sum-binding, thus giving additional evidence that collapse-binding is a
sensible definition.

Proof attempt using rewinding. Before we prove our result, we first explain why
existing approaches (i.e., rewinding) do not give the required result.

First, the classical case as a warm up. Assume a classical adversary with p0+p1 = 1+ε
for non-negligible ε. We then break the classical computational-binding property as
follows: Run the adversary to get c. Then ask him to provide an opening u for m = 0.
Then rewind him to the state where he produced c. Then ask him to provide an opening
u′ for m = 1. The probability that u is valid is p0, the probability that u′ is valid is
p1. From the union bound, we get that the probability that both are valid is at least
p0 + p1 − 1 = ε.11 But that means that the adversary has non-negligible probability
ε of finding c,m,m′, u, u′ with m 6= m′ and u, u′ being valid openings for m,m′. This
contradicts the classical-style binding property.

Now what happens if we try to use rewinding in the quantum case to show that
collapse-binding implies sum-binding? If we use the rewinding technique from [14], the
basic idea is the following:

Run the adversary to get a commitment c (i.e., (S, c)← C0(k)). Run the adversary
to get an opening u for m = 0 (i.e., run u← C1(S, 0)). Here we assume w.l.o.g. that C1

is unitary. Measure u. Run the inverse of the unitary C1(S, 0). Run the adversary to get
an opening u′ for m = 1 (i.e., run u← C1(S, 1)).

To get a contradiction, we need to show that with non-negligible probability u and u′

are both valid openings. While u will be valid with probability p0, there is nothing we
can say about u′. This is because measuring u will disturb the state of the adversary so
that C1(S, 1) may return nonsensical outputs. [14] shows that if there is only one valid u,
then rewinding works. But there is nothing that guarantees that there is only one valid
u.12 At this point the rewinding-based proof fails.

Collapse-binding implies sum-binding. We now formally state and prove the main
result of this section with a technique different from rewinding. (But possibly this is a
new rewinding technique under the hood.)

Theorem 30 If (P, com, verify) is collapse-binding, then (P, com, verify) is sum-binding.

11Namely, Pr[u invalid] = 1− p0, Pr[u′ invalid] = 1− p1. Hence Pr[u invalid or u′ invalid] ≤ (1− p0) +
(1− p1). Thus Pr[u, u′ valid] ≥ 1−

(
(1− p0) + (1− p1)

)
= p0 + p1 − 1.

12Collapse-binding commitments are rewinding-friendly, but this refers only to the case where we wish
to measure the opened message m. Roughly, collapse-binding implies that measuring m does disturb the
state more than measuring whether the commitment was opened correctly or not, and in that case, the
rewinding technique from [14] applies. The [16] for example proofs using this technique.
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A concrete security variant is given in Theorem 44.
An interesting open question is whether the converse holds. If so, this would immediate

give strong results for the parallel composition of sum-binding commitments and their use
in rewinding proofs (because all the properties of collapse-binding commitments would
carry over).

We give a proof sketch first: As we have seen, running two executions of the adversary
sequentially (first opening to m = 0, then opening to m = 1) via rewinding is problematic
because the second execution may not be successful any more. Instead, we will run both
executions at the same time in superposition:

Assume an adversary against sum-binding with non-negligible advantage ε. We
initialize a qubit M with |+〉 = 1√

2
|0〉 + 1√

2
|1〉. Then we let the adversary commit

((S, c) ← C0(k)), and then we run C1(S, 0) or C1(S, 1) in superposition, controlled by
the register M . This may entangle M with the rest of the system. And we get openings
for m = 0 and m = 1 in superposition on a register U . Now if we measure whether
U contains a valid opening for the message on register M , the answer will be yes with
probability δ := p0+p1

2 = 1+ε
2 where p0, p1 are as in Definition 29 (call this measurement

Vc). Now, we either measure the register M in the computational basis or we do not.
And finally we apply the inverse of C1(S, 0) or C1(S, 1) in superposition. And finally we
measure whether M is still in the state |+〉 (call this measurement M+).

We distinguish two cases: If we measure M in the computational basis, then M = |0〉
or M = |1〉 afterwards. So the measurement M+ succeeds with probability 1

2 . Hence the

probability that both Vc and M+ succeed is δ
2 .

If we do not measure M in the computational basis, then we have the following
situation. The invocation C1(S, 0) or C1(S, 1) in superposition, together with the mea-
surement Vc, together with the uncomputation of C1(S, 0) or C1(S, 1) can be seen as a
single binary measurement Rc. Now if we have a measurement that succeeds with high
probability, it cannot change the state much. Thus, the higher the success probability
δ of Rc, the more likely it is that M is still in state |+〉 and M+ succeeds. An exact
computation reveals: the probability that both Rc (a.k.a. Vc) and M+ succeed is δ2.

Thus the measurement M+ distinguishes between measuring and not measuring M
with non-negligible probability δ

2 −δ
2 ≥ ε

4 . This contradicts the collapse-binding property,
the theorem follows.

We now give the full proof:

Proof of Theorem 30. Let (C0, C1) be an adversary in the sense of Definition 29 (against
sum-binding). Let p0 := p0(C0, C1) and p1 := p1(C0, C1). We have to show that the
advantage ε := p0 + p1 − 1 is upper bounded by a negligible function.

Without loss of generality, we can assume that C1 is unitary. More precisely, C1(S,m)
applies a unitary circuit Um to S, resulting in two output registers U and E. Then he
measures U in the computational basis and returns the outcomes u.

With that notation, we can express the game from Definition 29 as the following
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|+〉 UM U †M M+

P C0 UM Vc Mok U †M

UM Vc U †M

UM
Vc

U †M

E ES

k

M

S′ M M M M

M

S′

c ok m

U U U

b

A B

Figure 3: Circuit describing Game1. Game2 can be derived by omitting Mok . The adversary algorithms
A and B are depicted in the dashed boxes. (To avoid wires crossing gates, the outgoing wires of UM are
ordered E,M,U , not M,U,E as in the text.)

circuit (renaming the register S to S′ to avoid name clashes later):

P Co Um

m
$← {0, 1} Um M u

Um
k

c

S′ E

U (6)

(Here and in the following, M denotes a measurement in the computational basis.) In
that circuit, Pr[verify(k, c,m, u) = 1] = δ := 1

2(1 + ε).
Let M denote a one-qubit quantum register, and define UM : |m〉M ⊗ |Ψ〉S′ 7→

|m〉M ⊗ Um|Ψ〉S′ . That is, UM is a unitary with two input registers M,S′, and three
output registers M,U,E which is realized by applying U0 or U1 to S′, depending on
whether M is |0〉 or |1〉.

Let M+ be the binary measurement that checks whether register M is in state
|+〉 = 1√

2
|0〉+ 1√

2
|1〉. Formally, M+ is defined by the projector P+ := |+〉〈+| on M .

Recall that Vc from Lemma 6 is the measurement defined by the projector Pc :=∑
m,u

verify(k,c,m,u)=1
|m〉〈m| ⊗ |u〉〈u|.

We define an adversary (A,B) against the collapse-binding property of com (using
the alternative definition from Lemma 6). Algorithm A(k) performs the following steps
(see also Figure 3):

• Run (S′, c)← C0(k).
• Initialize a register M with |+〉.
• (M,U,E)← UM (M,S′). That is, apply UM to M,S′.
• S := E. (That is, we rename the register E.)
• Return (S,M,U, c).

Algorithm B(S,M,U) performs the following steps (see also Figure 3):
• E := S.
• (M,S′)← U †M (M,U,E).
• b←M+(Y ).
• Return b.
Let Game1,Game2 refer to the games from Lemma 6 with adversary (A,B). Figure 3

depicts those games as a quantum circuit.
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We consider Game1 first. We are interested in computing the probability p := Pr[b =
1 ∧ ok = 1] in this game. Observe that replacing Mok by M (the latter being the
measurement in the computational basis, applied even when ok = 0) does not change p.
(Because Mok and M behave differently only when ok = 0.) Thus, replacing Mok on M
by M does not change p. Thus, we get the following circuit:

|+〉 UM U †M M+

P C0 UM Vc M U †M

UM Vc U †M

UM
Vc

U †M

E E

k

M

S′ M

M

S′

c ok m b

U

M

U

(7)

and have

Pr[b = 1 ∧ ok = 1 : Circuit (7)] = Pr[b = 1 ∧ ok = 1 : Game1]. (8)

Note that M on M commutes with Vc and UM . So we can move M to the beginning
(right after initializing M with |+〉). But measuring |+〉 in the computational basis yields
a uniformly distributed bit m. And furthermore, if M contains |m〉, then UM degenerates
to Um on register S′, and M stays in state |m〉 until the measurement M+. Thus we can
simplify (7) as follows:

Um U †m |m〉 M+

P C0 Um |m〉 Vc U †m

Um Vc U †m

Um
Vc

U †m

m
$← {0, 1} E E

k S′ S′

c ok b

U U

M

M

(9)

We thus have

Pr[b = 1 ∧ ok = 1 : Circuit (7)] = Pr[b = 1 ∧ ok = 1 : Circuit (9)]. (10)

It is easy to see that

Pr[ok = 1 : Circuit (9)] = Pr[verify(k, c,m, u) = 1 : Circuit (6)] = δ.

Furthermore, in (9), b is independent of ok , and we have Pr[b = 1] = 1
2 by definition of

M+. Thus

Pr[b = 1 ∧ ok = 1 : Game1]
(8),(10)

= Pr[b = 1 ∧ ok = 1 : Circuit (9)] =
δ

2
. (11)

We now consider Game2. This game is depicted in Figure 3 (when omitting the
measurementMok ). We are interested in computing the probability q := Pr[b = 1∧ok = 1]
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in this game. Recall that P+, Pc are the projectors describing the measurements M+, Vc.
Thus, q = tr ρ where ρ is the final state of the following circuit:

|+〉 UM U †M P+

P C0 UM Pc U †M

UM Pc U †M

UM
Pc

U †M

E E

k

M

S′ M

U

M

S′

c

U

M

=: Rc =: Q

State: ρ′ State: ρ

(12)

We abbreviate the product of the operators UM , Pc, U
†
M with Rc. Note that Rc is a

projector since Pc is a projector and UM is unitary. Let Q := P+⊗ idS′ . Furthermore, let
ρc be the state output by C0 on S′ conditioned on classical output c (and let pc be the
probability of that output). We can write ρc as ρc =

∑
i pci|Ψci〉〈Ψci| for some normalized

quantum states |Ψci〉 and some probabilities pci with
∑

i pci = 1. Let |Ψ′ci〉 := |+〉 ⊗ |Ψci〉.
Let |Φci〉 := QRc|Ψ′ci〉. With that notation, we have ρ =

∑
c,i pcpci|Φci〉〈Φci| and∑

c,i pcpci = 1. Hence q = tr ρ =
∑

c,i pcpci
∥∥|Φci〉

∥∥2
.

Furthermore, if ρ′ is the state in circuit (12) after U †M , then it is easy to see that
tr ρ′ = δ (recall that δ is the success probability in (6)). We then have that δ = tr ρ′ =∑

c,i pcpci
∥∥Rc|Ψ′ci〉∥∥2

=
∑

c,i pcpciδcf with δcf :=
∥∥Rc|Ψ′ci〉∥∥2

.
By definition of Q and |Ψ′ci〉, we have that Q|Ψ′ci〉 = |Ψ′ci〉. Then

δci = 〈Ψ′ci|Rc|Ψ′ci〉 = 〈Ψ′ci|QRc|Ψ′ci〉 ≤
∥∥QRc|Ψ′ci〉∥∥ =

∥∥|Φci〉
∥∥.

Thus

q =
∑
c,i

pcpci
∥∥|Φci〉

∥∥2 ≥
∑
c,i

pcpciδ
2
ci

(∗)
≥
(∑
c,i

pcpciδci

)2
= δ2

Here (∗) uses Jensen’s inequality and the fact that
∑

c,i pcpci = 1.
Thus

Pr[b = 1 ∧ ok = 1 : Game2] = q ≥ δ2. (13)

Since Game1 and Game2 are identical unless ok = 1, we have that

Pr[b = 1 ∧ ok 6= 1 : Game1] = Pr[b = 1 ∧ ok 6= 1 : Game2]. (14)

Thus

Pr[b = 1 : Game2]− Pr[b = 1 : Game1]

=
(
Pr[b = 1 ∧ ok = 1 : Game2] + Pr[b = 1 ∧ ok 6= 1 : Game2]

)
−
(
Pr[b = 1 ∧ ok = 1 : Game1] + Pr[b = 1 ∧ ok 6= 1 : Game1]

)
(14)
= Pr[b = 1 ∧ ok = 1 : Game2]− Pr[b = 1 ∧ ok 6= 1 : Game1]

(13),(11)

≥ δ2 − δ

2
≥ ε

4
.
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Thus ∣∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣∣ ≥ ε

4
. (15)

Since (C0, C1) is polynomial-time adversary, (A,B) is polynomial-time. By assump-
tion, (P, com, verify) is collapse binding. Thus by Lemma 6, the rhs of (15) is negligible.
Hence ε is negligible. Since ε was the advantage of the adversary (C0, C1) against the
sum-binding property, it follows that (P, com, verify) is sum-binding. �

6.1 CDMS-binding

For the remainder of this section, let (P, com, verify) be a commitment scheme with
message space {0, 1}`.

The sum-binding definition is restricted to bit commitments. In [3], a generalization
of sum-binding definition is given. Intuitively, for any function f , if the adversary
produces a commitment c, then there should be at most one value y such that the
adversary can open c to a message m with f(m) = y. Slightly more formally, we require
that

∑
y p̃y ≤ 1 + negligible where p̃y is the probability that the adversary (who gets y

after producing the commitment c) manages to open c to a message m with f(m) = y.
Again, this definition is motivated by the fact that perfectly binding commitments satisfy∑

y p̃y ≤ 1. The definition can be parametrized by specifying the set F of allowed
functions f .

Definition 31 (CDMS-binding, following [3]) Let F be a family of functions
{0, 1}` → {0, 1}Λ.

For any adversary (C0, C1) and any y ∈ {0, 1}Λ, let

p̃y(C0, C1) := Pr[verify(k, c,m, u) = 1 ∧ f(m) = y :

k ← P, (S, c, f)← C0(k), (m,u)← C1(S, y)].

Here S is a quantum register, and c a classical value, and f a function in F (represented
as a Boolean circuit).

We call (C0, C1) F -CDMS-valid if it only outputs functions f ∈ F .
We call adv :=

∑
y∈{0,1}Λ p̃y(C0, C1)− 1 the F -CDMS-advantage of (C0, C1). (With

adv := 0 if the difference is negative.)
We call a commitment scheme F -CDMS-binding iff for all quantum-polynomial-time

F -CDMS-valid (C0, C1), the F -CDMS-advantage of (C0, C1) is negligible.

We have somewhat modified the definition with respect to [3]: Namely, instead of
quantifying over all f ∈ F , we let the adversary choose f . This gives the adversary
additional power, because f may depend on the public parameter k, but at the same time
it also removes some power (because f needs to be efficiently computed in our definition).
For non-uniform adversaries, our definition implies the one from [3].

Note that the sum-binding definition is a special case of the CDMS-binding definition:
A bit commitment is sum-binding iff it is F -binding where F contains only the identity.
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The following theorem is shown using a similar technique as Theorem 30. The main
difference is that we have to use a superposition of all possible values y, instead of the
superposition |+〉 of messages 0 and 1. Furthermore, the fact that the adversary has free
choice of m, subject to the condition f(m) = c introduces additional technicalities, but
these are solved in the full proof.

Theorem 32 If (P, com, verify) is collapse-binding, then (P, com, verify) is F -CDMS-
binding for any F ⊆ {0, 1}` → {0, 1}Λ with logarithmically-bounded Λ.

The theorem follows directly from the concrete security variant Theorem 43.
Note the condition that Λ is logarithmically-bounded. This condition is necessary as

the following example shows: Let com be a perfectly binding commitment, except that
with probability ε the adversary finds a secret that allows him to open the commitment
to any message. This small probability ε does not change the fact that the commitment
is collapse-binding (and arguably any reasonable definition of computationally binding
should tolerate such a negligible error). However, an adversary that commits to 0,
then gets y ∈ {0, 1}Λ, and then tries to open to an arbitrary m with f(m) = y will
succeed with probability p̃y = ε for all y 6= f(0), and with probability p̃y = 1 for
y = f(0). Hence

∑
y p̃y = 1 + (2Λ − 1)ε. If Λ is superlogarithmic, then (2Λ − 1)ε will

not necessarily be negligible. This example shows that collapse-binding cannot imply
CDMS-binding for superlogarithmic Λ and also indicates that probably CDMS-binding
with superlogarithmic Λ is not a reasonable definition of computationally binding. (Note:
in [3], only CDMS-binding with logarithmically-bounded Λ was used and is sufficient for
their OT protocol.)
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Symbol index

‖x‖ Euclidean norm of x
adv Advantage of an adversary in breaking a scheme
PH Public parameter sampler for Hk 19
SF Key sampler for lossy function Fs
η Security parameter 7
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Dlossy Distribution of lossy keys for lossy function 7
P A public parameter sampler 8, 10
Plossy Public parameter sampler using lossy keys 19
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2
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2
|1〉 24
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suppD Support of the distribution D 7

`out Output length of H̃ 13, 18
`mid Output length of lossy function 18
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`A Upper bound on messages output by A 21, 36, 41
IHk Iterated hash 13
M Message space 13, 13, 36
pad(x) Padding-function for Merkle-Damg̊ard 36
iv Initialization vector for IHHk 13
comHMu Unbounded Halevi-Micali commitment 12
MDk Merkle-Damg̊ard 13
Dinj Distribution of injective keys for lossy function 7
verifyHMu Unbounded Halevi-Micali commitment 12
x← A x is assigned the output of algorithm A
imP Image of map P 7
stepi(m) Aux. function: Values hashed in i-th step of iterated

hash
15, 37

partiali(x) Aux. function: Iterated hash with i-block suffix split
off

14, 37
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trM Trace of matrix M . trEM denotes partial trace
w.r.t. subsystem E

verify(k, c,m, u) Verifies that commitment c opens as m (opening in-
formation u)

8

(c, u)← com(k,m) Produces a commitment c with opening information u 8

x
$← S x chosen uniformly from set S/according to distribu-

tion S

References

[1] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on
classical proof systems (the hardness of quantum rewinding). In FOCS 2014, pages
474–483. IEEE, 2014. Preprint on IACR ePrint 2014/296.
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Here f is a Boolean circuit (with multiple-bit output). Vc is a measurement
whether M,U contains a valid opening, formally Vc is defined through the projector∑

m,u
verify(k,c,m,u)=1

|m〉〈m| ⊗ |u〉〈u|. Mf
ok is a measurement of M that returns f(m) where

m is the content of M if ok = 1, and does nothing if ok = 0 (i.e., it sets m := ⊥ and
does not touch the register M). More formally, if ok = 1, Mf is the measurement defined
by the projectors Px :=

∑
m:f(m)=x|m〉〈m| for all x in the range of f , and if ok = 0, Mf

is defined by the single projector P⊥ := id.

Let (A,B) be a τ -time adversary, and let ε :=
∣∣Pr[b = 1 : Gamepart1 ] − Pr[b = 1 :

Gamepart2 ]
∣∣. Let τver be an upper-bound on the runtime of verify (on values c,m as produced

by A). Let τf be an upper-bound on the runtime need for evaluating f . Let τdummy be an
upper-bound on the time needed for finding some triple c,m, u with verify(k, c,m, u) = 1.13

Then there are two (τ + O(τver + τf + τdummy))-time adversaries, 1-c.b.-valid for
verify, with collapse-binding-advantages ε1, ε2, respectively, against (P, com, verify) such
that ε1 + ε2 ≥ ε.

Theorem 34 (Unbounded Halevi-Micali commitment – concrete security)
Any adversary against (P, comHMu , verifyHMu) has hiding-advantage ≤ 2−`−1.

Let τH be an upper bound on the runtime for computing Hk, and τh an upper bound
on the runtime for computing hr (with Hk and hr as in Definition 10).

Assume a τ -time adversary, t-c.b.-valid for verifyHMu , with collapse-binding-
advantage ε. Then there exist three (τ + O(tτH + tτh))-time adversaries t-valid for
Hk, with collapsing-advantages ε1, ε2, ε3, respectively, such that ε ≤ ε1 + ε2 + ε3.

Proof. For the hiding-property:
Consider first the commitment scheme com′(k,m) for m ∈ {0, 1}` which picks r ∈

{0, 1}`r and u ∈ {0, 1}L uniformly at random, conditioned on hr(u) = m. Return
c := (Hk(u), r).

The commitment comHMu from Definition 10 is obtained from com′ by
comHMu(k,m) := com′(k,Hk(m)).

[9] shows that for any messages m1,m2 ∈ {0, 1}`, and for any function Hk : {0, 1}L →
{0, 1}`, the statistical distance between com′(k,m1) and com′(k,m2) is at most 1

22−` =
2−`−1. (Note: they define the statistical distance such that it ranges from 0 to 2, hence
we have to include an additional factor 1

2 to match our definition of statistical distance.)
Since comHMu(k,m) = com′(k,Hk(m)), it follows that the statistical distance between

comHMu(k,m1) and comHMu(k,m2) is ≤ 2−`−1, too. From this it follows that the hiding-
advantage against (P, comHMu , verifyHMu) is ≤ 2−`−1.

The collapse-binding-property was shown in [16], except that it was without public
parameter k, with respect to 1-c.b.-valid adversaries only, and without an explicit analysis
of the concrete security. However, by going through their proof and collecting all
adversaries and their runtimes, one gets the desired result. �

13E.g., by picking some m in the message space of com and setting (c, u)← com(k,m).
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Lemma 35 Let Mk be a family of sets. Assume that Pr[Hk is not injective on Mk : k
$←

P] ≤ ε. Then any adversary (A,B) that is t-valid for Hk on Mk has collapsing-advantage
at most ε against (P, Hk).

Proof. Consider the games Game1 and Game2 from Definition 8. Since (A,B) is t-valid
for Hk on Mk, by definition we have that mi ← M(Mi) in Game1 returns mi with
Hk(mi) = hi and mi ∈Mk for all i. When Hk is injective on Mk, this means that there
is only one such mi. In that case M is in state |mi〉 before applying mi ← M(Mi),
and the measurement M(Mi) does not change the state of Mi. Hence Game1 and
Game2 are equal unless Hk is non-injective on Mk. Thus the collapsing-advantage is∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]

∣∣ ≤ Pr[Hk is not injective on Mk : k
$← P] ≤ ε. �

Lemma 36 Fix hash functions (P, fk) and (P, gk) with the same P. If there is a τ -time
adversary (A,B), t-valid for gk ◦ fk, with collapsing-advantage ε against (P, gk ◦ fk), then
there are:

• a (τ +O(tτf (`in)))-time adversary (A′, B′), t-valid for gk on im fk, with collapsing-
advantage ε′ against (P, gk),

• a (τ +O(tτf (`in) + t`mid ))-time adversary (A′′, B′′), valid for fk, with collapsing-
advantage ε′′ against (P, fk)

such that ε ≤ ε′ + ε′′.
Here `in is an upper bound on the length of each message output by A (in the registers

Mj). And τf (`in) is an upper bound on the time for an evaluation of fk(x) for |x| ≤ `in .
And `mid is an upper bound on |fk(x)| for |x| ≤ `in .

Note that the corresponding theorem from [16] only refers to valid adversaries for gk,
not valid adversaries for gk on im fk. However, it is immediate from the construction in
their proof that the adversary indeed only outputs elements of im fk, hence is valid on
im fk.

Lemma 37 Let (A,B) be a τ -time adversary for Hk that outputs t registers Mi (not
necessarily t-valid).

Let ε1 be the collapsing-advantage of (A,B) against (P1, Hk). Let ε2 be the collapsing-
advantage of (A,B) against (P2, Hk).

Then there is a (τ +O(t`))-time adversary C that distinguishes the outputs of P1 and
P2 with advantage ≥ |ε1 − ε2|/2.

Here ` is an upper bound on the length of each of the messages A outputs on the
registers Mi.

Proof. We define the game GameP1 as follows: We pick a
$← {0, 1}. If a = 0, we run

Game1 from Definition 8, and if a = 1, we run Game2 (with adversary (A,B), function
Hk, and sampler P1). We have

∣∣Pr[a = b : GameP1 ]− 1
2

∣∣ = ε1/2.
We define the game GameP2 analogously, using P2 instead of P1. Then

∣∣Pr[a = b :
GameP2 ]− 1

2

∣∣ = ε2/2.
Hence

∣∣Pr[a = b : GameP1 ]− Pr[a = b : GameP2 ]
∣∣ ≥ |ε1 − ε2|/2.
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The only difference between GameP1 and GameP2 is that we choose k ← P1 in the
first, and k ← P2 in the second. Let C(k) do the following: It executes GameP1 , except
that k is given as an input (instead of sampled by k ← P1 or k ← P2). Then it returns 1
iff a = b.

Then C distinguishes P1 and P2 with advantage ≥ |ε1 − ε2|/2.
And the runtime of C is that of A and B, plus a measurement of the outputs of A in

the computational basis (time O(t`)). �

B Merkle-Damg̊ard – concrete security

For this section, fix a hash function (P, Hk) with Hk : {0, 1}`in → {0, 1}`out and `in > `out .
Let `block := `in − `out . Fix some bitstring iv ∈ {0, 1}`out (may depend on the security
parameter). Fix a message space M with |M| ≥ 2 (e.g., M = {0, 1}∗). Fix a function
pad : M→ ({0, 1}`block )∗.

For the rest of this section, let τH denote an upper bound on the time needed for
evaluating Hk. Let τpad(`) denote an upper bound on the time for computing pad(m)
for |m| ≤ `. Let `pad(`) denote an upper bound on |pad(m)| for |m| ≤ `. (|·| refers to
the length in bits.) For a given adversary (A,B), let `A be a upper bound on the length
of each message output by A on the registers Mi cf. Definition 8).

Lemma 38 Let M̃ ⊆ ({0, 1}`block )∗ be a suffix code with |M̃| ≥ 2.
Let (A,B) be a τ -time adversary, t-valid against IHk on M̃, with collapsing-

advantage ε against (P, IHk).
Then there is a (τ + O(t`AτH/`block ))-time adversary (A∗, B∗), t-valid against Hk,

with collapsing-advantage ≥ ε`block/`A against (P, Hk).

Proof. We have λ /∈ M̃. (λ denotes the empty word.) Otherwise, we would have M̃ = {λ}
since M̃ is a suffix code, which contradicts |M̃| ≥ 2.

For a multi-block message m ∈ ({0, 1}`block )∗, let |m| denote the number of `block -bit
blocks in m. (I.e., |m| is the bitlength of m divided by `block .) Let mi denote the i-th
block of m, and let m−i denote the i-th block from the end (i.e., m−i = m|m|−i+1).
Let m≥−i denote all the blocks in m starting from m−i (i.e., m≥−i consists of the last
i blocks of m). Let m<−i denote the blocks before m−i. (I.e., m = m<−i ‖m≥−i for
i ≤ |m|.)

Let B := b`A/`blockc. (Thus B is an upper bound on the number of blocks in the
messages m output by A.)

For a function f , let Mf (M) denote a measurement that, given a register M that
contains values |m〉 in superposition, measures f(m), but without measuring more
information than that. Formally,Mf is a projective measurement consisting of projectors
Py (y ∈ im f) with Py =

∑
m:f(m)=y|m〉〈m|.

Let Game1 and Game2 be the games from Definition 8 for adversary (A,B). By
assumption, ∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]

∣∣ = ε. (16)
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For m ∈ M̃, we define

partiali(m) :=

{
(⊥,m) (if |m| ≤ i)
(IHk(m<−i),m≥−i) (if |m| > i)

(The function partiali also depends on k, but we leave that dependence implicit.) Intu-
itively, partiali(m) represents a partial evaluation of IHk(m), with the last i blocks not
yet processed.

Note that partiali(m) always contains enough information to compute IHk(m). And
the larger i is, the more about m is revealed. In fact, learning partial0(m) is equivalent
to learning IHk(m), and learning partialB(m) is equivalent to learning m as the following
easy to verify facts show:

Fact 5 partial0(m) = (IHk(m), λ) for all m ∈ M̃.

Fact 6 partialB(m) = (⊥,m) for all m ∈ M̃ with |m| ≤ B.

We will need one additional auxiliary function stepi, defined by stepi(m) :=
IHk(m<−(i+1))‖m−(i+1) for |m| ≥ i + 1. (And stepi(m) := ⊥ if |m| ≤ i.) Intuitively,
stepi(m) is the input to last call of Hk when computing partiali(m). The following facts
are again easy to verify using the definition of partiali, stepi, and IHk:

Fact 7 If partiali(m) = (h, s) and h 6= ⊥, then Hk(stepi(m)) = h.

Fact 8 From (partiali(m), stepi(m)) one can compute partiali+1(m) and vice versa.
Formally: there are functions f , g such that for all m ∈ M̃, f(partiali(m), stepi(m)) =
partiali+1(m) and g(partiali+1(m)) = (partiali(m), stepi(m)).

In a sense, partiali(m) interpolates between the knowledge of only IHk(m) (case
i = 0), and full knowledge of m (case i = B). (Cf. Facts 5, 6.) We make this more formal
by defining the following hybrid game for i = 0, . . . , B:

Gamehybi : k ← P, (S,M1, . . . ,Mt, h1, . . . , ht)← A(k),

(h′1, s1)←Mpartiali(M1), . . . , (h′t, st)←Mpartiali(Mt),

b← B(S,M1, . . . ,Mt).

(Here Mpartiali is Mf as defined above with f := partiali.)

Consider Gamehyb0 . By assumption, (A,B) is t-valid for IHk on M̃, so we have that for
all j = 1, . . . , t the register Mj contains superpositions of states |m〉 with IHk(m) = hj
and m ∈ M̃. By Fact 5, this implies that the measurementMpartial0(Mj) will always yield
the outcome (h′j , sj) = (hj , λ). Hence the measurementMpartial0(Mj) has a deterministic

outcome. Thus, the probability of b = 1 in Gamehyb0 does not change if we omit the
measurements y ←Mpartiali(Mj). Thus

Pr[b = 1 : Gamehyb0 ] = Pr[b = 1 : Game2]. (17)

37



Consider GamehybB . By assumption, A outputs only states on Mj which are superposi-
tions of |mj〉 with mj ∈ M̃ and |mj | ≤ B. Thus, by Fact 6, (h′j , sj)←MpartialB (Mj) is
a complete measurement in the computational basis. Hence

Pr[b = 1 : GamehybB ] = Pr[b = 1 : Game1]. (18)

From (16,17,18), we get∣∣Pr[b = 1 : Gamehyb0 ]− Pr[b = 1 : GamehybB ]
∣∣ = ε. (19)

For i = 0, . . . , B we now define an adversary (A∗i , B
∗) against Hk.

Algorithm A∗i (k) runs:
• (S∗,M∗1 , . . . ,M

∗
t , h

∗
1, . . . , h

∗
t )← A(k).

• For j = 1, . . . , t:
– (h′j , sj)←Mpartiali(M

∗
j ).

• Initialize M1, . . . ,Mj with |0`in 〉.
• For j = 1, . . . , t with h′j 6= ⊥:

– Apply Ustepi to M∗j ,Mj .
– hj := h′j .

• For j = 1, . . . , t with h′j = ⊥:

– Let hj := Hk(0
`in ).

• Let S := S∗,M∗1 , . . . ,M
∗
t , h

′
1, . . . , h

′
t, i. (That is, all those registers and classical

values are combined into a single register S.)
• Return (S,M1, . . . ,Mt, h1, . . . , ht).

Here Ustepi refers to the unitary transformation |x〉|y〉 7→ |x〉|y ⊕ stepi(x)〉. See the left
dashed box in Figure 4 for a circuit-representation of A∗i (for the case t = 1).

Algorithm B∗(S,M1, . . . ,Mt) runs:
• Let S∗,M∗1 , . . . ,M

∗
t , h

′
1, . . . , h

′
t, i := S.

• For j = 1, . . . , t: If h′j 6= ⊥: apply Ustepi to M∗j ,Mj .
• Run b← B(S∗,M∗1 , . . . ,M

∗
t ).

• Return b.
See the left dashed box in Figure 4 for a circuit-representation of B∗ (for the case t = 1).

Claim 4 (A∗i , B
∗) is t-valid.

We show this claim: After the measurement (h′j , sj)←Mpartiali(M
∗
j ), we have that

M∗j contains a superposition of |m〉 with partiali(m) = (h′j , sj). If h′j = ⊥, then A∗i
initializes Mj with |0`in 〉 and sets hj := Hk(0`in ). Thus in this case, Mj trivially contains
a superposition of |m〉 with Hk(m) = hj . If h′j 6= ⊥, then by Fact 7, M∗j contains a

superposition of |m〉 with Hk(stepi(m)) = h′j = hj . Then A∗ initializes Mj with |0`in 〉
and applies Ustepi to M∗j ,Mj . Thus after that, Mj is in a superposition of |m〉 with
Hk(m) = hj . Concluding, for all j, Mj is in a superposition of |m〉 with Hk(m) = hj ,
thus (A∗i , B

∗) is t-valid and the claim follows.

Let Gamei1 denote Game1 from Definition 8, but with adversary (A∗i , B
∗) and hash

function (P, Hk). Analogously Gamei2. Figure 4 depicts both games.
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(h′1, i) (h′1, i)

P A B

A Mpartiali Ustepi Ustepi B

Ustepi M Ustepi

h′1, or Hk(0) if h′1 = ⊥

A B

Ustepi Ustepi

h∗1

b
M∗1 M∗1

(h′1, s1)

S∗ S∗

M∗1 M∗1

M1|0`in 〉

S

h1

(if h′1 6= ⊥) (if h′1 6= ⊥)(Gamei1
only)

m1

k

A∗i B∗

Figure 4: The adversary (A∗i , B
∗) in games Gamei1 and Gamei2. Depicted is Gamei1. Gamei2 is derived by

omitting the measurement M in the middle. The figure depicts the case t = 1. In the case t > 1, there
would be many wires M∗j and Mj instead of M∗1 and M1. (And many copies of Mpartiali , Ustepi

, M.)

Claim 5 Pr[b = 1 : Gamei2] = Pr[b = 1 : Gamehybi ].

We show this claim: In Gamei2, no measurement occurs between the invocation of
Ustepi by A∗i and the invocation of Ustepi by B∗. (Cf. Figure 4.) Since Ustepi is an
involution, those two invocations cancel out. Thus only the invocations of P, A,Mpartiali ,

and B remain. This is exactly Gamehybi . This shows the claim.

Claim 6 Pr[b = 1 : Gamei1] = Pr[b = 1 : Gamehybi+1].

We show the claim: Note that in Gamei1, after the measurement Mpartiali , on the
registers M∗j ,Mj , we have the following sequence of operations if h′j 6= ⊥:

Mj is initialized with |0`in 〉. Ustepi is applied to M∗j ,Mj . Mj is measured in the
computational basis (outcome mj). Ustepi is applied to M∗j ,Mj . Mj is discarded.

This is equivalent to just executing mj ←Mstepi(M
∗
j ).

Furthermore, if hj = ⊥, then the sequence of operations is simply: Initialize Mj with
|0`in 〉. Measure Mj . Discard Mj . This is equivalent to doing nothing. And doing nothing
is equivalent to mj ←Mstepi(M

∗
j ) in case h′j = ⊥. (Because in that case, M∗j is in a

superposition of |m〉 with |m| ≤ i, and thus stepi(m) = ⊥, and hence the outcome of
Mstepi is deterministic.)

Thus Gamei1 is equivalent to the following Gamei1∗ (in the sense that Pr[b = 1] is the
same in both games):

Gamei1∗ : k ← P, (S∗,M∗1 , . . . ,M
∗
t , h

∗
1, . . . , h

∗
t )← A(k),

for j = 1, . . . , t: (h′j , sj)←Mpartiali(M
∗
j ), mj ←Mstepi(M

∗
j ),

b← B(S∗,M∗1 , . . . ,M
∗
t ).

By Fact 8, measurements Mpartiali(M
∗
j ) and Mstepi(M

∗
j ) have the same effect on M∗j

as Mpartiali+1
(M∗j ). (The measurement outcome may be different, but we do not use
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the measurement outcome in our games.) Thus Gamei1∗ is equivalent to Gamei1∗∗ (in the
sense that Pr[b = 1] is the same in both games):

Gamei1∗∗ : k ← P, (S∗,M∗1 , . . . ,M
∗
t , h

∗
1, . . . , h

∗
t )← A(k),

for j = 1, . . . , t: (h′j , sj)←Mpartiali+1
(M∗j ),

b← B(S∗,M∗1 , . . . ,M
∗
t ).

But Gamei1∗∗ is the same as Gamehybi+1, except that S,Mj , hj are renamed to S∗,M∗j , h
∗
j .

Hence Pr[b = 1] is the same in Gamei1 and Gamehybi+1. The claim follows.

Let A∗ pick i
$← {0, . . . , B − 1} and then run A∗i . From Claim 4, it follows that

(A∗, B∗) is valid, too. Let Game∗1 denote Game1 from Definition 8, but with adversary
(A∗, B∗) and hash function (P, Hk). Analogously Game∗2.

Furthermore, we have:∣∣Pr[b = 1 : Game∗1]− Pr[b = 1 : Game∗2]
∣∣

=
1

B

∣∣∣B−1∑
i=0

Pr[b = 1 : Gamei1]−
B−1∑
i=0

Pr[b = 1 : Gamei2]
∣∣∣

(∗)
=

1

B

∣∣∣B−1∑
i=0

Pr[b = 1 : Gamehybi+1]−
B−1∑
i=0

Pr[b = 1 : Gamehybi ]
∣∣∣

=
1

B

∣∣∣Pr[b = 1 : GamehybB ]− Pr[b = 1 : Gamehyb0 ]
∣∣∣

(19)
=

ε

B
=

ε

b`A/`blockc
≥ ε`block

`A
.

Here (∗) follows from Claims 5 and 6.
Thus (A∗, B∗) has collapsing-advantage ≥ ε`block/`A.
A computation of Hk takes time τH by definition. Thus an evaluation of Mpartiali

and of Ustepi takes time O(BτH) = O(`AτH/`block ). Since there are O(t) such evaluations
in (A∗, B∗), in addition to the execution of A and B, the runtime of (A∗, B∗) is ≤
τ +O(t`AτH/`block ). �

Proof of Theorem 20. Since MDk = IHk ◦ pad , by Lemma 36, there are: A (τ +
O(tτpad (`A)))-time adversary (A′, B′), t-valid for IHk on im pad , with collapsing-advantage
ε′ against (P, IHk). An adversary (A′′, B′′), t-valid for pad , with collapsing-advantage ε′′

against (P, pad). And ε′ + ε′′ ≥ ε.
Since pad is a Merkle-Damg̊ard padding, pad is injective by definition. Thus by

Lemma 35, ε′′ = 0. Thus ε′ ≥ ε.
Since pad is a Merkle-Damg̊ard padding, im pad is a suffix code. Thus, by Lemma 38

(applied to adversary (A′, B′)), there is a (τ + O(tτpad(`A) + t`pad(`A)τH/`block ))-time
adversary (A∗, B∗), t-valid against Hk, with collapsing-advantage ≥ ε′`block/`pad (`A) ≥
ε`block/`pad (`A). �

40



C Collapsing hashes in the standard model – concrete se-
curity

In the following, let (SF , Fs) be am (`in , k)-lossy function with Fs : {0, 1}`in → {0, 1}`mid .
Let hr : {0, 1}`mid → {0, 1}`out be a universal hash function (with key r ∈ {0, 1}`seed ). Let
Dinj and Dlossy be as in Definition 2.

We will often write F(r,s) and h(r,s) for Fs and hr to unify notation (one of the
parameters will be silently ignored in this case).

For the rest of this section, let τF denote the time needed for evaluating F(r,s). Let
τh denote the time needed for evaluating h(r,s). For a given adversary (A,B), let `A
be a upper bound on the length of each message output by A on the registers Mi

(cf. Definition 8).

Lemma 39 Let (A,B) be a τ -time adversary, t-valid for F(r,s), with collapsing-
advantage ε against (Plossy , F(r,s)).

Then there is a (τ +O(t`mid + `seed ))-time adversary C that distinguishes Dinj and
Dlossy with advantage ≥ ε/2.

Proof. Let ε′ be the collapsing-advantage of (A,B) against (Pinj , F(r,s)). By Lemma 35,
ε′ = 0.

By Lemma 37, there is a (τ +O(t`mid ))-time adversary C ′ that distinguishes Plossy

and Pinj with advantage |ε− ε′|/2 = ε/2.

We define C(s): It samples r
$← {0, 1}`seed and then runs C ′

(
(r, s)

)
. Then C distin-

guishes Dlossy and Dinj with advantage ε/2. C is (τ +O(t`mid + `seed ))-time. �

Lemma 40 Fix a adversary (A,B) valid for h(r,s) on imF(r,s).

Then the collapsing-advantage of (A,B) against (Plossy , h(r,s)) is ≤ 22`in−2k−`out .

Proof. We first compute the probability that h(r,s) is not injective on imF(r,s).

Pr[h(r,s) is not injective on imF(r,s) : (r, s)← Plossy ]

(∗)
=
∑
s

Pr[Dlossy = s] Pr[h(r,s) is not injective on imF(r,s) : r
$← {0, 1}`seed ]

≤
∑
s

Pr[Dlossy = s]
∑

x,y∈imFs
x 6=y

Pr[h(r,s)(x) = h(r,s)(y) : r
$← {0, 1}`seed ]

(∗∗)
≤
∑
s

Pr[Dlossy = s]
∑

x,y∈imFs
x 6=y

1

2`out

(∗∗∗)

≤
∑
s

Pr[Dlossy = s]
(2`in−k)2

2`out

= 22`in−2k−`out .

Here (∗) uses the fact that (r, s)← Plossy is the same as r
$← {0, 1}`seed , s← Dlossy . And

(∗∗) is by definition of universal hash functions. And (∗∗∗) follows from the fact that for
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any s in the support of Dlossy , imFs = imF(r,s) has size at most 2`in−k (recall that k is
the lossiness of Fs).

Hence Pr[h(r,s) is not injective on imF(r,s) : (r, s) ← Plossy ] ≤ 22`in−2k−`out . By

Lemma 35, we have that (A,B) has collapsing-advantage at most 22`in−2k−`out against
(Plossy , h(r,s)). �

Theorem 41 Let (A,B) be a τ -time adversary, t-valid for H(r,s), with collapsing-
advantage ε against (PH , H(r,s)).

Then there is a (τ + O(t`in + `seed))-time adversary C1 that distinguishes SF and
Dlossy with some advantage ε1, and a (τ +O(tτF + t`mid + `seed ))-time adversary C2 that
distinguishes Dinj and Dlossy with some advantage ε2, such that ε ≤ 22`in−2k−`out + 2ε1 +
2ε2.

Proof. Let ε∗ be the collapsing-advantage of (A,B) against (Plossy , H(r,s)). By Lemma 37,
there is a (τ+O(t`in))-time adversary C that distinguishes PH and Plossy with advantage
|ε∗ − ε|/2. Hence there is a (τ +O(t`in + `seed ))-time adversary C1 that distinguishes SF

and Dlossy with advantage |ε∗ − ε|/2 =: ε1. (C1(s) just chooses r
$← {0, 1}`seed in time

O(`seed ) and runs C(r, s).) Thus ε ≤ ε∗ + 2ε1.
By Construction 1, H(r,s) = h(r,s) ◦ F(r,s). Thus, by Lemma 36 (applied to adversary

(A,B)), there is an (τ+O(tτF ))-time adversary (A′, B′), t-valid for h(r,s) on imF(r,s), with
collapsing-advantage ε′ against (Plossy , h(r,s)), and a (τ +O(tτF + t`mid ))-time adversary
(A′′, B′′), t-valid for F(r,s), with collapsing-advantage ε′′ against (Plossy , F(r,s)), and such
that ε∗ ≤ ε′ + ε′′.

By Lemma 40 (applied to adversary (A′, B′)), we have ε′ ≤ 22`in−2k−`out .
By Lemma 39 (applied to adversary (A′′, B′′), there is a (τ+O(tτF +t`mid +`seed ))-time

adversary C2 that distinguishes Dinj and Dlossy with some advantage ε2 ≥ ε′′/2.
Thus

ε ≤ ε∗ + 2ε1 ≤ ε′ + ε′′ + 2ε1 ≤ 22`in−2k−`out + ε′′ + 2ε1 ≤ 22`in−2k−`out + 2ε2 + 2ε1. �

Theorem 42 Assume `in > `out . Let MD(r,s) be the Merkle-Damg̊ard construction
applied to H(r,s) (using a Merkle-Damg̊ard padding pad).

Let (A,B) be a τ -time adversary, t-valid for MD(r,s), with collapsing-advantage ε
against (PH ,MD(r,s)).

Then there are (τ + O(tτpad(`A) + t`pad(`A)(τF + τh)/(`in − `out) + `seed))-time
adversaries C1 and C2, such that C1 distinguishes SF and Dlossy with some advan-
tage ε1, and C2 distinguishes Dinj and Dlossy with some advantage ε2, and ε ≤
(22`in−2k−`out + 2ε1 + 2ε2) · `pad (`A)

(`in−`out ) .

Proof. By Theorem 20, there is a (τ +O(tτpad(`A) + t`pad(`A)(τF + τh)/(`in − `out)))-
time adversary (A∗, B∗) that is t-valid for H(r,s) with collapsing-advantage ε∗ ≥ ε(`in −
`out)/`pad (`A).

Then, by Theorem 41, there is a (τ +O(tτpad (`A) + t`pad (`A)(τF + τh)/(`in − `out) +
t`in + `seed))-time adversary C1 that distinguishes SF and Dlossy with some advantage
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ε1, and a (τ +O(tτpad (`A) + t`pad (`A)(τF + τh)/(`in − `out) + tτF + t`mid + `seed ))-time
adversary C2 that distinguishes Dinj and Dlossy with some advantage ε2, such that
ε∗ ≤ 22`in−2k−`out + 2ε1 + 2ε2.

The bounds from the statement of the theorem follow (using the fact that `mid , `in ≤
τF ). �

D Collapse-binding implies CDMS-binding and sum-
binding – concrete security

Theorem 43 Let F be a family of functions {0, 1}` → {0, 1}Λ. Let (C0, C1) be a τ -time
F -CDMS-valid adversary with F -CDMS-advantage ε against (P, com, verify).

Let τver be an upper-bound on the runtime of verify (on values c,m as output by A).
Let τdummy be an upper-bound on the time needed for finding some triple c,m, u with
verify(k, c,m, u) = 1.

Then there are two O(τ + τver + τdummy)-time adversaries that are 1-c.b.-valid for
verify with collapse-binding-advantages ε1, ε2, respectively, such that ε1 +ε2 ≥ 2−2Λ(ε+ε2)
against (P, com, verify).

Proof. Without loss of generality, we can assume that C1 is unitary. More precisely,
C1(S, y) applies a unitary circuit Uy to S, resulting in three output registers M , U and
E. Then he measures M and U in the computational basis and returns the outcomes
m,u. (Note: converting C0, C1 into an adversary of this form may incur an overhead of a
constant factor. However, this is not problem because the theorem refers to the runtime
of (C0, C1) only as O(τ).)

With that notation, we can express the game from Definition 31 as the following
circuit (renaming the register S to S′ to avoid name clashes later):

y
$← {0, 1}Λ

Uy

P Co Uy M m

Uy M u

Uyk

(c, f)

S′

E

M

U

(20)

(Here and in the following, M denotes a measurement in the computational basis.) In
that circuit, Pr[verify(k, c,m, u) = 1 ∧ f(m) = y] = δ := 2−Λ(1 + ε).

Let Y denote a Λ-qubit quantum register, and define UY : |y〉Y ⊗ |Ψ〉S′ 7→ |y〉Y ⊗
Uy|Ψ〉S′ . That is, UY is a unitary with two input registers Y, S′, and four output registers
Y,M,U,E which is realized by applying Uy to S′, where register Y controls which Uy is
applied.

Furthermore, we define the binary measurement Mf
msg . Intuitively, it measures

whether f(m) = y holds for the message m on register M and the value y on register Y .

Formally, Mf
msg is defined by the projector P fmsg :=

∑
y,m

f(m)=y
|y,m〉〈y,m| on Y,M .
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|Ψall 〉 UY U †Y MΨall

UY U †Y

P C0 UY Mf
msg Vc Mf

ok U †Y

UY Vc U †Y

UY Mf
msg

Vc

U †Y

E ES

k

Y

S′

Y

M M

U U

M M

Y

S′

(c, f) ok y

okY

U b :=okmsg∧okY

b

okmsg
okmsg

Y Y

A B

Figure 5: Circuit describing Gamepart1 . Gamepart2 can be derived by omitting Mf
ok . The adversary

algorithms A and B are depicted in the dashed boxes. (To avoid crossing of wires, the outgoing wires of
UY are ordered E, Y,M,U , not Y,M,U,E as in the text.)

Let |Ψall 〉 := 2−Λ/2
∑

y∈{0,1}Λ |m〉. Let MΨall
be the binary measurement that checks

whether register Y is in state |Ψall〉. Formally, MΨall
is defined by the projector

PΨall
:= |Ψall 〉〈Ψall | on Y .

Recall that Vc from Lemma 33 is the measurement defined by the projector Pc :=∑
m,u

verify(k,c,m,u)=1
|m〉〈m| ⊗ |u〉〈u|.

We define an adversary (A,B) against the collapse-binding property of com (in the
alternative formulation from Lemma 33). Algorithm A(k) performs the following steps
(see also Figure 5):

• Run (S′, c)← C0(k).
• Initialize a register Y with |Ψall 〉.
• (Y,M,U,E)← UY (Y, S′). That is, apply UY to Y, S′.

• okmsg ←Mf
msg(Y,M).

• S := (E, Y, okmsg). (That is, we combine the register Y and the classical value
okmsg into a single register S).

• Return (S,M,U, c, f).
Algorithm B(S,M,U) performs the following steps (see also Figure 5):

• (E, Y, okmsg) := S.

• (Y, S′)← U †Y (Y,M,U,E).
• okY ←MΨall

(Y ).
• Return b := okmsg ∧ okY .
Let Gamepart1 ,Gamepart2 refer to the games from Lemma 33 with adversary (A,B).

Figure 5 depicts those games as a quantum circuit.
We consider Gamepart1 first. We are interested in computing the probability p :=

Pr[b = 1 ∧ ok = 1] = Pr[okmsg = okY = ok = 1] in this game. First, observe that

replacingMf
ok byMf (the latter being a measurement that is applied even when ok = 0)

does not change p. (Because Mf
ok and Mf behave differently only when ok = 0.)

Furthermore, note that, if okmsg = 1, then M,Y is in a superposition of values |m, y〉
with f(m) = y. Hence Mf on the M register is equivalent to a measurement M in
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the computational basis on Y . Thus, replacing Mf on M by M on Y does not change
p. (The two measurement behave differently only when okmsg = 0.) Thus, we get the
following circuit:

|Ψall 〉 UY U †Y MΨall

UY Mf
msg M U †Y

P C0 UY Mf
msg Vc U †Y

UY Vc U †Y

UY Mf
msg

Vc

U †Y

E E

k

Y

S′

Y

M

Y

S′

(c, f) ok y

okY

okmsg

U

M

Y

U

(21)

and have

Pr[okmsg = okY = ok = 1 : Circuit (21)] = Pr[b = 1 ∧ ok = 1 : Gamepart1 ]. (22)

Note that M on Y commutes with Mf
msg and UY . So we can move M to the beginning

(right after initializing Y with |Ψall 〉). But measuring |Ψall 〉 in the computational basis
yields a uniformly distributed y ∈ {0, 1}Λ. And furthermore, if Y contains |y〉, then UY
degenerates to Uy on register S′. Thus we can simplify (21) as follows:

UY U †Y |y〉 MΨall

P C0 UY Mf(m)=y Vc U †Y

UY Vc U †Y

Uy
Vc

U †y

y
$← {0, 1}Λ E E

k S′ M S′

(c, f) ok

okY

okmsg

U U

M

Y

(23)

Here Mf(m)=y denotes a measurement that measures whether f(m) = y for the value m
on register M . (Formally given by the projector

∑
m

f(m)=y
|m〉〈m|.) We thus have

Pr[okmsg = okY = ok = 1 : Circuit (21)] = Pr[okmsg = okY = ok = 1 : Circuit (23)].
(24)

It is easy to see that

Pr[okmsg = ok = 1 : Circuit (23)] = Pr[verify(k, c,m, u) = 1∧f(m) = y : Circuit (20)] = δ.

Furthermore, in (23), okY is independent of okmsg , ok , and we have Pr[okY = 1] = 2−Λ

by definition of MΨall
. Thus

Pr[b = 1 ∧ ok = 1 : Gamepart1 ]
(22),(24)

= Pr[okmsg = okY = ok = 1 : Circuit (23)] = 2−Λδ.
(25)

We now consider Gamepart2 . This game is depicted in Figure 5 (when omitting the

measurementMf
ok ). We are interested in computing the probability q := Pr[b = 1∧ ok =
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1] = Pr[okmsg = okY = ok = 1] in this game. Recall that P fmsg , PΨall
, Pc are the

projectors describing the measurements Mf
msg , MΨall

, Vc. Thus, q = tr ρ where ρ is the
final state of the following circuit:

|Ψall 〉 UY U †Y PΨall

UY P fmsg U †Y

P C0 UY P fmsg Pc U †Y

UY Pc U †Y

UY P fmsg

Pc

U †Y

E E

k

Y

S′

Y

M

U

Y

S′

(c, f)

U

M

Y

=: Rcf =: Q

State: ρ′ State: ρ

(26)

We abbreviate the product of the operators UY , P fmsg , Pc, U
†
Y with Rcf . Note that

Rcf is a projector since the projectors P fmsg , Pc commute and UY is unitary. Let
Q := PΨall

⊗ idS′ . Furthermore, let ρcf be the normalized state output by C0 on S′

conditioned on classical output c, f (and let pcf be the probability of those outputs).
We can write ρcf as ρcf =

∑
i pcfi|Ψcfi〉〈Ψcfi| for some normalized quantum states

|Ψcfi〉 and some probabilities pcfi with
∑

i pcfi = 1. Let |Ψ′cfi〉 := |Ψall〉 ⊗ |Ψcfi〉. Let
|Φcfi〉 := QRcf |Ψ′cfi〉. With that notation, we have ρ =

∑
c,f,i pcfpcfi|Φcfi〉〈Φcfi| and∑

c,f,i pcfpcfi = 1. Hence q = tr ρ =
∑

c,f,i pcfpcfi
∥∥|Φcfi〉

∥∥2
.

Furthermore, if ρ′ is the state in circuit (26) after U †Y , then it is easy to see that
tr ρ′ = δ (recall that δ is the success probability in (20)). We then have that δ = tr ρ′ =∑

c,f,i pcfpcfi
∥∥Rcf |Ψ′cfi〉∥∥2

=
∑

c,f,i pcfpcfiδcfi with δcfi :=
∥∥Rcf |Ψ′cfi〉∥∥2

.
By definition of Q and |Ψ′cfi〉, we have that Q|Ψ′cfi〉 = |Ψ′cfi〉. Then

δcfi = 〈Ψ′cfi|Rcf |Ψ′cfi〉 = 〈Ψ′cfi|QRcf |Ψ′cfi〉 ≤
∥∥QRcf |Ψ′cfi〉∥∥ =

∥∥|Φcfi〉
∥∥.

Thus

q =
∑
c,f,i

pcfpcfi
∥∥|Φcfi〉

∥∥2 ≥
∑
c,f,i

pcfpcfiδ
2
cfi

(∗)
≥
(∑
c,f,i

pcfpcfiδcfi

)2
= δ2

Here (∗) uses Jensen’s inequality and the fact that
∑

c,f,i pcfpcfi = 1.
Thus

Pr[b = 1 ∧ ok = 1 : Gamepart2 ] = q ≥ δ2. (27)

Since Gamepart1 and Gamepart2 are identical unless ok = 1, we have that

Pr[b = 1 ∧ ok 6= 1 : Gamepart1 ] = Pr[b = 1 ∧ ok 6= 1 : Gamepart2 ]. (28)
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Thus

Pr[b = 1 : Gamepart2 ]− Pr[b = 1 : Gamepart1 ]

=
(
Pr[b = 1 ∧ ok = 1 : Gamepart2 ] + Pr[b = 1 ∧ ok 6= 1 : Gamepart2 ]

)
−
(
Pr[b = 1 ∧ ok = 1 : Gamepart1 ] + Pr[b = 1 ∧ ok 6= 1 : Gamepart1 ]

)
(28)
= Pr[b = 1 ∧ ok = 1 : Gamepart2 ]− Pr[b = 1 ∧ ok 6= 1 : Gamepart1 ]

(27),(25)

≥ δ2 − 2−Λδ = 2−2Λ(ε+ ε2).

Thus ∣∣∣Pr[b = 1 : Gamepart1 ]− Pr[b = 1 : Gamepart2 ]
∣∣∣ ≥ 2−2Λ(ε+ ε2).

Since (C0, C1) is a τ -time adversary, (A,B) is a O(τ + τf )-time adversary, where τf
is the time needed for evaluating f . Since f is a circuit output by (A,B), τf ≤ τ . Hence
(A,B) is a O(τ)-time adversary.

Thus, by Lemma 33, there are two 1-c.b.-valid O(τ + τver + τdummy)-time adver-
saries with collapse-binding-advantages ε1, ε2 such that ε1 + ε2 ≥ 2−2Λ(ε+ ε2) against
(P, com, verify). �

Theorem 44 Let (C0, C1) be a τ -time adversary with sum-binding-advantage ε against
(P, com, verify).

Then there are two O(τ + τver + τdummy)-time adversaries that are 1-c.b.-valid for
verify with collapse-binding-advantages ε1, ε2, respectively, such that ε1 + ε2 ≥ (ε+ ε2)/4
against (P, com, verify).

Proof. From Theorem 43 using the fact that sum-binding is equivalent to F -CDMS-
binding with Λ = 1 and F = {id}. �
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