Groth-Sahai Proofs Revisited Again: A Bug in “Optimized” Randomization

Keita Xagawa
NTT Secure Platform Laboratories
xagawa.keita@lab.ntt.co.jp
May 20, 2016

Abstract. The Groth-Sahai proof system (EUROCRYPT 2008, SIAM Journal of Computing 41(5) [GS12]) provides efficient non-interactive witness-indistinguishable (NIWI) and zero-knowledge (NIZK) proof systems for languages over bilinear groups and is a widely-used versatile tool to design efficient cryptographic schemes and protocols.

We revisit randomization of the prover in the GS proof system. We find an unnoticed bug in the “optimized” randomization in the symmetric bilinear setting with several assumptions, say, the DLIN assumption or the matrix-DH assumption. This bug leads to security issues of the GS NIWI proof system with “optimized” randomization for multi-scalar multiplication equations and the GS NIZK proof system with “optimized” randomization for certain cases of pairing product equations and multi-scalar multiplication equations.

Keywords: Non-interactive proof systems, the Groth-Sahai proof system, symmetric bilinear groups, the DLIN assumption

1 Introduction

Non-interactive witness-indistinguishable (NIWI) protocols and non-interactive zero-knowledge (NIZK) protocols [BFM88] are fundamental tools in cryptology and allow us to design complex cryptographic primitives/protocols in modular approach, e.g., group signatures [BMW03,BSZ05], universal designated-verifier signatures [SBWP03], and policy-based signatures [BF14].

In 2008, Groth and Sahai [GS12] proposed a new framework for NIWI/NIZK proof systems for languages related to bilinear groups, pairing product equations (PPEs), multi-scalar multiplication equations (MMEs), and quadratic equations (QEs). Designers of cryptographic protocols rapidly adopted the Groth-Sahai (GS) proof systems, because they have been longing for efficient and practical NIWI/NIZK proof systems for such languages, and they have constructed more efficient protocols. After the GS proof system appeared, several efficient (and complex) cryptographic primitives proposed by employing the GS proof system and its improvements as a basic tool.

1.1 Our Contribution

We revisit randomization of a prover in the GS proof system and found an unnoticed bug in the “optimized” randomization in the symmetric setting; the “optimized” randomization is sometimes insufficient to hide the witness. This case happens when we construct a NIWI proof system for MMEs based on the DLIN assumption (or the matrix DH assumptions). This bug leads to security issues as follows:

- We disprove perfect witness-indistinguishability with a hiding CRS (composable witness-indistinguishability) of the GS NIWI proof system for MMEs based on the DLIN assumption [GS12, Section 6.3], which we call $\text{GS}_{\text{sym}}^\prime$.
- We disprove computational witness-indistinguishability of the GS NIWI proof system in [GS12, Section 10], which we call GS_{sym}''.
- We point out that the simulation for composable zero-knowledge property fails in the case of the NIZK proof systems [GS12, Section 11] for certain cases of MMEs and PPEs based on the DLIN assumption, because the NIZK proof systems employed the NIWI proof system for MMEs.
Table 1 and Table 2 summarize the effect of the bug in the NIWI and NIZK proof systems instantiated from the DLIN assumption.

Remark 1.1. It is easy to remove the bug by avoiding the “optimized” randomization.

Remark 1.2. We check the security the NIWI proof systems with “optimized” randomization for special MMEs, which is employed in the NIZK proof systems for special PPEs, in the generic-group model. See Appendix A for the details.

Table 1. Properties of the NIWI GS proof systems with "optimized" randomization based on the DLIN assumption

<table>
<thead>
<tr>
<th>Languages</th>
<th>GS’ Sym [GS12, Section 6.3]</th>
<th>GS’’ Sym [GS12, Section 10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPE</td>
<td>Composable WI</td>
<td>Composable WI</td>
</tr>
<tr>
<td>MME</td>
<td>Not composable WI</td>
<td>Not computational WI</td>
</tr>
<tr>
<td>QE</td>
<td>Composable WI</td>
<td>Composable WI</td>
</tr>
</tbody>
</table>

Table 2. Properties of the NIZK GS proof systems with "optimized" randomization based on the DLIN assumption

<table>
<thead>
<tr>
<th>Languages</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPE with $T = O_T$</td>
<td>Composable ZK</td>
</tr>
<tr>
<td>PPE with $T = \sum_i e(P_i, Q_i)$</td>
<td>Simulation Fails</td>
</tr>
<tr>
<td>MME with $T = O$</td>
<td>Simulation Fails</td>
</tr>
<tr>
<td>MME with $T \neq O$</td>
<td>Simulation Fails</td>
</tr>
<tr>
<td>QE with $T = 0$</td>
<td>Composable ZK</td>
</tr>
<tr>
<td>QE with $T \neq 0$</td>
<td>Composable ZK</td>
</tr>
</tbody>
</table>

1.2 Related Works

Groth and Sahai [GS12] proposed the GS proof system in the prime/composite-order bilinear groups. They instantiated the proof systems from the subgroup decision, symmetric external Diffie-Hellman (SXDH), and decision-linear (DLIN) assumptions. Ghadafi, Smart, and Warinschi [GSW10] revisited the GS proofs; they corrected errors on functions in the conference version of [GS12] and adapted the GS proof system to the Type-2 pairing group with the symmetric DLIN assumption.

Freeman [Fre10], Seo [Seo12], and Seo and Cheon [SC12], and Herold, Hesse, Hofheinz, Ràfols, and Rupp [HHH14] studied projecting (and canceling) bilinear groups in order to translate cryptographic schemes/protocols in the composite-order bilinear groups into those in the prime-order bilinear groups. As byproducts, they improved efficiency of the GS proof system in the prime-order bilinear groups by removing redundancy in the GS proof system. Escala, Herold, Kiltz, Ràfols, and Villar [EHK13] studied several matrix-DH assumptions in the symmetric bilinear groups and proposed the GS proof system in the symmetric bilinear groups based on the matrix-DH assumptions. Escala and Groth [EG14] improved the efficiency of the GS proof system instantiated from the SXDH assumption.

To the best of our knowledge, there are no papers pointing out the bug of the “optimized” randomization. Papers referring [GS12] basically employed the GS proof system as the tool in the black-box manner. A few exceptions are papers studying the GS proof system itself or its properties. We notice that Seo [Seo12, Section 5.1] and Jutla and Roy [JR14, Section 5] avoided the bug of the “optimized” randomization.
1.3 Organization

Section 2 briefly reviews definitions of NIWI and NIZK proof systems. Section 3 is a reminder of bilinear groups. Section 4 reviews the GS proof systems. Section 5 gives concrete attacks against the GS NIWI proof systems for MMEs based on the DLIN assumption and discusses the effect of the bug. Appendix A discusses the security of the NIWI proof systems for special MMEs in the generic-group model.

1.4 Notation

Let $N \in \mathbb{N}$ be a positive integer. For two matrices $X \in \mathbb{Z}_N^{m \times n_1}$ and $Y \in \mathbb{Z}_N^{m \times n_2}$, $(X \mid Y) \in \mathbb{Z}_N^{m \times (n_1 + n_2)}$ is the concatenation of the columns of X and Y. For two matrices $X \in \mathbb{Z}_N^{m_1 \times n}$ and $Y \in \mathbb{Z}_N^{m_2 \times n}$. $(X; Y) \in \mathbb{Z}_N^{(m_1 + m_2) \times n}$ is the concatenation of the rows of X and Y. In what follows, \mathbf{X} represents column vector $(X_1, \ldots, X_k)^T$ and \mathbf{x} represents row vector (x_1, \ldots, x_k). Let K be a \mathbb{Z}_N-module. For a vector $\mathbf{X} \in K^k$, we denote a space spanned by \mathbf{A} as $\langle \mathbf{X} \rangle = \{w \mathbf{X} \mid w \in \mathbb{Z}_N^k\}$.

2 Non-Interactive Proof Systems

We briefly review the syntax of non-interactive zero-knowledge and witness-indistinguishable proof systems.

Group-dependent languages: Let R be an efficiently computable ternary relation instead of binary relation, which consists from $(gk, x, w) \in \{0, 1\}^* \times \{0, 1\}^* \times \{0, 1\}^*$. We call gk a setup key, x a statement, and w a witness. By fixing gk, we define L_{gk} as a language induced by the relation R and gk, that is, $L_{gk} = \{x \in \{0, 1\}^* \mid \exists w \text{ such that } (gk, x, w) \in R\}$.

Non-interactive proofs: A non-interactive proof system for a relation R (with setup) consists of the following algorithms: The group generation algorithm, G_{group}, on inputs 1^k, outputs (gk, sk), which is a pair of gk, the description of groups, and sk, some secret information of gk; The binding CRS generation algorithm, G_{bind}, takes gk, sk as input and outputs a common reference string, crs; The prover algorithm, P, takes gk, crs, string x, and witness w, and outputs a proof, π; and the verification algorithm, V, takes gk, crs, x, π and outputs its decision $0/1$, where 0 and 1 represents rejection and acceptance, respectively. We say that $(G_{\text{group}}, G_{\text{bind}}, P, V)$ is a non-interactive proof system for R (with setup G_{group}) if it is complete and sound defined below.

In the following, we take “parameter-switching” approach to show the security. In the soundness setting, we employ the binding CRS generation algorithm G_{bind} and we show the soundness on the CRS output by G_{bind}. In the WI setting, we employ the hiding CRS generation algorithm G_{hide} instead of G_{bind}.

We follow the definitions in [GS12].

Perfect completeness: We say that the system is perfectly complete if the following holds: For any unbounded adversary A, we have that

$$\Pr \left[(gk, sk) \leftarrow G_{\text{group}}(1^k); crs \leftarrow G_{\text{bind}}(gk, sk); (x, w) \leftarrow A(gk, crs); \pi \leftarrow P(gk, crs, x, w) ; V(gk, crs, x, \pi) = 1 \text{ if } (gk, x, w) \in R \right] = 1.$$

Perfect culpable soundness: The soundness is relaxed by employing a promise version of the problem corresponding to a language L [GO`06, Groo`06]. Let $L_{\text{co}} \subset \{0, 1\}^* \setminus L$. The system is perfectly L_{co}-sound if any adversary A cannot output a pair of an improper string and a valid proof (x, π) for $x \in L_{\text{co}}$. We note that the adversary might be able to produce a valid proof π on $x \in ((0, 1)^* \cap L) \setminus L_{\text{co}}$.

3
Formally, we say that the system is perfectly L_{co}-sound if for any unbounded adversary A, the following holds:

$$\Pr\left[(gk, sk) \leftarrow \mathcal{G}_{\text{group}}(1^\lambda) ; crs \leftarrow \mathcal{G}_{\text{bind}}(gk, sk); (x, \pi) \leftarrow A(gk, crs) : \forall (gk, crs, x, \pi) = 0 \text{ if } x \in L_{co} \right] = 1.$$

If $L_{co} = \{0, 1\}^* \setminus L$, we say the system perfectly sound.

Composable witness-indistinguishability: We say that the system is **composable witness-indistinguishable** if any PPT adversary cannot distinguish a binding CRS produced by $\mathcal{G}_{\text{bind}}$ and a hiding CRS produced by $\mathcal{G}_{\text{hide}}$ and if any unbounded adversary cannot distinguish a proof proved by the prover on a witnesses w_0 of x or a proof on a witness w_1 of x when the CRS is hiding.

Formally, the system is said to be **composable witness-indistinguishable** if the followings hold: For any PPT adversary A,

$$\Pr\left[(gk, sk) \leftarrow \mathcal{G}_{\text{group}}(1^\lambda); crs \leftarrow \mathcal{G}_{\text{bind}}(gk, sk) : A(gk, crs) = 1 \right] \approx_c \Pr\left[(gk, sk) \leftarrow \mathcal{G}_{\text{group}}(1^\lambda); (crs, \tau) \leftarrow \mathcal{G}_{\text{hide}}(gk, sk) : A(gk, crs) = 1 \right]$$

and for any unbounded adversary A,

$$\Pr\left[(gk, sk) \leftarrow \mathcal{G}_{\text{group}}(1^\lambda); (crs, \tau) \leftarrow \mathcal{G}_{\text{hide}}(gk, sk); (x, w_0, w_1) \leftarrow A(gk, crs); \pi \leftarrow \mathcal{P}(gk, crs, x, w_0) : A(\pi) = 1 \right] = \Pr\left[(gk, sk) \leftarrow \mathcal{G}_{\text{group}}(1^\lambda); (crs, \tau) \leftarrow \mathcal{G}_{\text{hide}}(gk, sk); (x, w_0, w_1) \leftarrow A(gk, crs); \pi \leftarrow \mathcal{P}(gk, crs, x, w_1) : A(\pi) = 1 \right] ,$$

where we require $(gk, x, w_0), (gk, x, w_1) \in R$.

Composable zero-knowledge: We say that the system is **composable zero-knowledge** if any PPT adversary cannot distinguish a binding CRS produced by $\mathcal{G}_{\text{bind}}$ and a hiding CRS produced by $\mathcal{G}_{\text{hide}}$ and if any powerful adversary cannot distinguish a proof generated by the prover on a witnesses w of $x \in L$ from a proof simulated by the simulator $\bar{\mathcal{P}}$ employing τ when the CRS is hiding.

Formally, the system is said to be **composable zero-knowledge** if the followings hold: For any PPT adversary A,

$$\Pr\left[(gk, sk) \leftarrow \mathcal{G}_{\text{group}}(1^\lambda); crs \leftarrow \mathcal{G}_{\text{bind}}(gk, sk) : A(gk, crs) = 1 \right] \approx_c \Pr\left[(gk, sk) \leftarrow \mathcal{G}_{\text{group}}(1^\lambda); (crs, \tau) \leftarrow \mathcal{G}_{\text{hide}}(gk, sk) : A(gk, crs) = 1 \right]$$

and for any unbounded adversary A,

$$\Pr\left[(gk, sk) \leftarrow \mathcal{G}_{\text{group}}(1^\lambda); (crs, \tau) \leftarrow \mathcal{G}_{\text{hide}}(gk, sk); (x, w) \leftarrow A(gk, crs, \tau); \pi \leftarrow \mathcal{P}(gk, crs, x, w) : A(\pi) = 1 \right] = \Pr\left[(gk, sk) \leftarrow \mathcal{G}_{\text{group}}(1^\lambda); (crs, \tau) \leftarrow \mathcal{G}_{\text{hide}}(gk, sk); (x, w) \leftarrow A(gk, crs, \tau); \pi \leftarrow \bar{\mathcal{P}}(gk, crs, x, \tau) : A(\pi) = 1 \right] ,$$

where we require $(gk, x, w) \in R$.

3 Bilinear Groups

We review bilinear groups and their properties. We employ additive notion for Affine groups throughout the paper because it fits with linear algebra.

Definition 3.1 (bilinear groups). A bilinear group for a commutative ring $\mathbb{Z}_N = \mathbb{Z}_N$ is $\theta_i = (\mathbb{Z}_N, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e)$, where $(\mathbb{G}_i, \mathbb{P}_i)$ (for $i = 1, 2, T$) is a description of a cyclic group of order N, \mathbb{P}_i is a generator of \mathbb{G}_i (for $i = 1, 2, T$), and $e : \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T$ is a map satisfying the following properties:
– (bilinearity:) For any \(Q_1 \in G_1, Q_2 \in G_2, \alpha, \beta \in \mathbb{Z}_N \), we have \(e(\alpha Q_1, \beta Q_2) = \alpha \beta \cdot e(Q_1, Q_2) \).

– (Non-degeneracy:) \(P_T = e(P_1, P_2) \).

We will write zero elements in \(G_i \) by \(O_i \) for \(i = 1, 2, T \).

Definition 3.2 (Bilinear group generator). Let \(\lambda > 1 \) be an integer. A bilinear group generator \(G_A \) takes a security parameter \(\lambda \) and outputs a bilinear group \(\Theta = (\mathbb{Z}_N, G_1, G_2, G_T, e) \).

We call a bilinear group with \(G_1 = G_2 \) and \(P_1 = P_2 \) a symmetric bilinear group. We also call a bilinear group generator which outputs a symmetric bilinear group always a symmetric bilinear group generator.

Definition 3.3 (DLIN assumption). Fix \(i = 1 \) or \(2 \). We say that the decision linear (DLIN) assumption holds relative to \(G_A \) and \(G_i \) if for any PPT adversary \(A \), its advantage

\[
\text{Adv}_{G_A, G_i, \lambda}(A) = \left| \text{Pr}[A(\Theta, P_1, aP_1, \beta P_1, z_1 \alpha P_1, z_2 \beta P_1, (z_1 + z_2)P_1) = 1] - \text{Pr}[A(\Theta, P_1, aP_1, \beta P_1, z_1 \alpha P_1, z_2 \beta P_1, z_3 P_1) = 1] \right|
\]

is negligible in the security parameter \(\lambda \), where the probability is taken over \(\Theta = (\mathbb{Z}_N, G_1, G_2, G_T, e) \leftarrow G_A, \alpha, \beta, z_1, z_2, z_3 \leftarrow \mathbb{Z}_N \), and the coins of \(A \).

4 Review of the Groth-Sahai Proof System

We briefly review the Groth-Sahai proof systems [GS12].

Let \(\Theta = (\mathbb{Z}_N, G_1, G_2, G_T, e) \) be a bilinear group. Consider \(\mathbb{Z}_N \)-modules \(A_1, A_2, \) and \(A_T \). Let \(f : A_1 \times A_2 \rightarrow A_T \) be a bilinear map. For two vectors \(\overrightarrow{a} = (a_1, \ldots, a_k) \in A_1^k \) and \(\overrightarrow{b} = (b_1, \ldots, b_k) \in A_2^k \), we denote \(\sum_{i \in [1, k]} f(a_i, b_i) \in A_T \) by \(\overrightarrow{a} \cdot \overrightarrow{b} \). We consider an equation defined as

\[
t = \overrightarrow{a}^\top \cdot \overrightarrow{y} + \overrightarrow{x}^\top \cdot \overrightarrow{b} + \overrightarrow{x}^\top \cdot \Gamma \overrightarrow{y},
\]

where \(\overrightarrow{x} \in A_1^n \) and \(\overrightarrow{y} \in A_2^n \) are variables, \(\overrightarrow{a} \in A_1^m, \overrightarrow{b} \in A_2^m, \Gamma \in \mathbb{Z}_N^{m \times n} \), and \(t \in A_T \) are constants.

Groth and Sahai considered four types of equations:

- Pairing Product Equations (PPEs): \(A_1 = G_1, A_2 = G_2, A_T = G_T, \) and \(f(X, Y) = e(X, Y) \in G_T \).
- Multi-scalar Multiplication Equations (MMEs) over \(G_1 \): \(A_1 = A_T = G_1, A_2 = \mathbb{Z}_N, \) and \(f(x, y) = xy \in G_1 \).
- Multi-scalar Multiplication Equations (MMEs) over \(G_2 \): \(A_1 = \mathbb{Z}_N, A_2 = A_T = G_2, \) and \(f(x, y) = xy \in G_2 \).
- Quadratic Equations (QEs): \(A_1 = A_2 = A_T = \mathbb{Z}_N \) and \(f(x, y) = xy \in \mathbb{Z}_N \).

4.1 CRS and Commitments

The group key \(gk \) defines a bilinear group \(\Theta = (\mathbb{Z}_N, G_1, G_2, G_T, e) \). The CRS \(crs \) defines \((\mathbb{Z}_N, A_1, A_2, A_T, f, B_1, B_2, B_T, F, t_1, p_1, t_2, p_2, t_T, \Gamma, \overrightarrow{V}, \overrightarrow{H}, \ldots, \overrightarrow{H}_n) \) specified below.

A part of the CRS specifies three \(\mathbb{Z}_N \)-modules \(B_1, B_2, \) and \(B_T, \) and bilinear function \(F : B_1 \times B_2 \rightarrow B_T \). We denote zero of \(B_1 \) as \(O_{B_1} \). For two vectors \(\overrightarrow{a} = (a_1, \ldots, a_k) \in B_1^k \) and \(\overrightarrow{b} = (b_1, \ldots, b_k) \in B_2^k \), we define “ \(\cdot \)” by \(\overrightarrow{a} \cdot \overrightarrow{b} = \sum_{i \in [1, k]} F(a_i, b_i) \in B_T \).

In addition, the CRS contains \(\overrightarrow{U} \in B_1^m, \overrightarrow{V} \in B_2^m, \) and \(\mathbb{Z}_N \)-linear functions \(t_i : A_1 \rightarrow B_1 \) for \(i = 1, 2, T \).

The commitment key for \(A_1 \) consists of \(\overrightarrow{U} \in B_1^m \) and \(t_1 : A_1 \rightarrow B_1 \). That for \(A_2 \) consists of \(\overrightarrow{V} \in B_2^m \) and \(t_2 : A_2 \rightarrow B_2 \). The CRS implicitly defines \(\mathbb{Z}_N \)-linear functions \(p_i : B_i \rightarrow A_i \) for \(i = 1, 2, T \).

The final part of the CRS is matrices \(\overrightarrow{H}_1, \ldots, \overrightarrow{H}_n \) to randomize the proof. The matrices generate all solutions of \(\overrightarrow{U}^\top \cdot \overrightarrow{H} \overrightarrow{V} = O_{B_T} \), that is, \(\langle \overrightarrow{H}_1, \ldots, \overrightarrow{H}_n \rangle = \{ \overrightarrow{H} \in \mathbb{Z}_N^{m \times n} \mid \overrightarrow{U}^\top \cdot \overrightarrow{H} \overrightarrow{V} = O_{B_T} \} \) in the WI setting.

We require the following properties:
We next review the simplification for the symmetric case in \([GS/two, \text{Section three}]\). We suppose that Groth and Sahai’s Optimization in Symmetric Case

\[
Z \quad \text{To commit} \quad \text{Commitments:} \quad \text{To commit} \quad \text{simplicity of the notation, we write the commitments of Prover:}
\]

\[
The prover first commits \(\Pi \in \mathbb{R}^\ast\) \(\text{proof and verification}
\]

\[
\Pi = \Pi_1(\vec{x}) + R U \in B^m_1.
\]

To commit \(y \in A_2\) with randomness \(s \leftarrow \mathbb{N}\), we compute \(D_y = t_2(y) + s \vec{V}\). For simplicity of the notation, we write the commitments of \(\vec{y} \in B^n_2\) with randomness \(S = (s_1; \ldots; s_n) \in \mathbb{N}^{n \times \hat{n}}\) by

\[
\vec{D} = t_2(\vec{y}) + S \vec{V} \in B^n_2.
\]

4.2 Proof and Verification

Prover: The prover first commits \(\vec{x} \in A^m_1\) and \(\vec{y} \in A^n_2\) into \(\vec{C} \in B^{m \times \hat{n}}_1\) and \(\vec{D} \in B^n_2\) by using randomness \(R \in \mathbb{Z}_{\mathbb{N}}^{m \times \hat{n}}\) and \(S \in \mathbb{Z}_{\mathbb{N}}^{n \times \hat{n}}\), respectively. The prover picks \(T \leftarrow \mathbb{N}^{\hat{n} \times \hat{n}}\) and \(r_1, \ldots, r_n \leftarrow \mathbb{N}\) and computes

\[
\vec{I} := R^T t_2(\vec{b}) + R^T \Gamma t_2(\vec{y}) + R^T I S \vec{V} - T^T \vec{V} + \sum_{i=1}^n r_i \vec{H}_i \vec{V} \in B^n_2
\]

\[
\vec{\Theta} := S^T t_1(\vec{a}) + S^T \Gamma^T t_1(\vec{x}) + T U \in B^1_1.
\]

Finally, the prover sends \(\pi = (\vec{C}, \vec{D}, \vec{I}, \vec{\Theta})\) as commitments and proofs.

Verifier: Upon receiving commitments \(\vec{C} = (C_1, \ldots, C_m)^\top\) and \(\vec{D} = (D_1, \ldots, D_n)^\top\) and proofs \(\vec{I} = (I_1, \ldots, I_m)^\top\) and \(\vec{\Theta} = (\Theta_1, \ldots, \Theta_n)^\top\), the verifier checks if \(C_i, \Theta_i \in B_1\) and \(D_i, I_i \in B_2\), and

\[
t_1(\vec{a})^\top \bullet \vec{D} + \vec{C}^\top \bullet t_2(\vec{b}) + \vec{C}^\top \bullet I^\top \vec{D} = t_T(\vec{t}) + U^\top \bullet \vec{I} + \vec{\Theta}^\top \bullet \vec{V}. \tag{1}
\]

4.3 Groth and Sahai’s Optimization in Symmetric Case

We next review the simplification for the symmetric case in \([GS/two, \text{Section 6.3}]\). We suppose that \(\hat{m} \geq \hat{n}\) and \(\vec{V} = (U_1, \ldots, U_\hat{m})^\top\).

We define padding functions \(\text{rpad}\) and \(\text{cpad}\) that pads matrices by zero. 1

Definition 4.1 (*Padding functions* \(\text{rpad}\) and \(\text{cpad}\)). For any \(\mathbb{Z}_N\)-module \(M\) with zero \(0_M\), we define two padding functions:

- \(\text{rpad}_M : M^{\hat{n} \times \hat{m}} \to M^{\hat{m} \times \hat{n}}\) that pads a matrix with \(\hat{m} - \hat{n}\) \(0_M\)-rows
- \(\text{cpad}_M : M^{\hat{m} \times \hat{n}} \to M^{\hat{m} \times \hat{m}}\) that pads a matrix with \(\hat{m} - \hat{n}\) \(0_M\)-columns

Apparently, they are \(\mathbb{Z}_N\)-linear. Notice that, for any \(K \in \mathbb{Z}_N^{\hat{n} \times \hat{m}}, \text{rpad}_{\mathbb{Z}_N}(K^\top) = \text{rpad}_{\mathbb{Z}_N}(K)^\top, \text{rpad}_B(K \vec{U}) = \text{rpad}_{\mathbb{Z}_N}(K) \vec{U}\), and \(K^\top \vec{V} = \text{cpad}_{\mathbb{Z}_N}(K^\top) \vec{U} = \text{rpad}_{\mathbb{Z}_N}(K) \vec{U}\). For brevity of notations, we omit the subscripts from \(\text{rpad}\) and \(\text{cpad}\) in what follows.

1 This operations are denoted by \((\cdot)’\) in \([GS/two]\).
Groth and Sahai defined a new proof as

$$\vec{\Phi} := \text{rpad}(\vec{\Theta}) + \vec{\Pi}$$

$$= \text{rpad}\left(S^\top t_1(\vec{a}) + S^\top \Gamma t_1(\vec{x}) + T \vec{U}\right)$$

$$+ R^\top t_2(\vec{b}) + R^\top \Gamma t_2(\vec{y}) + R^\top \Gamma S \vec{V} - T^\top \vec{V} + \sum_{i=1}^\eta r_i \gamma_i \vec{V}$$

$$= R^\top t_2(\vec{b}) + R^\top \Gamma t_2(\vec{y}) + \text{cpad}(S)^\top t_1(\vec{a}) + \text{cpad}(S)^\top \Gamma t_1(\vec{x}) + R^\top \Gamma \text{cpad}(S) \vec{U}$$

$$+ (\text{rpad}(T) - \text{rpad}(T)^\top) \vec{U} + \sum_{i=1}^\eta r_i \text{cpad}(H_i) \vec{U}.$$

The verifier checks if

$$t_1(\vec{a})^\top \bullet \vec{D} + \vec{C}^\top \bullet \text{rpad}(\vec{b}) + \vec{C}^\top \bullet \Gamma \vec{D} = \tau(T) + \vec{U}^\top \bullet \vec{\Phi}. \tag{2}$$

instead of eq. (1).

We denote by GS\textsubscript{Sym} the simplified GS NIWI proof system in this subsection. The following theorem says the distribution of $\vec{\Phi}$ is uniformly random conditioned on the verification equation. Thus, the system GS\textsubscript{Sym} is composable WI.

Theorem 4.1 (Adaption of [GS\textsubscript{12}, Theorem 8]). In the WI setting where $t_1(A_1) \subseteq \langle \vec{U} \rangle$ and $t_2(A_2) \subseteq \langle \vec{V} \rangle$ and H_1, \ldots, H_n generates all matrices H such that $\vec{U}^\top \bullet H \vec{V} = O_{B_T}$, all satisfying witnesses \vec{x}, \vec{y}, R, S yield proofs $\vec{\Phi} \in (\vec{U})^n \times (\vec{V})^{m-n}$ that is uniformly distributed conditioned on the verification equation (1).

Corollary 4.1. Suppose that hiding CRS and binding CRS are computationally indistinguishable under certain assumption. Then, GS\textsubscript{Sym} is composable WI.

4.4 “Optimized” Randomization

In [GS\textsubscript{12}, Section 6.3], Groth and Sahai observed that if \bullet is symmetric, $\vec{U}^\top \bullet (\text{rpad}(T) - \text{rpad}(T)^\top) \vec{U} = O_{B_T}$ for any $T \in \mathbb{Z}_N^{m \times m}$. They then removed the randomization term $(\text{rpad}(T) - \text{rpad}(T)^\top) \vec{U}$ from the proof $\vec{\Phi}$. Formally speaking, they defined an “optimized” proof as

$$\vec{\Phi}' := R^\top t_2(\vec{b}) + R^\top \Gamma t_2(\vec{y}) + \text{cpad}(S)^\top t_1(\vec{a}) + \text{cpad}(S)^\top \Gamma t_1(\vec{x}) + R^\top \Gamma \text{cpad}(S) \vec{U}$$

$$+ \sum_{i=1}^\eta r_i \text{cpad}(H_i) \vec{U}. \tag{3}$$

We denote by GSSym' the GS NIWI proof system GS\textsubscript{Sym} employing this “optimized” randomization.

Witness indistinguishability: If $\hat{m} = \hat{n}$, that is, if $\vec{V} = \vec{U}$, then the randomization term $\sum_{i=1}^\eta r_i \text{cpad}(H_i) \vec{U}$ is uniformly distributed over $\{\vec{R} \in (\vec{U})^n | \vec{U}^\top \bullet \vec{R} = O_{B_T}\}$ and there is no problem.

However, if $\hat{m} > \hat{n}$, the “optimized” randomization forgets to randomize with $U_{\hat{n}+1}, \ldots, U_{\hat{m}}$, because the last $\hat{m} - \hat{n}$ columns of cpad(H_i) is zero. We give attacks exploiting this point in Section 5.

5 Concrete Attacks against NIWI Proof Systems for MMEs

We notice that there are two versions of the NIWI proof systems for MMEs based on the DLIN assumption with “optimized” randomization; one is a direct adaption of GSSym' in [GS\textsubscript{12}, Section 6.3] and the other is in [GS\textsubscript{12}, Section 10].

\[\text{U}^\top \bullet (\text{rpad}(T) - \text{rpad}(T)^\top) \text{U} = \text{U}^\top \bullet \text{rpad}(T) \text{U} - \text{U}^\top \text{rpad}(T)^\top \text{U} = \text{U}^\top \bullet \text{rpad}(T) \text{U} - (\text{U}^\top \bullet \text{rpad}(T) \text{U})^\top = O_{B_T}\]

by the symmetric property of \bullet.

5.1 Review of the Parameters of the GS Proof System for MMEs based on the DLIN Assumption

The parameters are defined in [GS12, Section 10]. Let $G = (\mathbb{Z}_N, \mathbb{G}, \mathbb{G}_T, e)$ be a symmetric-bilinear group. Define $B = \mathbb{G}^3$ and $B_T \subseteq \mathbb{G}_T^{3 \times 3}$. Define $F : B \times B \rightarrow B_T$ by a mapping a pair $P = (P_1, P_2, P_3)$ and $Q = (Q_1, Q_2, Q_3)$ to

$$\frac{1}{2}(P^T \cdot Q + Q^T \cdot P) = \frac{1}{2} \begin{pmatrix} 2e(P_1, Q_1) & e(P_1, Q_2) + e(P_2, Q_1) & e(P_1, Q_3) + e(P_3, Q_1) \\ e(P_1, Q_2) + e(P_2, Q_1) & 2e(P_2, Q_2) & e(P_2, Q_3) + e(P_3, Q_2) \\ e(P_1, Q_3) + e(P_3, Q_1) & e(P_2, Q_3) + e(P_3, Q_2) & 2e(P_3, Q_3) \end{pmatrix}.$$

Let $U_1 = (aP, O, P)$ and $U_2 = (O, \beta P, P)$, where $a, \beta \leftarrow \mathbb{Z}_N$. Let $U_3 = (W_1, W_2, W_3) \in B = \mathbb{G}^3$ with

$$U_3 = \begin{cases} z_1U_1 + z_2U_2 & \text{for soundness} \\ z_1U_1 + z_2U_2 - (O, O, P) & \text{for WI} \end{cases}$$

for randomly chosen $z_1, z_2 \leftarrow \mathbb{Z}_N$. We define $\tilde{U} = (U_1, U_2, U_3)^T \in B^3$ and $\tilde{V} = (V_1, V_2)^T = (U_1, U_2)^T \in B^2$. From the DLIN assumption, we cannot efficiently distinguish U_3 for soundness from U_3 for WI. The hiding CRS generator outputs \tilde{U} with U_3 for WI and the binding CRS generator outputs \tilde{U} with U_3 for soundness.

For simplicity of notation, we define $U' = U_3 + (O, O, P)$. We define three \mathbb{Z}_N-linear functions

$$t_1 : X \in \mathbb{G} \mapsto (O, O, X) \in B,$$

$$t_2 : y \in \mathbb{Z}_N \mapsto yU' \in B,$$

$$t_T : Z \in \mathbb{G} \mapsto F(t_1(Z), t_2(1)) \in B_T.$$

We omit the definitions of projecting functions p_1, p_2, p_T.

Finally, Groth and Sahai prepared a matrix $H_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ as the basis of the solutions of $\{H \in \mathbb{Z}_N^{3 \times 2} \mid \tilde{U}^T \cdot H \tilde{V} = O_{B_T} \}$ for MMEs.

Remark 5.1. Precisely speaking, they chose $H_1 = (\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix})$ in [GS12, page 1223]. It should be transposed.

5.2 Distinguishing Attack against GS'\textsubscript{Sym} for MMEs

Recall the structure of the proof (3):

$$\bar{\Phi}' := R^T t_2(\vec{b}) + R^T \Gamma t_2(\vec{y}) + \text{rpad}(S)^T t_1(\vec{a}) + \text{cpad}(S)^T \Gamma^T t_1(\vec{x}) + R^T \Gamma \text{cpad}(S)\tilde{U} + r_1 \text{cpad}(H_1)\tilde{U}.$$

We can simplify it as

$$\bar{\Phi}' = R^T t_2(\vec{b}) + R^T \Gamma t_2(\vec{y}) + R^T \Gamma S \tilde{V} + \text{rpad}(S^T t_1(\vec{a}) + S^T \Gamma^T t_1(\vec{x})) + r_1 H_1 \tilde{V}.$$

Since the last element of the output of $\text{rpad}(\cdot)$ is always O_B and $r_1H_1 \tilde{V} = (r_1U_2, -r_1U_1, O_B)^T$ does nothing on the last B-element, the proof reveals the last B-element of $R^T t_2(\vec{b}) + R^T \Gamma t_2(\vec{y}) + R^T \Gamma S \tilde{V}$.

Theorem 5.1. GS'\textsubscript{Sym} for MMEs is not perfect WI in the WI setting. Thus, it is not composable WI.

Proof. We show that we can determine which witness is used if we can solve the DL problem in \mathbb{G}. Let us consider an equation $\vec{a}^T \cdot \vec{y} + \vec{x}^T \cdot \vec{b} + \vec{x}^T \cdot \vec{b} = I \in \mathbb{G}$ with $\vec{b} \neq 0$ or $\Gamma \neq \vec{O}$. We suppose that there exist two witnesses (\vec{x}_0, \vec{y}_0) and (\vec{x}_1, \vec{y}_1) with $\vec{x}_0 \neq \vec{x}_1$. The simplest example is the equation $P \cdot y + X \cdot 1 = O$ with witnesses $(P, -1)$ and $(O, 0)$.

8
Suppose that the prover chooses two randomness \(\vec{R} = (R_1 \mid R_2 \mid R_3) \in \mathbb{Z}_N^{m \times 3} \) and generates two commitments
\[
\vec{C} = t_1(\vec{x}) + R \vec{U} \quad \text{and} \quad \vec{D} = t_2(\vec{y}) + S \vec{V}.
\]
The prover then constructs the proof as
\[
\vec{\Phi}' = \text{rpad}(S^\top t_1(\vec{a}) + S^\top \Gamma^\top t_1(\vec{x})) + R^\top t_2(\vec{b}) + R^\top \Gamma t_2(\vec{y}) + R^\top \Gamma S \vec{V} + r_1 H_1 \vec{V}
\]
which yields
\[
\begin{pmatrix}
#_1 \\
#_2
\end{pmatrix}
\begin{pmatrix}
\vec{R}_3^\top t_2(\vec{b}) + R_3^\top \Gamma t_2(\vec{y}) + R_3^\top \Gamma S \vec{V} \\
\vec{R}_3^\top t_2(\vec{b}) + R_3^\top \Gamma t_2(\vec{y}) + R_3^\top \Gamma S \vec{V}
\end{pmatrix}.
\]
We additionally observe that \(R_3^\top t_2(\vec{b}) + R_3^\top \Gamma t_2(\vec{y}) + R_3^\top \Gamma S \vec{V} = R_3^\top (t_2(\vec{b}) + \Gamma \vec{D}) \in B = \mathbb{G}^3 \).

Given \(\vec{C}, \vec{D}, \) and \(\vec{\Phi}' = (\Phi'_1, \Phi'_2, \Phi'_3)^\top \in B^3 \), we decide which witness is used as follows: Since we are powerful enough to solve the DL problem in \(\mathbb{G} \), we can compute \(\vec{R}(0) = (R_1^{(0)} \mid R_2^{(0)} \mid R_3^{(0)}) \) and \(\vec{R}(1) = (R_1^{(1)} \mid R_2^{(1)} \mid R_3^{(1)}) \in \mathbb{Z}_N^{n \times 3} \) satisfying \(\vec{C} = t_1(\vec{x}_0) + R(0) \vec{U} = t_1(\vec{x}_1) + R(1) \vec{U} \). Notice that \(\vec{R}(0) \neq \vec{R}(1) \) holds since \(\vec{x}_0 \neq \vec{x}_1 \). Now, we can check if
\[
\Phi'_3 - (R_3^{(0)})^\top (t_2(\vec{b}) + \Gamma \vec{D}) = O_B
\]
or not.

We note that the probability that \(t_2(\vec{b}) + \Gamma \vec{D} = O_B \) is negligible since \(\vec{b} \neq \vec{0} \) or \(\Gamma \neq O \) holds from our choice of the equation. Meanwhile, the LHS of the check equation is \((R_3 - R_3^{(0)})^\top (t_2(\vec{b}) + \Gamma \vec{D}) \). Therefore, when \(\vec{R} \neq R(\beta) \), the probability that \((R_3 - R_3^{(0)})^\top (t_2(\vec{b}) + \Gamma \vec{D}) \) is not \(O_B \) is overwhelming. On the other hand, when \(\vec{R} = R(\beta) \), the LHS is always zero. Hence, the system is not perfect WI in the WI setting.

\[\square\]

5.3 Distinguishing Attack against a Variant of GS'\textsubscript{sym} for MMEs

Let us quote the definitions of commitments and proofs in the GS NIWI proof system for MMEs based on the DLIN assumption from [GS12, Section 10, pp.1224-1225].

Commitee to the scalars \(\vec{x} \in \mathbb{Z}_p^m \) and the group elements \(\vec{y} \in \mathbb{G}^n \) as
\[
\vec{x} = \ell(\vec{x}) + R \vec{v} \quad \text{and} \quad \vec{y} = \ell(\vec{y}) + S \vec{u}
\]
for randomly chosen \(R \leftarrow \text{Mat}_{m \times 2}(\mathbb{Z}_p), S \leftarrow \text{Mat}_{n \times 3}(\mathbb{Z}_p) \).

(…)

For each multi-scalar multiplication equation \(\vec{a} \cdot \vec{y} + \vec{x} \cdot \vec{b} + \vec{x} \cdot \Gamma \vec{y} = \vec{t}_2 \) we use the symmetric map \(F \). (…) The proof is for random \(r_1 \leftarrow \mathbb{Z}_p^\ast \):
\[
\vec{\phi} := R^\top \ell(\vec{B}) + R^\top \Gamma \ell(\vec{Y}) + (S^\prime)^\top \ell(\vec{a}) + (S^\prime)^\top \Gamma \ell(\vec{x}) + R^\top \Gamma S^\prime \vec{u} + r_1 H_1 \vec{u}.
\]
They considered an MME \(\vec{a}^\top \cdot \vec{y} + \vec{x}^\top \cdot \vec{b} + \vec{x}^\top \cdot \Gamma \vec{y} = \vec{t}_2 \), where \(A_1 = \mathbb{Z}_N, A_2 = \mathbb{G}, \) and \(A_T = \mathbb{G} \). Removing inconsistency of dimensions, we obtain
\[
\vec{\phi} := (R^\prime)^\top \ell(\vec{B}) + (R^\prime)^\top \Gamma \ell(\vec{Y}) + S^\prime \ell(\vec{a}) + S^\prime \Gamma \ell(\vec{x}) + (R^\prime)^\top \Gamma S^\prime \vec{u} + r_1 H_1 \vec{u},
\]
where \(R^\prime \) is \(\text{rpad}(R) \). By replacing \((\vec{x}, \vec{y}, \vec{a}, \vec{B}, R, S, \Gamma) \) with \((\vec{X}, \vec{Y}, \vec{A}, \vec{B}, S, R, \Gamma^\top) \), we have, for the MME \(\vec{a}^\top \cdot \vec{y} + \vec{x}^\top \cdot \vec{b} + \vec{x}^\top \cdot \Gamma \vec{y} = \vec{t}_\ast \),
\[
\begin{align*}
\vec{c} &:= \ell(\vec{X}) + R \vec{u} \\
\vec{d} &:= \ell(\vec{Y}) + S \vec{v} \\
\vec{\phi} &:= (S^\prime)^\top \ell(\vec{A}) + (S^\prime)^\top \Gamma \ell(\vec{X}) + R^\top \ell(\vec{b}) + R^\top \Gamma \ell(\vec{y}) + (S^\prime)^\top \Gamma R \vec{u} + r_1 H_1 \vec{u}.
\end{align*}
\]
Thus, we conclude that they alternatively defined the proof as
\[
\vec{\Phi}'' := R^\top t_2(\vec{b}) + R^\top \Gamma t_2(\vec{y}) + \text{cpad}(S)^\top t_1(\vec{a}) + \text{cpad}(S)^\top \Gamma^\top t_1(\vec{x}) + \text{cpad}(S)^\top \Gamma^\top R\vec{U} + r_1 \text{cpad}(H_1)\vec{U},
\]
since the proof in GS\textsubscript{Sym} is defined as
\[
\vec{\Phi}' := R^\top t_2(\vec{b}) + R^\top \Gamma t_2(\vec{y}) + \text{cpad}(S)^\top t_1(\vec{a}) + \text{cpad}(S)^\top \Gamma^\top t_1(\vec{x}) + R^\top \Gamma \text{cpad}(S)\vec{U} + r_1 \text{cpad}(H_1)\vec{U}.
\]
We call the proof system with \(\vec{\Phi}'\) in GS\textsubscript{Sym}, we observe
\[
\vec{\Phi}'' = R^\top t_2(\vec{b}) + R^\top \Gamma t_2(\vec{y}) + \text{rpad}(S^\top t_1(\vec{a}) + S^\top \Gamma^\top t_1(\vec{x}) + S^\top \Gamma^\top R\vec{U}) + r_1 H_1 \vec{V}
\]
\[
= R^\top (t_2(\vec{b} + \Gamma \vec{y})) + \text{rpad}(S^\top t_1(\vec{a}) + S^\top \Gamma^\top t_1(\vec{x}) + S^\top \Gamma^\top R\vec{U}) + r_1 H_1 \vec{V}.
\]
The proof \(\vec{\Phi}''\) reveals \(R_3'\) \((t_2(\vec{b} + \Gamma \vec{y}))\) where \(R_3\) is the last column of \(R\), since \(r_1 H_1 \vec{V}\) does nothing on the last element.

In addition, we notice that \(t_2(0) = 0 U^* = O_B\) and, with overwhelming probability over the coins of CRS generation, for \(z \neq 0 \in \mathbb{Z}_N, t_2(z) = z U^* = O_B\). From those observations, we can mount a stronger attack as follows:

\textbf{Theorem 5.2.} GS\textsubscript{Sym}' for MMEs is not computational WI.

\textbf{Proof.} We consider an equation \(\vec{a}^\top \cdot \vec{y} + \vec{x}^\top \cdot \vec{b} + \vec{x}^\top \cdot \Gamma \vec{y} = t\). We suppose that there exist two witnesses \((\vec{x}_0, \vec{y}_0)\) and \((\vec{x}_1, \vec{y}_1)\) with \(\vec{y}_0 \neq \vec{y}_1\). We additionally suppose that \(\vec{b} + \Gamma \vec{y}_0 \nin \mathbb{Z}_N^m\) if \(\eta = 0\) and not \(0\) otherwise. The simplest example is the equation \(X \cdot 1 + X \cdot 1 \cdot y = O\) with witness \((P, -1)\) and \((O, 0)\).

Suppose that the prover employs two randomness \(R = (R_1 \mid R_2 \mid R_3) \in \mathbb{Z}_N^{m \times 3}\) and \(S = (S_1 \mid S_2) \in \mathbb{Z}_N^{m \times 2}\) and obtain two commitments
\[
\vec{C} = t_1(\vec{x}) + R\vec{U} \quad \text{and} \quad \vec{D} = t_2(\vec{y}) + S\vec{V}.
\]
The prover then constructs the proof by computing
\[
\vec{\Phi}'' = R^\top t_2(\vec{b}) + R^\top \Gamma t_2(\vec{y}) + \text{rpad}(S^\top t_1(\vec{a}) + S^\top \Gamma^\top t_1(\vec{x}) + S^\top \Gamma^\top R\vec{U}) + r_1 H_1 \vec{V}
\]
\[
= \begin{pmatrix}
 *_1 \\
 *_2 \\
 R_3'(t_2(\vec{b} + \Gamma \vec{y}))
\end{pmatrix}.
\]
Let \(\Phi''_3 := R_3^\top (t_2(\vec{b} + \Gamma \vec{y}))\).

When \(\vec{b} + \Gamma \vec{y} = 0\), then \(\Phi''_3 = R_3^\top t_2(0) = O_B\); while if \(\vec{b} + \Gamma \vec{y} \neq 0\), then \(\Phi''_3 \neq O_B\) with overwhelming probability over the choice of \(R_3\). Therefore, with overwhelming probability, we can distinguish the case that \(\vec{b} + \Gamma \vec{y} = 0\) from the case \(\vec{b} + \Gamma \vec{y} \neq 0\). This breaks the computational WI property. \(\square\)
5.4 Effects of the Bug: On NIZK Proof Systems Based on the DLIN Assumption

In [GS12, Section 11], Groth and Sahai discussed constructions of NIZK proof systems for MMEs and special PPEs. We summarize the effects of the bug on the NIZK proof systems.

- NIZK proof system for MMEs: This system directly employs the NIWI proof system for MMEs. Therefore, the simulation fails.
- NIZK proof system for PPEs with \(t = \sum_i e(P_i, Q_i) \) for known \(P_i, Q_i \): This system employs the NIWI proof system for a special MME, \(1 \cdot X - \delta \cdot Q = O \in G \). Hence, the simulation fails.

We check the security of the NIWI proof system for the special MME, \(1 \cdot X - \delta \cdot Q = O \in G \), in the generic group model by using GGA (Generic Group Analyzer) [BFF14, BFF15,Fag15]. GGA says that if \(Q \) is chosen randomly by the challenger, then the real proof employing witness \((Q, 1)\) and the simulated proof employing witness \((O, 0)\) are indistinguishable in the generic group model. For the detail, see Appendix A.

Acknowledgments

We are grateful to Jens Groth and Amit Sahai for their helpful comments. We thank Carla Ràfols for comments and discussions on their variant of the GS proof system [HHH+14, Appendix F of the ePrint version]. We also thank Masayuki Abe and Miyako Ohkubo for helpful comments and discussions related to this work.

References

3 The real prover employs a witness \((Q, 1)\) and the simulator employs a witness \((O, 0)\).

4 Available at https://github.com/generic-group-analyzer/gga.
A On the security of GS\textsubscript{Sym} for special MME

Let us consider an equation
\[-Q \cdot y + X \cdot 1 = O \in \mathbb{G} \]
and two witnesses \((X, y) = (Q, 1)\) and \((O, 0)\).

A.1 The special case based on the DLIN assumption

In the WI setting, we have
\[
\vec{U} = \begin{pmatrix}
(\alpha, 0, 1)P \\
(0, \beta, 1)P \\
(z_1\alpha, z_2\alpha, z_1 + z_2 - 1)P
\end{pmatrix}.
\]

Let \(U = \begin{pmatrix} \alpha \\ 0 \\ 1 \\ z_1\alpha \\ z_2\beta \\ z_1 + z_2 - 1 \end{pmatrix} \). In addition, the commitments \(C \) and \(D \) are uniformly distributed over \((\vec{U})\) and \((\vec{V})\). Therefore, we can represent \(C = c_1U_1 + c_2U_2 + c_3U_3 \) and \(D = d_1U_1 + d_2U_2 \), where \(c_1, c_2, c_3, d_1, d_2 \leftarrow \mathbb{Z}_N \). We can write \(X = yQ \), since \(-Q \cdot y + X \cdot 1 = O \in \mathbb{G}\). Finally, we observe that \(C = t_1(X) + r\vec{U} \) and \(D = t_2(y) + s\vec{V} \). Hence, we have \(rP = (C - t_1(X))U^{-1} \) and \(sP = (D - t_2(y))U^{-1} \).

By using \(r \) and \(s \), we can represent \(\Phi' \) as
\[
\begin{pmatrix}
(z_1\alpha(-z_1y + c_1), z_1\alpha(-z_2y + c_1) + \alpha, z_1\alpha(y + c_1))P \\
(z_2\beta(-z_1y + c_1) - \beta, z_2\beta(-z_2y + c_1), z_2\beta(y + c_1))P \\
((z_1 + z_2)(-z_1y + c_1) + q, y) - d_1 - \rho, (z_1 + z_2)(-z_2y + c_1) + q(y) - d_2 - \rho, (z_1 + z_2)(y + c_1))P
\end{pmatrix},
\]
where \(q \) is the discrete logarithm of \(Q \).
We analyze the proofs are indistinguishable in the generic-group model when Q is randomly chosen by employing GGA (Generic Group Analyzer) [BFF+14, BFF+15, Fag15]. Our code for GGA is in Listing 1.1 which reflects calculations in the above. We run the script and obtain

```
$ gga nonparam MME-DLIN-GivenQ.ggt
common input:
(...)
The assumption is valid for all primes
```

as we wanted.

5 Available at https://github.com/generic-group-analyzer/gga.