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Abstract. In this work, we consider a scenario that includes an indi-
vidual sharing his genomic data (or results obtained from his genomic
data) with a service provider. In this scenario, (i) the service provider
wants to make sure that received genomic data (or results) in fact be-
longs to the corresponding individual (and computed correctly), (ii) the
individual wants to provide a digital consent along with his data speci-
fying whether the service provider is allowed to further share his data,
and (iii) if his data is shared without his consent, the individual wants
to determine the service provider that is responsible for this leakage. We
propose two schemes based on homomorphic signature and aggregate
signature that links the information about the legitimacy of the data
to the consent and the phenotype of the individual. Thus, to verify the
data, each party also needs to use the correct consent and phenotype of
the individual who owns the data.

1 Introduction

With the rapid decrease in the cost of whole genome sequencing and
genotyping, today, genomic data is widely used in healthcare, research,
and even in recreational genomics. However, benefits due to this wide use
of genomic data come along with potential threats against individuals’
privacy. Genomic data of an individual includes privacy-sensitive data
about him such as his physical characteristics, predisposition to diseases,
and family members. Therefore, it is crucial to protect privacy of an
individual’s genomic data while allowing him to utilize his data to receive
certain healthcare or recreational services. As a result, there has been
significant amount of research efforts on privacy-preserving processing
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and secure storage of genomic data. However, the credibility and liability
issues on genomic data have not been widely considered in the literature.

Lots of individuals share their (anonymized) genomic data for research
purposes. Such donations are very important for the research community
as researchers need large amounts of genomic data samples to increase the
statistical power of their studies. Similarly, some service providers make
computations on genomic data of individuals and they are only interested
in the results of such computations (rather than the raw genomic data).
However, researchers (or service providers) want to make sure that either
(i) a donated genome indeed belongs to a particular individual, or (ii)
the results of a genetic test is indeed computed from the correct data
of the particular individual. In this work, we study this credibility issue
and propose cryptographic techniques that would enable a researcher (or
a service provider) to verify the credibility of a donated genome (or a
computed genetic test).

Furthermore, as an individual donates his genomic data for research
(to a particular entity) or undergoes a genetic test from a service provider,
he would like to make sure that neither his genomic data nor his genetic
test results are going to be observed by other individuals. Privacy leakage
occurs when genomic data of the individual or his genetic test results
are publicly shared by the service providers that collect such data at the
first place. In such incidents, it is important to understand whom to keep
liable due to such a leakage. Thus, (i) the individual wants to provide a
digital consent along with his data specifying whether the service provider
is allowed to further share his data, and (ii) if his data is shared without
his consent, the individual wants to determine the service provider that
is responsible for this leakage.

Our main assumption is that the service provider (which receives ge-
nomic data or genetic test results from an individual) should prove the
legitimacy of the data when sharing it with other entities. Under this
assumption, if the service provider makes the data public (without the
consent of the individual), it will be detected by the individual. Similarly,
if the service provider tries to share the data offline with another (non-
malicious) entity, that entity will understand that the corresponding data
is being shared without the consent of the data owner. Note however that
if the unauthorized offline sharing of genomic data is between a mali-
cious service provider and other malicious service providers, there is no
technical solution to detect this leakage.
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1.1 Contribution

In a nutshell, we propose two schemes to share genomic data and genetic
test results, respectively. The proposed schemes are based on both ho-
momorphic signature and aggregate signature that links the information
about the legitimacy of the data to the consent and the phenotype (or
the identity) of the individual. Thus, in order to verify the data, a party
also needs to use the correct consent and phenotype of the individual who
owns the data.

One proposed scheme allows the service providers to check the validity
of individuals’ genomic data. The other proposed scheme allows service
providers to conduct genetic tests on individuals’ data and be assured that
the test is conducted accurately. The adoption of homomorphic signature
enables the individual to honestly share any subset of the authenticated
data or the test results without interacting with the authority. Moreover,
it guarantees that the individual does not leak unnecessary information
when sharing the test results. The adoption of aggregate signature ef-
ficiently prevents illegal (or unauthorized) sharing of genomic data by
the service providers. In such a case, either the entity which receives the
data understands that data is shared without the consent of the data
owner, or the data owner can understand which service provider leaked
his data without his consent, and hence he can hold that party liable of
the leakage.

We emphasize that the proposed schemes can be easily adopted by
existing works on privacy-preserving processing of genomic data in order
to have a complete pipeline.

1.2 Organization

The rest of the paper is organized as follows. In the next section, we dis-
cuss the related work on security/privacy of genomic data and content
ownership techniques. In Section 3, we briefly provide background infor-
mation on homomorphic signatures, aggregate signatures, and genomics.
In Section 4, we introduce our system and threat models. In Section 5,
we provide the details of the solution for sharing genomic data along with
the security analysis. In Section 6, we describe the protocol for sharing
the results of a genetic test. In Section 7, we discuss the security proper-
ties of the solution and evaluate the practicality of the proposed scheme.
Finally, in Section 8, we conclude the paper.
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2 Related Work

There have been several works on security and privacy of genomic data.
However, as mentioned, credibility and liability issues of genomic data
have not been considered in previous work. We briefly summarize the
existing efforts on security/privacy of genomic data in the following.

One line of investigation is represented by works focusing on private
clinical genomics. Baldi et al. presented efficient algorithms for privacy-
preserving testing on full genomes, including paternity and ancestry test-
ing, and the testing of point mutations (single nucleotide polymorphisms
- SNPs) for partner compatibility and personalized medicine [4]. Ayday
et al. proposed a scheme to protect the privacy of users’ genomic data yet
enable medical units to access the genomic data in order to conduct med-
ical tests or to develop personalized medicine methods [2]. Karvelas et al.
proposed using the oblivious RAM mechanisms to access genomic data
(that is stored at a third party) and secure two-party computation proto-
cols to compute various functionalities on the data [15]. Recently, Wang et
al. proposed private edit distance protocols to find similar patients (e.g.,
across several hospitals) [19]. To provide secure storage and retrieval of
genomic data, Ayday et al. proposed techniques for the privacy-preserving
storage and retrieval of raw-genomic data [1], and Huang et al. proposed
a scheme that would guarantee long-term security (in an information-
theoretical sense) for genomic data [11].

Another area of interest addresses the problem of protecting genomic
privacy and still allowing for both basic and translational medical research
on the data. It has been shown that standard anonymization techniques
are ineffective on genomic data [9]. It has also been shown that the iden-
tity of a participant of a genomic study can be revealed by using a second
sample, that is, part of the DNA information from the individual and the
results of the corresponding clinical study [10]. Furthermore, Humbert et
al. evaluated the genomic privacy of an individual threatened by his or
her relatives revealing their genomes [12]. As a response to these threats,
a few solutions have been proposed. These can be put in three main cat-
egories: (i) techniques based on differential privacy, in which a controlled
noise is added to the result of a query (to a genomic database) [13],
(ii) techniques based on cryptography, in which the use of homomorphic
encryption, secure hardware, or secure multiparty computation are pro-
posed for privacy-preserving genomic research [14,8], and (iii) techniques
based on optimization, in which the goal is to maximize the amount of
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publicly shared genomic data and also comply to the privacy preferences
of individuals.

There have also been many attempts to prove the credibility (or au-
thenticity) of a given message or document. The most common tools to
provide this functionality are digital signatures [17]. Digital signatures are
widely used for software distribution, financial transactions, and in other
cases in which it is important to detect forgery or tampering. However,
using a digital signature to prove the credibility of a genome has two main
disadvantages: (i) digital signature can reveal the identity of the genome
donor, and (ii) genomic data is usually shared or donated partially, but
the signature is typically computed over the whole data at the data gen-
erator side (e.g., sequencing facility). On the other hand, liability issues
of a digital content are typically addressed by using a watermarking tech-
nique on the document [3]. However, (i) digital watermarking techniques
are proved to be functional for multimedia content, but not for informa-
tive text, (ii) watermarking techniques typically include injecting some
level of noise to the data, which might not be tolerated for health-related
data, and (iii) a watermark is typically included on the whole file (e.g.,
image), but genomic data can be partially shared.

3 Preliminaries

In this section, we provide background information for homomorphic and
aggregate signatures (which are the main building blocks of our proposed
schemes) and genomics in general.

3.1 Signature Schemes

Homomorphic signatures. Similar to homomorphic encryption scheme
which enables computation on encrypted data, homomorphic signature
scheme enables computation on signed data. Suppose a user Alice has a
set of messages {m1, · · · ,mk}. She can (independently) sign each data
element and store the signatures at a cloud server. Later, Alice can ask
the server to compute authenticated functions of the signed data (e.g.,
a signature for the mean value of the messages), solely based on the in-
dividual signatures. Given the mean value and the signature from the
server, any user can verify the signature. Many homomorphic signature
schemes have been proposed in the literature, as surveyed in [18]. Next,
we briefly introduce the Boneh-Freeman linearly homomorphic signature
scheme (Setup,Sign,Verify,Evaluate) from [6] that we will use in this work.
The scheme is detailed in Appendix A.
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– Setup(1n, k). On input a security parameter n and a dataset size k, this
algorithm outputs a public/private key pair (pkh, skh). The parameter
k defines how many signatures can be involved in the homomorphic
operation. The message space is Fnp , where p is a prime number, and
signatures are short vectors in Zn. A function f ∈ F is encoded as
〈f〉 = (c1, · · · , ck) ∈ Zk, where F includes all Fp-linear functions on
k-tuples of messages in Fp.

– Sign(skh, τ,m, i). On input a secret key skh, a tag τ ∈ {0, 1}n, a mes-
sage m ∈ Fnp , and an index i, this algorithm outputs a signature σ.
Note that τ can be considered as an identifier of the dataset that m
belongs to, while i is the index of m in this dataset.

– Verify(pkh, τ,m, σ, f). On input a public key pkh, a tag τ ∈ {0, 1}n,
a message m ∈ Fnp , a signature σ ∈ Zn, and a function f ∈ F , this
algorithm outputs 1 (accept) or 0 (reject).

– Evaluate(pkh, τ, f,−→σ ). On input a public key pkh, a tag τ ∈ {0, 1}n,
a function f ∈ F encoded as 〈f〉 = (c1, · · · , ck) ∈ Zk, and a tuple of
signatures −→σ = (σ1, · · · , σk), the algorithm outputs σ =

∑k
i=1 ciσi.

Two security properties are defined for homomorphic signature: un-
forgeability and context-hiding. Informally, the unforgeability property im-
plies that an attacker will not be able to forge a signature for a new tag
τ ′ (generated by the attacker himself). Moreover, the attacker will not be
able to forge a signature for a message which is not equal to the evaluation
of f on the existing signed messages. Suppose that −→σ = (σ1, · · · , σk) are
the signatures for messages in {m1, · · · ,mk} with respect to a tag τ , then
Verify(pkh, τ,m, σ, f) = 0 if m 6=

∑k
i=1 fimi. The context-hiding property

implies that the signature σ, namely the output of Evaluate, does not leak
more information about {m1, · · · ,mk} than

∑k
i=1 fimi.

Aggregate signatures. To improve the efficiency of cascaded sharing of
SNPs and test results, we also use aggregate signatures. Suppose there
are N users, denoted as {U1, . . . , UN}, of an aggregate signature scheme
(Setup,KeyGen, Sign,Verify,Aggregate). Suppose that each user Ui, with
the key pair (pkai, sk

a
i), generates a signature σi = Sign(skai,mi) for

message mi. Then, given σi (1 ≤ i ≤ N) values from all users, any
entity can run Aggregate to aggregate them into a single signature σagg.
With pkai,mi (1 ≤ i ≤ N) and σagg, any entity can verify whether these
signatures are valid or not. In this paper, we use the Boneh-Lynn-Shacham
aggregate signature scheme [7], which achieves standard unforgeability
property. The scheme is detailed in Appendix B.
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3.2 Genomics Background

The human genome is encoded in double stranded DNA molecules consist-
ing of two complementary polymer chains. Each chain consists of simple
units called nucleotides (A,C,G,T). Even though most of the DNA se-
quence is conserved across the whole human population, around 0.5% of
each person’s DNA (which corresponds to several millions of nucleotides)
is different from the reference genome, owing to genetic variations. Single
nucleotide polymorphism (SNP) is the most common DNA variation. A
SNP is a position in the genome holding a nucleotide that varies between
individuals and there are approximately 4 million SNPs in each individ-
ual. Multiple Genome Wide Association Studies (GWAS) performed in
recent years have shown that a patient’s susceptibility to particular dis-
eases can be (partially) predicted from sets of his SNPs. Thus, leakage of
SNPs often poses a significant threat to individual privacy.

Each SNP position includes two alleles (i.e., two nucleotides) and ev-
eryone inherits one allele of every SNP position from each of his parents.
If an individual receives the same allele from both parents, he is said to
be homozygous for that SNP position. If, however, he inherits a different
allele from each parent (one minor and one major), he is called heterozy-
gous. Depending on the alleles the individual inherits from his parents,
the content of a SNP position can be simply represented as the number
of minor alleles it possesses, i.e., 0, 1, or 2. A service provider may run
various linear tests on the SNPs of an individual. For example, a service
provider may compute the predicted susceptibility of patient P for disease
X, SXP , by using weighted averaging [2] as follows:

SXP =
∑
i∈ϕX

wi
SNPPi

(X)× SNPPi , (1)

where, ϕX includes the indices of SNPs that are relevant for disease X
and wi

j(X) represents the contribution of different states of SNP j (i.e.,
0, 1, or 2) for disease X.

4 System and Security Models

Here we describe the system model, threat model, and the initialization
for the proposed scheme.

4.1 The System Model

We assume the existence of multiple certified institutions (CIs), individu-
als, and service providers (SPs) in the system. For the sake of simplicity,
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we will describe the proposed scheme using a single CI, individual (Alice),
and SP. Our proposed system model is also illustrated in Fig. 1.

Certified Institution (CI)

𝒔𝒌𝑪𝑰
𝒉 , 𝒑𝒌𝑪𝑰

𝒉

Alice
𝒔𝒌𝑨

𝒂 , 𝒑𝒌𝑨
𝒂

Service Provider (SP)
𝒔𝒌𝑺𝑷

𝒂 , 𝒑𝒌𝑺𝑷
𝒂

Fig. 1. Proposed System Model

The CI is mainly responsible for sequencing, encrypting, and signing
the sequenced data. In this work, we do not consider encryption at the
CI, as it is not the main focus of the paper. However, there has been sev-
eral works in the literature that cover such encryption techniques. Our
proposed scheme can easily be adopted by one of such schemes to pro-
vide a complete pipeline. Furthermore, it is worth noting that a certified
institution for sequencing has been proposed in many existing works on
genomic privacy [2]. Having such a CI is also unavoidable in today’s se-
quencing technology. In practice, the SP can be a medical institution, a
genetic researcher, or a direct-to-customer (DTC) service provider. The
SP is mainly interested in receiving a portion of Alice’s genome (e.g.,
for research) or the result of a (linear) genetic test that is conducted on
Alice’s genome. It has been shown that the results of such genetic tests
are particularly important to determine (i) the predisposition of an in-
dividual for different diseases, or (ii) the exact dose of a drug that will
be prescribed to an individual. Alice, on the other hand, is interested in
either (i) enrolling in a genetic research initiative by donating a part of
her genome (e.g., a subset of her SNPs), (ii) sharing a part of her genome
with a medical institution for treatment, or (iii) receiving a service based
on the result of a genetic test that will be run on her genome. In all these
scenarios, Alice wants to share her data either anonymously (without her
real identity) or with her real identity. Furthermore, she also wants to pro-
vide a consent denoting whether the SP can further share the genomic
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data it received from Alice with other entities (either anonymously or
with the real identity of Alice).

When the system is set up, we assume the following keys have been
generated and certified by a certificate authority (CA).

– The CI generates a key pair (skhCI , pk
h
CI) for the Boneh-Freeman

homomorphic signature scheme. During the key generation, the CI
should set the parameters according to the pre-defined sequencing
tasks. Suppose the set of SNPs for Alice is G with the size |G|, then
the k parameter should be |G|+2, required by the proposed protocols.
The parameter p should be selected such that it makes Equality (2),
defined in Section 5.1, hold with very small probability. We require
that identity information and phenotype information can be encoded
into Zp.

– Alice generates a key pair (skaA, pk
a
A) for the Boneh-Lynn-Shacham

aggregate signature scheme.
– The SP generates a key pair (skaSP , pk

a
SP ) for the Boneh-Lynn-

Shacham aggregate signature scheme.

As a standard practice, we assume the CA generates a certificate for every
public key and is responsible for all maintenance issues. For simplicity,
we omit the details here. With respect to Alice’s public key pkaA, we
assume the associated certificate CertA does not contain the Alice’s real
identity IDA because we want to allow Alice to anonymously share her
data (when desired). However, we require the CA to issue a specifical
certificate Certpk−id−A to link IDA and pkaA.

4.2 The Threat Model

To be realistic and avoid single point of failure, we assume there are two
trust anchors in the system. First, all parties trust the CA(s) to certify the
public keys used to protect genomic data, as shown in Fig. 2. In reality, the
CA(s) can be government agencies or entities endorsed by such agencies.
We could even require the CI to be certified by more than one CAs. For
simplicity, we assume there is only one CA in our discussion. Second, all
parties trust the CI to generate genomic data (via sequencing) and link
the generated data to individual users, as shown in Fig. 3.

Since we want to focus on the credibility and liability issues, we sim-
ply assume there are secure communication channels between all parties.
Therefore, an outside attacker will neither learn the genomic data and test
results (confidentiality) nor modify them (integrity). Under these assump-
tions, we mainly consider two types of attacks in our security evaluation.
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Trust anchor for 
Public key certification

SPCIUser

Fig. 2. Trust model between the cer-
tificate authority (CA), the user, the
certified institution (CI), and the ser-
vice provider (SP).

Trust anchor for 
SNPs certification

SP-N

CI

User SP-1

Fig. 3. Trust model between the certi-
fied institution (CI), the user, and the
service provider (SP).

– Credibility attack. A malicious party (e.g., a user or SP) may try to
provide modified genomic data or test results in participating in ge-
nomic research. In practice, a user may provide fake genomic data or
test results to get compensation from the government, and a malicious
SP may forward modified genomic data or test results to another SP
to mislead its research.

– Liability attack. A malicious party (e.g., a SP or CI) may try to forge
a user’s consent in order to share his/her genomic data or test results
with another honest party. As mentioned before, if two malicious par-
ties want to share a user’s data at their hands, we do not have technical
way to stop it and should resort to other countermeasures.

4.3 Initialization

We have two message formats in the proposed scheme representing the
SNPs and the consent.

– The message format of SNP i of Alice is denoted as an n-tuple M s
i =

(IDA, gi, 0, · · · , 0), where IDA is the Alice’s identity and gi is the
value of SNP i (i ∈ G and gi ∈ {0, 1, 2}). The (n − 2) 0s in M s

i

are to meet the message format of the Boneh-Freeman homomorphic
signature scheme.

– The message format of consent is represented as M c =
(IDA||CA,SP (t)||IDSP ), where IDSP is the identity of the SP for the
corresponding transaction, and CA,SP (t) represents the actual con-
sent. In its simplest form, CA,SP (t) can be {“do not share”, “share
anonymously”, “share non-anonymously”}, and can be defined freely.
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After the setup, Alice and the CI interact as follows for Alice to reg-
ister at the CI.

1. Alice sends her identity IDA, her public key pkaA and associated
certificate CertA, and Certpk−id−A to the CI.

2. The CI validates the following facts: Alice owns the phonotype PA, the
certificate CertA for pkaA is correct, and Certpk−id−A is valid and links
IDA and pkaA. If the validation passes, the CI selects τA ∈ {0, 1}n
and sends it to Alice. Note that n is the security parameter of the
Boneh-Freeman homomorphic signature scheme. At the end, the CI
establishes a record IDA, PA, pk

a
A, CertA, Certpk−id−A, τA for Alice.

The CI publishes pkaA, τA so that any entity can see the link between
them.

At any time, Alice can send her biological sample to the CI, which
will then sequence her genome and sign the results. In more detail, Alice
and the CI perform the following protocol shown in Fig. 4.

Certified Institution (CI)

𝒔𝒌𝑪𝑰
𝒉 , 𝒑𝒌𝑪𝑰

𝒉
Alice

𝑰𝑫𝑨: identity of Alice
𝑷𝑨: phenotype of Alice

Biological sample and 𝑰𝑫𝑨

Do the sequencing
Construct:
- set of SNPs 𝑴𝒊

𝒔 𝒊 ∈ G
- anonymization factor 𝑹𝑨

- set of anonymized SNPs 𝑴𝒊
𝒔 𝒊 ∈ G

Sign (using 𝒔𝒌𝑪𝑰
𝒉 )

- each anonymized SNP to get 𝑺𝒊
- anonymization factor to get 𝑻
- 𝑰𝑫𝑨 and 𝑷𝑨 to get 𝑫𝑨

𝑴𝒊
𝒔 𝒊 ∈ G , 𝑺𝒊 𝒊 ∈ G , 𝑹𝑨, 𝑻, 𝑫𝑨

Verify signatures (using 𝒑𝒌𝑪𝑰
𝒉 )

Fig. 4. Genome Sequencing between Alice and the CI.

– Step 1: Alice sends her biological sample along with IDA and PA to
the CI.

– Step 2: The CI does the sequencing and determines the SNPs in G.

– Step 3: The CI constructs M s
i = (IDA, gi, 0, · · · , 0) for each SNP,

where i ∈ G.
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– Step 4: The CI selects the anonymization factor RA = (`A, 0, 0, · · · , 0)

where `A
$← Zp which means `A is chosen from Zp uniformly at ran-

dom. Note that p is the security parameter of the Boneh-Freeman ho-
momorphic signature scheme. The anonymization factor is used when
Alice wants to share her data anonymously.

– Step 5: The CI constructs anonymized SNPs M s
i = (IDA −

`A, gi, 0, · · · , 0) for every i ∈ G.

– Step 6: The CI signs each anonymized SNP message using homomor-
phic signature scheme and skhCI to obtain Si = Sign(skhCI , τA,M s

i , i)
for every i ∈ G.

– Step 7: The CI signs the anonymization factor RA to obtain T =
Sign(skhCI , τA, R

A, |G|+ 1).

– Step 8: The CI signs the ID of Alice along with her phenotype infor-
mation to obtain DA = Sign(skhCI , τA, (IDA, PA, 0, · · · , 0), |G|+ 2).

– Step 9: The CI sends anonymized SNPs, corresponding signatures (i.e.
Si values), the anonymization factor (i.e. RA), T , and DA to Alice.

– Step 10: Alice verifies all received signatures.

To facilitate the following discussions, we define a message vector
−→
M

and a signature vector −→σ with |G|+ 2 elements as follows.

−→
M = (M s

1 , · · · ,M s
|G|, R

A, (IDA, PA, 0, · · · , 0)),−→σ = (S1, · · · , S|G|, T,DA)

5 Protocol for Sharing SNPs

If Alice wants to share her SNPs with the SP, they engage in the protocol
shown in Fig. 5. We sketch the protocol in the following, and leave the
details to Appendix C.

– Step 1: The SP sends the indices of the SNPs it requests, denoted by
I = {i1, · · · , it}.

– Step 2: Alice retrieves the corresponding anonymized SNPs M s
j (j ∈ I)

along with the corresponding anonymity factor RA.

– Step 3: Alice generates |G| + 2 random coefficients to construct a
function f which has the encoding form 〈f〉 := (f1, · · · , f|G|+2). The
generation of f is detailed below.

Let PF be a Hash function, which outputs |G| + 2
numbers r1, · · · , r|G|+2. When Alice generates 〈f〉 =

(f1, · · · , f|G|+2) ∈ Z|G|+2, she first generates r1, · · · , r|G|+2
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Alice
𝑰𝑫𝑨: identity of Alice
𝑷𝑨: phenotype of Alice
𝝉𝑨: user tag for Alice

Set of indices of the requested SNPs (I)

Retrieve 𝑴𝒋
𝒔 𝒋 ∈ I and anonymization factor 𝑹𝑨

Generate:
- |G + 𝟐| random coefficients to construct < 𝒇 > vector
- combined signature 𝝈∗on 𝝈 = (𝑺𝟏, … , 𝑺 𝑮 , 𝑻, 𝑫𝑨) using 

< 𝒇 > and homomorphic properties of the signature 
scheme 

𝑰𝑫𝑨, 𝑷𝑨, 𝝉𝑨, 𝑴𝒋
𝒔 𝒋 ∈ I , 𝑹𝑨, < 𝒇 >, 𝝈∗

Validate the coefficients in < 𝒇 >

Verify 𝝈∗ (using 𝒑𝒌𝑪𝑰
𝒉 )

Service Provider (SP)

Generate consent 𝑴𝒄

Sign the consent (using the aggregate signature scheme 
and 𝒔𝒌𝑨

𝒂) to get 𝝈′

Request consent

𝑴𝒄, 𝝈′

Verify 𝝈′ (using 𝒑𝒌𝑨
𝒂)

Fig. 5. Non-anonymous SNP Sharing.

using pkA||pkSP ||τA||i1|| · · · ||it||M s
i1
|| · · · ||M s

it
||RA as input.

Then, she sets fij := rij for every requested SNP in I, sets
f|G|+1 := r|G|+1, f|G|+2 := r|G|+2, and sets fx = 0 for other x (i.e.,
for the SNPs that are not in I). Thus, any entity, including the SP,
can validate 〈f〉 is generated in this manner.

– Step 4: Alice generates a combined signature using the ho-
momorphic properties of the digital signature scheme. σ∗ :=
Evaluate(pkhCI , τA, f,

−→σ ), where −→σ = (S1, · · · , S|G|, T,DA).

– Step 5: Alice sends IDA, PA, τA, M s
j values (j ∈ I), RA, 〈f〉, and σ∗

to the SP.

– Step 6: The SP validates 〈f〉 (as coefficients in 〈f〉 are publicly veri-
fiable) and verifies σ∗.

– Step 7: The SP requests the consent from Alice.

– Step 8: Alice generates the consent M c and signs it using her pri-
vate key to obtain σ′ := Sign(skaA,M

c||τA||info), where info :=
i1|| · · · ||it||M s

i1
|| · · · ||M s

it
||RA.

– Step 9: Alice sends M c and σ′ to the SP.
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– Step 10: The SP verifies the signature. The use of aggregate signature
for further re-sharing of the same data (assuming Alice has consent
for re-sharing) is further discussed in Section 5.1.

5.1 Security Analysis

In the proposed protocol, the generation of challenge 〈f〉 plays a key role
in preventing credibility attacks. We discuss two cases.

– Alice tries to cheat SP. In this case, some of the SNPs information
from Alice, namely M s

ij
(1 ≤ j ≤ t) and RA, is different from what has

been signed by the CI. The unforgebility property of the homomor-

phic signature scheme guarantees that 〈f〉 ·
−→
MT is computed correctly

by Alice, and the corresponding signature σ∗ is valid. Otherwise, we
will have a forgery for the signature scheme. As such, Alice can only
successfully mount an attack when the following equality holds.

〈f〉 ·
−−→
M∗T = 〈f〉 ·

−→
MT , (2)

where

−−→
M∗ = ((0, 0, 0, · · · , 0), · · · ,M s

i1
, · · · ,M s

it
, · · · , RA, (IDA, PA, 0, · · · , 0))

Based on the generation of f , it is straightforward to show that the
equality holds with negligible probability with reasonable parameters
if we assume PF to be a random oracle. Therefore, it is infeasible for
Alice to mount the attack.

– Alice colludes with SP to cheat another SP. This scenario is exactly
the same as the above scenario. Due to the fact that the generation of
〈f〉 is publicly verifiable, collusion does not give Alice any additional
advantage.

The unforgebility property of the Boneh-Lynn-Shacham aggregate sig-
nature scheme guarantees that the SP has been authorized by Alice to
use SNPs and has the privileges specified in the consent M c. The info
parameter links the signature σ′ to the shared SNPs data.

Suppose that SP (0) has been authorized by Alice to further share her
SNPs data. If SP (0) wants to share the SNPs with SP (1) then it will gen-
erate a signature σ′0→1 for a consent of the form M c||τA||info||IDSP (1) .
Similarly, SP (1) can generate a signature σ′1→2 for a consent of the
form M c||τA||info||IDSP (2) to share the SNPs with SP (2). This pro-
cess can continue, and form a chain of delegated consents: σ′0→1, σ

′
1→2,
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· · · , σ′N−1→N . SP (N) can aggregate the signatures into a single one

σ′0→1→···→N . When SP (N) wants to share Alice’s data with Bob, it pro-
vides the following information.

σ∗, f, IDA, PA,M
c||τA||info, IDSP (0) , · · · , IDSP (N) , σ′0→1→···→N

Bob can then validate all the signatures in the chain to see whether SP (N)

has obtained the permission or not. Moreover, Bob can validate the SNPs
data by validating σ∗. Note that the SNPs data can be obtained from the
info parameter.

5.2 Anonymous Sharing

In order to stay anonymous, Alice follows the same protocol, shown in Fig.
5, except that she does not transmit RA, IDA, and PA to the SP. When
Alice generates 〈f〉, she should set f|G|+1 := 0, f|G|+2 := 0. Moreover,
Alice should replace IDA with τA in the consent M c. The security analysis
remains the same.

6 Protocol for Sharing Test Results

If Alice wants to share the genetic test results with the SP, they engage
in the protocol shown in Fig. 6. We sketch the protocol in the following,
and leave the details to Appendix D.

– Step 1: The SP sends the weights of the test (w1, · · · , w|G|) to Alice
(to be general, we assume all SNPs to be used in the test).

– Step 2: Alice constructs the first |G| values of 〈f〉 based on the weights
and sets f|G|+1 := f|G|+2 := 0.

– Step 3: Alice computes the result of the test m∗ using her SNPs and
the received weights.

– Step 4: Alice generates a combined signature σ∗ using the ho-
momorphic properties of the digital signature scheme. σ∗ :=
Evaluate(pkhCI , τA, f,

−→σ ), where −→σ = (S1, · · · , S|G|, T,DA).

– Step 5: Alice also constructs her consent M c and signs it to generate
σ′ := Sign(skaA,M

c||τA||info||m∗), where info := w1|| · · · ||w|G|.
– Step 6: Alice sends m∗, σ∗, σ′, τA, and M c to the SP.

– Step 7: The SP verifies both signatures it receives from Alice.

If Alice wants to share her phenotype information PA with the SP, she
can send IDA, PA and DA to the SP. If Alice wants to stay anonymous,
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Alice
𝑰𝑫𝑨: identity of Alice
𝑷𝑨: phenotype of Alice
𝝉𝑨: user tag for Alice

Weights of the test 𝒘𝟏, … ,𝒘 𝑮

Generate:
- |G + 𝟐| random coefficients based on the received 

weights and construct the < 𝒇 > vector
- the result of the test 𝒎∗using the SNPs and the weights
- combined signature 𝝈∗on 𝝈 = (𝑺𝟏, … , 𝑺 𝑮 , 𝑻, 𝑫𝑨) using 

< 𝒇 > and homomorphic properties of the signature 
scheme 

- the consent 𝑴𝒄

- signature on the consent (using the aggregate signature 
scheme and 𝒔𝒌𝑨

𝒂)  and get 𝝈′

𝒎∗, 𝝈∗, 𝝈′, 𝝉𝑨, 𝑴𝒄

Verify 𝝈∗ (using 𝒑𝒌𝑪𝑰
𝒉 )

Verify 𝝈′ (using 𝒑𝒌𝑨
𝒂)

Service Provider (SP)

Fig. 6. Non-anonymous Test Result Sharing.

she should not share IDA and PA. Moreover, Alice should replace IDA

with τA in the consent M c.
The unforgebility property of the homomorphic signature scheme

guarantees that the test result m∗ is faithfully computed based on Alice’s
data, while the context hiding property guarantees that the signature σ∗

does not leak more information than m∗ about Alice’s SNPs. The unforge-
bility property of the aggregate signature scheme guarantees that the SP
has been authorized by Alice to use test results and has the privileges
specified in the consent. If the test results are going to be shared further
with other SPs, the workflow is the same as that of sharing SNPs.

7 Discussion

In general, all signatures (on data, ID, and phenotype) are generated by
the CI. Using the homomorphic properties of the digital signature scheme
(as discussed in Section 3.1), Alice linearly combines such signatures (de-
pending on the type of the query) and generates a valid signature that can
be verified by using the public key of the CI. As discussed in Section 5.1,
Alice cannot cheat an SP by providing incorrect SNP data.

We assume that the SP, when sharing Alice’s data with other entities,
needs to show proof that the data is legitimate. This proof is the digital
signature that SP receives from Alice (signed using the aggregate signa-
ture scheme and Alice’s private key). As discussed, the signature can only
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be verified by using the correct consent of Alice. Therefore, the SP will be
detected if it tries to share Alice’s data without her consent. A malicious
SP may try to modify the consent of Alice in order to share her data with
other entities (along with a valid signature). However, since the consent
is signed by Alice’s private key at the first place, such an attack is also
not possible.

A malicious SP may also publicly share Alice’s SNP data without her
consent. We assume that such a sharing also includes the signature to
prove the credibility of the shared data. In such a scenario, the 〈f〉 values
in the corresponding signature would reveal the identity of the malicious
SP that leaked Alice’s data without her consent. This property of the
proposed scheme brings a solution for the liability issues on case of unau-
thorized sharing of genomic data (since the values in 〈f〉 are generated
using the public key of the SP, as discussed in Section 5).

One drawback of the proposed scheme is that it does not prevent an SP
from linking the anonymous identity of Alice to her real identity. Assume
Alice shares a set of SNPs with a particular SP in a non-anonymous way.
Then, if Alice shares another set of SNPs on a public database in an
anonymous way, the SP can deanonymize Alice’s identity as it possesses
the RA value of Alice from the previous transaction. We will further study
this issue in future work.

We also briefly remark on the performance of the proposed solutions.
First, we recap the implementation results of the Boneh-Lynn-Shacham
aggregate signature scheme due to Barreto et al. [5]. Suppose that the
implementation is based on a super-singular curve. For a computer with
PIII 1 GHz CPU, signing takes 3.57 milliseconds, while verification takes
53 milliseconds. The aggregation algorithm Aggregate only incurs multi-
plications in the source group, and each multiplication takes less than 14
microseconds. Verifying an aggregate signature with k individual signa-
tures takes roughly 53 · k milliseconds.

Second, we remark on the homomorphic signature scheme. At this
moment, we do not have any available implementation for this primitive,
however this does not prevent us from estimating its performances. The
most costly function is the Sign algorithm, whose main complexity comes
from the SamplePre routine which is basically a sampling algorithm for
Gaussian distribution. According to the implementation of Lyubashevsky
and Prest [16], based on an Intel Core i5-3210M laptop with a 2.5GHz
CPU and 6GB RAM, a Gaussian sampling takes about 115 milliseconds.
The Verify and Evaluate algorithms are much more efficient because they
only incur linear operations and has no exponentiations. As future work,
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we will build a proof-of-concept prototype and have the precise perfor-
mance numbers.

8 Conclusions

In this work, we proposed two cryptographic schemes to share genomic
data and genetic test results. The proposed schemes are between a data
owner and a service provider. Using the proposed schemes, on the one
hand, a service provider can check the validity (or legitimacy) of genomic
data it receives from a data owner (individual). On the other hand, the in-
dividual, via a digital consent, can make sure that the service provider will
not further share his data without his permission. The proposed schemes
are based on homomorphic signatures and aggregate signatures, and these
cryptographic primitives enable us to link the information about the le-
gitimacy of the data to the consent and the identity of the individual. We
also discussed the security and practicality of the proposed schemes. The
proposed schemes can be easily adopted by existing works on privacy-
preserving processing of genomic data.
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Appendix A Boneh-Freeman Signature Scheme

The Boneh-Freeman homomorphic signature scheme is based on lattices,
and we recap the description here. The reader should refer to [6] for more
details.

– Setup(1n, k). On input a security parameter n and a data set size k,
do the following:

1. Choose two primes p, q = poly(n) with q ≥ (nkp)2. Define ` :=
bn/6 log qc.

2. Set Λ1 := pZn.

3. Use TrapGen(q, `, n) to generate a matrix A ∈ F`×nq along with a

short basis Tq of Λ⊥q (A). Define Λ2 := Λ⊥q (A) and T := p · Tq.
Note that TrapGen is a function to sample matrices in lattices.

4. Set υ := p ·
√
n log q · log n

5. Let H : {0, 1}∗ → F`q be a hash function.

6. Output the public key pkh := (Λ1, Λ2, υ, k,H) and the secret key
skh := T.

The public key pkh defines the following system parameters:

• The message space is Fnp and signatures are short vectors in Zn.

• The set of admissible functions F is all Fp-linear functions on k-
tuples of messages in Fp.
• For a function f ∈ F defined by f(m1, · · · ,mk) =

∑k
i=1 cimi,

we encode f by interpreting the ci as integers in (−p/2, p/2] and
defining 〈f〉 = (c1, · · · , ck) ∈ Zk.
• To evaluate the hash function ωτ on an encoded function 〈f〉 =

(c1, · · · , ck) ∈ Zk, do the following:

1. For i = 1, · · · , k, compute αi = H(τ ||i) ∈ F`q
2. Define ωτ (〈f〉) =

∑k
i=1 ciαi ∈ F`q.

Note that ωτ is a hash function that maps encoding of function f
to elements of Zn/Λ2.

– Sign(skh, τ,m, i). On input a secret key skh, a tag τ ∈ {0, 1}n, a mes-
sage m ∈ Fnp , and an index i, do:

1. Compute αi = H(τ ||i) ∈ F`q. Then, by definition, ωτ (〈πi〉) = αi.

2. Compute t ∈ Zn such that t mod p = m and A · t mod q = αi.

3. Output σ ← SamplePre(Λ1
⋂
Λ2,T, t, υ) ∈ Λ1

⋂
Λ2 + t.

Note that SamplePre is basically a sampling algorithm for Gaussian
distributions.
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– Verify(pkh, τ,m, σ, f). On input a public key pkh, a tag τ ∈ {0, 1}n, a
message m ∈ Fnp , a signature σ ∈ Zn, and a function f ∈ F , If all of
the following conditions hold, output 1 (accept); otherwise output 0
(reject).
1. ||σ|| ≤ k · p2 · υ

√
n.

2. σ mod p = m.
3. A · σ mod q = ωτ (〈f〉).

– Evaluate(pkh, τ, f,−→σ ). On input a public key pkh, a tag τ ∈ {0, 1}n,
a function f ∈ F encoded as 〈f〉 = (c1, · · · , ck) ∈ Zk, and a tuple of
signatures −→σ = (σ1, · · · , σk) ∈ Zn, output σ =

∑k
i=1 ciσi.
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Appendix B Boneh-Lynn-Shacham Signature Scheme

A bilinear group generator is an algorithm GC that takes as input a secu-
rity parameter λ and outputs a description Γ = (p,G,GT , ê, g) where:

– G and GT are groups of prime order p with efficiently computable
group laws.

– g is a randomly-chosen generator of G.
– ê is an efficiently-computable bilinear pairing ê : G × G→ GT , i.e.,

a map satisfying the following properties for g 6= 1 ∈ G:
• Bilinearity: ê(ga, gb) = ê(g, g)ab for all a, b ∈ Zpq;
• Non-degeneracy: ê(g, g) 6= 1.

The Boneh-Lynn-Shacham aggregate signature scheme [7] are defined
with four algorithms.

– Setup(λ). On input of the security parameter λ, this algorithm runs
GC to generate Γ = (p,G,GT , ê, g), and generates a hash function
H : {0, 1}∗ → G.

– KeyGen(Γ ). This algorithm chooses s
$← Zp and set the key pair to be

(pka, ska) where pka = gs and ska = s.
– Sign(ska,m). On input of the private key ska and a message m, this

algorithm outputs the signature σ = H(pka||m)s.
– Verify(pka,m, σ). On input of the public key pka, a message m and its

signature σ, the algorithm outputs 1 iff ê(g, σ) = ê(H(pka||m), pka).
– Aggregate(Σ). On input of a set of signatures Σ = {σi(1 ≤ i ≤ k)},

which are signed by pkai for message mi correspondingly, this algo-
rithm outputs σagg =

∏k
i=1 σi.

With an aggregate signature, the verification outputs 1 iff ê(g, σagg) =∏k
i=1 ê(H(pkai||m), pkai).
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Appendix C Protocol for Sharing SNPs
Non-anonymously

SP Alice

(skhSP , pk
h
SP ) (skaA, pk

a
A)

% identify the SNPs %

(i1, · · · , it)
IDSP , (i1,··· ,it)−−−−−−−−−−−→

Ms
ij

(1 ≤ j ≤ t), RA

% compute the signature %

set 〈f〉 := (f1, · · · , f|G|+2)

σ∗ := Evaluate(pkhCI , τA, f,
−→σ )

τA,IDA,PA←−−−−−−−−
Ms

ij
(1≤j≤t),RA

←−−−−−−−−−−−
〈f〉,σ∗←−−−−

validate 〈f〉
m∗ := 〈f〉 ·

−−→
M∗T

Verify(pkhCI , τA,m
∗, σ∗, f)

“consent”−−−−−−−−→
% sign consent%

info := i1|| · · · ||it||Ms
i1
|| · · · ||Ms

it
||RA

σ′ := Sign(skaA,M
c||τA||info)

Mc,σ′←−−−−
% verify consent %

Verify(pkaA,M
c||τA||info, σ′)

Fig. 7. Non-anonymous SNPs Sharing

The vector
−−→
M∗ is defined as follows.

−−→
M∗ = ((0, 0, 0, · · · , 0), · · · ,M s

i1
, · · · ,M s

it
, · · · , RA, (IDA, PA, 0, · · · , 0))
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Appendix D Protocol for Sharing Test Results
Non-anonymously

SP Alice
(skSP , pkSP ) (skA, pkA)

% prepare test function %

(w1, · · · , w|G|)
(w1,··· ,w|G|)−−−−−−−−→

% if sharing is ok %

set 〈f〉 = (f1, · · · , f|G|+2),
s.t. fi := wi for every 1 ≤ i ≤ |G|

f|G|+1 := 0, f|G|+2 := 0

m∗ := (f1, · · · , f|G|+2) ·
−→
MT

% sign test results%

σ∗ := Evaluate(pkhCI , τA, f,
−→σ )

% sign consent%

info := w1|| · · · ||w|G|
σ′ := Sign(skaA,M

c||τA||info||m∗)
m∗,σ∗,σ′,τA,M

c

←−−−−−−−−−−−
Verify(pkhCI , τA,m

∗, σ∗, f)
Verify(pkaA,M

c||τA||info, σ′)

Fig. 8. Non-anonymous Test Result Sharing


