
Two-Input Functional Encryption for Inner Products
from Bilinear Maps

Kwangsu Lee∗ Dong Hoon Lee†

Abstract

Functional encryption is a new paradigm of public-key encryption that allows a user to compute f (x)
on encrypted data CT (x) with a private key SK f to finely control the revealed information. Multi-input
functional encryption is an important extension of (single-input) functional encryption that allows the
computation f (x1, . . . ,xn) on multiple ciphertexts CT (x1), . . . ,CT (xn) with a private key SK f . Although
multi-input functional encryption has many interesting applications like running SQL queries on en-
crypted database and computation on encrypted stream, current candidates are not yet practical since
many of them are built on indistinguishability obfuscation. To solve this unsatisfactory situation, we
show that practical two-input functional encryption schemes for inner products can be built based on
bilinear maps. In this paper, we first propose a two-input functional encryption scheme for inner prod-
ucts in composite-order bilinear groups and prove its selective IND-security under simple assumptions.
Next, we propose a two-client functional encryption scheme for inner products where each ciphertext
can be associated with a time period and prove its selective IND-security. Furthermore, we show that
our two-input functional encryption schemes in composite-order bilinear groups can be converted into
schemes in prime-order asymmetric bilinear groups by using the asymmetric property of asymmetric
bilinear groups.

Keywords: Functional encryption, Multi-input functional encryption, Inner product, Bilinear maps.

∗Sejong University, Seoul, Korea. Email: kwangsu@sejong.ac.kr.
†Korea University, Seoul, Korea. Email: donghlee@korea.ac.kr.

1

1 Introduction

Functional encryption (FE) is a new paradigm of public-key encryption (PKE) [16, 17]. In traditional PKE,
a receiver can obtain the entire message x from a ciphertext CT (x) or nothing depending on whether he has
a proper private key SK or not. In FE, a receiver can obtain f (x) from a ciphertext CT (x) if he has a private
key SK f for a function f (·) that is received from a trusted center. Note that the user can obtain nothing about
x except f (x). That is, FE allows computation f (x) on encrypted data CT (x) by allowing a user to calculate
f (x) on the message x through the decryption process if he has a private key SK f . In terms of computation
on encrypted data, one may think that FE is similar to fully homomorphic encryption (FHE) [24]. However,
FE is quite different from FHE since a user cannot directly obtain the result of computation from FHE. That
is, a ciphertext CT (f (x1,x2)) that is the encryption of a result is just obtained from two ciphertexts CT (x1),
CT (x2), and a function f in FHE, whereas a result f (x) is directly derived from a ciphertext CT (x) and a
private key SK f in FE.

Multi-input functional encryption (MI-FE) is an extended notion of (single-input) FE that allows the
decryption algorithm of MI-FE to take multiple ciphertexts as input [25]. In MI-FE, a sender can create
multiple ciphertexts CT (x1),CT (x2), . . . ,CT (xn) independently, and then a receiver who has a private key
SK f received from a trusted center can computes f (x1,x2, . . . ,xn) from the multiple ciphertexts. In terms of
computation on encrypted data, MI-FE is the proper notion for computation on encrypted data since it can
handle multiple ciphertexts at once, whereas (single-input) FE is a weaker one since it handles only single ci-
phertext at once. MI-FE has many interesting applications like running SQL queries on encrypted database,
computation on encrypted stream, and order-revealing encryption for database [14,25]. Additionally, MI-FE
is a very powerful tool since it can be converted into an indistinguishability obfuscator [8, 25].

Although FE is a very powerful concept, it is not easy to construct an FE scheme. Many FE schemes
were built on heavy cryptographic tools like garbling circuits with universal circuits, indistinguishability
obfuscators (iO), and multilinear maps [22, 23, 27]. The situation of MI-FE is worse than that of FE since
MI-FE schemes only can be built from iO. Although there are some generic conversion methods that can
convert a single-input FE scheme into an MI-FE scheme [8,20], these conversions are not efficient yet since
the underlying FE scheme should support polynomial-size circuits. Another approach to build a practical
FE scheme is to restrict the family of supported functions. Recently, FE schemes for inner products were
proposed based on PKE schemes with some special properties [2, 3, 6]. Although the functionality of inner
products is restrictive than that of all circuits, it is still attractive in practical scenarios like descriptive
statistics. In this paper, we ask the following natural question for the practical construction of MI-FE:

“Can we build a practical two-input functional encryption scheme for inner products?”

1.1 Our Contributions

In this paper, we give an affirmative answer to the above question. That is, we show that it is possible to
build a practical two-input functional encryption scheme for inner products by relying on bilinear maps. The
following is the summary of our results:

Two-Input Functional Encryption. We first propose a two-input functional encryption (TI-FE) scheme
that supports the functionality of inner products in composite-order bilinear maps and prove its security
(selective IND-security). In TI-FE for inner products, a user who has an encryption key EK j can create
a ciphertext CTj for a vector ~x j where j ∈ {1,2}, and a receiver who has a private key SK~y for a vector
~y = (~y1,~y2) can compute 〈~x,~y〉 from two ciphertexts CT1,CT2 where ~x = (~x1,~x2). The basic idea of our
TI-FE schemes is applying bilinear maps to the FE scheme of Abdalla et al. [2]. The main obstacle of

2

constructing a TI-FE scheme is to handle two independent random values in ciphertexts. To solve this
problem, we aggregate these random values by applying the pairing operation. For the security proof, we
use simple complexity assumptions, named the composite 2-party Diffie-Hellman (C2DH) assumption and
the decision 3-party Diffie-Hellman (D3DH) assumption, in composite-order bilinear groups. The detailed
design principle of our TI-FE scheme is given in the later part of this section. Our TI-FE scheme is based on
the FE scheme of Abdalla et al. [2] and it is selectively IND-secure under the C2DH and D3DH assumptions.

Two-Client Functional Encryption. Two-client functional encryption (TC-FE) is an interesting variant of
TI-FE where two clients have their own encryption keys and a ciphertext is additionally associated with a
time period T . That is, a client who has an encryption key EK j can create a ciphertext CTj,T for a message
~x j by associating the ciphertext with a time period T . If the time periods of two ciphertexts are equal, then
a receiver who has a private key SK~y can computes 〈~x,~y〉 from two ciphertexts CT1,T ,CT2,T . TC-FE can
be viewed as a specific type of multi-client functional encryption (MC-FE) introduced by Goldwasser et
al. [25]. To construct a TC-FE scheme, we modify our TI-FE scheme by incorporating the structure of
identity-based encryption to deal with the time period. Our TC-FE scheme is also selectively IND-secure
under the C2DH and D3DH assumptions.

Two-Input FE in Prime-Order Groups. Finally, we show that our TI-FE and TC-FE schemes in composite-
order bilinear groups can be also built in prime-order asymmetric bilinear groups. The main idea of using
prime-order asymmetric bilinear groups instead of composite-order bilinear groups is to use the asymmetry
of pairing operations in asymmetric bilinear groups. That is, if we set the first ciphertext CT1 in the group
G and the second ciphertext CT2 in another group Ĝ, then a simple distinguishing attack that uses a pairing
operation can be thwarted since the decision Diffie-Hellman (DDH) assumption still hold in both groups of
asymmetric bilinear groups. To prove the security of our schemes in asymmetric bilinear groups, we use the
SXDH assumption and the asymmetric version of the D3DH assumptions.

1.2 Our Technique

An efficient FE scheme for inner products (FE-IP) was proposed by Abdalla et al. [2]. They showed that
an FE-IP scheme can be built from the ElGamal PKE scheme by reusing the randomness of ciphertexts and
proved its security under the DDH assumption. In their FE-IP scheme, a ciphertext is CT = (gt ,{gxiwt

i}n
i=1)

for a vector~x = (x1, . . . ,xn) and a private key is SKy = ∑
n
i=1 ωiyi for a vector~y = (y1, . . . ,yn) where wi = gωi .

To decrypt the ciphertext, it first obtains g〈~x,~y〉 by computing ∏
n
i=1(g

xiwt
i)

yi ·(gt)−SKy , and then it obtains 〈~x,~y〉
by solving the discrete logarithm of g〈~x,~y〉 if 〈~x,~y〉 is within a small range. The selective IND-security of this
FE-IP scheme can be proven under the DDH assumption since the number of private keys is (essentially)
limited.

To extend the single-input FE scheme for inner products to a two-input FE (TI-FE) scheme for inner
products, we design a TI-FE scheme in bilinear groups. One problem of using bilinear groups is that the
structure of the ElGamal PKE scheme cannot be directly used since the DDH assumption does not hold in
bilinear groups. Another problem of designing a TI-FE scheme is that it is relatively hard to handle two
independent random values of two ciphertexts in the decryption algorithm. Note that the FE-IP scheme
of Abdalla et al. [2] does not have this problem since each components of the ciphertext shares the same
random value.

To solve the first problem of the DDH assumption in bilinear groups, we use composite-order bilin-
ear groups and define a new complexity assumption that has a structural similarity with the DDH as-
sumption. That is, we set a bilinear group of composite order N = p1 p2 and form a ciphertext CT =
(gtQ1,{gxiwt

iQ2,i}n
i=1) where g,wi ∈Gp1 and Q,{Q2,i} ∈Gp2 . In this case, this scheme does not work in G

3

because of the random elements Q1,{Q2,i}, but it works well in GT since the additional random elements
are removed by the pairing operation. Thus, it is still possible to build an FE-IP scheme that is similar to the
scheme of Abdalla et al. in composite-order bilinear groups although it is relatively inefficient.

To solve the second problem of handling two independent random values in ciphertexts, we aggregate
these random values by using the pairing operation instead of removing these random values in the decryp-
tion process. Let CT1 = (gt1 ,{gx1,iwt1

1,i}) with a random t1 and CT2 = (gt2 ,{gx2,iwt2
2,i}) with a random t2. We

can derive a new aggregated random value e(g,g)t1t2 by computing e(gt1 ,gt2) from two ciphertexts. To use
the aggregated random and prevent the DDH distinguishing attack, the basic scheme should be modified.
That is, a ciphertext for the first input is formed as CT1 = (gt1Q1,{(gx1,iW1,i)

t1Q2,i}) and a ciphertext for
the second input is formed as CT2 = (gt2R1,{(gx2,iW2,i)

t2R2,i}) where G has composite order N = p1 p2 p3,
Q ∈ Gp2 and R ∈ Gp3 . A private key is formed as SKy = ∑

n
i=1 ω1,iy1,i +∑

n
i=1 ω2,iy2,i. In the decryption, it

should solve the discrete logarithm with a base e(g,g)t1t2 .

1.3 Related Work

Single-Input Functional Encryption. The concept of functional encryption (FE) was introduced by Boneh,
Sahai, and Waters [16, 17]. As mentioned before, FE allows the computation of a specific function on
encrypted data by computing f (x) from a ciphertext CT (x) and a private key SK f where x is a message and
f is a function. The concept of FE includes identity-based encryption (IBE) [13], attribute-based encryption
(ABE) [30], and predicate encryption (PE) [31]. A special FE scheme that supports an arbitrary circuit
with one-private key query was proposed by Sahai and Seyalioglu [35] by using a PKE scheme and Yao’s
garbled circuits. Gorbunov et al. extended the one-query FE scheme of Sahai and Seyalioglu to a q-query
FE scheme for all circuits by using multi-party computation (MPC) techniques [27]. After that, Goldwasser
et al. showed that a single-use succinct FE scheme can be built by using a one-query FE scheme and an FHE
scheme and a reusable garbling scheme can be built from this succinct FE scheme [26].

The first FE scheme for all circuits with polynomial number of private key queries was proposed by Garg
et al. [22] by using indistinguishability obfuscation (iO). After this surprising result, many FE schemes with
other properties were proposed by using iO [29, 37]. Recently, Garg et al. showed that a fully secure FE
scheme for all circuits also can be built from multilinear maps instead of iO although a sound instantiation
of multilinear maps currently does not exist [23]. If we use the power of FE that support all circuits, it is
possible to achieve an adaptively secure FE scheme from a selective FE scheme and to obtain a (symmetric-
key) function-private FE scheme from a non-function private FE scheme [7, 20].

Although FE schemes for all circuits can be built by using Yao’s garbled circuits with universal cir-
cuits, iO, or multilinear maps, these FE schemes are relatively inefficient. Abdalla et al. showed that more
practical and efficient FE schemes can be directly built from PKE schemes with special properties if the
set of functions is restricted to inner product operations [2, 3]. Specifically, they showed that the ElGamal
PKE scheme can be converted to an FE scheme for inner products by reusing the randomness of ciphertexts
since the private keys of ElGamal are addictively homomorphic. Agrawal et al. improved these FE schemes
for inner products based on ElGamal, Regev, and Paillier PKE schemes by achieving adaptive security [6].
Bishop et al. proposed a function-private FE scheme for inner products by using the dual-pairing vector
space [10]. Recently, Datta et al. proposed an FE scheme for inner products with improved function privacy
by using the dual system encryption technique [21].

Multi-Input Functional Encryption. Multi-input functional encryption (MI-FE) is an extension of (single-
input) FE that allows the decryption algorithm takes multi-ciphertexts instead of a single-ciphertext as input.
The concept of MI-FE was introduced by Goldwasser et al. [25] and they showed that MI-FE schemes can

4

be built from iO of Garg et al. [22] or differing-inputs obfuscation (diO). Additionally, they showed that
symmetric-key MI-FE and multi-client FE (MC-FE) schemes can be constructed from iO. The applica-
tion of MI-FE includes running SQL queries on encrypted database, computing on encrypted stream data,
multi-client delegation of computation, and order-preserving encryption. Furthermore, it was shown that a
symmetric-key MI-FE scheme can be converted into iO that is the strongest cryptographic primitive [25].

Although MI-FE is a powerful notion that has many interesting applications, many MI-FE schemes
are currently built based on iO [9, 25]. Boneh et al. proposed a symmetric-key MI-FE scheme by using
multilinear maps and showed that an order-revealing encryption scheme can be constructed from their MI-
FE scheme [14]. An MI-FE scheme also can be built from a single-input FE scheme by converting an n-ary
MI-FE scheme to an n+1-ary MI-FE scheme. Ananth and Jain showed that an MI-FE scheme can be built
from a compact (single-key) FE scheme [8]. Brakerski et al. also showed that a symmetric-key MI-FE
scheme can be built from a symmetric-key single-input FE scheme [19]. Even though an MI-FE scheme
can be built from a single-input FE scheme by following the conversion methods [8, 19], the resulting MI-
FE scheme is inefficient since the conversion requires an FE scheme that supports polynomial-size circuits.
Concurrent to our work, Abdalla et al. also proposed a private-key MI-FE scheme for inner-product from
bilinear maps [4].

Predicate Encryption for Inner Products. Predicate encryption (PE) is a specific kind of FE that supports
predicates where the output of a predicate is a binary value [16]. Many efficient PE schemes were proposed
in bilinear maps [1,12,18,31–33]. The PE scheme for inner products (PE-IP) of Katz, Sahai, and Waters [31]
is the most expressive one among PE schemes in bilinear maps. Note that a PE-IP only outputs a binary
value whether the result of inner products is zero or not, whereas an FE scheme for inner products (FE-IP)
outputs the result of inner products. Shen et al. proposed a symmetric-key PE-IP scheme that provides the
function privacy [36]. Agrawal et al. also proposed a PE-IP scheme based on lattices and proved its security
under the LWE assumption [5]. Recently, Gorbunov et al. showed that a PE scheme for circuits can be built
on lattices and proved the security under the LWE assumption [28].

2 Two-Input Functional Encryption

In this section, we define the syntax and the security model of two-input functional encryption for inner
products. Next, we propose a two-input functional encryption scheme in bilinear groups and prove their
security under simple assumptions.

2.1 Definition

Two-input functional encryption (TI-FE) is an extension of single-input functional encryption (FE) that
allows the decryption algorithm to takes two ciphertexts as inputs instead of one ciphertext. TI-FE can be
viewed as a specific kind of multi-input functional encryption (MI-FE) where the number of ciphertexts is
limited to two [25]. In TI-FE for inner products, one sender creates a ciphertext CT1 for a vector ~x1 and
another sender creates another ciphertext CT2 for a vector~x2 independently. A receiver receives his private
key SK f~y for a function f~y that corresponds to a vector~y = (~y1,~y2) from a trusted center. Next, the receiver
decrypts two ciphertexts CT1 and CT2 by using his private key SK f~y and obtains fy(~x) = 〈(~x1,~x2),(~y1,~y2)〉.
Note that the receiver cannot obtain other information of the message ~x except f~y(~x). The syntax of TI-FE
is formally defined as follows:

Definition 2.1 (Two-Input Functional Encryption, TI-FE). A TI-FE scheme for inner products consists of
four algorithms Setup, GenKey, Encrypt, and Decrypt, which are defined as follows:

5

Setup(1λ ,n). The setup algorithm takes as input a security parameter 1λ . It outputs a master key MK, two
encryption keys EK1,EK2, and public parameters PP.

GenKey(~y,MK,PP). The key generation algorithm takes as input a vector~y= (~y1,~y2) where~y j = (y j,1, . . . ,
y j,n), the master key MK, and public parameters PP. It outputs a private key SK~y for the vector~y.

Encrypt(j,~x j,EK j,PP). The encryption algorithm takes as input an index j, a vector~x j = (x j,1, . . . ,x j,n),
an encryption key EK j, and public parameters PP. It outputs a ciphertext CTj for the index j.

Decrypt(CT1,CT2,SK~y,PP). The decryption algorithm takes as input a ciphertext CT1 for a vector ~x1, a
ciphertext CT2 for a vector ~x2, a private key SK~y for a vector ~y = (~y1,~y2), and public parameters PP.
It outputs 〈~x,~y〉 where~x = (~x1,~x2).

The correctness property of TI-FE for inner products is defined as follows: For all MK,EK1,EK2,PP gen-
erated by Setup(1λ ,n), any SK~y generated by GenKey(~y,MK,PP) for any ~y = (~y1,~y2), and all ~x1,~x2, it is
required that

• Decrypt(Encrypt(1,~x1,EK1,PP),Encrypt(2,~x2,EK2,PP),SK~y,PK) = 〈~x,~y〉.

The indistinguishability-based (IND) security model of MI-FE was introduced by Goldwasser et al. [25].
By following their IND-security of MI-FE, we define the IND-security of TI-FE for inner products. In the
IND-security model of TI-FE, an adversary initially submits a set of public indexes and then receives all
encryption keys in the set of public indexes with public parameters. Next, the adversary can adaptively
requests a private key for a vector~y. In the challenge step, the adversary submits two challenge vectors~x0 =
(~x0

1,~x
0
2) and~x1 = (~x1

1,~x
1
2) with some restrictions to prevent trivial attacks and receives challenge ciphertexts

CT ∗1 and CT ∗2 that are the encryption of~xµ for a random coin µ ∈ {0,1}. If the adversary correctly guesses
the coin µ , then he wins the game. In this paper, we define a weaker version of this security model. That
is, the adversary should submits two challenge vectors initially before he receives the encryption keys and
public parameters. The formal definition of the single-message, selective, IND-security is defined as follows:

Definition 2.2 (Single-Message, Selective, IND Security). The 1-SE-IND security of a TI-FE scheme for
inner products is defined in the following experiment EXP1-SE-IND

T I-FE,A (λ) between a challenger C and a PPT
adversary A:

1. Init: A initially submits two index sets SI and PI, two challenge vectors~x0 = (~x0
1,~x

0
2) and~x1 = (~x1

1,~x
1
2)

where SI is a set of secret indexes, PI is a set of public indexes, and xc
j = (xc

j,1, . . . ,x
c
j,n). Note that

SI∪PI = {1,2} and SI∩PI = /0.

2. Setup: C generates a master key MK, two encryption keys EK1,EK2, and public parameters PP by
running Setup(1λ ,n). It keeps MK to itself and gives {EK j} j∈PI and PP to A.

3. Query 1: A adaptively requests a private key for vectors ~y = (~y1,~y2) with the restriction that 〈~x1−
~x0,~y〉= 0 if PI = /0 or ∀ j ∈ {1,2},〈~x1

j−~x0
j ,~y j〉= 0 otherwise. In response, C gives the private key SK~y

to A by running GenKey(~y,MK,PP).

4. Challenge: C flips a random coin µ ∈ {0,1} and gives two challenge ciphertexts CT ∗1 and CT ∗2 to A
by running Encrypt(j,~xµ

j ,EK j,PP) for each j.

5. Query 2: A may continue to request private keys with the same restriction.

6

6. Guess: A outputs a guess µ ′ ∈ {0,1} of µ . C outputs 1 if µ = µ ′ or 0 otherwise.

A TI-FE scheme for inner products is 1-SE-IND-secure if for all PPT adversary A, the advantage of A
defined as Adv1-SE-IND

T I-FE,A (λ) =
∣∣Pr[EXP1-SE-IND

T I-FE,A (1λ) = 1]− 1
2

∣∣ is negligible in the security parameter λ .

2.2 Bilinear Groups of Composite Order

Let Gco be a group generator algorithm that takes as input a security parameter λ and outputs a tuple
(p1, p2, p3,G,GT ,e) where p1, p2, p3 are distinct primes and G and GT be two cyclic groups of composite
order N = p1 p2 p3. Let g be a generator of G. The bilinear map e :G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ ZN , e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g ∈G such that e(g,g) has order N in GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are all
efficiently computable in polynomial time in λ . Furthermore, we assume that the description of G and GT

includes generators of G and GT respectively. We use the notation Gpi to denote the subgroups of order pi of
G respectively. Similarly, we use the notation GT,pi to denote the subgroups of order pi of GT respectively.

2.3 Complexity Assumptions

We introduce simple complexity assumptions in composite-order bilinear groups for the security proofs of
our TI-FE schemes.

Assumption 1 (Composite 2-party Diffie-Hellman, C2DH). Let (p1, p2, p3,G,GT ,e) be a tuple randomly
generated by Gco(1λ) where N = p1 p2 p3 is composite order of the groups. Let gp1 ,gp2 ,gp3 be random
generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The C2DH assumption in Gp1 p2 is that if the challenge
tuple

D =
(
(N,G,GT ,e),gp1 ,gp2 ,gp3 ,g

a
p1

Q1,gb
p1

Q2
)

and T

are given, no PPT algorithm A can distinguish T = T0 = gab
p1

Q3 from T = T1 = gab+r
p1

Q3 with more than a
negligible advantage. The advantage of A is defined as AdvC2DH

A (λ) =
∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) =

0]
∣∣ where the probability is taken over random choices of a,b,r ∈ ZN , and Q1,Q2,Q3 ∈Gp2 .

Assumption 2 (Decision 3-party Diffie-Hellman, D3DH). Let (p1, p2, p3,G,GT ,e) be a tuple randomly
generated by Gco(1λ) where N = p1 p2 p3 is composite order of the groups. Let gp1 ,gp2 ,gp3 be random
generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The D3DH assumption in Gp1 is that if the challenge
tuple

D =
(
(N,G,GT ,e),gp1 ,gp2 ,gp3 ,g

a
p1
,gb

p1
,gc

p1

)
and T

are given, no PPT algorithm A can distinguish T = T0 = gabc
p1

from T = T1 = g(ab+r)c
p1 with more than a

negligible advantage. The advantage of A is defined as AdvD3DH
A (λ) =

∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) =
0]
∣∣ where the probability is taken over random choices of a,b,c,r ∈ ZN .

Remark 1. The C2DH assumption is a simplified version of the C3DH assumption that was introduced to
prove the security a hidden vector encryption scheme [18] and the D3DH assumption was introduced for the
security proof of a private linear broadcast encryption scheme [15].

7

2.4 Construction

We propose a TI-FE scheme for inner products that is inspired by the FE scheme of Abdalla et al. [2]. Our
TI-FE scheme for inner products in composite-order bilinear groups is described as follows:

TI-FE.Setup(1λ ,n): This algorithm first obtains (p1, p2, p3,G,GT ,e) by running Gco(1λ) where N = p1 p2 p3
is composite order of the groups. Let g1 be a random generator of the subgroup Gp1 . It chooses ran-
dom exponents {ω1,i,ω2,i}n

i=1 ∈ ZN and random elements Q,{Qi}n
i=1 ∈ Gp2 , R,{Ri}n

i=1 ∈ Gp3 . It
outputs a master key MK =

(
{ω1,i,ω2,i}n

i=1

)
, two encryption keys and public parameters as

EK1 =
({

W1,i = gω1,i
1 Qi

}n
i=1

)
, EK2 =

({
W2,i = gω2,i

1 Ri
}n

i=1

)
, and

PP =
(
(N,G,GT ,e), g = g1, Q, R

)
.

TI-FE.GenKey(~y = (~y1,~y2),MK,PP): This algorithm takes as input a vector~y = (~y1,~y2) where~y j = (y j,1,
. . . ,y j,n), the master key MK, and the public parameters PP. It outputs a private key

SK~y =
(

K =
2

∑
j=1

n

∑
i=1

ω j,i · y j,i

)
∈ ZN .

TI-FE.Encrypt(j,~x j,EK j,PP): This algorithm takes as input an index j∈{1,2}, a vector~x j =(x j,1, . . . ,x j,n),
an encryption key EK j = ({Wj,i}n

i=1), and the public parameters PP. It chooses a random exponent
t j ∈ ZN and random elements Q1,{Q2,i}n

i=1 ∈Gp2 , and R1,{R2,i}n
i=1 ∈Gp3 . If j = 1, then it outputs a

ciphertext

CT1 =
(

C1 = gt1Q1,
{

D1,i =
(
gx1,iW1,i

)t1Q2,i
}n

i=1

)
∈Gn+1

p1 p2
.

Otherwise (j = 2), it outputs a ciphertext

CT2 =
(

E1 = gt2R1,
{

F1,i =
(
gx2,iW2,i

)t2R2,i
}n

i=1

)
∈Gn+1

p1 p3
.

TI-FE.Decrypt(CT1,CT2,SK~y,PP): This algorithm takes as input two ciphertexts CT1 = (C1,{D1,i}n
i=1) for

a vector ~x1 = (x1,1, . . . ,x1,n) and CT2 = (E1,{F1,i}n
i=1) for a vector ~x2 = (x2,1, . . . ,x2,n), a private key

SK~y = K for a vector ~y = (~y1,~y2), and the public parameters PP. It first computes the following two
components

A = e(C1,E1) and B =
n

∏
i=1

e(E1,D1,i)
y1,i ·

n

∏
i=1

e(C1,F1,i)
y2,i ·A−K .

It outputs 〈~x,~y〉= ∑
2
j=1 ∑

n
i=1 x j,i ·y j,i by solving the discrete logarithm of B with a base A. Note that it

only works when the inner product is relatively small.

Correctness. We show that the TI-FE scheme satisfies the correctness property defined in Definition
2.1. Since A = e(g,g)t1t2 , we can derive the following equation

B =
n

∏
i=1

e(E1,D1,i)
y1,i ·

n

∏
i=1

e(C1,F1,i)
y2,i ·A−K

=
n

∏
i=1

(
e(g,g)t1t2·x1,i+t1t2·ω1,i

)y1,i ·
n

∏
i=1

(
e(g,g)t1t2·x2,i+t1t2·ω2,i

)y2,i ·A−∑
2
j=1 ∑

n
i=1 ω j,iy j,i

8

= A∑
n
i=1 x1,iy1,i+∑

n
i=1 ω1,iy1,i ·A∑

n
i=1 x2,iy2,i+∑

n
i=1 ω2,iy2,i ·A−∑

2
j=1 ∑

n
i=1 ω j,iy j,i

= A∑
2
j=1 ∑

n
i=1 x j,iy j,i = A〈~x,~y〉.

Remark 2. Similar to other FE schemes for inner products [2, 6], the decryption algorithm requires solving
the discrete logarithm. If the inner product 〈~x,~y〉 lies in an interval {0, . . . ,L} for a polynomially bounded
integer L, then the discrete logarithm can be computed in time O(L1/2) by using Pollard’s kangaroo method
[34].

2.5 Security Analysis

To prove the security proof of our TI-FE scheme, we organize hybrid games that change the encryption of
(~x0

1,~x
0
2) to the encryption of (~x1

1,~x
1
2). To simplify the proof, we first divide the type of adversaries depending

on the size of PI, and then we prove the security of our TI-FE scheme depending on the type of adversaries.
The detailed description of the proof is given as follows:

Theorem 2.1. The above TI-FE scheme for inner products is 1-SE-IND-secure if the C2DH and D3DH
assumptions hold.

Proof. The security proof consists of the sequence of hybrid games. We define the games as follows:

Game G0. This game is the original security game except that µ is fixed to 0. That is, the challenge
ciphertexts are generated for (~x0

1,~x
0
2).

Game GF . This final game GF is almost the same with the original game except that µ is fixed to 1. That
is, the challenge ciphertexts are generated for (~x1

1,~x
1
2).

Recall that SI is the set of secret indexes and PI is the set of public indexes that are submitted by
an adversary. To show the indistinguishability of hybrid games G0 and GF , we divide the behavior of
adversaries as three types depending on the size of PI: An adversary is Type-0 if |PI|= 0, Type-1 if |PI|= 1,
and Type-2 if |PI|= 2.

Let AdvGi
A be the advantage of A in a game Gi. From the Lemmas 2.2, 2.6, and 2.13, we have the

following equation∣∣AdvG0
A −AdvGF

A
∣∣≤ ∣∣AdvG0

A0
−AdvGF

A0

∣∣+ ∣∣AdvG0
A1
−AdvGF

A1

∣∣+ ∣∣AdvG0
A2
−AdvGF

A2

∣∣
≤ 2AdvD3DH

B (λ)+4AdvC2DH
B (λ).

This completes our proof.

2.5.1 Type-0 Adversary

Lemma 2.2. If the D3DH assumption holds, then no polynomial-time Type-0 adversary can distinguish
between G0 and GF with a non-negligible advantage.

Proof. If an adversary is Type-0, then he can request any private key for ~y = (~y1,~y2) such that ∑
2
j=1〈~x1

j −
~x0

j ,~y j〉 = 0 since the scheme is defined in the private-key setting where all encryption keys are hidden. In
case of Type-0, we should be careful that the adversary can query a private key for~y = (~y1,~y2) that satisfies
〈~x1

j −~x0
j ,~y j〉 6= 0 for some j ∈ {1,2}. Because of these queries, the security proof for the Type-0 adversary

is relatively complicated, but we solve this problem by organizing hybrid games that change the challenge
ciphertexts for two indexes at the same time and by introducing a new complexity assumption. For the Type-
0 adversary, we define hybrid games H0 = G0,H1,H′1, and H2 = GF . The games are defined as follows:

9

Game H0. This game is the same as G0. That is, the challenge ciphertexts are generated for (~x0
1,~x

0
2).

Game H1. In this game, the challenge ciphertexts are generated for (~x0
1 + r · (~x1

1−~x0
1), ~x

0
2 + r · (~x1

2−~x0
2))

where r ∈ ZN is a hidden random value.

Game H′1. This game is almost similar to H1 except that the challenge ciphertexts are generated for (~x1
1 +

r′ · (~x1
1−~x0

1), ~x
1
2 + r′ · (~x1

2−~x0
2)) where r′ ∈ ZN is a hidden random value.

Game H2. This game is the same as GF . That is, the challenge ciphertexts are generated for (~x1
1,~x

1
2).

Let AdvHi
A be the advantage of A0 in a game Hi. From the Lemmas 2.3, 2.4, and 2.5, we have the

following equation∣∣AdvG0
A0
−AdvGF

A0

∣∣≤ ∣∣AdvH0
A0
−AdvH1

A0

∣∣+ ∣∣AdvH1
A0
−AdvH ′1

A0

∣∣+ ∣∣AdvH ′1
A0
−AdvH2

A0

∣∣
≤ 2AdvD3DH

B (λ).

This completes our proof.

Lemma 2.3. If the D3DH assumption holds, then no polynomial-time Type-0 adversary can distinguish H0
from H1 with a non-negligible advantage.

Proof. Suppose there exists an adversaryA0 that breaks the security game with a non-negligible advantage.
A simulator B that solves the D3DH assumption in the subgroup Gp1 using A0 is given: a challenge tuple
D =

(
(N,G,GT ,e),gp1 ,gp2 ,gp3 ,g

a
p1
,gb

p1
,gc

p1

)
and T where T = gabc

p1
or T = g(ab+r)c

p1 . Then B interacts with
A0 as follows:

Init: A submits two sets SI = {1,2} and PI = /0, and two challenge vectors ~x0 = (~x0
1,~x

0
2) and ~x1 = (~x1

1,~x
1
2)

where~xc
j = (xc

j,1, . . . ,x
c
j,n).

Setup: B first selects random {w′1,i,w′2,i}n
i=1 ∈ZN and implicitly sets the master key

{
ω1,i = ab(x1

1,i−x0
1,i)+

w′1,i,ω2,i = ab(x1
2,i−x0

2,i)+w′2,i
}n

i=1. It creates public parameters PP =
(
(N,G,GT ,e),g = gp1 ,Q = gp2 ,R =

gp3

)
. Note that it cannot create two encryption keys since gab

p1
is not given.

Query 1: A0 may adaptively request a private key for a vector~y=(~y1,~y2) with the restriction 〈~x1−~x0,~y〉= 0.
B creates the private key SK~y =

(
K = ∑

n
i=1 w′1,iy1,i +∑

n
i=1 w′2,iy2,i

)
. Note that it can create this private key

because of the restriction.
Challenge: In the challenge step, B first selects random d ∈ ZN ,Q1,{Q2,i} ∈ Gp2 , R1,{R2,i} ∈ Gp3 . Next,
it implicitly sets t1 = c, t2 = cd and creates challenge ciphertexts

CT ∗1 =
(

C1 = gc
p1

Q1,
{

D1,i =
(
gc

p1

)x0
1,i(T)(x

1
1,i−x0

1,i)
(
gc

p1

)w′1,iQ2,i
}n

i=1

)
,

CT ∗2 =
(

E1 = (gc
p1
)dR1,

{
F1,i =

(
(gc

p1
)d)x0

2,i(T d)(x
1
2,i−x0

2,i)
(
(gc

p1
)d)w′2,iR2,i

}n
i=1

)
.

If T = T0 = gabc
p1

, then the challenge ciphertexts are well formed as the same as the game H0. If T = T1 =

g(ab+r)c
p1 , then the challenge ciphertexts are the encryption of~x0

1 + r(~x1
1−~x0

1) and~x0
2 + r(~x1

2−~x0
2) as the same

as the game H1.
Query 2: Same as Query 1.
Guess: Finally, A0 outputs a guess µ ′. B also outputs µ ′.

Lemma 2.4. No Type-0 adversary can distinguish H1 from H′1.

10

Proof. To prove this lemma, we show that the challenge ciphertexts CT ∗1 and CT ∗2 that are the encryption of
~x0

1+r ·(~x1
1−~x0

1) and~x0
2+r ·(~x1

2−~x0
2) can be restated as the encryption of~x1

1+r′ ·(~x1
1−~x0

1) and~x1
2+r′ ·(~x1

2−~x0
2)

where r and r′ are hidden to the adversary. By simply setting r = r′+1, we obtain following equations

~x0
1 + r · (~x1

1−~x0
1) =~x0

1 +(r′+1) · (~x1
1−~x0

1) =~x1
1 + r′ · (~x1

1−~x0
1),

~x0
2 + r · (~x1

2−~x0
2) =~x0

2 +(r′+1) · (~x1
2−~x0

2) =~x1
2 + r′ · (~x1

2−~x0
2).

Note that the private key SK~y cannot be used to distinguish the change since 〈~x1−~x0,~y〉= 0 by the restriction
of the security model.

Lemma 2.5. If the D3DH assumption holds, then no polynomial-time Type-0 adversary can distinguish H′1
from H2 with a non-negligible advantage.

Proof. The proof of this lemma is symmetric to that of Lemma 2.3 except that the challenge ciphertexts are
the encryption of (~x1

1,~x
1
2) instead of (~x0

1,~x
0
2).

2.5.2 Type-1 Adversary

Lemma 2.6. If the C2DH assumption in Gp1 p2 and the C2DH assumption in Gp1 p3 hold, then no polynomial-
time Type-1 adversary can distinguish between G0 and GF with a non-negligible advantage.

Proof. If an adversary is Type-1, then one encryption key is hidden and another encryption key is published.
Thus, the adversary only can query a private key for a vector~y = (~y1,~y2) with the restriction 〈~x1

j−~x0
j ,~y j〉= 0

for all j ∈ {1,2} since he can create a ciphertext for the public index by using the published encryption key.
Because of this strong restriction, we can organize additional hybrid games that change challenge ciphertexts
one by one. For the Type-1 adversary, we define hybrid games I0 = G0,I1,I′1,I2,I3,I′3, and I4 = GF . The
games are defined as follows:

Game I0. This game is the same as G0. That is, the challenge ciphertexts are generated for (~x0
1,~x

0
2).

Game I1. In this game, the challenge ciphertexts are generated for (~x0
1 + r1 · (~x1

1−~x0
1), ~x

0
2) where r1 ∈ ZN is

a hidden random value.

Game I′1. This game is almost similar to I1 except that the challenge ciphertexts are generated for (~x1
1 + r′1 ·

(~x1
1−~x0

1), ~x
0
2) where r′1 ∈ ZN is a hidden random value.

Game I2. In this game I2, the challenge ciphertexts are generated for (~x1
1, ~x

0
2).

Game I3. In this game, the challenge ciphertexts are generated for (~x1
1, ~x

0
2 + r2 · (~x1

2−~x0
2)) where r2 ∈ ZN is

a hidden random value.

Game I′3. This game is almost similar to I3 except that the challenge ciphertexts are generated for (~x1
1, ~x

1
2 +

r′2 · (~x1
2−~x0

2)) where r′2 ∈ ZN is a hidden random value.

Game I4. This game is the same as G4. That is, the challenge ciphertexts are generated for (~x1
1,~x

1
2).

Let AdvIi
A1

be the advantage of A1 in a game Ii. From the Lemmas 2.7, 2.8, 2.9, 2.10, 2.11, and 2.12,
we have the following equation∣∣AdvG0

A1
−AdvGF

A1

∣∣≤ ∣∣AdvI0
A1
−AdvI1

A1

∣∣+ ∣∣AdvI1
A1
−AdvI′1

A1

∣∣+ ∣∣AdvI′1
A1
−AdvI2

A1

∣∣+∣∣AdvI2
A1
−AdvI3

A1

∣∣+ ∣∣AdvI3
A1
−AdvI′3

A1

∣∣+ ∣∣AdvI′3
A1
−AdvI4

A1

∣∣
≤ 4AdvC2DH

B (λ).

11

This completes our proof.

Lemma 2.7. If the C2DH assumption in Gp1 p2 holds, then no polynomial-time Type-1 adversary can distin-
guish I0 from I1 with a non-negligible advantage.

Proof. Suppose there exists an adversary A1 that breaks the security game with a non-negligible advan-
tage. A simulator B that solves the C2DH assumption in Gp1 p2 using A1 is given: a challenge tuple
D =

(
(N,G,GT ,e),gp1 ,gp2 ,gp3 ,g

a
p1

Q1,gb
p1

Q2
)

and T where T = gab
p1

Q3 or T = g(a+r)b
p1 Q3. Then B inter-

acts with A as follows:

Init: A1 submits two sets SI and PI, and two challenge vectors~x0 = (~x0
1,~x

0
2) and~x1 = (~x1

1,~x
1
2) where |SI|=

|PI|= 1 and~xc
j = (xc

j,1, . . . ,x
c
j,n).

Setup: B first selects random {w′1,i,ω2,i}n
i=1 ∈ ZN , {Qi}n

i=1 ∈ Gp2 ,{Ri}n
i=1 ∈ Gp3 and creates encryption

keys EK1 =
(
{W1,i = (ga

p1
Q1)

(x1
1,i−x0

1,i)g
w′1,i
p1 Qi}n

i=1

)
and EK2 =

(
{W2,i = gω2,i

p1 Ri}n
i=1

)
by implicitly setting{

ω1,i = a(x1
1,i− x0

1,i)+w′1,i
}n

i=1. Next, it creates PP =
(
(N,G,GT ,e),g = gp1 ,Q = gp2 ,R = gp3

)
and gives

EK j∈PI,PP to A1. Note that B can create EK2 but it is not helpful because of the strong restriction.
Query 1: A1 may adaptively request a private key for a vector~y = (~y1,~y2) with the restriction 〈~x1

j−~x0
j ,~y j〉=

0 for j ∈ {1,2}. B creates the private key SK~y =
(
K = ∑

n
i=1 w′1,iy1,i +∑

n
i=1 ω2,iy2,i

)
.

Challenge: B first creates CT ∗2 by running Encrypt(2,~x0
2,EK2,PP) since it knows EK2. Next, it selects

random Q′1,{Q′2,i}n
i=1 ∈Gp2 and creates the challenge ciphertext by implicitly setting t1 = b as

CT ∗1 =
(

C1 =
(
gb

p1
Q2

)
Q′1,

{
D1,i =

(
gb

p1
Q2

)x0
1,i(T)(x

1
1,i−x0

1,i)
(
gb

p1
Q2

)w′1,iQ′2,i,
}n

i=1

)
.

Query 2: Same as Query 1.
Guess: Finally, A1 outputs a guess µ ′. B also outputs µ ′.

Lemma 2.8. No Type-1 adversary can distinguish I1 from I′1.

Proof. The proof of this lemma is similar to that of Lemma 2.4. We show that the challenge ciphertext CT ∗1
that is the encryption of~x0

1 + r · (~x1
1−~x0

1) can be restated as the encryption of~x1
1 + r′ · (~x1

1−~x0
1) where r and

r′ are hidden to the adversary. By simply setting r = r′+1, we obtain following equations

~x0
1 + r · (~x1

1−~x0
1) =~x0

1 +(r′+1) · (~x1
1−~x0

1) =~x1
1 + r′ · (~x1

1−~x0
1).

Note that the private key SK~y cannot be used to distinguish the change since 〈~x1
j−~x0

j ,~y j〉= 0 for all j ∈ {1,2}
by the strong restriction.

Lemma 2.9. If the C2DH assumption in Gp1 p2 holds, then no polynomial-time Type-1 adversary can distin-
guish I′1 from I2 with a non-negligible advantage.

Proof. The proof of this lemma is symmetric to that of Lemma 2.7.

Lemma 2.10. If the C2DH assumption in Gp1 p3 holds, then no polynomial-time Type-1 adversary can
distinguish I2 from I3 with a non-negligible advantage.

Proof. The proof of this lemma is very similar to that of Lemma 2.7 except that the C2DH assumption in
Gp1 p3 is used to embed itself in the index 2.

12

Suppose there exists an adversary A1 that breaks the security game with a non-negligible advantage. A
simulatorB that solves the C2DH assumption in Gp1 p3 usingA is given: a challenge tuple D=

(
(N,G,GT ,e),

gp1 ,gp2 ,gp3 ,g
a
p1

R1,gb
p1

R2
)

and T where T = gab
p1

R3 or T = g(a+r)b
p1 R3. Then B interacts with A1 as follows:

Init: A submits two sets SI and PI, and two challenge vectors~x0 = (~x0
1,~x

0
2) and~x1 = (~x1

1,~x
1
2) where SI = {2},

PI = {1}, and~xc
j = (xc

j,1, . . . ,x
c
j,n).

Setup: B first selects random {ω1,i,w′2,i}n
i=1 ∈ ZN , {Qi}n

i=1 ∈ Gp2 ,{Ri}n
i=1 ∈ Gp3 and creates encryption

keys EK1 =
(
{W1,i = gω1,i

p1 Qi}n
i=1

)
and EK2 =

(
{W2,i = (ga

p1
R1)

(x1
2,i−x0

2,i)g
w′2,i
p1 Ri}n

i=1}n
i=1

)
by implicitly setting{

ω2,i = a(x1
2,i− x0

2,i)+w′2,i
}n

i=1. Next, it creates PP =
(
(N,G,GT ,e),g = gp1 ,Q = gp2 ,R = gp3

)
and gives

EK j∈PI,PP to A1. Note that B can create EK1 but it is not helpful because of the strong restriction.
Query 1: Amay adaptively request a private key for a vector~y= (~y1,~y2) with the restriction 〈~x1

j−~x0
j ,~y j〉= 0

for j ∈ {1,2}. B creates the private key SK~y =
(
K = ∑

n
i=1 ω1,iy1,i +∑

n
i=1 w′2,iy2,i

)
.

Challenge: B first creates CT ∗1 by running Encrypt(1,~x1
1,EK1,PP) since it knows EK1. Next, it selects

random R1,{R2,i}n
i=1 ∈Gp3 and creates the challenge ciphertext by implicitly setting t2 = b as

CT ∗2 =
(

E1 =
(
gb

p1
R2

)
R′1,

{
F1,i =

(
gb

p1
R2

)x0
2,i(T)(x

1
2,i−x0

2,i)
(
gb

p1
R2

)w′2,iR′2,i
}n

i=1

)
.

Query 2: Same as Query 1.
Guess: Finally, A1 outputs a guess µ ′. B also outputs µ ′.

Lemma 2.11. No Type-1 adversary can distinguish I3 from I′3.

Proof. The proof of this lemma is almost the same as that of Lemma 2.8 except that CT ∗2 is considered
instead of CT ∗1 .

Lemma 2.12. If the C2DH assumption in Gp1 p3 holds, then no polynomial-time Type-1 adversary can
distinguish I′3 from I4 with a non-negligible advantage.

Proof. The proof of this lemma is symmetric to that of Lemma 2.10.

2.5.3 Type-2 Adversary

Lemma 2.13. If the C2DH assumption in Gp1 p2 and the C2DH assumption in Gp1 p3 hold, then no polynomial-
time Type-2 adversary can distinguish between G0 and GF with a non-negligible advantage.

Proof. If an adversary if Type-2, then the scheme is defined in the public-key setting where all encryption
keys are published. Because of these published encryption keys, the adversary can create any ciphertext
CTj for any vector ~x j. Therefore, the adversary can query any private key for a vector ~y = (~y1,~y2) with
the restriction 〈~x j,~y j〉 = 0 for all j ∈ {1,2}. Recall that this restriction is the same as that of the Type-1
adversary. Because of this strong restriction, we can also organize hybrid games that change challenge
ciphertexts one by one. For the Type-2 adversary, we also use the same hybrid games I0,I1,I′1,I2,I3,I′3, and
I4 that are defined for the Type-1 adversary.

The proofs of all lemmas are almost the same as those of lemmas in Lemma 2.6 for the Type-1 adversary
except that all encryption keys should be given to the adversary. Note that the simulator for the Type-1
adversary can create all encryption keys EK1,EK2 since these keys are not helpful by the strong restriction
in the security model. We omit the details of all lemmas for the Type-2 adversary.

13

2.6 Discussions

TI-FE in the Public-Key Setting. We can obtain a TI-FE scheme for inner products in the public-key
setting if all encryption keys of our TI-FE scheme are revealed to an adversary. In the public-key setting,
the adversary can obtain additional information about the message since he can create any ciphertext for any
index by using an encryption key for the index. As pointed by Goldwasser et al. [25], an MI-FE scheme
in the public-key setting supports only a limited set of functions because of the revealed encryption keys.
Because of this limitation in the public-key settings, an MI-FE scheme for inner products can be easily built
from a single-input FE scheme for inner products by simply using multiple instances of single-input FE for
inner products. Note that an adversary always can learn 〈~x j,~y j〉 for any index j in MI-FE for inner products.
Thus, an MI-FE scheme for inner products is straightforward from an FE for inner products.

TI-FE in the Secret-Key Setting. If all encryption keys of our TI-FE scheme are not revealed to an ad-
versary, then a TI-FE scheme in the secret-key setting is obtained. In case of the secret-key setting, we can
convert our TI-FE scheme in composite-order bilinear groups into a TI-FE scheme in prime-order (sym-
metric) bilinear groups. The main reason of this conversion is that it is relatively hard for the adversary to
obtain some information of a message by using pairing operations if all encryption keys are hidden to the
adversary. Recall that additional random subgroup elements in composite-order bilinear groups were used
to randomize the components of ciphertexts in our TI-FE scheme.

3 Two-Client Functional Encryption

In this section, we first define the syntax and the security model of two-client functional encryption. Next,
we propose a two-client functional encryption scheme in composite-order bilinear groups and prove its
selective security under simple assumptions.

3.1 Definition

The concept of multi-client functional encryption (MC-FE) was introduced by Goldwasser et al. [25]. We
define two-client functional encryption (TC-FE) for inner products by following their definition. A TC-FE
scheme is very similar to a TI-FE scheme except that each client who has an individual encryption key
can create a ciphertext associated with a time period. That is, one client can create a ciphertext CT1,T for
a message x1 with a time period T by using his encryption key EK1 and another client also can create a
ciphertext CT2,T ′ for a message x2 with a time period T ′ by using his encryption key EK2. If the time periods
T,T ′ of two ciphertexts are equal, then a receiver who has a private key SK f can computes f (x1,x2) from
two ciphertexts. The formal syntax of TC-FE is defined as follows:

Definition 3.1 (Two-Client Functional Encryption, TC-FE). A TC-FE scheme for inner products consists
of four algorithms Setup, GenKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ,n). The setup algorithm takes as input a security parameter 1λ . It outputs a master key MK, two
encryption keys EK1,EK2, and public parameters PP.

GenKey(~y,MK,PP). The key generation algorithm takes as input a vector~y= (~y1,~y2) where~y j = (y j,1, . . . ,
y j,n), the master key MK, and public parameters PP. It outputs a private key SK~y for the vector~y.

Encrypt(j,~x j,T,EK j,PP). The encryption algorithm takes as input an index j ∈ {1,2}, a vector ~x j =
(x j,1, . . . ,x j,n), time T , an encryption key EK j, and the master key MK. It outputs a ciphertext CTj,T

for the index j and time T .

14

Decrypt(CT1,T ,CT2,T ′ ,SK~y,PP). The decryption algorithm takes as input a ciphertext CT1,T for a vector~x1
and time T , a ciphertext CT2,T ′ for a vector~x2 and time T ′, a private key SK~y for a vector~y = (~y1,~y2),
and public parameters PP. It outputs 〈~x,~y〉 where~x = (~x1,~x2).

The correctness property of TC-FE for inner products is defined as follows: For all MK,{EK j},PP gen-
erated by Setup(1λ ,n), any SK~y generated by GenKey(~y,MK,PP) for any ~y = (~y1,~y2), all ~x1,~x2, and any
T,T ′, it is required that

• If T = T ′, then Decrypt(Encrypt(1,~x1,T,EK1,PP),Encrypt(2,~x2,T ′,EK j,PP),SK~y,PK) = 〈~x,~y〉.

• If T 6= T ′, then it outputs ⊥.

The IND-security of MC-FE was also defined by Goldwasser et al. [25]. We define the IND-security of
TC-FE by following their definition of the IND-security. For the security proof of our TC-FE scheme, we
define the single-message, selective, IND-security (1-SE-IND) of TC-FE. In the 1-SE-IND security model,
an adversary first submits a set of public indexes, two challenge vectors~x0,~x1, and a challenge time period
T ∗, and then he can receives all encryption keys in the set of public indexes and public parameters. After
that the adversary requests a private key for a vector with some restrictions. Additionally, the adversary can
query a ciphertext for a time period T 6= T ∗ with some restrictions. In the challenge step, the adversary
receives challenge ciphertexts that are encryption of ~xµ for a random µ and wins the game if he correctly
guesses the challenge. The formal definition of the 1-SE-IND security is defined as follows:

Definition 3.2 (Single-Message, Selective, IND Security). The 1-SE-IND security of a TC-FE scheme for
inner products is defined in the following experiment EXP1-SE-IND

TC-FE,A(1
λ) between a challenger C and a PPT

adversary A:

1. Init: A first submits two index sets SI and PI, two challenge vectors ~x0 = (~x0
1,~x

0
2) and ~x1 = (~x1

1,~x
1
2),

and a challenge time period T ∗ where SI is a set of secret indexes, PI is a set of public indexes, and
xc

j = (xc
j,1, . . . ,x

c
j,n). Note that SI∪PI = {1,2} and SI∩PI = /0.

2. Setup: C generates a master key MK, two encryption keys EK1,EK2, and public parameters PP by
running Setup(1λ ,n). It keeps MK to itself and gives {EK j} j∈PI , PP to A.

3. Query 1: A adaptively requests private key and ciphertext queries, where each query is one of two
types:

• If this is a private key query for vectors ~y = (~y1,~y2) with the restriction that 〈~x1−~x0,~y〉 = 0
if PI = /0 or ∀ j ∈ {1,2},〈~x1

j −~x0
j ,~y j〉 = 0 otherwise, then C gives the private key SK~y to A by

running GenKey(~y,MK,PP).
• If this is a ciphertext query for an index j, a vector ~x j, and a time period T with the restriction

that j ∈ SI and T 6= T ∗, then C gives the ciphertext CTj,T toA by running Encrypt(j,~x j,T,EK j,
PP).

4. Challenge: C flips a random coin µ ∈ {0,1} and gives two challenge ciphertexts CT ∗1,T ∗ and CT ∗2,T ∗ to
A by running Encrypt(j,~xµ

j ,T
∗,EK j,PP) for each j.

5. Query 2: A may continue to request private keys and ciphertexts with the same restriction.

6. Guess: A outputs a guess µ ′ ∈ {0,1} of µ . C outputs 1 if µ = µ ′ or 0 otherwise.

A TC-FE scheme for inner products is 1-SE-IND-secure if for all PPT adversary A, the advantage of A
defined as Adv1-SE-IND

TC-FE,A(λ) =
∣∣Pr[EXP1-SE-IND

TC-FE,A(1
λ) = 1]− 1

2

∣∣ is negligible in the security parameter λ .

15

3.2 Construction

The design idea of a TC-FE scheme is to start from our TI-FE scheme and add additional structures to handle
a time period in ciphertexts. To handle a time period, we add the ciphertext structure CTIBE = (gt ,(uT h)t)
and the private key structure SKIBE = (gα(uT h)r,g−r) of the Boneh-Boyen IBE (BB-IBE) scheme [11] to
our TI-FE scheme. In this case, if the time periods of two ciphertexts are equal, then the normal decryption
process of the TI-FE scheme can be performed after removing additional components for time periods by
running the IBE decryption. Additionally, we can use the proof technique of the BB-IBE scheme to create a
ciphertext for a time period T 6= T ∗ where T ∗ is the challenge time period. The detailed description of our
TC-FE scheme is described as follows:

TC-FE.Setup(1λ ,n): This algorithm first obtains (p1, p2, p3,G,GT ,e) by running Gco(1λ) where N =
p1 p2 p3 is composite order of the groups. Let g1 be a random generator of the subgroup Gp1 . It
chooses random exponents {ω1,i,ω2,i}n

i=1 ∈ ZN . It also selects random elements u1,h1,u2,h2 ∈ Gp1 ,
Q,{Qi}n

i=1 ∈ Gp2 , and R,{Ri}n
i=1 ∈ Gp3 . It outputs a master key MK =

(
{ω1,i,ω2,i}n

i=1

)
and two

encryption keys and public parameters as

EK1 =
({

W1,i = gω1,i
1 Qi

}n
i=1

)
, EK2 =

({
W2,i = gω2,i

1 Ri
}n

i=1

)
,

PP =
(
(N,G,GT ,e), g = g1, Q, R, u1, h1, u2, h2

)
.

TC-FE.GenKey(~y = (~y1,~y2),MK,PP): This algorithm takes as input a vector~y = (~y1,~y2) where~y j = (y j,1,
. . . ,y j,n), the master key MK, and the public parameters PP. It outputs a private key

SK~y =
(

K =
2

∑
j=1

n

∑
i=1

ω j,i · y j,i

)
∈ ZN .

TC-FE.Encrypt(j,~x j,T,EK j,PP): This algorithm takes as input an index j ∈ {1,2}, a vector ~x j = (x j,1,
. . . ,x j,n), a time period T , an encryption key EK j, and the public parameters PP. It chooses random ex-
ponents t j,{r j,i}n

i=1 ∈ ZN and random elements Q1,Q2,{Q3,i,Q4,i}n
i=1 ∈Gp2 , R1,R2,{R3,i, R4,i}n

i=1 ∈
Gp3 . If j = 1, then it outputs a ciphertext

CT1,T =
(

C1 = gt1Q1, C2 =
(
uT

2 h2
)t1Q2,

{
D1,i =

(
gx1,iW1,i

)t1(uT
1 h1

)r1,iQ3,i, D2,i = g−r1,iQ4,i
}n

i=1

)
.

Otherwise (j = 2), it outputs a ciphertext

CT2,T =
(

E1 = gt2R1, E2 =
(
uT

1 h1
)t2R2,

{
F1,i =

(
gx2,iW2,i

)t2(uT
2 h2

)r2,iR3,i, F2,i = g−r2,iR4,i
}n

i=1

)
.

TC-FE.Decrypt(CT1,T ,CT2,T ′ ,SK~y,PP): This algorithm takes as input two ciphertexts CT1,T = (C1,C2,
{D1,i,D2,i}n

i=1) for a vector~x1 = (x1,1, . . . ,x1,n) and CT2,T ′ = (E1,E2,{F1,i,F2,i}n
i=1) for a vector~x2 =

(x2,1, . . . ,x2,n), a private key SK~y =K for a vector~y= (~y1,~y2), and the public parameters PP. If T 6= T ′,
then it outputs ⊥. Next, it computes the following two components

A = e(C1,E1) and B =
n

∏
i=1

(
e(E1,D1,i) · e(E2,D2,i)

)y1,i ·
n

∏
i=1

(
e(C1,F1,i) · e(C2,F2,i)

)y2,i ·A−K .

It outputs 〈~x,~y〉= ∑
2
j=1 ∑

n
i=1 x j,i · y j,i by solving the discrete logarithm of B with a base A.

16

Correctness. We show that the TC-FE scheme satisfies the correctness property defined in Definition
3.1. We first have A = e(g,g)t1t2 . If T = T ′, then we can derive the following equation

B1,i = e(E1,D1,i) · e(E2,D2,i) = Ax1,i+ω1,i · e(g,uT
1 h1)

t2r1 · (uT
1 h1,g)−t2r1 = Ax1,i+ω1,i ,

B2,i = e(C1,F1,i) · e(C2,F2,i) = Ax2,i+ω2,i · e(g,uT
2 h2)

t1r2 · (uT
2 h2,g)−t1r2 = Ax2,i+ω2,i .

By using the above equations, we can easily obtain the following equation

B =
n

∏
i=1

By1,i
1,i ·

n

∏
i=1

By2,i
2,i ·A

−K =
n

∏
i=1

(
Ax1,i+ω1,i

)y1,i ·
n

∏
i=1

(
Ax2,i+ω2,i

)y2,i ·A−∑
2
j=1 ∑

n
i=1 ω j,iy j,i

= A∑
2
j=1 ∑

n
i=1(x j,iy j,i+ω j,iy j,i) ·A−∑

2
j=1 ∑

n
i=1 ω j,iy j,i = A∑

2
j=1 ∑

n
i=1 x j,iy j,i = A〈~x,~y〉.

3.3 Security Analysis

Theorem 3.1. The TC-FE scheme for inner products is 1-SE-IND-secure if the C2DH and D3DH assump-
tions hold.

Proof. To prove this theorem, we also consider a sequence of hybrid games G0 and GF that are the same as
those in Theorem 2.1. That is, the challenge ciphertext in G0 is the encryption of (~x0

1,~x
0
2) and the challenge

ciphertext in GF is the encryption of (~x1
1,~x

1
2). To argue the indistinguishability of hybrid games G0 and GF ,

we also divide the behavior of adversaries as three types depending on the size of PI. That is, an adversary
is Type-0 if |PI| = 0, Type-1 if |PI| = 1, and Type-2 if |PI| = 2. Let AdvGi

A be the advantage of A in a
game Gi. From the Lemmas 3.2, 3.2, and 3.2, we have

∣∣AdvG0
A0
−AdvGF

A0

∣∣≤ ∣∣AdvG0
A0
−AdvGF

A0

∣∣+ ∣∣AdvG0
A1
−

AdvGF
A1

∣∣+ ∣∣AdvG0
A2
−AdvGF

A2

∣∣≤ 2AdvD3DH
B (λ)+4AdvC2DH

B (λ).

3.3.1 Type-0 Adversary

Lemma 3.2. If the D3DH assumption holds, then no polynomial-time Type-0 adversary can distinguish
between G0 and GF with a non-negligible advantage.

Proof. The proof of this lemma for TC-FE is similar to that of Lemma 2.2 for TI-FE. That is, we also define
hybrid games H0 = G0,H1,H′1, and H2 = GF that are the same as those of Lemma 2.2. From the Lemmas
3.3, 3.4, and 3.5, we have

∣∣AdvG0
A0
−AdvGF

A0

∣∣≤ 2AdvD3DH
B (λ).

Lemma 3.3. If the D3DH assumption holds, then no polynomial-time Type-0 adversary can distinguish H0
from H1 with a non-negligible advantage.

Proof. Suppose there exists an adversaryA0 that breaks the security game with a non-negligible advantage.
A simulator B that solves the D3DH assumption using A0 is given: a challenge tuple D =

(
(N,G,GT ,e),

gp1 ,gp2 ,gp3 ,g
a
p1
,gb

p1
,gc

p1

)
and T where T = gabc

p1
or T = g(ab+r)c

p1 . Then B interacts with A0 as follows:

Init: A initially submits two index sets SI = {1,2} and PI = /0, two challenge vectors ~x0 = (~x0
1,~x

0
2) and

~x1 = (~x1
1,~x

1
2), and a challenge time period T ∗ where~xc

j = (xc
j,1, . . . ,x

c
j,n).

Setup: B first selects random {w′1,i,w′2,i}n
i=1 ∈ZN and implicitly sets the master key

{
ω1,i = ab(x1

1,i−x0
1,i)+

w′1,i,ω2,i = ab(x1
2,i− x0

2,i)+w′2,i
}n

i=1. It selects random u′1,h
′
1,u
′
2,h
′
2 ∈ ZN and creates public parameters

PP =
(
(N,G,GT ,e), g = gp1 ,Q = gp2 ,R = gp3 , u1 = ga

p1
gu′1

p1 , h1 =
(
ga

p1

)−T ∗gh′1
p1 ,

u2 = ga
p1

gu′2
p1 , h2 =

(
ga

p1

)−T ∗gh′2
p1

)
.

17

Note that it cannot create encryption keys since gab
p1

is not given.
Query 1: A may adaptively request private key and ciphertext queries. B handles these queries as follows:

• If this is a private key query for a vector~y = (~y1,~y2) with the restriction 〈~x1−~x0,~y〉= 0, then it creates
the private key SK~y =

(
K = ∑

n
i=1 w′1,iy1,i +∑

n
i=1 w′2,iy2,i

)
.

• If this is a ciphertext query for an index j ∈ {1,2}, a vector~x j, and a time period T with the restriction
T 6= T ∗, then it selects random t j,{r′j,i}n

i=1 ∈ZN , Q1,Q2,{Q3,i,Q4,i}n
i=1 ∈Gp2 , R1,R2,{R3,i,R4,i}n

i=1 ∈
Gp3 and defines ∆ j,i = (x1

j,i−x0
j,i)/(T −T ∗). If j = 1, then it implicitly sets {r1,i =−b∆1,it1 + r′1,i}n

i=1
and creates the ciphertext

CT1,T =
(

C1 = gt1Q1, C2 =
(
uT

2 h2
)t1Q2,{

D1,i =
(
gx1,igw′1,i

)t1(gb
p1

)−∆1,i·t1·(u′1T+h′1)
(
uT

1 h1
)r′1,iQ3,i, D2,i =

(
gb

p1

)∆1,i·t1g−r′1,iQ4,i
}n

i=1

)
.

Otherwise (j = 2), then it implicitly sets {r2,i =−b∆2,it2 + r′2,i}n
i=1 and creates the ciphertext

CT2,T =
(

E1 = gt2R1, E2 =
(
uT

1 h1
)t2R2,{

F1,i =
(
gx2,igw′2,i

)t2(gb
p1

)−∆2,i·t2·(u′2T+h′2)
(
uT

2 h2
)r′2,iR3,i, F2,i =

(
gb

p1

)∆2,i·t2g−r′2,iR4,i
}n

i=1

)
.

Challenge: In the challenge step, B first selects random d,{r1,i,r2,i}n
i=1 ∈ZN , Q1,Q2,{Q3,i,Q4,i}∈Gp2 ,R1,R2,

{R3,i,R4,i} ∈Gp3 . Next, it implicitly sets t1 = c, t2 = cd and creates challenge ciphertexts

CT ∗1,T ∗ =
(

C1 = gc
p1

Q1, C2 =
(
gc

p1

)u′2T ∗+h′2Q2,{
D1,i =

(
gc

p1

)x0
1,i(T)(x

1
1,i−x0

1,i)
(
gc

p1

)w′1,i
(
uT ∗

1 h1
)r1,iQ3,i, D2,i = g−r1,iQ4,i

}n
i=1

)
,

CT ∗2,T ∗ =
(

E1 = (gc
p1
)dR1, E2 =

(
(gc

p1
)d)u′1T ∗+h′1R2,{

F1,i =
(
(gc

p1
)d)x∗(0),2,i(T d)(x

1
2,i−x0

2,i)
(
(gc

p1
)d)w′2,i

(
uT ∗

2 h2
)r2,iR3,i, F2,i = g−r2,iR4,i

}n
i=1

)
.

Query 2: Same as Query 1.
Guess: Finally, A0 outputs a guess µ ′. B also outputs µ ′.

Lemma 3.4. No Type-0 adversary can distinguish H1 from H′1.

Lemma 3.5. If the D3DH assumption holds, then no polynomial-time Type-0 adversary can distinguish
between H′1 and H2 with a non-negligible advantage.

The proof of Lemma 3.4 is the same as that of Lemma 2.4 and the proof of Lemma 3.5 is symmetric to
that of Lemma 3.3. We omit the proofs of these lemmas.

3.3.2 Type-1 and Type-2 Adversaries

Lemma 3.6. If the C2DH assumption in Gp1 p2 and the C2DH assumption in Gp1 p3 hold, then no polynomial-
time Type-1 adversary can distinguish between G0 and GF with a non-negligible advantage.

18

Proof. The overall strategy for the proof of this lemma is almost similar to that of Lemma 2.6 in TI-FE. Thus,
we also define hybrid games I0 = G0,I1,I′1,I2,I3,I′3, and I4 = GF that are the same as those in Lemma 2.6.
From the Lemmas 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12, we have

∣∣AdvG0
A1
−AdvGF

A1

∣∣≤ 4AdvC2DH
B (λ).

Lemma 3.7. If the C2DH assumption in Gp1 p2 holds, then no polynomial-time Type-1 adversary can distin-
guish I0 from I1 with a non-negligible advantage.

Proof. The proof of this lemma is very similar to that of Lemma 2.7 except that the public parameters
additionally contain some groups elements to handle time periods and ciphertexts also contains additional
group elements.

Suppose there exists an adversary A that breaks the security game with a non-negligible advantage. A
simulatorB that solves the C2DH assumption in Gp1 p2 usingA is given: a challenge tuple D=

(
(N,G,GT ,e),

gp1 ,gp2 ,gp3 ,g
a
p1

Q1,gb
p1

Q2
)

and T where T = gab
p1

Q3 or T = g(a+r)b
p1 Q3. Then B interacts with A as follows:

Init: A submits two index sets SI and PI, two challenge vectors ~x0 = (~x0
1,~x

0
2) and ~x1 = (~x1

1,~x
1
2), and a

challenge time period T ∗ where |SI|= |PI|= 1, and~xc
j = (xc

j,1, . . . ,x
c
j,n).

Setup: B first selects random {w′1,i,ω2,i}n
i=1 ∈ZN , {Qi}n

i=1 ∈Gp2 , {Ri}n
i=1 ∈Gp3 and creates two encryption

keys EK1 =
(
{W1,i =

(
ga

p1
Q1

)(x1
1,i−x0

1,i)g
w′1,i
p1 Qi}n

i=1

)
and EK2 =

(
{W2,i = gω2,i

p1 Ri}n
i=1

)
by implicitly setting{

ω1,i = a(x1
1,i− x0

1,i)+w′1,i
}n

i=1. Next, it selects random u′1,h
′
1,u
′
2,h
′
2 ∈ Gp1 and creates public parameters

PP =
(
(N,G,GT ,e),g = gp1 ,Q = gp2 ,R = gp3 ,u1 = gu′1

p1 ,h1 = gh′1
p1 ,u2 = gu′2

p1 ,h2 = gh′2
p1

)
. It gives {EK j} j∈PI

and PP to A.
Query 1: A may adaptively request private key and ciphertext queries. If this is a private key query for
a vector ~y = (~y1,~y2) with the restriction 〈~x1

j −~x0
j ,~y j〉 = 0 for j ∈ {1,2}, then it creates the private key

SK~y =
(
K = ∑

n
i=1 w′1,iy1,i +∑

n
i=1 ω2,iy2,i

)
. If this is a ciphertext query for an index j = 2, a vector~x2, and a

time period T , then it creates CT2,T by running Encrypt(2,~x2,T,EK2,PP) since it knows EK2.
Challenge: In the challenge step, B first creates CT ∗2,T ∗ by running Encrypt(2,~x0

2,T
∗,EK2,PP) since it

knows {ω2,i}. Next, it selects random {r1,i}n
i=1 ∈ ZN , Q′1,Q

′
2,{Q′3,i,Q′4,i}n

i=1 ∈ Gp2 and creates challenge
ciphertext by implicitly setting t1 = b as

CT ∗1,T ∗ =
(

C1 =
(
gb

p1
Q2

)
Q′1, C2 =

(
gb

p1
Q2

)u′2T ∗+h′2Q′2,{
D1,i =

(
gb

p1
Q2

)x0
1,i(T)(x

1
1,i−x0

1,i)
(
gb

p1
Q2

)w′1,i
(
uT ∗

1 h1
)r1,iQ′3,i, D2,i = g−r1,iQ′4,i

}n
i=1

)
.

Query 2: Same as Query 1.
Guess: Finally, A1 outputs a guess µ ′. B also outputs µ ′.

Lemma 3.8. No Type-1 adversary can distinguish I1 from I′1.

Lemma 3.9. If the C2DH assumption in Gp1 p2 holds, then no polynomial-time Type-1 adversary can distin-
guish between I′1 and I2 with a non-negligible advantage.

The proof of Lemma 3.8 is the same as that of Lemma 2.8 in TI-FE. The proof of Lemma 3.9 is sym-
metric to that of Lemma 3.7.

Lemma 3.10. If the C2DH assumption in Gp1 p3 holds, then no polynomial-time Type-1 adversary can
distinguish I2 from I3 with a non-negligible advantage.

Lemma 3.11. No Type-1 adversary can distinguish I3 from I′3.

19

Lemma 3.12. If the C2DH assumption in Gp1 p3 holds, then no polynomial-time Type-1 adversary can
distinguish I′3 from I4 with a non-negligible advantage.

The proof of Lemma 3.10 is very similar to that of Lemma 3.7 except that the C2DH assumption in
Gp1 p3 is used to embed itself in the index 2. The proof of Lemma 3.11 is almost the same as that of Lemma
3.8. The proof of Lemma 3.12 is symmetric to that of Lemma 3.10. Thus, we omit the proofs of these
lemmas.

Lemma 3.13. If the C2DH assumption in Gp1 p2 and the C2DH assumption in Gp1 p3 hold, then no polynomial-
time Type-2 adversary can distinguish between G0 and GF with a non-negligible advantage.

The proof of Lemma 3.13 also can be done similarly to that of Lemma 3.6. We omit the details of this
proof.

4 Two-Input FE in Prime-Order Groups

In this section, we convert our TI-FE and TC-FE schemes in composite-order bilinear groups into TI-FE
and TC-FE schemes in prime-order (asymmetric) bilinear groups.

4.1 Asymmetric Bilinear Groups

Let Gas be a group generator algorithm that takes as input a security parameter λ and outputs a tuple
(p,G,Ĝ,GT ,e) where p is a random prime and G,Ĝ, and GT be three cyclic groups of prime order p.
Let g and ĝ be generators of G and Ĝ, respectively. The bilinear map e : G× Ĝ→ GT has the following
properties:

1. Bilinearity: ∀u ∈G,∀v̂ ∈ Ĝ and ∀a,b ∈ Zp, e(ua, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g ∈G, ĝ ∈ Ĝ such that e(g, ĝ) has order p in GT .

We say that G,Ĝ,GT are asymmetric bilinear groups with no efficiently computable isomorphisms if the
group operations in G,Ĝ, and GT as well as the bilinear map e are all efficiently computable, but there are
no efficiently computable isomorphisms between G and Ĝ.

4.2 Complexity Assumptions

Assumption 3 (Symmetric External Diffie-Hellman, SXDH). Let (p,G,Ĝ,GT ,e) be a tuple randomly gen-
erated by Gas(1λ) where p is prime order of the groups. Let g, ĝ be random generators of groups G,Ĝ
respectively. The SXDH assumption is that the DDH assumption holds in both G and Ĝ. That is, if the
challenge tuple

D =
(
(p,G,Ĝ,GT ,e),g, ĝ,ga,gb) and T

are given, no PPT algorithm A can distinguish T = T0 = gab from T = T1 = gc with more than a negligible
advantage, and if the challenge tuple

D =
(
(p,G,Ĝ,GT ,e),g, ĝ, ĝa, ĝb) and T

are given, no PPT algorithm A can distinguish T = T0 = ĝab from T = T1 = ĝc with more than a negligible
advantage. The advantage of A is defined as AdvSXDH

A (λ) =
∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) = 0]

∣∣ where
the probability is taken over random choices of a,b,c ∈ Zp.

20

Assumption 4 (Asymmetric 3-party Diffie-Hellman, a3DH). Let (p,G,Ĝ,GT ,e) be a tuple randomly gen-
erated by Gas(1λ) where p is prime order of the groups. Let g, ĝ be random generators of G,Ĝ respectively.
The a3DH assumption is that if the challenge tuple

D =
(
(p,G,Ĝ,GT ,e),g, ĝ,ga,gb,gc, ĝa, ĝb, ĝc) and T = (S1,S2)

are given, no PPT algorithm A can distinguish T = T0 =
(
gabc, ĝabc

)
from T = T1 =

(
g(ab+r)c, ĝ(ab+r)c

)
with more than a negligible advantage. The advantage of A is defined as Adva3DH

A (λ) =
∣∣Pr[A(D,T0) =

0]−Pr[A(D,T1) = 0]
∣∣ where the probability is taken over random choices of a,b,c1,c2,r ∈ Zp.

4.3 TI-FE Construction

In composite-order bilinear groups, we used an additional subgroup for the randomization of group elements
to prevent simple attacks that use the pairing operation. That is, the ciphertext components of CT1, CT2 use
Q ∈ Gp2 , R ∈ Gp3for randomization respectively. To convert our TI-FE and TC-FE schemes in composite-
order groups to prime-order groups, we use the asymmetry of prime-order asymmetric bilinear groups. That
is, the ciphertext CT1 consists of group elements in G and the ciphertext CT2 consists of group elements in
Ĝ. Recall that the DDH assumption holds in asymmetric bilinear groups.

TI-FE.Setup(1λ ,n): It first obtains (p,G,Ĝ,GT ,e) by running Gas(1λ) where p is prime order of groups.
Let g, ĝ be random generators of G,Ĝ respectively. Next, it chooses random {ω1,i,ω2,i}n

i=1 ∈ Zp.
It outputs a master key MK =

(
{ω1,i,ω2,i}n

i=1

)
, two encryption keys EK1 =

(
{w1,i = gω1,i}n

i=1

)
and

EK2 =
(
{ŵ2,i = ĝω2,i}n

i=1

)
, and public parameters PP =

(
(p,G,Ĝ,GT ,e),g, ĝ

)
.

TI-FE.GenKey(~y = (~y1,~y2),MK,PP): Let ~y = (~y1,~y2) where ~y j = (y j,1, . . . ,y j,n). It outputs a private key
SK~y =

(
K = ∑

2
j=1 ∑

n
i=1 ω j,i · y j,i

)
∈ Zp.

TI-FE.Encrypt(j,~x j,EK j,PP): It first chooses a random exponent t j ∈ Zp. If j = 1, then it outputs a
ciphertext CT1 =

(
C1 = gt1 ,

{
D1,i =

(
gx1,iw1,i

)t1}n
i=1

)
∈Gn+1. Otherwise (j = 2), it outputs a ciphertext

CT2 =
(
E1 = ĝt2 ,

{
F1,i =

(
ĝx2,iŵ2,i

)t2}n
i=1

)
∈ Ĝn+1.

TI-FE.Decrypt(CT1,CT2,SK~y,PP): Let CT1 = (C1,{D1,i}n
i=1) for a vector ~x1 = (x1,1, . . . ,x1,n) and CT2 =

(E1,{F1,i}n
i=1) for a vector ~x2 = (x2,1, . . . ,x2,n), and SK~y = K for a vector ~y = (~y1,~y2). It first com-

putes A = e(C1,E1) and B = ∏
n
i=1 e(D1,i,E1)

y1,i ·∏n
i=1 e(C1,F1,i)

y2,i ·A−K . Next, it outputs 〈~x,~y〉 =
∑

2
j=1 ∑

n
i=1 x j,i · y j,i by solving the discrete logarithm of B with a base A.

4.4 TC-FE Construction

TC-FE.Setup(1λ ,n): This algorithm first obtains (p,G,Ĝ,GT ,e) by running Gas(1λ) where p is prime or-
der of the groups. Let g, ĝ be random generators of the groups G,Ĝ respectively. It chooses random
exponents {ω1,i,ω2,i}n

i=1 ∈ Zp. It also selects random exponents u′1,h
′
1,u
′
2,h
′
2 ∈ Zp. It outputs a mas-

ter key MK =
(
{ω1,i,ω2,i}n

i=1

)
, two encryption keys EK1 =

(
{w1,i = gω1,i}n

i=1

)
and EK2 =

(
{ŵ2,i =

ĝω2,i}n
i=1

)
, and public parameters PP=

(
(p,G,Ĝ,GT ,e),g, ĝ,{u j = gu′j ,h j = gh′j , û j = ĝu′j , ĥ j = ĝh′j}2

j=1
)
.

TC-FE.GenKey(~y = (~y1,~y2),MK,PP): Let~y = (~y1,~y2) where~y j = (y j,1, . . . ,y j,n). It outputs a private key
SK~y =

(
K = ∑

2
j=1 ∑

n
i=1 ω j,i · y j,i

)
∈ Zp.

21

TC-FE.Encrypt(j,~x j,T,EK j,PP): It first chooses random exponents t j,{r j,i}n
i=1 ∈Zp. If j = 1, then it out-

puts a ciphertext CT1,T =
(
C1 = gt1 , C2 =

(
uT

2 h2
)t1 ,

{
D1,i =

(
gx1,iw1,i

)t1(uT
1 h1

)r1,i , D2,i = g−r1,i
}n

i=1

)
.

Otherwise (j = 2), it outputs a ciphertext CT2,T =
(
E1 = ĝt2 , E2 =

(
ûT

1 ĥ1
)t2 ,

{
F1,i =

(
ĝx2,iŵ2,i

)t2(ûT
2 ĥ2

)r2,i ,
F2,i = ĝ−r2,i

}n
i=1

)
.

TC-FE.Decrypt(CT1,T ,CT2,T ′ ,SK~y,PP): Let CT1,T =(C1,C2,{D1,i,D2,i}n
i=1) for a vector~x1 =(x1,1, . . . ,x1,n)

and CT2,T ′ = (E1,E2,{F1,i,F2,i}n
i=1) for a vector ~x2 = (x2,1, . . . ,x2,n), and SK~y = K for a vector ~y =

(~y1,~y2). If T 6= T ′, then it outputs ⊥. Next, it computes A = e(C1,E1) and B = ∏
n
i=1

(
e(D1,i,E1) ·

e(D2,i,E2)
)y1,i ·∏n

i=1
(
e(C1,F1,i) · e(C2,F2,i)

)y2,i ·A−K . It outputs 〈~x,~y〉= ∑
2
j=1 ∑

n
i=1 x j,i · y j,i by solving

the discrete logarithm of B with a base A.

4.5 Security Analysis

The security proofs of our TI-FE and TC-FE schemes in asymmetric bilinear groups are almost similar to
those of our TI-FE and TC-FE schemes in composite-order bilinear groups except that the SXDH and a3DH
assumptions are used.

Theorem 4.1. The above TI-FE scheme for inner products is 1-SE-IND-secure if the SXDH and a3DH
assumptions hold.

Theorem 4.2. The above TC-FE scheme for inner products is 1-SE-IND-secure if the SXDH and a3DH
assumptions hold.

The proofs of Theorem 4.1 and Theorem 4.2 are almost similar to those of Theorem 2.1 and Theorem 3.1
except that the SXDH and a3DH assumptions are used instead of the C2DH and D3DH assumptions. Note
that the C2DH assumption in Gp1 p2 (or Gp1 p3) of composite-order bilinear groups is directly corresponding
to the DDH assumption in G (or Ĝ) of asymmetric bilinear groups. To prove the security, we show that a
challenge ciphertext for (~x0

1,~x
0
2) in the original game where µ is fixed to 0 can be changed to a new ciphertext

for (~x1
1,~x

1
2) through hybrid games. The detailed hybrid games are differently defined depending on the type

of an adversary. We omit the detailed proofs.

5 Conclusion

In this paper, we showed that TI-FE and TC-FE schemes for inner products can be built on composite-
order bilinear groups and proved their selective IND-security under simple assumptions. Furthermore, we
proposed TI-FE and TC-FE schemes in prime-order bilinear groups by relying on the asymmetric property
of asymmetric bilinear groups. We hope that our new approach to build TI-FE schemes may provide an
interesting insight to build a more practical MI-FE scheme.

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Con-
sistency properties, relation to anonymous ibe, and extensions. In Victor Shoup, editor, Advances in
Cryptology - CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 205–222.
Springer, 2005.

22

[2] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryp-
tion schemes for inner products. In Jonathan Katz, editor, Public-Key Cryptography - PKC 2015,
volume 9020 of Lecture Notes in Computer Science, pages 733–751. Springer, 2015.

[3] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Better security for functional
encryption for inner product evaluations. Cryptology ePrint Archive, Report 2016/011, 2016. http:
//eprint.iacr.org/2016/011.

[4] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input inner-product func-
tional encryption from pairings. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology - EUROCRYPT 2017, volume 10210 of Lecture Notes in Computer Science, pages 601–
626, 2017.

[5] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional encryption for inner
product predicates from learning with errors. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances
in Cryptology - ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 21–40.
Springer, 2011.

[6] Shweta Agrawal, Benoı̂t Libert, and Damien Stehlé. Fully secure functional encryption for inner
products, from standard assumptions. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology - CRYPTO 2016, volume 9816 of Lecture Notes in Computer Science, pages 333–362.
Springer, 2016.

[7] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to adaptive
security in functional encryption. In Rosario Gennaro and Matthew Robshaw, editors, Advances in
Cryptology - CRYPTO 2015, volume 9216 of Lecture Notes in Computer Science, pages 657–677.
Springer, 2015.

[8] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional en-
cryption. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO
2015, volume 9215 of Lecture Notes in Computer Science, pages 308–326. Springer, 2015.

[9] Saikrishna Badrinarayanan, Divya Gupta, Abhishek Jain, and Amit Sahai. Multi-input functional
encryption for unbounded arity functions. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in
Cryptology - ASIACRYPT 2015, volume 9452 of Lecture Notes in Computer Science, pages 27–51.
Springer, 2015.

[10] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product encryption. In
Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015, volume 9452
of Lecture Notes in Computer Science, pages 470–491. Springer, 2015.

[11] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT
2004, volume 3027 of Lecture Notes in Computer Science, pages 223–238. Springer, 2004.

[12] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption
with keyword search. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology -
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 506–522. Springer,
2004.

23

http://eprint.iacr.org/2016/011
http://eprint.iacr.org/2016/011

[13] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian,
editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 213–229. Springer, 2001.

[14] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zimmerman. Seman-
tically secure order-revealing encryption: Multi-input functional encryption without obfuscation. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015, volume
9057 of Lecture Notes in Computer Science, pages 563–594. Springer, 2015.

[15] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short ci-
phertexts and private keys. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages 573–592. Springer, 2006.

[16] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In
Yuval Ishai, editor, Theory of Cryptography - TCC 2011, volume 6597 of Lecture Notes in Computer
Science, pages 253–273. Springer, 2011.

[17] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for public-key cryp-
tography. Commun. ACM, 55(11):56–64, 2012.

[18] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In Salil P.
Vadhan, editor, Theory of Cryptography - TCC 2007, volume 4392 of Lecture Notes in Computer
Science, pages 535–554. Springer, 2007.

[19] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in the private-
key setting: Stronger security from weaker assumptions. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology - EUROCRYPT 2016, volume 9666 of Lecture Notes in Computer
Science, pages 852–880. Springer, 2016.

[20] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key setting. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography - TCC 2015, volume 9015
of Lecture Notes in Computer Science, pages 306–324. Springer, 2015.

[21] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for inner product with
full function privacy. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang,
editors, Public-Key Cryptography - PKC 2016, volume 9614 of Lecture Notes in Computer Science,
pages 164–195. Springer, 2016.

[22] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In FOCS 2013, pages 40–49.
IEEE Computer Society, 2013.

[23] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without obfus-
cation. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography - TCC 2016-A, volume
9563 of Lecture Notes in Computer Science, pages 480–511. Springer, 2016.

[24] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
ACM Symposium on Theory of Computing - STOC 2009, pages 169–178. ACM, 2009.

24

[25] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit
Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Phong Q. Nguyen
and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014, volume 8441 of Lecture
Notes in Computer Science, pages 578–602. Springer, 2014.

[26] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zel-
dovich. Reusable garbled circuits and succinct functional encryption. In Dan Boneh, Tim Roughgar-
den, and Joan Feigenbaum, editors, STOC 2013, pages 555–564. ACM, 2013.

[27] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded
collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology - CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 162–179.
Springer, 2012.

[28] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from
LWE. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015,
volume 9216 of Lecture Notes in Computer Science, pages 503–523. Springer, 2015.

[29] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional encryption for randomized
functionalities. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography - TCC
2015, volume 9015 of Lecture Notes in Computer Science, pages 325–351. Springer, 2015.

[30] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM Conference on Computer and Communications Security, pages 89–98.
ACM, 2006.

[31] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polyno-
mial equations, and inner products. In Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT
2008, volume 4965 of Lecture Notes in Computer Science, pages 146–162. Springer, 2008.

[32] Kwangsu Lee and Dong Hoon Lee. Improved hidden vector encryption with short ciphertexts and
tokens. Designs Codes Cryptogr., 58(3):297–319, 2011.

[33] Jong Hwan Park. Inner-product encryption under standard assumptions. Designs Codes Cryptogr.,
58(3):235–257, 2011.

[34] John M. Pollard. Kangaroos, monopoly and discrete logarithms. J. Cryptology, 13(4):437–447, 2000.

[35] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public keys. In
Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM Conference on Computer
and Communications Security, CCS 2010, pages 463–472. ACM, 2010.

[36] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In Omer Reingold,
editor, Theory of Cryptography - TCC 2009, volume 5444 of Lecture Notes in Computer Science, pages
457–473. Springer, 2009.

[37] Brent Waters. A punctured programming approach to adaptively secure functional encryption. In
Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015, volume
9216 of Lecture Notes in Computer Science, pages 678–697. Springer, 2015.

25

	Introduction
	Our Contributions
	Our Technique
	Related Work

	Two-Input Functional Encryption
	Definition
	Bilinear Groups of Composite Order
	Complexity Assumptions
	Construction
	Security Analysis
	Type-0 Adversary
	Type-1 Adversary
	Type-2 Adversary

	Discussions

	Two-Client Functional Encryption
	Definition
	Construction
	Security Analysis
	Type-0 Adversary
	Type-1 and Type-2 Adversaries

	Two-Input FE in Prime-Order Groups
	Asymmetric Bilinear Groups
	Complexity Assumptions
	TI-FE Construction
	TC-FE Construction
	Security Analysis

	Conclusion

