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Abstract

Statistical analyses of multiple differential attacks are considered in this paper. Following the work of Blon-
deau and Gérard, the most general situation of multiple differential attack where there are no restrictions on
the set of differentials is studied. We obtain closed form bounds on the data complexity in terms of the success
probability and the advantage of an attack. This is done under two scenarios — one, where an independence
assumption used by Blondeau and Gérard is assumed to hold and second, where no such assumption is made.
The first case employs the Chernoff bounds while the second case uses the Hoeffding bounds from the theory
of concentration inequalities. In both cases, we do not make use of any approximations in our analysis. As
a consequence, the results are more generally applicable compared to previous works. The analysis without
the independence assumption is the first of its kind in the literature. We believe that the current work places
the statistical analysis of multiple differential attack on a more rigorous foundation than what was previously
known.
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1 Introduction

One of the basic techniques for attacking a block cipher is differential cryptanalysis [3]. In its basic form,
it considers the difference after applying several rounds of the encryption function to two plaintexts which
themselves differ by a fixed string. A pair of such input and output differences is called a differential. Initially,
differential cryptanalysis was considered with respect to a single differential. Later work considered several
differentials where either all the input differences are the same or all the output differences are the same. In
its most general form, there are multiple differentials with no restrictions on either the input or the output
differences.

Cryptanalysis of block ciphers has two conceptual phases. The first phase consists of a detailed study of the
structure of the block cipher to discover some property which can be distinguished from randomness. Obtaining
one or more differentials is one such property that a cryptanalyst looks for. The second phase involves using
statistical methods to exploit such a property for deriving a portion of the secret key. Over the years, the second
phase has received increasing focus [14} [111, [12} 13, 1}, [5, 23}, 10} &) [, [7].

To mount an attack, a cryptanalyst requires a number of plaintexts and the corresponding ciphertexts en-
crypted with the same secret key. In a key recovery attack, the goal is to obtain the correct value for a subset of
the key bits. This subset is called the target sub-key. Suppose m bits of the key are to be recovered. Processing
the obtained plaintext-ciphertext pairs will provide the cryptanalyst with a list of candidate values for the target
sub-key. The attack is successful if the correct value is in the list of candidate values. The other parameter of



interest is the size of the candidate list. If for some a, this list is of size 2"7%, then the attack is said to have
advantage at least a. A statistical analysis tries to determine the number N of plaintext-ciphertext pairs such
that the attack is successful with probability at least Ps and has advantage at least a. The parameter N is called
the data complexity of the attack. The goal of a statistical analysis is to obtain an expression for N in terms of
Pg and a.

Statistical analysis of the most general form of multiple differential cryptanalysis was considered by Blondeau
and Gérard [6]. Building on prior work [§], the paper provided two separate expressions for the data complexity
and the success probability. The expression for the data complexity holds for success probability close to 0.5 and
so for example, it cannot be applied to attacks with success probability close to 1 (say 0.95). The expression for
success probability, on the other hand, is complicated and does not directly involve the data complexity. Further,
the analysis used several approximations involving the Poisson distributions and also required the approximations
of tails of binomial distributions used in an earlier work [8]. The errors in such approximations, however, have
not been rigorously analysed. Another feature of the analysis in [6] is that it is based on an independence
assumption. Whether the assumption holds in general is not clear and the authors remark [6]: “This hypothesis
is not so far to being true.”

Our Contributions

As in [6], the setting of our work is multiple differential cryptanalysis without any restrictions on the input or
the output differences. We perform a new statistical analysis of this kind of attack. This analysis involves using
the Chernoff and the Hoeffding bounds. These techniques have been earlier used in the context of block cipher
cryptanalysis [20].

We build the statistical analysis in several steps. The first step considers the basic scenario where there is
only one single input difference while there can be several output differences. In the second step, we extend this
to the general scenario of multiple differentials without any restriction on the input or the output differences.
This step, however, utilises the independence assumption used in [6]. In the third step, we do away with the
independence assumption. So, the analysis of the third step is the most general. The analysis of the first two
steps uses the Chernoff bounds while the third step uses the Hoeffding bounds.

Rigorous closed form upper bounds: There are two common features to all the three steps of our analysis.
1. Nowhere do we make any kind of approximation. So, the analysis holds for all settings.

2. In each case, we obtain explicit closed form bounds for the data complexity in terms of the success proba-
bility and the advantage. These expressions can be evaluated to obtain the data complexity for any values
of the success probability and the advantage.

Both of the above are to be contrasted with the results in [6] which are approximations with the error in
approximation being hard to assess. Further, [6] does not provide any closed form expression (approximate or
otherwise) for the data complexity which can be evaluated for any values of the success probability and the
advantage.

Computational results: A set of multiple differentials were provided for a 64-bit toy cipher SMALLPRESENT
in [6]. For these differentials, we compare the concrete values of the data complexities provided by our analysis
with earlier works [0, [7]. It turns out that in all cases, the data complexities obtained by our methods is
higher than what has been previously reported. For the analysis with the independence assumption, the data
complexities are close, while for the analysis without the independence assumption, the new data complexity
turns out to be significantly higher. There are several take-aways from these computational results.



1. The previously reported expressions for data complexities [6l 7] are approximations where the error in
approximation is not known. Consequently, by looking only at the approximate values obtained from
such expressions, it is not possible to decide whether they are over or under estimates. In comparison,
the values of data complexities obtained from our expressions are upper bounds. So, by comparing the
previously obtained approximate values to the upper bounds reported here, one can obtain an idea about
efficacy of such approximate values. In particular, we emphasise that there is no basis for assuming that
the approximate values are the correct ones and then viewing the upper bounds to be over estimates.

2. If one does not want to rely on a somewhat ad-hoc independence assumption, then one will have to be
prepared for handling a much higher data complexity. It is possible that the higher values of data complexity
obtained without the independence assumption is due to the use of the Hoeffding bound and that using
more sophisticated methods will bring down the upper bound. On the other hand, it is also possible that
in reality, the data complexity is actually higher. Further work is required to determine which of these two
cases is true.

We note that there is nothing special about considering SMALLPRESENT. Our results can be applied to
any cipher (toy or real-life) for which appropriate multiple differentials are available. We took the example of
SMALLPRESENT, since this is the only one that we know of for which multiple differentials are available.

A related issue is that of actually implementing an attack and then estimating the amount of data required
for different values of the success probability and advantage. Comprehensively carrying out such an exercise
would be of independent interest. This work, though, is peripheral to the main point of the paper which is to
base the statistical analysis on a more rigorous foundation. In particular, we do not make any claims that the
data complexity expressions that we obtain are the best possible. Further, by looking at any one particular
cipher, it is not possible to make a general statement regarding the tightness of the upper bound which holds for
all ciphers. There is a possibility that there are two ciphers such that the upper bound is tight for one but loose
for the other. Exploring such issues can form possible future research problems.

Success probability: We would like to further highlight an important aspect of our analysis. From the
viewpoint of a cryptanalyst, an attack with 10% (or even lower) success probability should be considered to be
successful. The analysis in [6], however, does not allow estimating the data complexity for such a value of the
success probability. It also does not allow estimating data complexities for attacks with high success probabilities.
In contrast, our analysis allows estimating the data complexity for any value of the success probability. This
is an advantage of the generality of our approach which is over and above the issue of not using any ad-hoc
approximations.

The statistical framework: We use the hypothesis testing framework. For each choice of the sub-key, a test
of hypothesis is carried out to either keep it in the list of candidate values or to reject it. The null hypothesis is
that the choice is the correct value of the sub-key while the alternate hypothesis is that the choice is an incorrect
value. The test statistic follows different distributions under the null and the alternate hypotheses.

Type-1 error occurs when the correct value is rejected while Type-2 error occurs when an incorrect value
gets listed as a candidate value. The probabilities of these two events are essentially tail probabilities of the test
statistic under the corresponding distributions.

The test statistic itself turns out to be a sum of independent and identically distributed random variables
each of which take values from a set with p elements. Our idea of avoiding approximations is to use known
rigorous bounds on tail probabilities of such distributions. In the case where p = 2, the test statistic is a sum
of independent Bernoulli distributed random variables, and the Chernoff bound applies. While for the case of
p > 2, we use the more general Hoeffding bound.



Can even better bounds be obtained? The answer to this question lies in obtaining improved bounds for
the above mentioned tail probabilities. The theory of large deviations is concerned with the probability of rare
events and so tail probabilities can be handled by this theory. It can be shown that the tail probability is upper
bounded by an exponential in N times a function called the rate function. This rate function is the Legendre
transform of the moment generating function of the corresponding random variable.

In theory, it is indeed possible to express the tail probabilities in terms of the rate function. However, this
does not automatically provide meaningful bounds for the data complexity. There are several difficulties involved.
For a more detailed discussion of these difficulties, we refer to [22].

Previous and Related Works: Differential cryptanalysis was first proposed by Biham and Shamir in [3] for
cryptanalysis of DES. Later in [4], the same authors improved upon the earlier version by considering multiple
differentials with the same output difference. Knudsen [I5] introduced truncated differential cryptanalysis. Other
variants of differential cryptanalysis have been proposed. These include higher order differentials [16], cube
attack [9], boomerang attack [25], impossible differential attack [2] and the improbable differential attack [24].

A statistical analysis of multiple differential attack with a single input difference was given in [19]. Sel¢uk [23]
derived an expression for the data complexity of single differential cryptanalysis using the ranking methodology.
The technique used by Selguk was subsequently used by Blondeau et al. in [7] to derive data complexity of
differential cryptanalysis using the log-likelihood (LLR) and chi-squared test statistic.

As mentioned earlier, the most general framework for differential cryptanalysis was analysed in [6], where
differentials were considered without any restrictions. The work proposed a new test statistic and showed that
the distribution of the test statistic can be approximated by a Poisson distribution. It was subsequently pointed
out that the Poisson approximation is not good for the tail probabilities and hence the technique of [8] was used
to approximate the tail probabilities.

The task of deriving data complexity expressions without using approximations was carried out in [20] for
several types of block cipher attacks. Chernoff bounds and the Hoeffding bounds were used for this purpose.
The present work employs these techniques to analyse the tail probabilities of the test statistic proposed in [6].
This leads to the aforementioned results on data complexities obtained here. For problematic issues regarding
the use of approximations in cryptanalysis we refer the reader to [21].

2 Background
Let £ :{0,1}* x {0,1}" ~ {0,1}" be a block cipher so that for each K € {0,1}*, the function Ef(-) = E(K,-)
is a bijection. Here K is called the secret key, the n-bit input to Ex is called the plaintext and the n-bit output

of Fk is called the ciphertext.
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be the round functions, where £, k() ... denote the round keys. These round keys are produced by applying
an expansion function on the secret key K, called the key scheduling algorithm. For a fixed key, the round
functions are also bijections.

Denote by K i > 1, the concatenation of the first i round keys, i.e., K = k© || ... || K(—1) and by EE?@)
the composition of the first ¢ round functions, i.e.,

We consider iterated block ciphers which are constructed by composing round functions. Let R

W, — RO, EY
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Consider an attack on the first (r 4 1) round of the block cipher Fx. For a plaintext P, denote by B the output

after r rounds, i.e., B = Egzr) (P) and by C the output after » + 1 rounds, i.e., C' = Eg(ti)l)(P) = R}E;Z)(B).



2.1 Differential Cryptanalysis

Let 09 and 6§, be n-bit strings where g is not the all-zero string. For a plaintext P, denote P’ = P & dy. Since
by # 0", P’ # P. Let B and B’ denote the output after r rounds corresponding to P and P’ respectively. From
the bijectivity of the round functions, it follows that B # B’. For a fixed K, the quantities P’, B and B’ are
completely determined by P.

Let P be chosen uniformly at random and let p be such that p = Pr[B @ B’ = ¢,]. On the other hand, if
B and B’ are chosen uniformly and without replacement from {0,1}", then Pr[B® B’ = §,] = 1/(2" — 1). Let
pw = 1/(2" —1). The first and a non-trivial step of a differential cryptanalysis is to make a detailed study of the
block cipher to unearth dy and ¢, such that p is ‘significantly’ different from p,,.

Target sub-key: Suppose there are m bits of the key such that knowledge of these m bits is sufficient to invert
the last round and obtain B from C. These m bits could be a subset of bits of the last round key. If it turns
out that m < n, then a differential cryptanalysis can be attempted. We will call this set of m bits as the target
sub-key. There are 2™ possible choices of the target sub-key out of which only one is correct. We will denote the
correct choice of the target sub-key as x*. The goal of the attack is to find x*.

The attack will proceed by testing each possible value of the target sub-key. If the choice of the target sub-key
is correct, then Pr[B & B’ = ¢, will be equal to p. On the other hand, if the choice of the target sub-key is
incorrect, then it is conventional to assume that the block cipher behaves like a random permutation and so in
this case, Pr[B @& B’ = ¢,] will be equal to py,.

Multiple differentials: We follow [0] in considering multiple differentials. Our notation, though, is somewhat
different.

In the above, we have considered a single pair (dg,d,). More generally, one can consider a set A of such
pairs. An attack which aims to utilise such a set of differentials is called a multiple differential attack. Let
v = |A|. Define Ag = {dp : there is a J, such that (o, d,) € A}. In other words, Ay consists of the set of all
n-bit strings which occur as the first component of some pair in A. These are all the distinct input differences.

Let vg = |Ap| and enumerate the input differences in Ay as Ay = {5(()1),...,5(()V0)}. For 5(()i), define Aq(j) as
Ag) = {0, : ((5(()“, 0r) € A}. The set Ag) consists of the set of all possible output difference corresponding to the
input difference (5(()i). Let v; = ]Ag)] and enumerate the set Aq@ as Aq(f) = {57(~i’1), .. ,(57(}"”")}. Then the set of
differentials can be written as

A= {(5((;),(5?’]')) li=1,...,vpand j=1,...,14}.

Suppose P is chosen uniformly at random. For a particular choice k of the target sub-key and 58“, let S
be the following random variable.

-1 -1 ,
S = (BD) (BLD ) e (RY) - (BLD (P ea)). M
Here (R,@) ' refers to the inversion of the r-th round using « as the value of the target sub-key.
Extending the probability notions from the case of a single differential, fori =1,... ygand j=1,...,v;, we
define
Pr {Sm' _ 57(},]')] _ { pij ifk= ,?*;
’ gi,; otherwise;
a; = 1/(2"—1);
pi = 2 jl1Piji 2)
po= Qi) /v
9 = 2;1;1 4,55

q = (Eiyil‘Ji)/VO-
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We note that the analysis of the block cipher will provide the set A and also the probabilities p; ; fori =1,...,19
and j = 1,...,v;. These form the starting point of a statistical analysis.

Setting of the attack: Suppose that Pi,..., Py are chosen independently and uniformly at random from
{0,1}". For each n = 1,..., N, the adversary obtains the ciphertext (), corresponding to the encryption of P,
under some key K. Further, for each input difference 6(()1) € Ag the adversary obtains the encryption of P & 5(()1)
under the same key K. So, in total the adversary has (v + 1)N pairs of plaintext and ciphertexts. Therefore,
N denotes the number of independently and uniformly chosen plaintexts whereas the number of encryptions
required is (19 + 1)N. By data complexity we will denote N.

Recall that «* is the correct choice of the target sub-key corresponding to K. The goal of the adversary is to
obtain k*.

We extend the definition of S, ; in the following manner. For a choice x of the target sub-key, i = 1,...,19
andn=1,..., N, define

-1 -1 ;
Seim = (BY) (Bxo(P)) @ (RD) " (Exer(Py@a)) . (3)
Since P, ..., Py are independent, the random variables Sy ;1,..., S~ are also independent and each of these

is distributed as S, ;.
(4)

Define a binary valued random variable T} ; ,, as follows: T} ; , = 1 if Sk ;, is in A7 and it is 0 otherwise. It

follows that T ;1,..., Tk N are also independent. For a fixed k, ¢ and 7, the random variable S ; ;, can take at
most one value in Ag). As a result,
Yoiipig=pi  if K=k
Pr[T.,, =1 = J=1 50 4
I'[ Ky, ] { Vz/(2n _ 1) =g if K ?é K* ( )

From the (19 + 1)N plaintext-ciphertext pairs; for i = 1,...,1p; and for each choice k of the target sub-key; the
adversary can compute the values of T} ; 1,..., T, ; n in time Nyp2™.

The test statistic: For a choice k of the target sub-key and n =1,..., N, define

Yo
THJ? = Z T/fﬂ'ﬂ?' (5)
=1

For a choice x of the target sub-key, the test statistic is defined to be

N

vg N
Tn = ZTn,n = ZTn,i,n- (6)
n=1

i=1 n=1

Success probability and advantage of an attack: An attack will ultimately provide a list of candidate
values of the target sub-key. The attack is said to be successful, if k* is in the list and the probability of this
event is said to be the success probability. This probability is denoted as Pg. The size of the list is another factor
which determines the efficacy of an attack. The attack is said to have advantage a, if the size of the list is 2™,

The goal of a statistical analysis is to obtain an expression for the data complexity in terms of the success
probability and the advantage of an attack.



2.2 Summary of the Blondeau-Gerard Analysis

In [6], Blondeau and Gerard provided a statistical analysis of multiple differential attack as outlined above. Their
analysis used the following assumption.

Assumption 1 ([6l, Hypothesis 2]). For any sub-key k (including k*) and for any n = 1,..., N, the random
variables Ty 1.4, ..., Tk o,y are independent.

Based on this assumption and using an asymptotic result it was shown that each of the random variables
T}, follow a Poisson distribution with parameter A = Y2 p; for k = k* and follows a Poisson distribution with
parameter A = > 7% ¢; for k # x* [6, Theorem 1]. Since T}, = ZnNzl Tyn and Ty 1,..., T, N are independent,
T,. also follows a Poisson distribution with parameter NA. It was further mentioned that this approximation
does not give a good estimate of the tails of the cumulative distribution function of the test statistic T,. Hence,
they used another approximation to get the tail of the distribution. Eventually, the full distributions for both
the correct and the incorrect choice of the target sub-key were given. It was found that these distributions are
similar to the distributions of [8]. Therefore, the framework from [§] was used to estimate the data complexity
and the success probability of the multiple differential cryptanalysis. We restate the results here.

Corollary 1 of [6]. The data complexity of multiple differential cryptanalysis with success probability close
to 0.5 is given by

In(2¢y/m27™
N = _g. n@w/m2") (7)
wD (@ [ §)
where ¢ is the size reduced list of the candidate keys and D(p || ¢) is the Kullback-Leibler divergence between the
distributions (p,1 — p) and (G,1 — §). Typically, ¢ = 2™~ for an attack with a-bit advantage. Putting . = 2"~
in (7)), we have
In(2 2¢
N = . VT2 (8)
wD(p | q)

Corollary 2 of [6]. Let G*(z) (resp. G(x)) be the estimate of the cumulative distribution function of T«
(resp. T,) defined by [6] Proposition 1]. The success probability, Ps, of a multiple differential cryptanalysis is

given by
PR 1 L= 1 B )
Ps~1-G <G <1 m 2) 1> ; (9)

where the pseudo-inverse of G is defined by
G ly) = min{z:G(z) >y} (10)

Limitations of the expression given by .

1. The success probability Ps does not appear in the expression for the data complexity in . As mentioned
above, holds only for Pg close to 0.5 and cannot be evaluated for any other value of the success
probabiilty. For example, it is not possible to use to compute the data complexity either for Pg = 0.1 or
for Pg = 0.9. From a cryptanalytic point of view, both of these are valid values for the success probability.
Later in the paper, the authors mention that it has been conjectured in [8] that taking N of the form

N = —-2c- % should lead to a success probability of about 50% for ¢ = 1; 80% for ¢ = 1.5; and
90% for ¢ = 2. Some experimental evidence is provided in support of this conjecture. There is, however,

no proof of this statement and neither is the dependence of N on Pg made clear.

2. From (8), N > 0 only for a > lg(2y/7) = 14+1g /7. So, the data complexity expression given by Equation
(and (8)) is not meaningful for small values of ‘a’.



Limitations of the expression given by @D

1. In the expression for Pg given by @, the data complexity does not appear explicitly. Instead, [6] provides
plots of Ps as a function of V.

2. The expression given by @D is not useful in evaluating the data complexity in terms of the success probability
Pg and the advantage a. To do this, it is required to work out the expressions for G* and G~! which depends
on IV and then solve the resulting equation for N. The difficulty of carrying out this task is further discussed
in Appendix It should be noted that the paper [6] uses @D only for computing success probability. None
of the data complexity computations in [6] use (9). This indicates that the authors of [6] did not themselves
consider @D to be useful for computing data complexity.

3. The relation given by @ is only an approximation and not an accurate expression. The = sign in @ has
been used in the original paper [6] itself indicating that the authors themselves did not consider this to be an
accurate expression. The reason being that the expression in @D is arrived at using several approximations.
The errors in such approximations are variously expressed in the big-oh and the little-oh notation making
it difficult to determine the actual error for a set of concrete values of the parameters.

3 Hypothesis Testing Framework

We briefly outline the hypothesis testing framework that we use to perform the statistical analysis of multiple
differential attack.

The test statistic is T. Let pg = E[T,+] and pu; = E[T,] for k # k*. Assume that po > p; and consider the
following test of hypothesis.

Hypothesis Test-1:
Hy: “k is correct” versus Hi: “k is incorrect.”
Decision rule: Reject Hy if T), < t, where ¢ is a value in (1, po).-

Note: If pp < p1, then the decision rule is to reject Hy if T, > t for some ¢ in (po, p1). The analysis of this
case is similar to the case of g > w1 and provides the same expression for the data complexity. So, we do not
consider the details of this case.

The Type-1 error probability is defined to be Pr[Type-1 Error| = Pr[T,, < t|Hy holds] and the Type-2 error
probability is defined to be Pr[Type-2 Error] = Pr[T,, > t|H; holds]. We obtain (upper bounds) on the Type-1
and Type-2 error probabilities which are denoted as « and [ respectively. These expressions involve both ¢ and
N and it turns out to be possible to obtain expressions for t and N in terms of « and .

The test is applied with all the 2" values of the target sub-key and a list of values of x for which Hy is
not rejected is returned. If a Type-1 error occurs, then the list does not contain the correct value of the target
sub-key and so the success probability of the attack is 1 — Pr[Type-1 Error|. In particular, we set Pg =1 — « so
that if « is an upper bound on the Type-1 error probability, then Pg is a lower bound on the success probability.

Each Type-2 error results in classifying an incorrect value of k as a candidate key. Since the tests with the
2™ — 1 incorrect choices of the target sub-keys are independent, the expected number of wrong keys returned
is (2™ — 1) x Pr[Type-2 error|. If § is an upper bound on Pr[Type-2 Error], then the expected number of mis-
classifications is at most (2™ —1)8 < 2™f. For an attack with advantage a, the size of the returned list is 29,
Setting 23 = 2™ % gives § = 27 So, if the Type-2 error probability is at most 27¢, then the attack has
expected advantage at least a.



Upper Bounds: The hypothesis test is applied to a particular test statistic. The corresponding data complex-
ity obtained is a lower bound on the number of plaintexts to achieve specified (upper bounds on the) Type-1 and
Type-2 error probabilities, if the particular test statistic is used. This leaves open the possibility that there may
be other test statistics for which the (lower bound on the) data complexity required to achieve the same Type-1
and Type-2 error probabilities is lower. So, the expressions that we obtain are upper bounds on the minimum
possible data complexities to achieve specified error probabilities.

4 Single Input Difference

In this section, we analyze the particular case of vy = 1, i.e., the case where all the differentials have the same
input difference. The number of differentials in A can be 1 or more, i.e., v > 1, but, for all of these the input
difference will be the same. This case is the same as the one studied in [7] and later in [20].

Since vy = 1, it follows that v; = v. So, for every x € {0,1}" and n = 1,..., N, there is a single random
variable T} 1. This variable takes the value 1 if Sy, € AS}) and 0 otherwise. As mentioned earlier, Pr[T} 1, =
1] =p1if Kk =w* and Pr[Ty 1, = 1] = ¢ = v/(2" — 1) if k # £*. Further, for any fixed s, the random variables
Tki11,---,1x1,~ are independent. Being independently distributed binary valued random variables, these can
be considered the outcomes of Poisson trials.

The test statistic T in this case becomes

Tn = 1x,1,1 4+ Tn,l,N- (11)
We define

o = FE[Tx] = Np; if & = k"
m = E[T;]=Naq if k # k"

Suppose pg > p1. Hypothesis Test-1 is applied with the test statistic 7T} as described in Section For the
analysis of Hypothesis Test-1, we need to determine the Type-1 and Type-2 error probabilities. Since T} is the
sum of independent Bernoulli distributed random variables, the Chernoff bounds can be used to obtain bounds
on the tail probabilities of T, for both correct and incorrect choices of k. We refer to Appendix for the
precise statement of the Chernoff bounds. We have the following result.

Proposition 1. Suppose that vy = 1, i.e., there is only a single input difference. Let 0 < o, 5 < 1 and N be
such that

3 (Vor(i/a) + Va(i/5))

N
(p1 —q1)?

(12)

Then the probabilities of the Type-1 and Type-2 errors in Hypothesis Test-1 are upper bounded by o and (3
respectively. Putting o« =1 — Pg and 8 = 27%, it follows that for

3 (\/pl In(1/(1 — Ps)) + Vaq ln2)

N
(p1 —q1)?

. (13)

the success probability will be at least Ps and the advantage will be at least a.



Proof. Recall that t € (u1, po) and Hy is rejected if Ty, < t. Let 9 =1 —t/up and so v € (0,1).

Pr[Type-1 Error] = Pr[T, <t| Hp holds] = Pr[T,, < (1 — 7o) n0]
exp (—4075/2) < exp (—075/3)

exp <—(Mo_t)2> = a; (say)
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=1t = po—3uoln(l/a). (14)

Similarly, define y1 = ¢/p1 — 1 so that y1 € (0,1).

Pr[Type-2 Error] = Pr[T; >t | H; holds| = Pr[T,, > (1 + v1)m1]
b — )2
< exp (—,ulfyf/?)) = exp <—(3M1)> = f; (say)
K1
=t = i +3u1ln(1/8). (15)

Eliminating t from equations and and using po = Np1, 1 = Nqi, we obtain an expression for N which
is given by the right hand side of . For any N greater than this value, the probabilities of Type-1 and Type-2
errors are at most a and (3 respectively. O O

5 Multiple Input Differences Under Assumption 1

Under Assumption 1, for each x and 7, the random variables T} 1, ..., Tk, are independent. If we further
consider the values of 1 from 1 to N, we get that the following sequence of binary valued random variables are
independent:

Teig Te21 - Tewo
Tei12 Ti22 - Tiy2 (16)
Tn,l,N Tfi,2,N T TH,VO,N'

So, these can be considered as the outcomes of N1y Poisson trials. The test statistic T} is the sum of the above
random variables and hence the Chernoff bounds can be applied to 7). Let as before g = E[T}] when Hy holds
and p1 = E[T,] when H; holds. Then, we have

po = E[T,; | Ho holds]
=k 21]7\[:1 Yot T | Ho holds]

= 21 2icq ElTkin | Ho holds] (17)
= Dm1 it Pi = Zévzl vop = Nvop;
Similarly, u1 = FE[T, | H1 holds] = Nuyq.

We obtain the following result.

Proposition 2. Suppose that vg > 1 and Assumption 1 holds. Let 0 < o, 5 < 1 and N be such that

3 (\/ﬁln(l/a) + \/cIrln(l/B))2

vo(p — 4)?

10



Then the probabilities of the Type-1 and Type-2 errors in Hypothesis Test-1 are upper bounded by o and (3
respectively. Putting « =1 — Pg and 8 = 27%, it follows that for

3 (vAI(1/(1 = Ps)) + Vaqgin2)

2
vo(p — q)? '

N

(19)

the success probability will be at least Ps and the advantage will be at least a.

Proof. In this case, up = Nvgp and g1 = Nvpg. The rest of the argument is similar to the proof of Proposition [I}
From the hypothesis test condition, we have t € (u1, ) and Hy is rejected if T, < ¢.
Let vo = 1 —t/po so that 79 € (0,1); and 1 =t/ — 1 so that v; € (0,1). Let

a = exp (—(Mo_t)Q> = t=po—3poln(l/a); (20)

3o
B = exp <—(t;£1)2> = t= 1+ /3 In(1/8). (21)

Following the calculation of the probabilities of Type-1 and Type-2 errors given in Proposition we have
Pr[Type-1 Error] < a and Pr[Type-2 Error] < 8. Eliminating ¢ from equations and and using uo =
Nvgp and p; = NG we obtain an expression for N which is given by the right hand side of (19). For any N
greater than this value, the probabilities of Type-1 and Type-2 errors are at most o and 3 respectively. [ [

For vy = 1, Proposition [2 reduces to Proposition [I} Note that for vy = 1, Assumption 1 is vacuous.

6 Multiple Input Differences Without Independence Assumption

It is not clear that Assumption 1 holds in general. In this section, we consider the problem of deriving an
expression for data complexity without using Assumption 1. Without this assumption, we can no longer assume
that the rows of are independent and so T, cannot be written as the sum of outcomes of Possion trials.
This, in particular, means that we cannot apply the Chernoff bounds to bound the tail probabilities of 7.

To tackle this situation, we use Hoeffding’s inequality as was earlier utilised in [20]. Appendix gives the
proper statement of Hoeffding’s inequality. The test statistic is still 7}, and Hypothesis Test-1 is applied. The
analysis of Type-1 and Type-2 error probabilities change.

Proposition 3. Suppose that vy > 1. Let 0 < a, 8 < 1 and N be such that

2
(vin(1/a) + /in(1/8))
a 2(p — ¢)? '
Then the probabilities of the Type-1 and Type-2 errors in Hypothesis Test-1 are upper bounded by o and (3
respectively. Putting « =1 — Pg and 8 = 27%, it follows that for

(22)

(Vin(L/(1 ~ P5) + vVal2)
B 2(p — q)? '

the success probability will be at least Ps and the advantage will be at least a.

N

(23)

11



Proof. Since the computation of the expectation of a sum of random variables does not depend on whether these
random variables are independent, the values of py = E[T,|Hp holds| and u1 = E[T,|H; holds] are still given

by .

Recall that for k € {0,1}" and 1 < n < N, Ty, = >.7° T in- Note that T}, takes values from the set
{0,...,w}. Also, T, are independently and identically distributed. This implies, that for n =1,..., N,

0 S T’%TI S .

Therefore we can apply Hoeffding’s inequality (see Appendix |[A.2]) over the sum of the independently random

. N . _ N T2 are
variables T}, = anl Tyn; where Dy = anl v§ = Nuyj.

Without loss of generality, assume pg > pq. The other case, i.e., g < w1, can be handled similarly. In this
case, the null hypothesis is rejected if T), < ¢, for some t € (u1, ), to be determined later. Then,
Pr[Type-1 Error] = Pr[T, <t | Hp holds]
Pr[T, — po < —(po — t) | Ho holds].

By applying Hoeffding’s inequality (see equation (31)) on 7, we get

2(po — t)?
Pr[Type-1 Error] < exp <_(,u02)> = « (say)
Ny

= V2t = V2up—vov/Nn(1/a). (24)

Similarly,

Pr[Type-2 Error] = Pr[T, >t | Hy holds]
= PT[TH — 1 >t | H, hOldS}.

Again applying Hoeffding’s inequality (see equation (30]) on T}, we get

2(t — u1)?
Pr[Type-2 Error] < exp (—(/;1)> = [ (say)
Nv;

= V2t = V2u1 + v/ Nn(1/B). (25)

Eliminating ¢ from equation and and using po = Nuvgp, p1 = Nvpg gives the expression in the right
hand side of . For any NV which is at least this quantity, the Type-1 and Type-2 error probabilities are at
most « and (. ]

7 Comparison and Experimental Results

From a theoretical angle, our analysis provides the following advantages over the previous work of Blondeau and
Gerard [6].

No use of approximations: The analysis of [0] is based on several approximations. One place where this
issue shows up is in the non-applicability of the data complexity expression in for small values of a as has
been discussed in Remark 1. Further, the accuracy of the estimate for other larger values of a has not been
theoretically studied. Some experimental evidence of its accuracy has been provided in [6] for a particular toy
cipher. Whether this extends to other real-life ciphers is not known.

Our analysis, on the other hand, does not make any approximations for the statistical analysis. As such, the
data complexity expression applies to all ciphers and for all values of a and Pg.

12



Generality of the expression for data complexity: In [6], separate expressions for the data complexity
and success probability is obtained. The data complexity is stated to hold for success probability close to 0.5
and the expression for the success probability is quite complicated. In contrast, our analysis results in a single
expression for the data complexity which is explicitly expressed in terms of the success probability and the
advantage. No such expression for the data complexity is provided in [7]. For example, if one were to require
the success probability to be 0.95, then the corresponding data complexity cannot be derived from the analysis
in [7].

Analysis without independence assumption: Assumption 1 is used for the analysis in [7]. We also use
Assumption 1 for one of our analysis. Whether Assumption 1 holds in general is not known. We show how to
obtain an expression for the data complexity without using Assumption 1. There is no previous work in the
literature which does this.

7.1 Experimental Comparison

We provide an experimental comparison of the data complexities obtained using our method and the methods
available in previous works.

The experiments have been conducted using the set of differentials of the 64-bit toy block cipher SMALLP-
RESENT [§], that was given in [0, Table 6]. The table gives 3 estimates of the probabilities for the same input
and output differences, namely, theoretical, 40-bit key schedule and 80-bit key schedule. In our experiments, we
have made comparisons for each of these 3 probability estimates. The target sub-key size was 32 bits. So, n = 64
and m = 32.

7.2 Comparison when 1y > 1

The only prior work which analysed this case is [6] and the data complexity expression obtained in [6] is given
by . This expression holds for success probability close to 0.5. Denote by Npg the data complexity given
by .

For 1y > 1, we have obtained two expressions for the data complexity. One using Assumption 1, based on the
Chernoff bound and is given by the right hand side of . The other does not require Assumption 1, is derived
using the Hoeffding bound and is given by the right hand side of . Denote the data complexity given by
as Ncper and the data complexity given by as Ng. The expressions for Noper and Ny do not require Pg to
be necessarily 0.5. However, since Ngg requires this, we set Pg = 0.5 for these expressions.

Table[1] gives a comparison between the data complexities Npg, Noper and Ny for a =20 and Ps =1 —a =
0.5. From the table one can see that Ngpe, is only slightly greater than Npg. So, if Assumption 1 can be
assumed to hold, then it is better to use the data complexity given by N¢pe, since it is more generally applicable.
On the other hand, if Assumption 1 cannot be assumed to hold, then one has to use Ny and the corresponding
bound on the data complexity is much higher.

7.3 Comparison when 1y =1

In this case, there is only a single input difference. The data complexity expression from [6] given in can
be specialised to the case vy = 1. As before we denote by Npg the data complexity arising from by setting
vg = 1. Also, let Ngpe, denote the data complexity given by .

Table 6 in [6] provides six groups of differentials with each group having the same input difference. We
separately consider each of these six groups for the three probability estimates. This leads to 18 cases. For
each of the 18 cases, we compare Npg and Ngoper. Since Npg requires Ps = 0.5 we have computed the data
complexities for all the cases with this value of Pg. The advantage a was varied from 1 to 32. In each case, the
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Probability Estimates H Npa ‘ Ncher ‘ Ny
. 2aln2-2mm2y7 | 3n2(vptvaq)” | 2mn2(1+va)’

express10ns VoD(i)H(j) o (ﬁiq)Q (ﬁiq)Q
theoretical 2.51x107 4.65x107 1.87x1017
40-bit 1.77x107 3.32x107 9.531x 1016
80-bit 6.66x 10° 1.30x107 1.46x 1016

Table 1: Table showing the comparison between the data complexities Npg, Noher and Ngy. For compatibility
with Npg, Ps has been taken to be 0.5 in Ngjper and Np.

comparative nature of the three data complexities are similar and so we report only the data complexities for
a = 20. These are shown in Table 2l From the table, one can see that the data complexities are close and so,
there is not a significant penalty for working with a data complexity expression which applies more generally.

Probability Estimates | Input Difference H Npa Ncher
0x3 2.01x10° | 3.68x10°
0x7 1.09x10° | 2.04x10°

8 8

Theoretical 0xD 1.54x% 108 2.87x 108
0x5 1.86x10% | 3.42x10

0xB 1.99%x10% | 3.65x10%

0xF 1.13x10% | 2.11x 108

0x3 1.32x108 | 2.45%x108

0x7 8.22x107 | 1.56x10%

A0-bit 0xD 1.08x10° | 2.03x10°
0x5 1.29%x10% | 2.40x10%

0xB 1.27x108 | 2.37x10°%

0xF 8.40x107 | 1.59x108

0x3 1.42x108% | 2.63x108

0x7 8.90x10° | 1.84x107

S0-bit 0xD 1.20x10° | 2.25x10°
0x5 1.28%x10% | 2.39x10%

0xB 1.39%x10% | 2.58x10°%

0xF 8.56x107 | 1.62x108

Table 2: Table showing the comparison between the data complexities Npg and Ngpe, for SMALLPRESENT
with v = 1, Ps = 0.5 and a = 20.

The case vy = 1 was earlier studied in [7]. Two approaches were used. One was based on the log-likelihood
ratio (LLR) and the other on the chi-squared statistic and corresponding expressions for data complexities were
obtained. We tried to compare these data complexities with those in Table However, this turned out to
be problematic. For both the LLR and the chi-squared approaches from [7], the values obtained for the data
complexities turned out to be meaningless. We further investigated the reasons for this and came to the following
conclusions.
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Non-applicability of the chi-squared based data complexity from [7] to SMALLPRESENT: For the
chi-squared based approach in [7], certain conditions are required to hold for the approximations to be valid [21].
For the distributions of SMALLPRESENT, these conditions are violated and so the applicability of the data
complexity expression becomes invalid. We provide more details from [21].

Consider two distributions p = (pg,...,pr) and ¢ = (qo,-..,q-). In the context of multiple differential
cryptanalysis using the chi-squared approach, the test statistic follows a non-central chi-squared distribution for
the correct choice of the target sub-key. Following the chi-squared approach, for the non-central chi-squared
approximation to hold, it is necessary that for each n = 0,1, ..., 7 both the following two conditions are satisfied.
We refer to [21] for details.

L | py(1 = py) — ay(1 = gy) |< py(1 — py).

2. | py(1 = py) — ay(1 = qy) | /(py(1 = py)) = 0.

It was experimentally verified that for all the 18 distributions for 1y = 1 arising from SMALLPRESENT |
Py(1=py) = ay(1 = an) [< py(1 —py) but | py(1—py) = gy(1 —ay) | /(py(1 —pp)) = 1. As a consequence, the data
complexities computed from these distribution give meaningless results, i.e., in all the 18 cases the values of the
data complexities are less than 1.

Comparison to the LLR based data complexity from [7]: The problem with the LLR-~based approach
from [7] is different. It turns out that putting Ps = 0.5 in the LLR-based data complexity expression given in [7]
leads to meaningless values, while the expression provides meaningful values of data complexity for higher values
of Pg. This indicates that the data complexity expression obtained from the LLR-based approach is invalid
for Pg = 0.5. An earlier LLR-based data complexity expression for linear cryptanalysis [10, Theorem 2] had
explicitly required Pg > 0.5. Though this is not mentioned in the analysis in [7], it seems that this condition
still applies. We investigate this issue in further details.

Table [3| compares the data complexity given in [7] to the one given by for P¢ = 0.1,0.2,...,0.9. The
other settings of the experiment remain the same as before, i.e., we consider the same 18 distributions and fix
the advantage a = 20. In the table, N7;r denotes the data complexity that was given in [7, Theorem 1].

We note an anomalous behaviour for Nppr. It is clear that the data complexity should be a non-decreasing
function of the success probability, i.e., if the value of Pg is increased, then the amount of plaintext-ciphertext
pairs required should not be lesser. To take an example, the data complexity required to ensure success probability
at least 0.2 also ensures that the success probability is at least 0.1. However, N1 r does not follow this behaviour.
From Table [3] it can be noted that as Pg increases from 0.1 to 0.9, the data complexity first decreases reaching
its minimum at Pg = 0.5 and then again increases. This phenomenon is possibly due to unexplained error in the
normal approximation used in [7]. In contrast, we note that Nope, is a monotone increasing function of Pg as is
to be expected.

It is interesting to note that between the different approximate data complexity expressions, the one in [6]
requires Pg to be close to 0.5; the LLR-based data complexity expression in [7] requires Pg > 0.5 and the chi-
square based data complexity expression does not apply to SMALLPRESENT. This indicates various troublesome
issues in using approximations. As mentioned earlier, the analysis of the data complexity carried out in this paper
does not require any approximations and applies for all values of Pg.

8 Conclusion

This work considered multiple differential cryptanalysis without any restrictions on the input and the output
differences. Expressions for data complexities were derived. These are obtained as closed-form formulas in terms
of the success probability and the advantage of an attack. A main point of the work was to avoid making any
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approximation. As a result the obtained expressions are generally applicable. Another important advantage of
the new analysis is that it is possible to estimate the data complexity for any value of the success probability.

A Concentration Inequalities

A.1 Chernoff Bounds

We briefly recall some results on tail probabilities of sums of Poisson trials that will be used. These results can
be found in standard texts such as [I8] [17] and are usually referred to as the Chernoff bounds.

Theorem 4. Let X1, Xo,..., X be a sequence of independent Poisson trials such that for1 <i < X\, Pr[X; =1] =
pi. Then for X = Zi)‘:l X; and p=FE[X] = Zf‘zl p; the following bounds hold:

e Y “
e 7 ’
Forany0 <~y <1, PriX <(1—7)u| < ((1—7)(1—7)> . (27)

These bounds can be simplified to the following form.

Forany 0 <~y <1, Pr[X > (1+~y)u] < e #7°/3, (28)
Forany0 <~y <1, PriX <(1—~)u] < e H72, (29)

A.2 Hoeffding Inequality

we briefly recall Hoeffding’s inequality for sum of independent random variables. The result can be found in
standard texts such as [17].

Theorem 5 (Hoeffding Inequality). Let, X1, Xa,..., X be a finite sequence of independent random variables,
such that for alli = 1,..., X, there exists real numbers a;,b; € R, witha; < b; anda; < X; < b;. Let X = Z;‘Zl X;.
Then for any positive t > 0,

PriX — E[X]>t] < exp (—ii) , (30)

Pr[X — E[X] < —t] < exp (—ii) ) (31)
2

Pr|X — B[X]|> 1] < 2exp (—5;) ; (32)

where Dy = Z?Zl(bi - ai)z-

B On the Expressions for Data Complexity in [6]

The work by Blondeau and Gérard [6] provides expressions relating success probability, advantage and the data
complexity of a mutliple differential cryptanalysis. These are given in Corollaries 1 and 2 of [6] and have been
earlier stated in this work as Equations and @]) In this section, we consider these expressions further.

The expressions for G(z) (and G*(z)) required for (9)) are given in Proposition 1 of [6]. We reproduce these
expressions below.
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From Proposition 1 of [6]. Let Gp(7,q) be the cumulative distribution function of the Poisson distribution
with parameter ¢N;. Let G_(7,q) and G4 (7,q) be as defined in [6, Theorem 3]. Define G(r,q) as

def G*(T7Q) 1fT<q_3 Q/Nsa
G(rq) = { 1-Gy(r,q) if7>q+3-/q/N, (33)
Gp(T,q) otherwise.

The functions G and G* are defined as follows.

G*(n) ¥ Grp) and  Glr) € G(rp), (34)
where
(1,9) o
. Zm‘ D« ) d - Zi’jp(w) N

The functions G_(7,q) and G (7, ¢q) used in the above definition of G(x) and G*(x) are given in [6, Theorem 3]
as follows:

def  _N,D(7|lg) . gv1-7 1
G- (7—7 q) = ¢ (g—7)V2mT N5 \/871'7'Nsi| ’ (35)
def  _N,D(7|lq) . (1-9vT 1
G_ (7_7 Q) € (T—q)\/Qﬂ'Ns(l—T) + V8rTNs | °
In the above,
N, = 2o (36)

where N is the data complexity and D(-) is the Kullback-Liebler divergence.
It is required to combine @, , , , and to obtain a single expression involving N, Pg

and a. Then, it is required to solve this expression for N in terms of Pg and a. It is not possible to obtain any
meaningful closed form expression for N. Numerical methods to solve for N may be possible, but, even this is
not clear.
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Data Complexities for Data Complexities for || Data Complexities for
P Input Theoretical Probability 40-bit Probability 80-bit Probability
s Difference Estimates Estimates Estimates
Nrrtr | Ncoher Nrtr | Ncher Nrrr | Ncher
0x3 2.91x108 5.60x107 1.94x108 | 3.73x107 || 2.08x10% | 4.00x107
0x7 1.61x108 | 3.10x107 1.23x10% | 2.36x107 || 1.46x107 | 2.80x10°
01 0xD 2.27x10% | 4.36x107 1.60x10% | 3.09x107 || 1.78x10% | 3.42x107
0x5 2.70x10% | 5.20x107 1.90x10% | 3.65x107 |[ 1.89x10% | 3.64x107
0xB 2.88% 108 5.55x107 1.88x10% | 3.61x107 || 2.03x10% | 3.92x107
0xF 1.67x108 | 3.21x107 1.25%x10% | 2.41x107 || 1.28x10% | 2.46x107
0x3 1.25x10% | 1.19x10% 8.35x107 [ 7.90x107 [ 8.96x107 | 8.47x107
0x7 6.94x107 | 6.56x107 5.30x107 | 5.01x107 | 6.29x10% | 5.93x10°
0.2 0xD 9.77x107 | 9.24x107 6.92x107 | 6.54x107 || 7.66x107 | 7.24x107
0x5 1.17x108 1.10x108 8.18x107 | 7.73x107 |[ 8.15x107 | 7.71x107
0xB 1.24x10% | 1.17x10% 8.09x107 | 7.65x107 || 8.77x107 | 8.29x107
0xF 7.19x107 | 6.79%x107 5.41x107 | 5.11x107 || 5.51x107 | 5.21x107
0x3 4.87x107 1.90x 108 3.24x107 | 1.26x10% [[ 3.48x107 [ 1.35x10%
0x7 2.69%107 1.05x108 2.06x107 | 8.00x107 || 2.44x10° | 9.48x10%
03 0xD 3.79x107 | 1.48x10°% 2.69x107 | 1.05x108 [ 2.98x107 | 1.16x10°%
0x5 4.53%x107 1.76x108 3.18x107 | 1.24x10% |[ 3.17x107 | 1.23x10%
0xB 4.82%107 1.88x 108 3.14x107 | 1.22x10% || 3.41x107 | 1.33x10%
0xF 2.79%x107 1.09x108 2.10x107 | 8.17x107 || 2.14x107 | 8.32x107
0x3 1.14x107 | 2.71x10% 7.57x10% | 1.81x10% ][ 8.11x10° | 1.94x10%
0x7 6.29%10° 1.50x 108 4.80x10% | 1.15x10% 5.70x10° | 1.36x107
04 0xD 8.85%x10% | 2.11x108 6.27x10% | 1.50x10% || 6.94x10° | 1.66x10%
0x5 1.06x107 | 2.52x10% 7.41x10° | 1.77x108 7.39x10% | 1.76x103
0xB 1.13x107 | 2.69x10% 7.33x10°% | 1.75x10% || 7.95x10% | 1.90x10%
0xF 6.51x10° 1.56x108 4.90%x10% | 1.17x10% || 4.99x10% | 1.19x108
0x3 0.35 3.68x10°% 0.15 2.45x108 0.18 2.63x10°%
0x7 0.12 2.04x108 0.07 1.56x 108 0.00074 1.84x107
05 0xD 0.19 2.87x108 0.09 2.03x108 0.11 2.25x108
0x5 0.30 3.42x108 0.15 2.40x108 0.15 2.39x108
0xB 0.34 3.65x10°% 0.14 2.37x108 0.17 2.58x10%
0xF 0.13 2.11x108 0.07 1.59x108 0.07 1.62x108
0x3 1.14x107 | 4.87x108 7.57x108 | 3.24x108 [ 8.12x10% | 3.48x10%
0x7 6.29%10° 2.69x10% 4.80x10% | 2.06x108 5.70x10° | 2.43x107
0.6 0xD 8.86x10% | 3.79x108% 6.27x10% | 2.69x10% || 6.95x10° | 2.97x103
0x5 1.06x107 | 4.53x108 7.42x108 | 3.18x10% | 7.39x10% | 3.16x10%
0xB 1.13x107 | 4.82x10% 7.33x10° | 3.14x108 7.95x10° | 3.41x108
0xF 6.51x10° 2.79x108 4.90x10% | 2.10x10% |[ 4.99x10°% | 2.14x10%
0x3 4.87x107 [ 6.40x10°% 3.24x107 | 4.26x10% || 3.48x107 | 4.57x10%
0x7 2.69%x107 | 3.54x108 2.06x107 | 2.70x103 2.44x10% | 3.20x107
0.7 0xD 3.79x107 | 4.98x108% 2.69x107 | 3.53x10% [ 2.98x107 | 3.91x10°%
0x5 4.53x107 | 5.95x10°% 3.18x107 | 4.17x10% || 3.17x107 | 4.16x10%
0xB 4.83x107 | 6.34x10°% 3.14x107 | 4.12x10% || 3.41x107 | 4.48x10%
0xF 2.79%x107 | 3.67x10% 2.10x107 | 2.76x103 2.14x107 | 2.81x108
0x3 1.25x108 | 8.55x108 8.35x107 [ 5.69x10% [[ 8.96x107 | 6.10x10%
0x7 6.94x107 | 4.73x10°% 5.30x107 | 3.61x10% || 6.29x10% | 4.28x107
08 0xD 9.77x107 | 6.66x108 6.92x107 | 4.72x10% || 7.67x107 | 5.22x10%
0x5 1.17x10% | 7.95x103 8.18x107 | 5.58x10% || 8.16x107 | 5.56x10%
0xB 1.24x108 | 8.47x108 8.09x107 | 5.51x10% || 8.78x107 | 5.98x10%
0xF 7.19x107 | 4.90x108 5.41x107 | 3.69x103 5.51x107 | 3.76x103
0x3 2.91x108 1.22x109 1.94x10% | 8.15x108 2.08x10% | 8.73x108
0x7 1.61x108 | 6.77x108 1.23%x10% | 5.17x10% || 1.46x107 | 6.12x107
0.9 0xD 2.27x108 9.53x10% 1.60x10% | 6.75x108 1.78x10% | 7.47x108
0x5 2.70x10% | 1.14x109 1.90x10% | 7.98x10% || 1.89x10% | 7.95x103
0xB 2.88%x10% | 1.21x109 1.88x10% | 7.89x10% || 2.03x10% | 8.56x103
0xF 1.67x108 | 7.01x108 1.25%x108 | 5.27x10% || 1.28x10% | 5.37x108

Table 3: Table showing the comparison between Nyrr and Ngpe, for SMALLPRESENT with vy = 1, Py =

0.1,0.2,...0.9 and a = 20.
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