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Abstract

We give a survey of existing attacks against end-to-end verifiable voting
systems in the academic literature. We discuss attacks on the integrity of the
election, attacks on the privacy of voters, and attacks aiming at coercion of
voters. For each attack, we give a brief overview of the voting system and a
short description of the attack and its consequences.

1 Introduction

An election, whether it is paper-based (as in traditional elections) or computer-
based (e.g., e-voting), has always been open to threats due to the high stakes for
the winner. A survey shows there have been hundreds of election frauds over the last
decade in the US alone [1]. Common attacks included vote buying, double voting,
stealing absentee ballots and so on which can influence the election outcome. A
natural question that arises is then, “how do we ensure the election outcome is
correct and if not, detect it?”.

In traditional paper-based elections, voters must rely on the trusted party to
count the votes. Thus, the verifiability is largely dependant on the trusted party to
perform the tallying process correctly and there is no convenient way for voters to
independently verify the result. E2E verifiable voting systems on the other hand, try
to minimize such dependency and provide every voter means to verify the correctness
of the election outcome (i.e., integrity of the election).

E2E verifiable voting systems achieve the verifiability of elections via cast-as-
intended (CAI), recorded-as-cast (RAC) and tallied-as-recorded (TAR) guaran-
tees [16]. CAI ensures the voter can verify that his choice is correctly marked
on his ballot, RAC ensures the voting system stores the ballot correctly and TAR
ensures all the cast votes are correctly included in the final tally. Thus, if malicious
voters (or even corrupted election officials) attempt to alter the election result, such
attempts will leave evidence which honest voters can use to verify that the integrity
of the election is lost.

Privacy is another important property for E2E verifiable voting systems. In the
absence of privacy, the relation between the votes and the voters will be visible to
others. Such relation then can be used to coerce voters, leading the voters to vote for
the choice of the coercer instead of their own. Although such votes will syntactically
remain valid, they should be treated as being semantically invalid since they do not
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A. Ryan (editors), Series in Security, Privacy and Trust, CRC Press, 2016.
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reflect the true intentions of the voters. However, it seems almost impossible (if not
impossible) to determine a voter’s true intention from a cast ballot. It is thus best
to prevent coercions by ensuring the votes remain secret.

A common approach to realizing E2E verifiability is by introducing receipts in
the system. These receipts have two main requirements. One is to ensure E2E
verifiability of the system by serving as voter verifiable evidence. Another is to do
so without revealing any information about how voters have voted. These seemingly
contradicting requirements contribute towards making E2E verifiable voting systems
complex.

The aim of this chapter is to aid the readers to become aware of various pitfalls
while designing an E2E verifiable voting system. In the following, we will review the
existing attacks against E2E voting systems in the academic literature. The attacks
are divided into three categories - integrity, privacy and coercion, depending on the
specific property each attack aims to compromise.

2 Integrity

Integrity ensures the correctness of the election outcome and hence perhaps is the
most important property an E2E voting system should possess. This section dis-
cusses various attacks against well known E2E verifiable voting systems which aim
at compromising the integrity of an election.

2.1 Misprinted ballots attack

In a voting environment, it is generally expected that there are trusted parties (e.g.,
election officials) who handle critical operations such as verifying identity of a voter,
counting the tally and so on. When such trusted parties behave maliciously, one
can no longer have confidence in the outcome of an election. Kelsey et al. [17]
introduced an attack where the election official intentionally misprints a portion of
ballots to alter the election outcome, hence the attack is named misprinted ballots
attack. Prior to demonstrating the attack, we start by briefly describing Punchscan
in order to familiarize the readers with the system.

Punchscan is an E2E verifiable voting system which makes use of optical scanning
of marked ballots. In Punchscan, a ballot consists of two sheets. The front sheet
has a list of candidates with associated letters, a serial number and a hole for each
candidate. The back sheet has the letters associated with the candidates printed
such that when two sheets are overlayed, the letters appear under the holes. A voter
casts his vote by marking the letter corresponding to the candidate of his choice
with a bingo dauber. He then must choose which sheet (front or back) to keep as
a receipt and discards the other one. The receipt can later be checked against the
Public Bulletin Board (PBB) released by the election authority.

The attack involves an interaction between a voter and the corrupted election
official (the attacker). To begin with, the attacker replaces a portion of ballots with
tampered ballots. Then, whenever a voter chooses the front sheet as his receipt, the
attacker gives a tampered ballot to the voter. A tampered ballot has two sheets, a
tampered back sheet and an untampered front sheet. The back sheet is tampered
such that the ordering of letters is swapped. Thus, a voter who intends to cast a
vote for the candidate of his choice will instead end up casting a vote for a swapped
candidate. An example of misprinted ballots attack is shown in Figure 1. A voter
who intends to vote for Jake sees the tampered ballot and marks the second hole
then scans the front sheet. The system however, correlates this scanned copy to the
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Figure 1: Misprinted ballots attack against Punchscan: Tampered ballot cast by a
voter gets linked to the original ballot which results in a vote swap

original ballot and the vote goes to Jane instead. The back sheet which is the only
evidence of tampering gets destroyed as a part of the legitimate voting process.

A proposed remedy for this attack is to have the election official commit to a
ballot before asking the voter to choose a receipt sheet. This way, the election official
has a chance of being caught as he no longer has a priori knowledge of whether the
voter will keep the front sheet as the receipt or not. For example, if the election
official picks a tampered ballot but the voter decides to choose the back sheet as
his receipt, then this will allow the voter to later find out that the election official
misbehaved.

2.2 Trash Attack

One of the important assumptions in many E2E verifiable voting systems is that
the voters should check their receipts. Some voters however choose to discard their
receipts to the bin which can be an indication that they will not check their re-
ceipts against the PBB. An attacker (e.g., election officials) can exploit this voter
behaviour to manipulate the votes corresponding to the discarded receipts with a
high confidence of not being caught. This attack is called trash attack [6].

A suggested countermeasure in [6] is to use a hash chain. That is, in order to
generate a receipt for a voter, the system creates a hash which is dependent on
the current vote as well as the previous vote. However, this approach raises two
concerns which do not seem to have been documented in the literature. One concern
is user privacy issue. Because each vote is now dependent on another vote, there
is an inherent ordering that is present in the receipts. Thus, a receipt can act as
publicly verifiable evidence that shows a voter was present at the voting booth for
a given period of time. This may discourage privacy-keen voters to participate in
elections.

Another concern is performance issue. Helios for example, is a distributed online
voting system where multiple voters can simultaneously cast their votes in real time.
However, hash chaining being a linear process prohibits concurrent processing of
ballots thus a voter may have to wait a considerable amount of time until his vote
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gets processed.

2.3 Clash Attack

Clash attack [20] is another example of exploiting the weakness in the receipt man-
agement of E2E verifiable voting systems. In a sense, clash attack can be viewed as
a stronger attack as it works even when the voters verify their receipts against the
PBB. The main idea behind clash attack is that the attacker has the power to issue
duplicate receipts to multiple voters as if they were legitimate receipts. This can be
done either by the corrupted authority or by an external attacker who takes control
of the voting machine and the PBB. Then, for each duplicated receipt one vote
can be safely manipulated. Certain implementations of several well known systems
such as Wombat [2], ThreeBallot [27] and Helios [3] were shown to be vulnerable to
clash attack. The following sequence of events describes the attack procedure for a
variant of Helios.

1. The browser and the PBB are compromised.

2. The browser always uses the same sequence of random numbers (ri)
n
i=1 to

generate i-th ciphertext Ci = Encpk(c, ri) where c is the candidate chosen by
the voter and n is the maximum number of audits.

3. All the voters who have voted for the same candidate and audited the same
number of times receive the same receipt.

4. The attacker keeps one receipt for verification purpose and replaces all the
remaining cast ballots then publishes the corresponding receipts on the PBB.

5. Each voter verifies his receipt appears on the PBB and believes his vote was
cast correctly.

Clash attack works because the system can be manipulated to produce duplicate
receipts without voters detecting it. Thus, even a careful victim who checks his
receipt against the PBB will not be able to detect the attack as his receipt will
appear on the PBB. This attack can be mitigated if an additional requirement
is added to ensure every receipt is unique. One suggested approach is to use the
voter contributed randomness in addition to the machine chosen randomness during
encryption. Then, assuming the entropy of the voter chosen randomness is high
enough (i.e., the randomness chosen by a voter is highly likely to be different from
the randomness chosen by another voter), the resulting receipt will be unique.

2.4 Flawed Mix-net

Prior to describing the attacks on mix-nets, a brief introduction to the concept
is presented for the readers who are not familiar with mix-nets. Mix-nets were
originally proposed by Chaum in 1981 [10]. A mix-net is a series of servers (also
known as mixes), each taking a tuple as input and producing a tuple of the same size
as output, where each server obfuscates the relation between its input and output
by mixing (i.e., applying a random permutation). The aim is to shuffle a tuple
securely, that is, the correspondence between the input values to the first mix and
the output values of the last mix remains secret even if some mixes are corrupted
by an adversary. Figure 2 shows an example of a mix-net.

There are two main types of mix-nets: Chaumian mix-nets [10] and homomor-
phic mix-nets [23]. In both mix-nets, the input to the first mix-net is a tuple of
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Figure 2: A Chaumian mix-net

ciphertexts. In Chaumian mix-nets, each input ciphertext is calculated by encrypt-
ing the plaintext consecutively under the keys of the mixes starting with that of the
last mix. During the mixing operation, each mix “peels off” a layer of encryption by
decrypting its input values with the last mix peeling off the last layer and outputting
the original plaintexts. Figure 2 shows a Chaumian mix-net. In homomorphic mix-
nets, each input ciphertext is a homomorphic encryption of the plaintext. During
the mixing operation, each mix simply re-randomizes each encryption, resulting in
a new ciphertext corresponding to the same plaintext. Eventually, the output tuple
of the last mix need to be decrypted to retrieve the original plaintexts. A homomor-
phic mix-net may be represented similarly to Figure 2 with the only difference that
the output of the last mix will be re-encrypted ciphertexts rather than plaintexts.

In order to guarantee the correctness of the mixing, Random Partial Checking
(RPC) is proposed [15]. RPC is a well known technique which works by each
mix revealing the relation between randomly chosen half of its input and output. In
Chaumian mix-nets, this relation is revealed by providing the randomness necessary
to encrypt a given output to a given input. In homomorphic mix-nets, it is revealed
by exposing the randomness used by the mix-server to re-encrypt. Revealing half of
the relations ensures cheating mixes are caught with a high probability, while at the
same time the end-to-end input and output relationship remains secret with a high
probability thus protecting the sender privacy. To achieve this, mixes are grouped
in pairs of consecutive servers, then within each pair, the output ciphertexts of
the first mix (which are the same as the input ciphertexts to the second mix) are
randomly divided into two sets, and each mix is challenged to reveal the relations
for one of the sets.

However, it was shown that the original description of RPC has weaknesses which
enable attackers to break the sender privacy and the correctness of shuffling [18].
The attacks work on both Chaumian and homomorphic mix-nets. These attacks
are then extended to the RPC implementations of systems such as Civitas [11] and
Scantegrity [8].

Khazaei and Wikström [18] observed that in the existing implementations of mix-
nets at the time, two crucial well-formedness checks were often missing: checking
for duplicate ciphertexts and checking for permutation consistency.

Assume that there are duplicate ciphertexts in the input of a mix in a Chaumian
mix-net. They should result in duplicate plaintexts. However, a corrupted mix can
replace one of the duplicate outputs with an arbitrary value, while keeping the
other one unchanged. If the cheating mix is challenged on any of the duplicate
input ciphertexts, it will be able to successfully claim that the input ciphertext
corresponds to the unchanged output. The mix is not caught unless it is asked to
show the relation for the injected output.

Khazaei and Wikström further observed that in the RPC implementations after
a mix was challenged on revealing the relations for some input or output ciphertexts,
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Figure 3: Rigging an election

the only verification test which was carried out was to check if each relation is valid.
They argue that this leaves the mix free to claim relations with collisions, e.g.,
two or more output ciphertexts corresponding to the same input. Lack of such
permutation consistency checks enables mixes to get away with incorrect shuffling.

As an example, the attack which breaks the integrity of the election is described
below. The rest of the attacks which break the privacy of the election are described
in Section 3.

Rigging an Election without detection This attack exploits the lack of per-
mutation consistency checks in RPC. It applies to all homomorphic mix-nets, and
to those Chaumian mix-nets that do not implement duplicate ciphertext removal.
Duplicate ciphertext removal refers to the practice of inspecting the inputs to a
mix and removing any duplicate ciphertexts. Suppose an attacker takes full con-
trol of the first mix. Then, he can set multiple output ciphertexts to ciphertexts
corresponding to the same input. This will amplify the vote corresponding to the
repeated ciphertext and compromise the integrity of the election. An extreme case
of this attack where the first mix replaces all the outputs with ciphertexts corre-
sponding to the first input is shown in Figure 3. Note that in RPC the first mix is
challenged to reveal relations for half of its output only since the first mix is paired
with the second mix. Hence the first mix will be able to provide a valid relation for
any challenged output and if the relations are not checked for permutation consis-
tency the attack will not be caught. Note that the first mix is not able to provide a
valid relation for most of its input ciphertexts, but these are not challenged in RPC.
Also note that in general any mix with an odd index can carry out this attack by
repeating its input ciphertexts.

The countermeasure proposed by Khazaei and Wikström is to verify permutation
consistency in RPC, i.e., to check that all the revealed input-output relations have
distinct positions. As they also mention though, this check was missed in the Civitas
and Scantegrity implementations of RPC.

3 Privacy

It is important that an E2E verifiable voting system hides how a voter has voted
from other voters (ideally even from the system iteslf) thereby providing privacy.
While privacy is important in its own right, compromise of privacy can lead to
coercion attacks which then can lead to the loss of integrity. In this section, attacks
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which aim to compromise privacy are discussed.

3.1 Replay Attack

Suppose a small mock election of three voters is run. Two voters Alice and Bob cast
their votes legitimately. Then, Charlie duplicates Alice’s vote. If both Alice and
Bob voted for the same candidate then obviously there is no privacy (i.e., the tally
will reveal the winner whom both Alice and Bob have voted for). Had they voted
for different candidates, the candidate that Alice voted for will win the election with
two votes and hence revealing her vote which in turn will reveal Bob’s also. This
demonstrates simply replaying another voter’s vote can result in a breach of privacy.
This replay attack was shown to be applicable to Helios 2.0 [12].

Apparently, the aforementioned scenario is somewhat artificial and does not
reflect real world elections. It was however, shown that replay attack can be applied
to real world elections through a French election case study [12]. The case study
was conducted based on a statistical model which reasonably resembles an actual
election indicating that the attack does pose a threat in the real world.

As a simple remedy for replay attack, ballot weeding is proposed [12]. Ballot
weeding involves checking for duplicate ballots in the system under the assumption
the signature of knowledge, which acts as a proof that the cast ballot is well formed,
is not malleable (i.e., cannot be altered in such a way that verification still succeeds).

Replay attack can be extended to ballot-blinding attack where each copy of a
vote made can be distinct. The technique requires a basic understanding of a well
known encryption algorithm called ElGamal encryption. Let p = bq + 1 be a large
prime where q is also a prime and b ≥ 2. A generator g ∈ Z∗p with order q is
chosen. Further, the secret key x ∈ Zq is chosen and the corresponding public key
X = gx (mod p) is computed. Encryption requires choosing r ∈ Zq and computing
the ciphertext (R,S) = (gr,mXr). (R,S) for a given message m < p. (R,S) can
be decrypted by computing m = R−xS.

Algorithm 1 Blind a ballot (R,S) with a public key X

1: procedure Blind((R,S), X))
2: Pick a random z ∈ Zq
3: Compute (R′, S′) = (gzR,XzS) = (gz+r, Xz+rm)
4: return (R′, S′)
5: end procedure

Ballot-blinding attack is similar to the replay attack in that it exploits malleabil-
ity of the ciphertext to tamper the ciphertext while keeping the vote unchanged.
The corresponding proof, which is a non-interactive zero knowledge proof for prov-
ing well-formedness of the ciphertext, can also be blinded in cooperation with the
original voter (i.e., the original voter consents another voter to copy his vote without
revealing his vote to the copier). Thus, allowing the copier to create an undetectable
copy of the original vote. As shown in Algorithm 1, the attack requires a random-
ness z chosen at the time of blinding with the public information, the ciphertext
and the public key. Blinding the accompanied proof is more technically involved
and interested readers are referred to [13] for details.

Desmedt and Chaidos [13] note that this attack works for on-line voting but not
for the polling station-based voting due to the cooperation requirement. The main
difference between the two types of voting systems is that it is relatively easier to
enforce procedural requirements during the election in polling station-based voting
than in on-line voting.
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3.2 Kleptographic Attack

Algorithm 2 Embed a secret message c into the randomness part of an ElGamal
signature (r, s)

1: procedure Embed(c)
2: p = qm+ 1 . m is smooth and F∗p is a subgroup of order q generated by gm

3: k′ ∈R Zq
4: k = c+ k′m (mod p− 1)
5: return r = gk (mod p)
6: end procedure

Algorithm 3 Retrieve the secret message c given an ElGamal signature (r, s)

1: procedure Retrieve(r)
2: find z such that (gq)z = rq (mod p) . i.e., z = loggq r

q

3: c = z (mod m)
4: return c
5: end procedure

E-voting schemes which make use of randomness are potentially vulnerable to
kleptographic attack. For example, Helios [4] uses ElGamal encryption as the en-
cryption method which is a randomized algorithm. A randomized algorithm takes
a stream of random bits in addition to the input (e.g., vote) to produce an output.
Thus, each encryption of the same vote will look distinct which helps to achieve the
voter privacy in elections.

Kleptographic attack works by constructing a subliminal channel in the random
bits used in encryptions. The presence of a subliminal channel does not change the
protocol nor can be detected without reverse engineering the software. This makes
a subliminal channel an attractive choice for leaking confidential information to a
third party.

The attack was initially motivated by the question whether there exists a signa-
ture scheme with a broadband covert channel without revealing the sender’s private
key. This was shown to be true using ElGamal signature as an example [5]. Algo-
rithms 2 and 3 show how an attacker can embed a secret message and retrieve it,
respectively. Note that step 2 in Algorithm 3 is computable because the group order
is smooth (e.g., let B be the smoothness bound, that is for a prime p = qm+1, B is
the largest prime in m, it is computable in time O(

√
B) using Pohlig-Hellman [25]

and Pollard’s rho [26]).
A typical high level structure of ElGamal signature can be viewed as a tuple (r, s)

where s is the signature on a message and r is the randomness used in creating s. The
similar structure is used for ElGamal encryption and hence the attack is immediately
applicable. The authors further show how to convert their covert broadcast channel
into narrowcast by pre-sharing secrets among the communicating parties.

It was later shown that such a channel also exists in DSA-like schemes [28].
Gogolewski et al. [14] demonstrated the kleptographic attacks against a number
of e-voting schemes [19, 7, 22, 9]. Kleptographic attack poses a real threat to e-
voting schemes using randomness as it is hard to detect. It should be noted however
that kleptographic attack is tailored to exposing secrets. Thus, provided that the
publicized data remain unmodifiable (e.g., encrypted ballots stored on append-only
PBB), the integrity of election result may still be retained.

Gogolewski et al. [14] suggest a potential approach to solving this problem by pre-
generating all the randomness and use these as random-tapes. Then, zero knowledge
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proofs can be used to show that the generated ballots indeed used the randomness
from the random-tapes. However, the authors note that zero knowledge proof itself
makes use of randomness which again can be a source for a kleptographic channel
therefore this does not completely solve the problem.

3.3 Pfitzmann’s attack

Pfitzmann’s attack [24] can be adopted to compromise the sender privacy in a
homomorphic mix-net with RPC. Suppose the first mix is corrupted. The attacker
targets an input ciphertext c sent by a sender S to the first mix. The attacker then
chooses a random δ and, while keeping c, replaces another output of the first mix
with c∗ = cδ. Finally, the attacker searches for a pair of plaintexts m and m∗ output
by the last mix such that m∗ = mδ. This indicates to the attacker that with all but
negligible probability, m and m∗ respectively correspond to c and c∗. This leads
to the conclusion that m was sent by S, thus breaking sender privacy for S. RPC
will detect this attack with a probability of 1

2 since only half of the input-output
relations for the first mix are challenged.

Pftitzmann’s attack can be generalized to compromise the privacy of s senders
while keeping the probability of detection at 1

2 [18]. Now the attacker targets
ciphertexts c1, ..., cs and chooses δ1, ..., δs. Then, the first mix replaces one of its
outputs with c∗ =

∏s
i=1 c

δi
i . By observing the outputs of the last mix, the attacker

can identify s+1 messagesm1, ...,ms,m
∗ respectively resulting from s+1 ciphertexts

c1, ..., cs, c
∗ if m∗ =

∏s
i=1m

δi
i satisfies. If so, the attacker concludes that ci is an

encryption of mi for every i, breaking sender privacy for s senders. The probability
that the attack is discovered by RPC is still 1

2 since only one of the outputs of the
first mix are replaced.

3.4 Duplicate ciphertext attack

Duplicate ciphertext attack as its name suggests works by injecting multiple sets of
duplicate ciphertexts into the mix-net [18]. Then, a special relation imposed among
the ciphertexts enables the attacker to determine the corresponding plaintexts. The
attack is applicable to the Chaumian mix-net with RPC. Together with the assump-
tion that the attacker corrupts s(s+ 1)/2 senders and the first and last mixes, the
attack works as follows:

1. The attacker targets the first s ciphertexts input to the first mix: ci for 1 ≤
i ≤ s.

2. The attacker obtains c′i by decrypting the outer-most encryption layer of the
s ciphertexts with the secret key of the first mix.

3. The attacker makes i independent encryptions of c′i (i.e., 1 encryption for c′1,
2 encryptions for c′2, and so on) using the public key of the first server.

4. The previous step generates 1 + 2 + ... + s = s(s + 1)/2 ciphertexts and the
attacker sends each of these to a corrupted sender to submit.

5. For an ith targeted ciphertext there are i duplicates. Thus, the attacker can
identify the correspondence between the targeted ciphertexts and the input
ciphertexts to the last mix based on the number of duplicates that exists in
the input list of the last mix. Hence, the attacker breaks the privacy of the s
targeted ciphertexts.
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Figure 4: Breaking privacy without detection

The attack works because there is no check for duplicates at every mix. Note that
RPC only applies duplicate removal at the input of the first mix and this attack
is able to bypass that. A simply remedy for this attack therefore is to mandate
the check for duplicates at every mix. This attack can compromise the privacy of
O(
√
N) senders as s+ s(s+ 1)/2 cannot be greater than the maximum number of

senders N .

3.5 Breaking privacy without detection

This attack, proposed in [18], takes advantage of lack of permutation consistency
checks in RPC to compromise the privacy of the votes. Here, the adversary needs
to corrupt two input ciphertexts to the system and the first two mix servers. The
attack works only for homomorphic mix-nets.

Assume the adversary can control the first two ciphertexts c1 and c2. We de-
scribe how the attack works based on Figure 4. The adversary chooses c1 and c2
to be re-encryptions of the same ciphertext. The first mix shuffles honestly, but
it keeps records of the positions of c1 and c2 in its output and the randomization
factors used for those two. The second mix is now able to assign both of these
input ciphertexts to one output ciphertext since all the randomization factors be-
tween the two are known. This enables the second mix to have one of its output
locations (second location in Figure 4) free to be set as desired. The adversary sets
this ciphertext similar to the generalized Pfitzmann’s attack equal to a ciphertext
calculated from a set of s targeted input ciphertexts. This way the attacker will be
able to find the correspondence between the input and output ciphertexts for the
s chosen input ciphertexts and hence break the privacy of the voters who cast the
votes embedded in the targeted ciphertexts. The proposed countermeasure to this
attack is to implement permutation consistency checks in RPC.

4 Coercion

If an e-voting system leaves evidence of how voters have voted (e.g., receipt with
a pattern which can be used to deduce the vote cast with a high probability), the
system becomes vulnerable to coercion attacks. The vulnerability may be inherent in
the system due to design flaw or could have been introduced by external means (e.g.,
scratch-off cards). This section describes how such coercion attacks can influence
the election outcome and how they can be mitigated.
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Figure 5: Scratch-off card attack from a voter who honestly scratches off the pads

4.1 Forged ballot

In Punchscan and Prêt à Voter, a ballot splits into two halves. While combined
halves allow humans to read the vote, each half does not reveal the vote and acts as
a receipt which voters can take home. Therefore, Punchscan and Prêt à Voter both
require that voters destroy the halves of their ballots. If a voter secretly brings a
forged ballot to the polling station, then he can destroy the forged ballot instead
of the actual ballot after his vote [17]. This allows the voter to retain the complete
proof of his vote leaving the system vulnerable to coercion attacks. A possible
solution to this problem is to force the election officials to check the IDs of the
two halves. Then, the voter has a risk of getting caught if he is unable to guess in
advance the ID of the ballot that he will be given at the polling station.

4.2 Vote against a candidate

Another attack that works against Punchscan causes votes to be randomly dis-
tributed among the candidates [17]. Suppose the attacker wants Jake who is a
strong candidate to lose the election in Figure 1. The attacker will offer: (1) $10 for
any front sheet receipt showing “D: Jake” with the first hole marked; (2) $5 for any
back receipt marked for “D”. If there are n number of vote sellers, each of them will
return the front sheet receipt showing “D: Jake” with the first hole (or any single
fixed hole would work too) marked if he gets such a ballot. This randomizes the
votes away from Jake assuming the letters “A-D” have even chance of occurring at
each hole because “D” will appear on the first hole with a probability of 1

4 only1.
Returning a back receipt marked for “D” then indicates that the voter did not vote
for Jake since he would have been better off with marking the first hole if he indeed
had a ballot showing “D: Jake”. More concretely, let E1 be the event that a voter
gets a ballot with “D: Jake” and E2 be the event that “D” appears in the first hole.
Then, this will result in about 1

n2 (since Pr(E1) ≈ 1
n and Pr(E2) ≈ 1

n ) of voters

voting for Jake. Now, the remaining n2−1
n2 votes will be distributed evenly among

(n− 1) candidates giving each candidate n2−1
n2 /(n− 1) = n+1

n2 votes.

1Indeed, if Jake were to be a weak candidate (e.g., supported by less than 25% of the voters)
then this attack will have the opposite effect. However, in such a case Jake would not be a
favourable target to an adversary.
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1234
Choose one:
     A: John
     B: Jane
     C: Jack
     D: Jake

C B D A

Serial #: 56789

Scratch-Off Card

Letter

Position

Sum the two revealed numbers.
If even, return the front sheet.
If odd, return the bottom sheet.

2

8

A       B       C       D

1       2       3       4

1234
Choose one:
     A: John
     B: Jane
     C: Jack
     D: Jake

(a) Deception succeeded

1234
Choose one:
     A: John
     B: Jane
     C: Jack
     D: Jake

C B D A

Serial #: 66789

Scratch-Off Card

Letter

Position

Sum the two revealed numbers.
If even, return the front sheet.
If odd, return the bottom sheet.

2

9

A       B       C       D

1       2       3       4

1234

C B D A

(b) Deception caught

Figure 6: Scratch-off card attack from a voter who dishonestly scratches off the
pads

4.3 Scratch-off card attack

The key idea behind this attack is that possession of one receipt and knowledge of
the other (destroyed) sheet is sufficient to determine the voter’s selection [17]. It is
possible to force non-interactive (i.e., does not require vote buyer-seller interaction)
challenge and response at the time of voting by using scratch-off cards.

Suppose voters who have pledged to vote for Jane are given scratch-off cards
with two rows of pads. As shown in Figure 5, the first row has a pad for each letter
that can be associated with Jane and the second row has a pad for each possible
position. If a voter honestly scratches the two pads, then he would scratch the pad
below the letter B for Jane and the pad below position 2 as the letter B appears
on the second hole, which will reveal 5 and 7 respectively. The challenge to the
voter is the sum of these two numbers and the voter’s response is to choose which
sheet (either front or back) as the receipt. If the sum is even then the voter should
return the front sheet, otherwise the back sheet. Figure 6 shows the possibilities if
the voter behaves dishonestly.

A suggested countermeasure is to force the voter to choose a receipt sheet before
seeing the ballot [17]. Then, the voter has the risk of being caught as he cannot
foretell whether the sum will be even or odd, putting the attacker at an advantage.
The attacker’s power can be weakened if the voter is allowed to spoil his vote, thus
allowing him to recast his vote until he obtains a ballot which satisfies the scratch-off
card.

12



1235
Choose one:
     A: John
     B: Jane
     C: Jack
     D: Jake

C B D A

Serial #: 56789

Scratch-Off Card

Letter

Position

Last Digit

Sum the three revealed numbers.
If sum (mod 10)=1, spoil ballot.
Otherwise cast ballot.

2

8

A       B       C       D

1       2       3       4

8
  0-2   3-4   5-6   7-9

Figure 7: Punchscan: Spoiling ballot

4.4 Spoiling ballots

This attack extends the scratch-off card attack by requiring the voters to commit
the serial numbers which appear on their ballots in addition to forcing the voters
to commit to their choices. As shown in Figure 7, the scratch-off card now has
an additional row of pads. After the voters commit their choices, each voter must
compute the sum of the three numbers and if the sum is congruent to 1 (mod 10),
he must spoil the ballot. The strength of this attack is that the voter no longer
has to depend on the commitment he makes prior to seeing his ballot. He can
return any sheet (front or back) as long as the condition to spoil the ballot does not
hold although it may have lower probability of catching the voter’s deception. For
example, assuming the sum of three numbers are evenly distributed the deception
by voters will be caught with a probability of 1

10 .

4.5 Pay-Per-Mark & Pay-for-Receipt

The following two attacks show how the presence of patterns in receipts can leave
the system open to coercion attacks. These attacks work because the machine
randomly marks opscan bubbles which satisfy voters’ choices. If voters are given
the full control of how to mark opscan bubbles, then the attack can be mitigated.

Pay-Per-Mark. Recall that in ThreeBallot, a voter marks exactly two optical scan
bubbles for the candidate he votes for and exactly one for the candidates he
does not wish to vote for. Suppose a vote buyer offers some cash reward per
mark for a particular political party. Then, a voter who does not vote for the
party will end up with a receipt with n

3 marks for the party on average where
n is the total number of questions. A voter who votes for the party on the
other hand will end up with a receipt with 2n

3 marks on average.

Pay-for-Receipt. This attack requires that a voter gives his receipt to the attacker
after he has voted. The attacker then checks the receipt to see whether it
matches to one of the expected ballots. Suppose a voter is directed to vote for
John but not for Jane as shown in the ThreeBallot in Figure 8. If the voter
votes as directed by the attacker then the voter is guaranteed to obtain a valid
receipt. If instead the voter votes for Jane then the voter will obtain a valid
receipt with a probability of 1

3 . If the voter votes for neither of them, then he
will obtain a valid receipt with a probability of 2

3 .
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 Jack
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Figure 8: Pay-for-Receipt

5 Conclusion

We have reviewed various attacks against E2E verifiable voting systems in the lit-
erature. The attacks exploited vulnerabilities both in the procedural aspect (e.g.,
not requiring users to check for duplicate receipts) and the technical aspect (e.g.,
exploiting homomorphic property of underlying encryption). This suggests that in
order to build an E2E verifiable voting system, relying on procedural enforcement
or technology alone may be insufficient - one must consider the both.

We have also witnessed the attacks which focus on coercion by offering incentives
to corrupted voters and other attacks which are aimed at influencing the election
result more aggressively by actively tampering votes in cooperation with the cor-
rupted authority. Many of the attacks came with the remedies, which unfortunately
however, do not always completely resolve the problems. Thus, providing the com-
plete solutions for these known attacks will be the first step towards convincing
the general public to accept the new voting technology as an improvement to the
paper-based voting.
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