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Abstract

We investigate nonce reuse issues with the GCM block cipher mode as
used in TLS and focus in particular on AES-GCM, the most widely deployed
variant. With an Internet-wide scan we identi�ed 184 HTTPS servers re-
peating nonces, which fully breaks the authenticity of the connections.
Affected servers include large corporations, �nancial institutions, and a
credit card company. We present a proof of concept of our attack allowing
to violate the authenticity of affected HTTPS connections which in turn
can be utilized to inject seemingly valid content into encrypted sessions.
Furthermore we discovered over 70,000 HTTPS servers using random
nonces, which puts them at risk of nonce reuse if a large amount of data is
sent over the same connection.

1 Introduction
The Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM),
or short: AES-GCM [23, 5], is currently the most widely used cipher for
symmetric (authenticated) encryption in the TLS protocol [3]. This came
as a consequence of the exposure of various weaknesses in many alter-
native symmetric TLS ciphers during the past few years. The CBC mode
was affected by a whole series of attacks, including BEAST [4] (affecting TLS
1.0), Lucky Thirteen [1] (affecting all versions, based on timing side channels
and the older Vaudenay attack), POODLE [24] (only affecting SSLv3) and
POODLE-TLS [21] (implementation bugs). All those attacks did not exploit
weaknesses of CBC per se, but took advantage of the particular way how
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CBC was deployed in TLS (implicit IVs, lack of strict padding and MAC-
then-Pad-then-Encrypt). Before TLS 1.2, the RC4 stream cipher was the
only alternative to CBC-based ciphers but it had been long known for its
weaknesses [8] and eventually came under attack in TLS [2] as well. The
attacks against CBC-based ciphers can be mitigated by careful implemen-
tations, however it has been shown that these mitigations are extremely
dif�cult to implement correctly [32]. It is not possible to mitigate the weak-
nesses in RC4. The cryptographic community concluded that both CBC
and RC4 should be avoided and later even prohibited use of RC4 in TLS [27]
entirely.

With AES-GCM the TLS standard provides only one widely available
alternative to CBC and RC4. Technically, there are other options, such
as CCM and GCM in combination with block ciphers like Camellia, but
all of them lack widespread support. The OCB mode, which by many is
considered superior to GCM, suffered from patenting issues for a very
long time. Those problems prevented its wide deployment and only got
resolved recently [33]. Another promising alternative is the ChaCha20
stream cipher in combination with Poly1305 as authenticator which was
released as an RFC [25] in 2015 and a speci�cation as a TLS cipher mode
will soon be available as an RFC [20].

Despite currently being the most popular TLS cipher, AES-GCM is
not well received by the cryptographic community. Niels Ferguson de-
scribed potential attacks on GCM with short authentication tags [7], Antoine
Joux published a critical comment during the standardization process of
GCM [18], and several other cryptographers recently described GCM as
“fragile” [26, 11].

One of the most concerning attacks is the so-called “forbidden attack” by
Joux which exploits nonce reuse [18] and allows an adversary to reconstruct
the authentication key. This then leads to ef�cient forgery attacks enabling
the creation of seemingly valid ciphertexts without knowledge of the secret
master key. In this paper we �rst show that several TLS implementations
are vulnerable to nonce reuse attacks and use repeated nonces after few
server messages. Second, we present results from our Internet wide scan
that identi�ed more than 70,000 potentially vulnerable servers. These
servers generate nonces at random, which makes the nonce reuse attacks
possible after sending a large amount of TLS records. For example, a server
is vulnerable with a 40% probability after sending 232 TLS records (see
Figure 3.3). Our results motivate for the standardization of algorithms that
resist nonce misuse and the publication of errata on IETF documents with
insuf�ciently secure nonce generation methods.

2 Background
In the following we brie�y recap AES-GCM [23, 5] and its application in
TLS [3]. We note that the AES-GCM speci�cation allows for different initial-
ization vector or authentication tag lengths. We only concentrate on the
version of AES-GCM as it is used in TLS. The description applies to AES-128
and AES-256 since both have equal input/output lengths.

2.1 AES-GCM
AES-GCM [5] is a block-cipher mode of operation which provides authen-
ticated encryption with associated data (AEAD). It uses counter mode to
encrypt plaintexts. The resulting ciphertext is authenticated using a hash
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Figure 1: AES-GCM encryption computed using two plaintext blocks and one
block of additional authenticated data [23].

function called GHASH which is based on a computation over the Galois
�eld GF(2128).

We use the following notation:

a ‖ b Concatenation of strings a and b.

0s String consisting of s zero bits.

Pi The i-th plaintext block.

Ci The i-th ciphertext block.

A Additional authenticated data.

IV Initialization vector consisting of 96 bits (12 bytes).

cnt 4-byte long counter value.

Ji The i-th counter block, computed using concatenation of
the IV and the counter value cnt, cnt = (i+ 1) mod 232, to
achieve 128 bits. J0 = IV ‖ 031 ‖ 1.

Enck(X) AES encryption of block X , with symmetric key k.

GmulH(X) Multiplication H · X in Galois Field GF(2128), with the irre-
ducible polynomial f = 1 + α+ α2 + α7 + α128.

T Authentication tag.

len(X) Bit-length of string X , represented by 64 bits.

The AES-GCM encryption process of a message consisting of n blocks
works as follows (see Fig. 1):

1. The encryptor generates a 96-bit long initialization vector IV .

2. She generates 128-bit long counter blocks Ji, where Ji = IV ‖ cnt
and cnt = (i+ 1) mod 232, for i ∈ {0 . . . n}.

3. She computes the i-th ciphertext block as follows: Ci = Enck(Ji)⊕Pi.
Note that the length of the last ciphertext block Cn is equal to the
length of the last plaintext block Pn.
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In order to generate the authentication tag T , the encryptor computes
a GHASH over the additional authenticated data and the ciphertext:

1. The encryptor generates the hash key H = Enck(0
128).

2. Starting with X0 = 0, she computes Galois �eld multiplications over
the additional authenticated data consisting of m blocks (note that
the last block is padded with zeros to achieve a 128-bit block length):

Xi = GmulH(Xi−1 ⊕Ai), for i ∈ {1 . . .m}

3. She executes Galois �eld multiplications over n ciphertext blocks:

Xi+m = GmulH(Xi+m−1 ⊕ Ci), for i ∈ {1 . . . n}

4. She executes the last multiplication by using the bit-lengths of A and
C : S = GmulH(Xm+n ⊕ len(A) ‖ len(C)).

5. Finally, the encryptor computes the authentication tag:

T = S ⊕ Enck(J0).

The �nal output of this function is the ciphertext concatenated with
authentication tag: C ‖ T .

We refer to [5] for more details.

2.2 AES-GCM in TLS
TLS may use AES-GCM to encrypt and authenticate data in the record layer.
In TLS the maximum record size is on the order of 214. Encryption keys and
further key material are derived during the TLS handshake phase [3]. The
TLS handshake procedure is not relevant to our attack. It is only important
to know that the output of a TLS handshake is a master_secret, which is
used to derive further key material, including the server_write_IV and
client_write_IV.

An input into AES-GCM encryption is a plaintext and a 12-byte long
initialization vector IV . According to TLS, IV is constructed as follows:

• Salt (4 bytes) is derived during the TLS handshake and its value is
equal to server_write_IV / client_write_IV. This is also called the
implicit part of the IV.

• Nonce (8 bytes): A TLS peer must generate an eight byte nonce, also
called the explicit part of the IV. It is up to the implementation to
make sure the nonce is unique.

The initialization vector is then used to create a 16-byte long counter value.
The counter value is incremented by 1 with each new ciphertext block, as
described in the previous section.

3 The Forbidden Attack

In his comments to NIST Joux [18] described an attack against GCM if
nonces are reused. This attack allows an attacker to learn the authentica-
tion key and forge messages. Because the uniqueness of nonces is typically
a ground rule for cryptanalysis, Joux called his attack the “forbidden at-
tack”. Nevertheless, it highlights an important failure mode in real-world
implementations.
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Joux’s attack takes advantage of the underlying mathematical structure
of the GHASH primitive. Speci�cally, the computation of the tag T can be
viewed as the evaluation of the following polynomial g at the authentication
key H :

g(X) = A1X
m+n+1 + · · ·+AmX

n+2 + C1X
n+1 + · · ·+ CnX

2 + LX + S

Where L is a block encoding the lengths of A and C and S is a secret
nonce-derived value. Note that all coef�cients other than S are known to
the attacker. Evaluating at H , we have:

g(H) = T

To understand Joux’s attack, consider the case where two messages
are encrypted under the same nonce. For simplicity, let us suppose two
messages each with a single block of ciphertext and no blocks of additional
authenticated data. We have:

g1(X) = C1,1X
2 + L1X + S

g2(X) = C2,1X
2 + L2X + S

Recall that addition in the �eld is equivalent to XOR. Knowing that
g1(H) = T1 and g2(H) = T2, we modify each polynomial by adding the
known tag. We now have

g′1(X) = C1,1X
2 + L1X + S + T1

g′2(X) = C2,1X
2 + L2X + S + T2

with g′1(H) = g′2(H) = 0. Note that since S is a nonce-derived value, it
is common to both polynomials. Adding these polynomials, we obtain

g′1+2(X) = (C1,1 + C2,1)X
2 + (L1 + L2)X + T1 + T2

which is fully known to the attacker and satis�es g′1+2(H) = 0. Since
H is a root of g′1+2, we can factor the polynomial to recover a short list of
candidates for the authentication key. Although the list of candidates may
be as long as the degree of the polynomial, in practice it is usually relatively
short. If further nonce reuse is detected, additional polynomials sharing
a common root in the authentication key can be constructed. Factoring
these polynomials and �nding the common root yields the correct value
for H .

This results in catastrophic failure of authenticity, even if a nonce is
only re-used a single time and enables us to carry out a practical forgery
attack against HTTPS as described in Section 6.

3.1 Nonce Generation in TLS
In TLS, GCM requires a 96-bit nonce where 32 bits are derived along with
session key material and remain static for the duration of the session and
the other 64 bits are transmitted explicitly in each record. As highlighted
in Section 3, nonce uniqueness is essential for GCM’s security. However,
the TLS speci�cation does not provide clear guidelines to developers how
to choose the 64-bit explicit nonce [22].

The easiest secure way is a counter. Given that the nonce value is 64-
bit long, a repeating nonce will only happen after 264 TLS records. It is
not realistic that many encryptions happen over a single TLS connection.
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n p
22 0.000000
23 0.000002
24 0.000008
25 0.000031
26 0.000122
27 0.000488
28 0.001951
29 0.007782
30 0.030767
31 0.117503
32 0.393469
33 0.864665
34 0.999665
35 1.000000

Figure 2: Probability p for nonce collision with 2n nonces of 64 bit size

There are two counter variants in widespread use: Some implementations
start the counter with zero and increment from there, others start with
a random value and increment from it (e.g., OpenSSL). Both variants are
equally secure. Another option would be a negative counter, but we have
not observed this in practice.

3.2 Duplicate nonces
Faulty implementations may send duplicate nonces, e. g. by always send-
ing the same value as a nonce or repeating a nonce for two encryption
operations. A single repeated nonce is usually enough to fully recover the
connection’s authentication key. In such faulty implementations, authen-
ticity is lost and an attacker is able to manipulate TLS-protected content.

3.3 Random nonces
A less clear risk is present if an implementor chooses to use random values
as a nonce. If only a few TLS records are encrypted with the same key,
then a random nonce does not pose a risk. However, if a large number
of records is encrypted with the same key, the risk may become relevant.
If choosing nonces at random after 228 encryptions the probability of a
nonce collision will be around 0,2 % due to the birthday paradox. After 233

collisions the probability will be more than 80 % (see Figure 3.3).
The size of a TLS record is determined by many factors, therefore it

is not trivial to calculate the exact amount of data necessary to generate
a nonce duplication with an implementation with random nonces. It is
however most likely in the area of Terabytes. There are probably few
scenarios in which this is a problem. VPN networks may use the same
connection for such a large number of TLS records. Also in an attack
scenario where an attacker can control Javascript and the victim has a very
fast Internet connection such an attack might be possible. However this
requires an HTTPS server that allows an unlimited number of requests over
a single connection. Common HTTP server implementations usually limit
the number of Keep Alive requests that can be sent over one connection,
but this limit can be disabled.
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We conclude that an attack on an implementation using random nonces
is unlikely, but it cannot be de�nitely excluded. For safety reasons random
nonces should be avoided and a counter should be used.

4 Internet-wide Survey (HTTPS)
Our evaluation of Internet connected devices has been split into multiple
sub-tasks. An initial discovery scan, followed by vulnerability scans on
discovered target devices with different parameters over a time span of
approximately 18 days. In this section we describe the methods used for
discovery and analysis of Internet connected devices during our evaluation.

All tooling is available for review and testing via this project’s GitHub
repository. Concrete information on used compilers, libraries, applications,
and operating system is provided in Appendix A.

4.1 Host Discovery
We performed an IPv4 discovery scan using masscan1 for TCP port 443
(HTTPS) starting on new-years eve 2016. With appropriate rate-limiting this
scan took about two days and resulted in 48.406.453 distinct IP addresses
serving on TCP port 443. We limit masscan-runs to 75.000 pps (packets per
second) to reduce strain on upstream carrier equipment and monitoring
as agreed upon with our upstream ISP.

We honor blacklisting requests while conducting scans and thereafter,
thus keep excluding CIDR blocks during renewed Internet-wide scans. As
of May 4th 2016 our “blacklist” consists of a total of 558.608 IPv4 addresses2.

4.2 Vulnerability Testing
Between the 4th and the 17th of January 2016 we performed two vulnerabil-
ity scans on the randomized set of all previously collected IPv4 addresses
serving HTTPS. A patch to OpenSSL 1.0.2e and externally parallelized C-
program were used to collect �rst 10 and then 100 nonces from the TLS
handshake of these targets.

We have limited control over the number of connections a server uses.
Our test tool was not ideal in this regard. Due to the HTTP Keep-Alive
feature it is possible to send multiple HTTP requests over one connection.
After reading content from the server we sent a second HTTP request
without knowing whether the server would send more data. An ideal test
tool would �rst read any content coming from the server, however to
reliably do so one would have to fully implement HTTP, which is not trivial.
Our initial scan tool required a patched OpenSSL version. We later created
a tool that uses an OpenSSL callback, thus avoiding to patch OpenSSL itself,
however in our experience this later tool turned out to be more error
prone.

5 Vulnerable Devices
We found 184 devices that used a duplicate nonce. The behaviour of these
devices was mixed. 66 devices were using the value 0100000003001741

1masscan is a open-source project under AGPLv3 license available from https://github.com/
robertdavidgraham/masscan.

2Our “blacklist” is not publicly available nor shared due to obvious privacy implications. We
therefore refrain from detailing on size and count of excluded net-ranges.
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twice and then continued with a randomly chosen value and a counter
starting from that value. Four further devices showed a similar behavior,
but with other starting values (010000000100c289, 0100055f03010240 and
010000000080c0eb twice). 84 devices used a random value for the �rst
encryption and subsequently zero values. 23 devices simply always used
zero. All of these devices can be practically attacked.

Given these different behaviors we assume we have at least four differ-
ent kinds of faulty implementations.

We tried to contact the owners of affected devices, but ran into signif-
icant dif�culties. Most of our contact attempts were not answered at all.
The affected parties include several webpages of the credit card company
VISA, the polish banking association ZBP (Zwizek Banków Polskich), and
Deutsche Börse (German stock exchange).

With the help of CERT.at we were able to establish a contact with
one affected device owner. We were able to determine that some de-
vices were load balancers produced by Radware. We contacted Radware
and explained the issue to them. The affected devices were using code
or hardware from Cavium. Radware has since �xed the issue and pub-
lished a security advisory [28]. The Radware device was using the “nonce”
0100000003001741 twice and then a counter starting from value chosen at
random.

5.1 Missing Return Value Check in OpenSSL
Several further devices we observed were sending two values
0100000003001741 and similar other values. These look like uninitialized
memory. We do not have a de�nitive answer why these devices behave like
this, but we have some further observations. One device owner mentioned
that the device is using a modi�ed version of OpenSSL 1.0.1j. Given that
we learned from Radware that their devices internally use a Cavium chip,
we believe they use a modi�ed OpenSSL version in combination with a
hardware accelerator chip from Cavium. Thus, we checked whether we
could �nd a plausible way how OpenSSL could generate this behavior.

The code that generates the �rst nonce value in OpenSSL calls the
random number generation function RAND_bytes() to get eight random
bytes. This is done in the function aes_gcm_ctrl() in e_aes.c. The error
code of RAND_bytes is checked and aes_gcm_ctrl() returns 0 in case of
an error. In t1_enc.c a call to EVP_CIPHER_CTX_ctrl() happens, which
maps to aes_gcm_ctrl(). The return value is not checked here.

This means that in case the random number generator returns an er-
ror the code continues with uninitialized memory in the IV. It is possible
that the devices showing this behavior use a hardware random number
generator that is malfunctioning.

We simulated a failing random number generator by returning an error
code if eight bytes were requested from this function. This deliberately bro-
ken OpenSSL variant sent the value 010000a60000012c as a nonce, which
is uninitialized memory. However unlike with the devices we observed
in the wild we were unable to connect to that broken OpenSSL version.
Current OpenSSL versions properly check the return value of the function
RAND_bytes(), which was added by OpenSSL developer Matt Caswell in
February 2015.3

3https://github.com/openssl/openssl/commit/eadf70d2c885e3e4e943091eabfec1e73d4f3883
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5.2 LFSR
We found a signi�cant number of devices that, according to their Server
HTTP header, were produced by Check Point. At �rst their nonce value
looked random. However after contacting Check Point we learned that their
TLS implementation is using a Linear Feedback Shift Register (LFSR) for the
nonce generation. The LFSR is generated by the following polynomial:

x64 + x63 + x61 + x60 + 1

The chosen LFSR has maximal period of 264 − 1, i.e. if the LFSR is
initialized with an arbitrary non-zero nonce then only after 264−1 updates
the values start to repeat. This implementation therefore has the same
security properties as a counter. We considered this in our analysis and
excluded nonces using this LFSR. While this approach is unusual there is
no security risk associated with it. It can however be used to �ngerprint
devices.

There may be other implementations that have a randomly-looking
nonce, but are in fact generated using an LFSR-like algorithm. However
we are not aware of such devices at this time and welcome feedback from
device manufacturers and software developers.

5.3 Random Nonces
After �ltering the results for the LFSR used by Check Point there were
approximately 70,000 devices left that had a random-looking nonce. Based
on the title tags and HTTP headers we tried to identify the devices.

Based on the HTTP "Server" header around 7,700 devices were Lotus
Domino installations. We disclosed the issue to IBM, the vendor of Lotus
Domino. They con�rmed the vulnerability and published an update [15].

Based on the title tag 19,120 hosts were devices by the company Sangfor,
a chinese vendor of network equipment. We disclosed the issue to Sangfor,
but never received any reply to our contact attempts.

Due to a contact of one affected server operator we were able to iden-
tify it as an A10 load balancer (model AX1030, OS version 2.7.2-P5). We
disclosed the issue to A10 and they con�rmed it.

A signi�cant number of affected hosts identi�ed themselves as Mi-
crosoft IIS in different versions in the "Server" header. The most common
identi�cation string was "Microsoft-IIS/7.5", which we found 9,633 times.
We are unable to explain this. In our tests Windows/IIS installations did
not show any suspicious behavior. We contacted Microsoft and they in-
formed us that all versions of SChannel use a counter as a nonce. The most
likely reason for this �nding is that these hosts all had their TLS termination
of�oaded to a load balancer or �rewall.

Based on our �ndings we must assume that there are potentially vul-
nerable implementations we were unable to identify.

6 A Practical Attack on Browser HTTPS
We implemented an attack to inject malicious content into browser-based
HTTPS sessions. Our attack takes advantage of servers that repeat GCM
nonces either by random chance or due to implementation errors.

Let C , S, and M denote the browser client, a vulnerable web server,
and our man-in-the-middle (MitM) attacker, respectively. For the purposes
of our attack, assume M controls the local network: they may observe all

May 17, 2016
https://github.com/nonce-disrespect/nonce-disrespect/

https://github.com/nonce-disrespect/nonce-disrespect/


10

ofC ’s traf�c and modify or drop messages. We assume also that S exposes
a faulty TLS implementation that will repeat nonces reliably.

The attack proceeds as follows:

1. M coerces C into loading attacker-controlled content. This can be
done either via a phishing attack or by injecting malicious content
into unauthenticated HTTP traf�c.

2. M serves C HTML or JavaScript to initiate an HTTPS session with
S. M observes the handshake to verify that a GCM cipher suite is
negotiated. If not, M aborts the attack.

3. After S changes cipher suites following a successful handshake, M
begins recording all server-sent traf�c. In particular, M notes the
following in each record:

• The sequence number, a simple incrementing counter.

• The record header comprising the �rst �ve bytes of the record.

• The explicit nonce part comprising the �rst eight bytes of the
record fragment.

• The authentication tag comprising the last 16 bytes of the record
fragment.

• The ciphertext comprising the remaining bytes of the record
fragment.

4. M serves C content to poll S at a short interval and continues to
record the responses in a lookup table indexed by explicit nonce part.

5. When S repeats a nonce, M builds a polynomial derived from the
relevant pair of records. In GCM under TLS, the AAD for a record
includes both the record header and the sequence number. The
ciphertext and tag are as described above.

6. M factors this polynomial to �nd a short list of candidates for the
authentication key. M takes the set intersection of this list and the
previous list of candidates. (In the event that this is the �rst collision,
this list is the set of all possible keys.)

7. If more than one candidate for the authentication key remains, M
returns to step 4. Otherwise, M serves content redirecting C to a
static endpoint of the vulnerable application S.

8. M intercepts the response fromS. Since the target is a static endpoint,
it is trivial for M to inject malicious content into the response by
XORing the known payload against the tail of the ciphertext and then
XORing the malicious content against the same.

Additional considerations:

• If S does not repeat nonces more than once in a given session, M
may attempt to hijack the connection even if there are multiple can-
didates for the authentication key. M can simply guess at one of the
candidates and attempt to tamper with a server response before redi-
recting. If the guess is incorrect, C and S will simply renegotiate a
new session and M can try again.

• If the application served by S does not contain any static HTML end-
points, M may choose instead to target static resources such as CSS
or JavaScript. This will additionally require M to tamper with the
HTTP response headers to change the content type to text/html.

A proof-of-concept exploit for this attack is provided on Github ().
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7 Further Observations
In this section we discuss further observations made by analysis of crypto-
graphic protocols and libraries.

7.1 Encryption Oracle with Zero-Length Inputs
The AES-GCM speci�cation allows for encryption of arbitrary data of
lengths up to 239 − 256 bits [23]. It is also possible to encrypt zero-length
messages with zero-length additional authentication data. In that case, the
output of the last Gmul function becomes zero: S = 0 (see Fig. 1). This
implicates that the authentication tag is equal to the encryption of the �rst
counter block T = Enck(J0).

This property of AES-GCM has no direct security consequences. If a
victim encrypts zero-length data with AES-GCM, the attacker learns neither
the secret key k nor the hash key H . However, if the attacker can force
the victim to encrypt zero-length data, he is able to obtain valuable plain-
text/ciphertext block pairs. Thus, he can use the victim as an encryption
oracle to encrypt random messages. If the ciphertext receiver supports
different modes of operations – e.g., CBC (Cipher Block Chaining) – the
attacker is then able to construct valid messages encrypted with victim’s
secret key k.

We stress that this is not a valid TLS scenario. First, in TLS the addi-
tional authentication data is non-zero [3]. It consists of a sequence number,
message type, TLS version and message length. Second, it is not possible
to use the same symmetric key for different algorithms in TLS. However,
this property of AES-GCM could become exploitable in speci�c scenarios
where the same symmetric keys can be used for different modes of op-
erations [16]. Potential examples include XML Encryption [6], JSON Web
Encryption [17], or PKCS#11 [10].

7.2 Analysis of Cryptographic Libraries
We analyzed usage of AES-GCM nonces in cryptographic libraries: Botan
1.11.28, BouncyCastle Java 1.54, SunJCE 1.8, and OpenSSL 1.0.2g. None of
the TLS servers provided by these libraries was vulnerable to nonce-reuse
attacks. The �rst three libraries set the nonce value to zero and increment
the nonce value with each new record. OpenSSL behaves differently and
sets the �rst nonce value to a random 8-byte string. Further nonce values
are constructed by incrementing this random string.

We furthermore investigated the usage of the counter value (cnt) in
these libraries. According to the standard, if the number of blocks in
one ciphertext is larger than 232, a modulo reduction is applied: cnt = i
mod 232. Interestingly, the Botan library does not perform the modulo
reduction and in a case the number of blocks in one ciphertext is larger
than 232, the counter over�ows and the last byte of the nonce value is
increased as well. To the best of our knowledge, this does not in�uence the
security of Botan, it just means the Botan library is not compliant with the
standard [23]. We were able to observe a similar behavior in the MatrixSSL
library (version 3-7-2b).

8 Conclusions and Recommendations
Our results show that there is a signi�cant risk of GCM getting implemented
in an insecure way. This risk gets elevated by the fact that the TLS speci�ca-
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tion gives developers little guidance on how to implement GCM securely.
More resilient approaches are possible though and we outline two solutions
brie�y below.

The TLS drafts for Chacha20-Poly1305 [20] (which has been submitted
to IESG for publication recently) and AES-OCB [33] both specify methods to
generate nonces from record sequence numbers and shared secrets in a de-
terministic way. This construction prevents that implementations choose
their own (potentially insecure) nonce generation methods, saves some
bandwidth since an explicit transmission of the nonce is not necessary any-
more and assures that erroneous implementations are non-interoperable.
In particular, this avoids the risk of developers choosing random or, even
worse, constant nonces. TLS 1.3 [29] enforces a similar approach for all of
its AEAD cipher suites.

The other alternative is to rely on cryptographic algorithms that inher-
ently resist nonce-misuse, i.e. such ciphers uphold their security guar-
antees, even if a nonce-key pair is reused for different messages. The
price for this property however is that these ciphers are inherently “of-
�ine”, meaning that two passes over the data are necessary in order to
perform authenticated encryption. These algorithms usually operate in
a MAC-Then-Encrypt-like manner where �rst message and associated
data are processed to produce the authentication tag and then the latter
is used as the nonce for the encryption algorithm. Such nonces are also
often known as synthetic IVs (SIV), a term �rst coined by Rogaway and
Shrimpton [30] in 2006. Examples of nonce misuse-resistant algorithms
include AES-SIV [13], AES-GCM-SIV [12], AEZ [14], HS1-SIV [19], and MRO
from the MEM-AEAD [9] cipher family.

In general future protocols should rely on algorithms and constructions
that reduce the risk of implementation errors as much as possible. Both
of the options presented above are viable approaches to protect against
nonce-misuse. In this speci�c case ambigious wording and human-error
seemed to be the reason for a rather serious attack against TLS and in
particular HTTPS. One of the authors has prepared an errata 4 to [31] which
is currently being discussed within the TLS working group 5. It is our hope
that future protocol design decisions take human error, common imple-
mentation and software bugs into account and ensure that appropriate,
distinct and clear discussion will be added to the security considerations
section of documents published within the IETF Security Area.
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A Applications, Operating Systems, Compil-
ers & Library Versions

A.1 Evaluation & vulnerability testing (Scan Server)

$ uname -a
Linux scan.sba-research.org 3.13.0-83-generic #127-Ubuntu SMP Fri Mar 11
00:25:37 UTC 2016 x86_64 x86_64 x86_64 GNU/Linux

C
C

$ lsb_release -a
No LSB modules are available.
Distributor ID:Ubuntu
Description:Ubuntu 14.04.4 LTS
Release:14.04
Codename:trusty

$ /lib/x86_64-linux-gnu/libc.so.6
GNU C Library (Ubuntu EGLIBC 2.19-0ubuntu6.7) stable release version 2.19,
by Roland McGrath et al.

C
C

Copyright (C) 2014 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.
Compiled by GNU CC version 4.8.2.
Compiled on a Linux 3.13.11 system on 2016-02-16.
Available extensions:
crypt Availabledd-on version 2.1 by Michael Glad and others
GNU Libidn by Simon Josefsson
Native POSIX Threads Library by Ulrich Drepper et al
BIND-8.2.3-alT5B
libc ABIs: UNIQUE IFUNC
For bug reporting instructions, please see:
<https://bugs.launchpad.net/ubuntu/+source/eglibc/+bugs>.

$ gcc --version
gcc (Ubuntu 4.8.4-2ubuntu1~14.04.1) 4.8.4
Copyright (C) 2013 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

$ ./masscan --version

Masscan version 1.0.3 ( https://github.com/robertdavidgraham/masscan )
Compiled on: May 20 2015 15:17:28
Compiler: gcc 4.8.2
OS: Linux
CPU: unknown (64 bits)
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GIT version: 1.0.3-95-gb395f18

openssl-1.0.2e-patched$ ./apps/openssl version -a
WARNING: can’t open config file: /usr/local/ssl/openssl.cnf
OpenSSL 1.0.2e 3 Dec 2015
built on: reproducible build, date unspecified
platform: linux-x86_64
options: bn(64,64) rc4(16x,int) des(idx,cisc,16,int) idea(int)
blowfish(idx)

C
C

compiler: gcc -I. -I.. -I../include -DOPENSSL_THREADS -D_REENTRANT
-DDSO_DLFCN -DHAVE_DLFCN_H -Wa,--noexecstack -m64 -DL_ENDIAN -O3 -Wall
-DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5
-DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM
-DAES_ASM -DVPAES_ASM -DBSAES_ASM -DWHIRLPOOL_ASM -DGHASH_ASM
-DECP_NISTZ256_ASM

C
C C
C C
C C
C C
C

OPENSSLDIR: "/usr/local/ssl"
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