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Abstract

Most applicable lattice reduction algorithms used in practice are
BKZ (Block-Korkine-Zolotarev) type algorithms as the blockwise gen-
eralizations of the LLL algorithm (Lenstra-Lenstra-Lovasz). Its origi-
nal version was proposed by Schnorr and Euchner in 1991. The quality

of reduced lattice bases is measured by the Hermitian factor ||b1||
vol(L)1/d

and the d-th root of this factor which is called root Hermitian factor. In
Asiacrypt 2011 paper Y. Chen and Phong Q. Nguyen used BKZ with
extreme pruning enumeration subroutine to handle the large block size
lattice reduction with the purpose that the better root Hermitian fac-
tors can be expected. This BKZ 2.0 algorithm has been served as
a base stone for the security evaluation of recent lattice-based cryp-
tosystems such as fully homomorphic encryption and cryptographic
multilinear mappings. In this paper we propose a measure version of
Gaussian heuristic. This is a strict mathematical proven theorem. It
can be used to give a strict mathematical proof for conjectured or sim-
ulated root Hermitian factors in BKZ 2.0 type algorithms and BKZ or
slide reduction with large block-sizes. The theoretical analysis of these
heuristic assumptions in the simulator of BKZ 2.0 type algorithms are
also given.

Keywords: Lattice Reduction, Hermitian Invariant, BKZ, Slide
Reduction, Root Hermitian Factor

1 Introduction

A lattice L is a discrete subgroup in Rd generated by d linear independent
vectors b1, . . . ,bd over the ring of integers, where L := {a1b1 + · · ·+ adbd :
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a1 ∈ Z, . . . , ad ∈ Z}. The volume vol(L) of this lattice L is
√
det(B ·Bτ ),

where B := (bij) is the d × d generator matrix of this lattice, where bi =
(bi1, . . . , bid) ∈ Rd, i = 1, · · · , d, are the basis of this lattice. The dual lat-
tice L∗ := {x ∈ Rd :< x,y >∈ Z,∀y ∈ L}. The length of the shortest
non-zero lattice vector is denoted by λ1(L). The Hermitian invariant of this

lattice L is γd(L) = λ1(L)2

vol(L)2/d
, which is closely related to the center densi-

ty δd(L) = (λ1(L)/2)d

vol(L) = γd(L)d/2

2d
of the sphere packing from this lattice L

([9, 30]). The supremum γd of γd(L)’s of all d dimensional lattices is called
the d-dimensional Hermitian constant. Sometimes we use L(x1, ....,xm) to
denote the lattice generated by vectors x1, . . . ,xm.

From Minkowski’s first theorem ([37]) we have λ1(L)

vol(L)1/d
≤ 2( 1

vol(Bd))1/d,

where Bd is the d dimensional unit hyper-ball and it is well-known vol(Bd) =
(π)d/2

Γ(1+ d
2

)
. Hence γd ≤ 1 + d

4 ([9, 37]). From Gaussian Heuristic λ1(L)

vol(L)1/d
≈

( 1
vol(Bd))1/d =

Γ(1+ d
2

)1/d√
π

≈
√

d
2πe ([4, 37, 13]). HereGH(L) = ( 1

vol(Bk))1/kvol(

L)1/k is the Gaussian Heuristic of the lattice. We denoteGH(k) = ( 1
vol(Bk))1/k

as in [33].

Lattice reduction algorithms are used to find a ”relatively short” lat-
tice basis from an arbitrary given lattice basis. For example, Lagrange’s
algorithm (also attributed to Gauss, see [23] [15]) can be used to find the
two minima of a dimension 2 lattice. Actually if b1,b2 is a lattice basis of
a 2 dimensional lattice L satisfying ||b1|| ≤ ||b2|| and <b2,b1>

||b1||2 ≤ 1
2 , then

λ1(L) = ||b1||, λ2(L) = ||b2|| ([37]). However when the dimensions increase
to 5 the situation is quite different ([30]).

The LLL algorithm [25] was proposed in 1982 and this has led to new
development of reduction theory and lattice-based cryptanalysis ([38]). The
block generalization of the LLL algorithm due to C.P. Schnorr and Euchner
([39, 43, 40, 41]) has been widely used in practice to get some block-HKZ
reduced lattice bases. Lattice reduction has been played an essentially im-
portant role in lattice-based cryptanalysis ([38]) and lattice-based cryptog-
raphy ([32, 34]). A much stronger version BKZ 2.0 by Y. Chen and Phong
Q. Nguyen [7] was given in 2011-2013, with the enumeration with extreme
pruning employed as sub-routine such that large block size k can be imple-
mented. This BKZ 2.0 served as a base stone for the security evaluation of
recent lattice-based cryptosystems ([27, 2, 26, 46]).
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2 Preliminaries and our contribution

Lattice space. The space of all d dimensional lattices Xd = SLd(R)/SLd(Z)
has a natural (normalized) SLd(Z) invariant measure µd satisfying µd(Xd) =
1 ([4, 36]).

Gram-Schmidt orthogonalization.. Let b1, . . . ,bd be a basis of a
dimension d lattice L ⊂ Rd, let πi denote the orthogonal projection from
Rd to the orthogonal supplement of the linear span of b1, . . . ,bi−1. The
Gram-Schmidt orthogonalization is the orthogonal base b∗1, . . . ,b

∗
n of Rd,

recursively, b∗1 = b1,b
∗
2 = π2(b2), . . . ,b∗i = πi(bi). Equivalently we have

bi = b∗i + Σi−1
j=1µi,jb

∗
j where µi,j =

<bj ,b
∗
i>

||b∗i ||2
, for 1 ≤ j < i ≤ d.

We have λi(L) ≥ mini≤j≤d ||b∗j || and bi
||bi||2 ∈ (πj(L(b1, . . . ,bi)))

∗ for

any j ∈ {1, . . . , i} ([37]).

If µi,j ≤ 1
2 , the basis b1, . . . ,bd is called size-reduced. This reduction is

easy with suitable substituting bi by bi − dµi,jcbj .

HKZ (Hermitian-Korkine-Zolotarev)reduced basis. If a bisis
b1, . . . ,bd is sized-reduced and b∗i = λ1(πi(L)) for all 1 ≤ i ≤ d, it is called
HKZ-reduced. A HKZ reduction needs the SVP oracle and its running time
is exponential. We have 4

i+3 ≤ ( ||bi||
λi(L))2 ≤ i+3

4 for 1 ≤ i ≤ d, if b1, . . . ,bd is

a HKZ-deduced basis of a d dimensional lattice L ([24, 37]).

The LLL algorithm. A basis of a lattice satisfies the δ Lovasz condition
for a constant δ ∈ [1

4 , 1], if for all 1 ≤ i ≤ d, δ||b∗i ||2 ≤ ||b∗i+1 + µi+1,ib
∗
i ||2 =

||πi(b∗i+1)||2 or equivalently (δ− 1
4)||b∗i ||2 ≤ (δ− µi+1,i)||b∗i ||2 ≤ ||b∗i+1||2. A

sized reduced basis satisfying the Lovasz condition is called LLL reduced.
The famous LLL algorithm [25] can be used to get a LLL reduced basis
(δ < 1) from a given lattice basis within polynomial time of the size of the
input basis.

Enumeration and enumeration with extreme pruning The enu-
meration algorithm was considered in the middle of 1980’s by U. Fincke
and M. Phost [10] and R. Kannan [22]. It can be used to find the short-
est non-zero lattice vectors x ∈ L satisfying ||x|| ≤ R. If b1, . . . ,bd is a
basis of this d dimensional lattice L, from Gram-Schmidt orthogonaliza-
tion, x = x1d1 + · · · + xdbd = (x1 + µ2,1x2 + · · · + µd,1xd)b

∗
1 + · · · + (xj +
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Σi>jµj,ixi)b
∗
j + · · ·+ xdb

∗
d. Thus recursively

|(xj + Σi>jµi,jxi)| ≤

√
R2 − Σk>j(xk + Σi>kµi,kxi)2||b∗k||2

||b∗j ||

. Then from xd ∈ Z ∩ [− R
||bd|| ,

R
||bd|| ] we have recursively

xj ∈ Z ∩ [−

√
R2 − Σk>j(xk + Σi>kµi,kxi)2||b∗k||2

||b∗j ||
− Σi>jµi,jxi,

√
R2 − Σk>j(xk + Σi>kµi,kxi)2||b∗k||2

||b∗j ||
− Σi>jµi,jxi]

. From this process of enumeration we can find the desirable x.

The complexity of enumeration is Σd
k=1Nk where Nk is the number of

lattice points |πk(L)∩Bk(R)| where Bk(R) is the ball centered at the origin
with the radius R. From Gauss heuristic and Sterling formula we have (see
[14, 20])

Nk ≈ 2O(d) Rd−k+1

(d− k + 1)
d−k+1

2
∏d
j=k ||b∗j ||

.

It is obvious that the complexity of this enumeration algorithm depend-
s on the choices of R and the ratios ||b1||

||b∗i ||
. When the basis is quasi-HKZ,

that is, π1(b2), . . . , π1(bd) is HKZ reduced for the lattice π1(L), a upper

bound d
d
2e

+o(d) for the complexity can be proved ([20]). A heuristic lower

bound d
d
8

+o(d) was given in [37]. Practically only LLL-reduction on the ba-
sis b1, . . . ,bd is pre-processed. Though the theoretical upper bound of the
enumeration complexity in this case is dO(d2) the experiments showed that
the enumeration process is fast ([14, 37]).

The enumeration with pruning was first considered by Schnorr et al
and revisited by Gama, Nguyen and Regev in [14] in 2010. In the above
enumeration process we can start from xd ∈ Z∩[− RRd

||bd|| ,
RRd
||bd|| ] and recursively

xj ∈ Z ∩ [−

√
R2R2

j − Σk>j(xk + Σi>kµi,kxi)2||b∗k||2

||b∗j ||
− Σi>jµi,jxi,

4



√
R2R2

j − Σk>j(xk + Σi>kµi,kxi)2||b∗k||2

||b∗j ||
− Σi>jµi,jxi]

, where Rd, Rd−1, . . . , R1 are positive real numbers satisfying 0 < Rj < 1
for j = d, . . . , 1. That is during the enumeration process some nodes in the
enumeration tree are pruned. A success possibility psucc that the desired
x can be found during this enumeration process is calculated in [14] under
some reasonable heuristic hypotheses. The point here is the setting of suit-
able pruning coefficients Rd, . . . , R1 such that a success probability p > p0

can be satisfied.

The enumeration with extreme pruning is a process that with relatively
easy pruning coefficients and a small success probability the enumeration is
executed several times for randomized input lattice bases. For a random-
ized input lattice basis, do LLL reduction and then do the enumeration with
these pruning coefficients. From the experiments in [14] it is quite effective
to 110 diemensional hard knapsack lattices with high densities. Exponential
speedups can be achieved by enumeration with pruning.

For the pruning in BDD (bounded distance decoding) solver via nearest
plane algorithm and their applications in the security evaluation we refer to
[28].

Blockwise HKZ reduced basis. A lattice basis b1, . . . ,bd is called
block-Korkine-Zolotarev reduced with block size k (k-HKZ reduced) if for
any i ≤ d − k + 1, the basis πi(bi), . . . , πi(bi+k−1) is HKZ reduced basis
of the k dimensional lattice πi(L(bi, . . . ,bi+k−1)). It is called block-2k-
reduced if for any i ≤ [d/k] − 2, the basis πik+1(bik+1), . . . , πik+1(b(i+2)k)
(or πik+1(bik+1, . . . , πik+1(bd)) is HKZ reduced ([39, 19]).

Any 2k-HKZ reduced basis is block-2k-reduced and any block-2k-HKZ-
reduced basis is k-HKZ reduced. For Schnorr’s block reduction algorithms
we refer to [39, 43], the most used algorithm in practice is the BKZ in
[40, 41]. In [13] the quality of the output block reduced bases of BKZ was
experimentally assessed. In [7] a BKZ with extreme pruning enumeration
algorithm was given so that the blockwise reduction with large block size
reduction can be handled.
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Schnorr’s constants. The Schnorr constant αk and βk were defined
to measure the quality of block-2k KZ reduced basis ([39, 43]). For a HKZ re-

duced basis b1, . . . ,b2k of a dimension 2k lattice L, βk(L) = (
||b∗1||···||b

∗
k||

||b∗
k+1
||···||b∗

2k
||)

2/k

and βk = max∀L,∀HKZ βk. αk = max∀HKZbi

||b1||2
||b∗

k
||2 for all HKZ bases

b1, . . . ,bk of all k dimensional lattices. The presently known best upper

and lower bounds for the Schnorr constant are kclogk ≤ αk ≤ k
logk
2

+O(1)

and k
12 ≤ βk ≤ (1 + k

2 )2ln2+ 1
k ([11, 19]). We refer to [6, 19] for the analysis

of the Schnorr constant, the worst-cases of HKZ bases and block-Korkine-
Zolotarev reduced bases.

Geometric series assumption. From experiments, the Gram-Schmidt

norms b∗1, . . . ,b
∗
d after sufficient reduction often satisfy

||b∗i+1||
||b∗i ||

≈ q except

the final several indices where q ∈ [3
4 , 1) ([43, 42, 13]). This is called the

Geometric series assumption (GSA) in [42].

LLL and BKZ at average. The experiments in [13] assessed the Her-

mitian factor ||b1||
vol(L)1/d

. In [13], h1/d = c is called Hermitian factor constant

and later this has been called root Hermitian factor widely in the literature
([35, 1, 2, 26, 46]). It was checked the root Hermitian factors converge when
d grows to large ([13], Figure 5). It was also checked the effect of the LLL
algorithm and the BKZ-20, BKZ-28 algorithms on some lattices (see Table
1 below, as listed in Table 1 in [13]).

Table 1 Root Hermitian factors for LLL and small block BKZ

algorithm LLL BKZ-20 BKZ-28 DEEP-50

c 1.0219 1.0128 1.0109 1.011

theory 1.0754 1.0337 1.0282 1.0754

Slide reduction algorithm and self-dual BKZ. We refer slide re-
duction to [12] and [37]. Originally it was reported that the slide reduction
is outperformed by BKZ. In [33] experimental results about the quality of
reduced basis by slide reduction was given and it was reported they are quite
good when the blocksize is bigger than 50. A new version of BKZ called
self-dual BKZ with enumerations on both projected lattices and projected
dual lattices was proposed in [33]. The related Hermitian factor and root
Hermitian factor were analysed under the assumption of Gaussian heuristic.
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BKZ and BKZ 2.0 algorithms. BKZ algorithms (with the Schnorr
et al version of enumeration pruning as a sub-routine) were implemented in
Number Theory library [45]. In [21] a variant of BKZ ([40, 41]) algorithm
and a strict theoretical analysis of its running time was given. A terminat-
ing condition was introduced which aborts BKZ within a small number of
tours to enumeration. The upper bound from theoretic analysis is Hermi-

tian factor h = 2(νk)
d−1

2(k−1)
+ 3

2 . Here νk = max{γ1, . . . , γk} is the maximum
of Hermitian’s constants within dimension k.

A much stronger version BKZ 2.0 by Y. Chen and Phong Q. Nguyen
[7] was given in 2011-2013, with the enumeration with extreme pruning
employed as sub-routine such that large block size k can be implement-
ed. It executes a LLL reduction on the input basis b1, . . . ,bd and then
run small block size BKZ for each projected lattice πj(L(bj , . . . ,bj+k−1))
for j = 1, . . . , d − k + 1 before goto the enumeration with extreme prun-
ing. Then run enumeration with extreme pruning for the projected lattices
πj(L(bj , . . . ,bj+k−1)) for j = 1, . . . , d − k + 1 to find (vj , . . . , vj+k−1) ∈
Zj−k+1 such that πj(Σ

j+k−1
i=j vibi) is a lattice vector with the length e-

qual to λ1(πj(L(bj , . . . ,bj+k−1)). The algorithm inserts the lattice vector

Σj+k−1
i=j vibi between bj−1 and bj . The LLL algorithm and some BKZ-k

algorithms before the enumeration subroutine are needed. The algorithm
execute several rounds of the above process. In order to reduce the time of
enumeration with extreme pruning several BKZ with block size 50 and 60
are often executed on local blocks. The terminating condition in [21] was
used to abort the algorithm.

This BKZ 2.0 served as a base stone for the security evaluation of recent
lattice-based cryptosystems ([27, 2, 26, 46, 33]). As described in [1] Section
3.2, the Gaussian heuristic R =

√
1.1( 1

vol(Bk))1/k = 1.0488( 1
vol(Bk))1/k was

used as the bound of the enumeration with extreme pruning ([7], section
4.3). We refer to [8, 2] for the detailed description of BKZ 2.0 and the es-
timated time needed to get sufficiently good root Hermitian factor ([21, 2],
see page 9 [2]). In [1] an optimization of BKZ 2.0 was given.

Conjectured and simulated root Hermitian factor. In [7] the
root Hermtian factors for large block sizes were conjectured from a simu-
lation algorithm of Gram-Schmidt sequences (||b∗1||, ||b∗2||, . . . , ||b∗d||). Some
estimations for root Hermitian factors and time needed to achieve them
have been studied in [46, 26, 2, 33] for security evaluation of and the hard-
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ness of lattice and LWE computation problems. The limit of root Hermi-
tian factors when the lattice dimensions go to infinity was argued in [8]
(also see page 8 of [2]). Assuming Gaussian heuristic and geometric se-
ries assumption the limit of root Hermitian factors of a basis after BKZ
2.0 type reduction when the dimensions of the lattices tends to the in-
finity was analysed in [8] ( page 95-96 of [8] and also see page 8 of [2]),

limd−→∞cd,BKZ2.0 = ( 1
vol(Bk))

1
k(k−1) ≈ ( k

2πe(πk)
1
k )

1
2(k−1) . I n [33] the root

of Hermitian factor of block-size k ck = GH(k)
1

k−1 was proved under the
Gaussian heuristic ([33], page 15, Corollary 1).

The following table is Table 4.1 in page 96 of [8].

Table 2 Limits of the root Hermitian factors for block size 50 ≤ k ≤ 1000

k 50 60 70 80 90 100 110

limcBKZ2.0 1.0121 1.0115 1.0108 1.0103 1.0097 1.0093 1.0088

k 120 130 140 150 160 170 180

limcBKZ2.0 1.0084 1.0081 1.0078 1.0075 1.0072 1.0067 1.0065

k 190 200 210 220 230 240 250

limcBKZ2.0 1.0065 1.0063 1.0061 1.0059 1.0058 1.0056 1.0055

k 300 400 500 600 700 800 1000

limcBKZ2.0 1.0048 1.0040 1.0034 1.0030 1.0027 1.0024 1.0020

Our Contribution. We will give theoretical explain for the behaviour
of the root Hermitian factors from the distribution of Hermitian invariants
on the lattice space Xd.

A measure version of Gaussian Heuristic: In section 2 we give a measure
version of Gaussian heuristic which estimates the measure of the set of lat-
tices having their λ1(L) ≈ GH(L). Then it is clear that above 95 percent of
lattices of the dimension d ≥ 86 satisfy 0.952GH(L) ≤ λ1(L) ≤ 1.067GH(L)
from this measure version of Gaussian heuristic. In the simulation algorithm
in section 6.1 of [7], they assumed that λ1(L) = GH(L) for all projected
lattices of suitable large dimensions during the reduction process, based on
the intuition that almost all lattices of suitable large dimensions are ”ran-
dom”. Our results give a theoretical explain of their this assumption.

Theoretical analysis for root Hermitian factors: When the blocksize is
large, these root Hermitian factors were conjectured as in the above Table 2
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from a simulation algorithm in [7] section 6.1, 6.2 and the theoretical analy-
sis described above (see page 93-96 of [8], page 15 of [33]). From the measure
version of Gaussian heuristic and under geometric series assumption we give
a theoretical proof of these root Hermitian factors (see section 3.3). Actually

it is more suitable to argue that they are in some ranges around GH(k)
1

k−1 .
In this way some information that the root Hermitian factor that a BKZ 2.0
type algorithm or a slide reduction with this block size cannot achieve can
be given (as remarked in the Conclusion and Future Work of [33]).

Combining with Micciancio-Walter’s Self-Dual BKZ. The basic assump-
tion in Section 5 of [33] is that every lattice that is passed to the SVP oracle
during the self-dual BKZ satisfies the Gaussian heuristic. We can say that
with the probability at least (0.95)U , where U is the number of k dimen-
sional lattices passed to the SVP oracle during the self-dual BKZ in [33],
all results in Section 5 of [33] including the argument for GSA are true in

the sense that
||b∗i ||
||b∗i+1||

’s are within a small range around GH(k)
1

k−1 , because

the argument there can be strictly based on the proven measure version of
Gaussian heuristic.

3 A measure version of Gaussian heuristic

The following Siegal’s mean value theorem has pioneered the research about
the average behaviour of lattice invariants ([44, 18]).

Siegal’s mean value theorem. Let f be a Riemann integrable func-
tion on Rd, then

∫
Xd

Σv∈L−0f(v)dµd =
∫
Rd fdx..

G. A. Margulis proved the following random Minkowski theorem [29].

Theorem 3.1 (Margulis 2011) Let m be the Borel measure on Rd,
there exists a constant Cd only depending on d such that for any measurable
set A ⊂ Rd, µd({L ∈ Xd : L ∩A = ∅}) ≤ Cd

m(A) . Here Cd = 8 ζ(d)
ζ(d−1) .

We have the following version of Gaussian Heuristic from Margulis The-
orem and Siegal’s mean value theorem.

Theorem 3.2 (measure version of Gaussian Heuristic) For any
big positive real constant x µd{L ∈ Xd : λ1(L) ≤ ( x

vol(Bd))1/d} ≥ 1− Cd
x . For
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any small positive real constant x′ < 1, µd{L ∈ Xd : λ1(L) ≥ ( x′

vol(Bd))1/d} ≥
1− x′

2 .Thus we have

µd{L ∈ Xd : (
x

vol(Bd)
)1/d ≥ λ1(L) ≥ (

x′

vol(Bd)
)1/d} ≥ 1− Cd

x
− x′

2

.

For example when the dimension d ≥ 117, then above 95 percent of lat-
tices of dimension d has their lengths of shortest non-zero lattice vectors in
the range 0.97( 1

vol(Bd))1/d ≤ λ1 ≤ 1.0488( 1
vol(Bd))1/d.

4 Analysis

4.1 Gaussian Heuristic in lattice challenge

In lattice challenge including random (Goldstein-Mayer) lattices and ideal
lattices ([47]), the length of the targeted lattice vector is required within
1.05GH. Since (1.05)d > 256 when d ≥ 115 above 95 percent lattices of di-
mension d ≥ 115 satisfy λ1(L) ≤ 1.05GH(L) from Theorem 2.4, this require-
ment is quite reasonable. Actually above 99 percent of lattice of dimensions
d ≥ 140 satisfy λ1(L) ≤ 1.05GH(L). Hence we suggest the requirement
1.022933673GH when d ≥ 300 and 1.0001219828GH when d ≥ 400 in ideal
lattice challenge, since above 99 percent of lattices satisfy this requirement.

4.2 Gaussian Heuristic in BKZ 2.0 and progressive BKZ

In enumeration sub-routine of BKZ 2.0 [7, 8]
√

1.1GH of the projected block
lattices was used. More importantly in the simulation algorithm to estimate
the root Hermitian factors in section 6.1 of [7] λ1 = GH for the projected
block lattices was used when the block size is large. As explained in section
6.1 of [7], the intuition is in the large block size case most lattices are con-
sidered as ”random” lattices so that Gaussian Heuristic can be used. From
the following proposition we give a theoretical ground for their intuition and
experimental observation.

Proposition 4.1. Above 95.30419355... percent of lattices of the dimen-
sion k ≥ 86 satisfy (0.147)1/kGH(L) ≤ λ1(L) ≤ (256)1/kGH(L)..
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Proof. It is direct from Theorem 3.2.

In the following table we listed the ranges in the above proposition.

Table 3 Ranges of λ1 for most lattices of the dimension k

k 86 117 132 168 216 286
λ1
GH 0.952-1.067 0.964-1.0485 0.969-1.043 0.975-1.034 0.98-1.026 0.985-1.0196

fraction 0.953 0.953 0.953 0.953 0.953 0.953

In section 3.1 of [1] modified Gaussian heuristic constants τi for dimen-
sions i ≤ 50 as in Fig 2 in page 9 of [1] were used for more explicit simulator.

We suggest τi = (256)
1
i from our measure version of Gaussian heuristic since

above 95 percent lattices in Xi satisfying λ1(L)
GH(L) ≤ (256)1/i.

4.3 Combining with Micciancio-Walter self dual BKZ

Combining the measure version of Gaussian heuristic and the Corollary 2 in
page 15 of [33] we have the following result which guarantee the geometric
series assumption is correct under certain probability.

Corollary 4.1 With the probability (0.95)U where U is the number of the
k dimensional lattices passed to the SVP oracle in the self-dual BKZ algo-
rithm in [33], the reduced lattice basis b1, . . . ,bd satisfy ||b∗i || is in the small

range [0.99858739....GH(k)
d+1−2i
2(k−1) vol(L)1/d, 1.00040865829...GH(k)

d+1−2i
2(k−1) vol(L)1/d]

for i ≤ d− k.

4.4 The conjectured and simulated root Hermitian factors

The root Hermitian factor of BKZ 2.0 algorithm has played a fundamental
role in the security evaluation of lattice-based cryptography and the hard-
ness of LWE problems ([35, 2, 46, 26]). They are extrapolated from the
simulation algorithm and theoretical analysis in [7, 8] (see [35, 46, 26, 2]).
Here we give a theoretical proof of root of Hermitian factors of BKZ 2.0
with large block sizes from our measure version of Gaussian heuristic.

Theorem 4.1. Under the Geometric series assumption, the root Hermi-
tian factors of above 95 percent of lattices when the blocksize k ≥ 117 satisfy
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that they are with in [0.99858739....GH(k)
1

k−1 , 1.00040865829....GH(k)
1

k−1 ].

Proof. If we assume that the lattice basis of the projected lattice
Lj,k = πj(L(bj , . . . ,bj+k−1)) reduced by BKZ 2.0 satisfies the some Geo-

metric Series Assumption , that is, ||bi||
||bi+1|| = q where q is a constant. Then its

Hermitian invariant is γk(Lj,k) =
||b∗j ||

2

(
∏j+k−1

i=j
||b∗i ||)2/k

≈ q2(k−1)||b∗j+k−1||
2

qk−1||b∗
j+k−1

||2 = qk−1.

From the measure version of Gaussian heuristic (Theorem 3.2) the subset
in Xk of the lattices satisfying

(
x′

vol(Bk)
)

1
k(k−1) ≤ q ≤ (

x

vol(Bk)
)

1
k(k−1)

has the measure 1− Ck
x −

x′

2 . As in Proposition 3.1 we take x′ = 0.147 and
x == 256. In the following Table 8 we will give the range of q.
Since ( 256

0.147)1/k(k−1) is very close to 1 when k ≥ 120, we can take q ≈
( 256
vol(Bk))

1
k(k−1) .

1) From Margulis’s Theorem. We set x = 256 in Theorem 3.1, then the
fraction of lattices with their Hermitian invariants smaller than ( 256

vol(Bk))2/k

is at least 95 percent. In Table 4 we list upper bounds ( 256
vol(Bk))1/k(k−1) for

root Hermitian factors.

Table 4 Expected root Hermitian factors c for large block size k when
x = 256

k 86 106 132 168 216 286

c 1.011 1.00954 1.00886 1.00728 1.00627 1.00527

fraction 0.95 0.95 0.95 0.95 0.95 0.95

k 300 320 380 400 420 486

c 1.0049 1.00469 1.00416 1.00388 1.003497 1.00527

fraction 0.95 0.95 0.95 0.95 0.95 0.95

2) From the measure version of Gaussian heuristic and GSA. Comparing
with Table 2 ([8] Table 4.1) we have the following table 6, fractions are also
listed. The root of Hermitian factors are computed in the range

(
x′

vol(Bk)
)

1
k(k−1) ≤ q ≤ (

x

vol(Bk)
)

1
k(k−1)
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. We set x′ = 0.147 and x == 256. We also list the root Hermitian factors
for BKZ with small block sizes in Table 5.

Table 5 The root Hermitian factors for block size 16 ≤ k ≤ 48

k 16 18 20 22 24

q 0.998-1.031 1.0019-1.027 1.0045-1.025 1.00649-1.0289 1.0078-1.022

fraction 0.953 0.953 0.953 0.953 0.953

k 26 28 30 32 34

q 1.0088-1.02 1.0096-1.019 1.0101-1.01888 1.0105-1.0182 1.0108-1.0176

fraction 0.953 0.953 0.953 0.953 0.953

k 36 38 40 44 48

q 1.011-1.017 1.0112-1.0166 1.0113-1.0161 1.01135-1.0154 1.01131-1.0147

fraction 0.953 0.953 0.953 0.953 0.953

Table 6 The root Hermitian factors for block size 50 ≤ k ≤ 1100

k 50 60 70 80 90

q 1.011-1.0141 1.010-1.013 1.01-1.012 1.009-1.011 1.0094-1.01

fraction 0.953 0.953 0.953 0.953 0.953

k 100 110 120 130 140

q 1.0090-1.0098 1.0086-1.0092 1.0082-1.0088 1.0079-1.0084 1.0076-1.0080

fraction 0.953 0.953 0.953 0.953 0.953

k 150 160 170 180 190

q 1.0073-1.0077 1.0071-1.0074 1.0068-1.0071 1.0066-1.0068 1.0064-1.0066

fraction 0.953 0.953 0.953 0.953 0.953

k 200 210 220 230 240

q 1.0062-1.0064 1.0060-1.0062 1.0058-1.0060 1.0057-1.0058 1.0055-1.0056

fraction 0.953 0.953 0.953 0.953 0.953

k 250 300 400 500 600

q 1.0054-1.0055 1.0048-1.0049 1.00397-1.004 1.00339-1.0034 1.00298-1.003

fraction 0.953 0.953 0.953 0.953 0.953

k 700 800 900 1000 1100

q 1.00267 1.00242 1.00222 1.002048 1.0018-1.0019

fraction 0.953 0.953 0.953 0.953 0.953

When the block size is 70, our range of root Hermitian factor is [1.0104378,
1.01200017...], notice that the ranges of root Hermitian factors from experi-
mental results about BKZ2.0, Slide reduction and Self-Dual BKZ algorithms
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in [33] page 31 are smaller than ours. From our theoretical analysis, when
the block size is 70, root Hermitian factor 1.0104378 seems impossible, and
the root Hermitian factor 1.01200017 is possible.

5 Concluding remark: What root Hermitian fac-
tor can not be achieved?

Gaussian heuristic is widely used in lattice reduction algorithms and enu-
meration as a prediction of the length of shortest vectors of lattices. Our
measure version of Gaussian heuristic gives an strict proven theorem such
that this heuristic can be used strictly. Its basic meaning is when the di-
mension is large, almost all lattices satisfy this heuristic. Hence the root
Hermitian factor of BKZ 2.0 type algorithms and slide reduction with large

block size can be proved are within a small range around GH(k)
1

k−1 .

In [33] section 8 the authors wrote”....we need to find a way to translate
this to a root Hermitian factor that is unlikely to be achieved by lattice
reduction....”, since the root Hermitian factor which can not be achieved is
essentially important to the security evaluation of lattice-based cryptosys-
tems ([27, 2, 26, 46, 33]). From Table 6 and our measure version of Gaussian
heuristic we can say that when the block size k = 100 is used, it seems that
the root Hermitian factor 1.0098 is possible and the root Hermitian factor
smaller than 1.0090.. is unlikely possible, since the probability that local
projected lattices of dimension 100 have smaller Hermitian invariant is very
small.
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