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Abstract. Block-cipher-based authenticated encryption has obtained
considerable attention from the ongoing CAESAR competition. While
the focus of CAESAR resides primarily on nonce-based authenticated
encryption, Deterministic Authenticated Encryption (DAE) is used in
domains such as key wrap, where the available message entropy moti-
vates to omit the overhead for nonces. Since the highest possible security
is desirable when protecting keys, beyond-birthday-bound (BBB) secu-
rity is a valuable goal for DAE. In the past, significant efforts had to be
invested into designing BBB-secure AE schemes from conventional block
ciphers, with the consequences of losing efficiency and sophisticating se-
curity proofs.

This work proposes Deterministic Counter in Tweak (DCT), a BBB-
secure DAE scheme inspired by the Counter-in-Tweak encryption scheme
by Peyrin and Seurin. Our design combines a fast ǫ-almost-XOR-univer-
sal family of hash functions, for ǫ close to 2−2n, with a single call to a
2n-bit SPRP, and a BBB-secure encryption scheme. First, we describe
our construction generically with three independent keys, one for each
component. Next, we present an efficient instantiation which (1) requires
only a single key, (2) provides software efficiency by encrypting at less
than two cycles per byte on current x64 processors, and (3) produces only
the minimal τ -bit stretch for τ bit authenticity. We leave open two minor
aspects for future work: our current generic construction is defined for
messages of at least 2n− τ bits, and the verification algorithm requires
the inverse of the used 2n-bit SPRP and the encryption scheme.
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1 Introduction

Deterministic Authenticated Encryption. A secure authenticated encryp-
tion (AE, hereafter) scheme is nowadays widely understood as a construction
which produces ciphertexts that are indistinguishable from random bitstrings
and infeasible to forge. Modern AE schemes are mostly nonce-based [33], i.e.,



the user is responsible to supply an additional nonce that must be unique for ev-
ery encryption. In contrast, Deterministic Authenticated Encryption (DAE) [34]
is employed for settings where it is more senseful to exploit existing entropy or
redundancy in the inputs to avoid the overhead of nonces, e.g., for wrapping
cryptographic keys.

Existing Designs. A variety of DAE and MRAE schemes has been proposed
since, e.g., Haddoc [6], BCTR [9], DAEAD [10], MRO/MRS/MROS [13],
GCM-SIV [14], BTM [20], HBS [21], Deoxys [23], Joltik [24], HS1-SIV [25],
MiniCtr [28], MR-OMD [32], and SIV [34]. The naturally raising question is:
Which unsolved problem requires the proposal of a novel mode?
Block-cipher-based DAE schemes are inherently efficient. While a myriad of
block ciphers is available, the dominating standard state size is still 128 bits,
which renders the privacy guarantees of existing DAE schemes built upon them
void already after encrypting about 264 blocks under the same key. However,
since the highest attainable security is desirable for the protection of crypto-
graphic keys, beyond-birthday-bound (BBB) security is a highly valuable goal
for DAE schemes.
At least two straight-forward approaches for achieving BBB security exist in
this context: first, by increasing the block size of the underlying cipher [20,21]
or second, by using a wide-block permutation or compression function instead
[6,13,32]. Though, previous wide-block constructions possessed significant disad-
vantages in terms of memory and performance, among which the latter aspect
was attempted to be compensated by optimistic reduction of the underlying
primitive [6,13], which implies the need for further cryptanalysis. The present
work shows that neither the number of rounds nor the state size of the underly-
ing cipher need to be modified to achieve our goal in a performant manner with
the help of recent advances in the domain of tweakable block ciphers.

Relations to Wide-Block Ciphers. The birthday-bound limit is also relevant
for wide-block ciphers and Tweakable Enciphering Schemes (TES). TES are
closely related to DAE: Hoang et al. [18] showed that the Encode-then-Encipher
[4] approach can be used to transform an STPRP-secure (Strong Tweakable
Pseudo-Random Permutation) TES into a provably robust AE scheme using
(a hash of) the associated data as tweak. Such designs could offer even more
security than necessary for DAE, i.e., best achievable AE security [2,18]. Thus,
one could theoretically adapt any existing BBB-secure TES scheme for DAE
[26,27,40]. Though, for the popular approaches Hash-Encrypt-Hash [38], Hash-
Counter-Hash [41], and Protected IV [40], this strategy would also imply more
operations than necessary for DAE, i.e., three passes over the plaintext. While
Encrypt-Mix-Encrypt-based [17] designs employ only two passes, a BBB-secure
variant of Encrypt-Mix-Encrypt with a 2n-bit primitive would be considerably
less efficient than our proposal. Therefore, a motivating observation of this work
is the following: one can encode τ bits of redundancy into the message, encrypt
it with the Hash-Counter-Hash approach reduced from three to two passes, and
can obtain a BBB-secure DAE scheme.
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A recent proposal is Simpira [15,16], a family of 128b-bit cryptographic per-
mutations based on the AES round function. In contrast to the “modes” above,
Simpira is a primitive on its own. The initial version [15] based on a flawed gen-
eral Feistel structure for b = 4, which was fixed in Simpirav2 [16]. Though, the
prior attacks [12,36] indicated that Simpira may require more intensive stud-
ies to become fully mature. While our example instantiation employs its fixed
version with b = 2 blocks for which no attacks are known, it can be seemlessly
replaced by another secure 2n-bit SPRP.

Contribution. This work proposes Deterministic Counter in Tweak (DCT), a
BBB-secure DAE scheme that combines an ǫ-almost-XOR-universal (AXU) fam-
ily of hash functions, for ǫ ≈ O(2−2n), with a single call to a 2n-bit SPRP, and
a 2n-block-secure encryption scheme. First, we propose our construction generi-
cally with three independent keys, one for each component. Next, we introduce
an efficient instantiation which (1) provides software efficiency by encrypting at
less than two cycles per byte on current x64 processors, (2) requires only a single
key, and (3) produces only the minimal τ -bit stretch. We leave open two minor
aspects for future work: our current generic construction is defined for messages
of ≥ 2n−τ bits, and the verification algorithm requires the inverse of the SPRP

and the encryption scheme. Though, since our instantiation uses a Feistel-based
two-block construction as 2n-bit SPRP and counter mode as encryption scheme,
its decryption can fully reuse the components for encryption.

Remark 1. We stress that the HBS [21] and BTM [20] constructions by Iwata
and Yasuda are similar to our work, and that Iwata and Yasuda already discussed
BBB-secure adaptions. Both their BBB variants suggested the use of a 2n-bit
block cipher for encryption. Their earlier concept employed a (clearly pointed
out by the authors to be inefficient) six-round Feistel network [21]; their later
construction [20] used a 2n-bit tweakable block cipher by Minematsu [26]. Both
designs still required several keys, lacked software efficiency, and produced a
2n-bit stretch. This work addresses their open questions.

Outline. The rest of this paper is structured as follows: after briefly reviewing
preliminaries, Section 3 describes the generic DCT framework. Section 4 recalls
relevant security notions. Section 5 summarizes our security analysis, Section 6
details our instantiation, and Section 7 discusses our proposal and concludes.

2 Preliminaries

We use lowercase letters x, y for indices and integers, uppercase letters X,Y for
binary strings and functions, and calligraphic uppercase letters X ,Y for sets.
ε denotes the empty string. We denote the concatenation of binary strings X
and Y by X ‖ Y and the result of their bitwise XOR by X ⊕ Y . We indicate
the length of X in bits by |X |, and write Xi for the i-th block, X [i] for the
i-th most significant bit of X , and X [i..j] for the bit sequence X [i], . . . , X [j].
X և X denotes that X is chosen uniformly at random from the set X . We
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Fig. 1: The encrpytion process of DCT (right). The encoding (left) encodes τ bits
of redundancy into the message M and splits it into a 2n-bit part ML and a variable-
length part MR such that the redundancy is fully contained in ML.

define three sets of particular interest: Perm(X ) be the set of all permutations

on X , P̃erm(T ,X ) the set of all tweaked permutations over X with associated
non-empty tweak space T , and Func(X ,Y) the set of all functions F : X → Y.

We define by X1, . . . , Xj
x
←− X the injective splitting of the string X into x-

bit blocks such that X = X1 ‖ · · · ‖Xj , with |Xi| = x for 1 ≤ i ≤ j − 1, and
|Xj | ≤ x. For an event E, we denote by Pr[E] the probability of E. We write
〈x〉n for the binary representation of an integer x as an n-bit string, or short 〈x〉
if n is clear from the context, in big-endian manner, i.e., the decimal 〈135〉 is
encoded to (00..00100000111)2.

3 Generic Definition of DCT

This section defines the generic DCT construction. Fix integers n, τ ≥ 1 with
τ ≤ 2n, and derive µ = 2n − τ . Let K1, K2, and K3 be non-empty key spaces
and K = K1 × K2 × K3. Let A ⊆ {0, 1}∗ denote the associated-data space,
M⊆ {0, 1}≥µ the message space, and C ⊆ {0, 1}≥2n denote the ciphertext space,
respectively. Let H =

{
H |H : A× {0, 1}∗ → {0, 1}2n

}
be a family of ǫ-AXU

hash functions, indexed by elements from K1. Let E : K2 × {0, 1}
2n → {0, 1}2n

denote a keyed permutation, and let Π = (E ,D) be an IV-based encryption
scheme (covered in the next section) with a non-empty key space K3 and an IV
space IV = {0, 1}2n.

Encoding. Let Encode : N0×M→ {0, 1}
2n×{0, 1}∗ be an injective function

that takes an integer τ ∈ N0 and a bit string M as inputs and produces two
outputs (ML,MR) such that |ML| = 2n and |MR| = |M |−µ. Since Encodeτ (·)
is injective, there exists a corresponding unique decoding function Decode :
N0 × {0, 1}

2n × {0, 1}≥µ → {0, 1}∗ ∪ {⊥} such that, for a fixed τ ∈ N0 and all
X,Y ∈ {0, 1}2n×{0, 1}∗, Decodeτ (X,Y ) returns the unique M ∈M such that
Encodeτ (M) = (X,Y ) if such an M exists, and ⊥ otherwise.
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Algorithm 1 Encryption and decryption of the generic DCT construction.

1: function ẼK1,K2,K3(A,M)
2: (ML,MR)← Encodeτ (M)
3: X ←HK1(A,MR)
4: Y ←ML ⊕X

5: CL ← EK2(Y )
6: CR ← EK3(CL,MR)
7: return (CL ‖CR)

11: function D̃K1,K2,K3(A,C)
12: (CL, CR)← C

13: MR ← DK3(CL, CR)
14: X ←HK1(A,MR)
15: Y ← E

−1
K2

(CL)
16: ML ← X ⊕ Y

17: return Decodeτ (ML,MR)

Encryption. For encryption, Encodeτ (M) encodes τ bits redundancy into an
input message M and splits the result into a 2n-bit part ML, and a variable-
length part MR, such that the redundancy is fully contained in ML.1 The latter
part, MR, is hashed together with the associated data A to a 2n-bit hash value:
X ← HK1(A,MR). Next, X is XORed to ML, producing Y ← X ⊕ML, and
the result Y is encrypted by E to the fixed-length part of the ciphertext: CL ←
EK2(Y ). This composition of a hash function and a final call to a PRF is a well-
known method for constructing an efficient PRF [8]. Next, the PRF output CL

is used as IV for an encryption scheme Π = (E ,D) which enciphers the variable-
length part of the message: CR ← EK3(CL,MR). Finally, (CL ‖CR) is returned
as the ciphertext. Figure 1 illustrates the encryption process schematically.

Decryption. For decryption, the ciphertext C is split into (CL, CR) ← C,
such that |CL| = 2n. The variable-length part CR is decrypted to MR ←
DK3(CL, CR). Next, the scheme evaluates X ← HK1(A,MR) and Y ← E−1K2

(CL),
and XORs both results: ML ← X ⊕ Y . Decodeτ (ML,MR) can either effi-
ciently remove the redundancy from ML and determine M with Encodeτ (M) =
(ML,MR) if such an M exists; otherwise, it can efficiently detect the invalid re-
dundancy. The decryption returns M in the former case, and ⊥ in the latter.

Limitations. We define DCT for messages of length at least µ bits, and cipher-
texts of at least 2n bits length. For simplicity, we assume that, whenever smaller
plain- or ciphertexts are passed to the encryption or decryption algorithms, re-
spectively, the response will be ⊥. We are aware of this current limitation of our
proposal, and work actively to overcome it.

Definition 1 (Generic DCT). Given the definitions above, we define the

DAE scheme DCTH,E,Π = (Ẽ , D̃) with deterministic encryption algorithm Ẽ :

K × A ×M → C, and deterministic decryption algorithm D̃ : K × A × C →
M∪ {⊥}, as given in Algorithm 1.

For all K ∈ K, A ∈ A, M ∈ M, and C ∈ C holds: if ẼAK(M) = C, then

D̃A
K(C) = M , and if D̃A

K(C) = M 6= ⊥, then ẼAK(M) = C.

1 Note that encoding redundancy into MR would require a chosen-ciphertext-secure
encryption scheme Π .
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4 Security Notions

4.1 Adversaries and Advantages

An adversary A is an efficient Turing machine that interacts with a given set
of oracles that appear as black boxes to A. We denote by A

O the output of A
after interacting with some oracle O. We write

∆
A

(OL;OR) :=
∣∣∣Pr

[
A
OL

⇒ 1
]
− Pr

[
A
OR

⇒ 1
]∣∣∣

for the advantage of A to distinguish between oracles OL and OR. All probabili-
ties are defined over the random coins of the oracles and those of the adversary, if

any. We write Adv
X
F (q, ℓ, t) := maxA

{
Adv

X
F (A)

}
for the maximal advantage

over all X-adversaries A on F that run in time at most t and pose at most q
queries of at most ℓ blocks in total to its oracles. Wlog., we assume that A never
asks queries to which it already knows the answer.
If the oracles Oi, Oj represent a family of algorithms indexed by inputs, the

indices must match. For example, when ẼAK(M) and D̃A
K(C) represent encryption

and decryption algorithms with a fixed key K and indexed by A, then ẼK →֒ D̃K

says that A queries first ẼAK(M) and later D̃A
K(C). We often write ẼAK(M) and

D̃A
K(C) as short forms for Ẽ(K,A,M) and D̃(K,A,C).

We define ⊥, when in place of an oracle, to always return the invalid symbol ⊥.
We define $O for an oracle that, given an input X , chooses uniformly at random
a value Y equal in length of the expected output, |Y | = |O(X)|, and returns Y .
We assume that $O performs lazy sampling, i.e., $O(X) returns the same value
Y when queried with the same input X . We often omit the key for brevity, e.g.,

$Ẽ(X) will be short for $ẼK (X).

4.2 Security Definitions for Universal Hashing

Definition 2 (ǫ-Almost-(XOR-)Universal Hash Functions). Let X ,Y ⊆
{0, 1}∗. Let H = {H |H : X → Y} denote a family of hash functions. H is called
ǫ-almost-universal (ǫ-AU) iff for all distinct elements X,X ′ ∈ X , it holds that
PrHևH [H(X) = H(X ′)] ≤ ǫ.
H is called ǫ-almost-XOR-universal (ǫ-AXU) iff for all distinct elements X,X ′ ∈
X and Y ∈ Y, it holds that PrHևH[H(X)⊕H(X ′) = Y ] ≤ ǫ.

In [7], Boesgaard et al. showed the following theorem.

Theorem 1 (Theorem 3 from [7]). Let X ,Y ⊆ {0, 1}∗. Further, let H =
{H |H : X → Y} be a family of ǫ-AXU hash functions. Then, the family H′ =
{H ′ |H ′ : X × Y → Y} with H ′(X,Y ) := H(X)⊕ Y , is ǫ-AU.

4.3 Security Definitions for Functions and Ciphers

Definition 3 ((Strong) PRP Advantage). Fix integers n, k ≥ 1. Let E :
{0, 1}k × {0, 1}n → {0, 1}n be a block cipher and A (A′) be a computationally
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bounded adversary with access to an oracle (two oracles). Let K և {0, 1}k and
π և Perm({0, 1}n). Then, the PRP and SPRP advantages of A and A

′ with
respect to E are defined as Adv

PRP

E (A) := ∆A(EK ;π) and Adv
SPRP

E,E−1(A′) :=

∆A′(EK , E−1K ;π, π−1), respectively.

Definition 4 ((Strong) Tweakable PRP Advantage). Fix two integers

n, k ≥ 1. Let T denote a non-empty set. Let Ẽ : {0, 1}k × T × {0, 1}n →
{0, 1}n be a tweakable block cipher and A (A′) a computationally bounded ad-
versary with access to an oracle (two oracles). Let K և {0, 1}k and π̃ և

P̃erm(T , {0, 1}n). Then, the TPRP and STPRP advantages of A and A
′ with

respect to Ẽ are defined as Adv
TPRP

Ẽ
(A) := ∆A(ẼK ; π̃) and Adv

STPRP

Ẽ,Ẽ−1 (A′) :=

∆A′(ẼK , Ẽ−1K ; π̃, π̃−1), respectively.

4.4 Security Definitions for IV-Based Encryption Schemes

An IV-based encryption scheme [3] is a tuple Π = (E ,D) of encryption and
decryption algorithms E : K × IV ×M → C and D : K × IV × C → M, with
associated non-empty key space K, non-empty IV space IV , and whereM, C ⊆
{0, 1}∗ denote message and ciphertext space, respectively. We assume correctness
for all K ∈ K, IV ∈ IV , and M ∈ M, i.e., if EIVK (M) = C, then DIV

K (C) =
M . Moreover, we assume tidiness, i.e., if DIV

K (C) = M , then EIVK (M) = C.
The security of IV-based encryption schemes is defined as the distinguishing
advantage from random bits. For every query M , the encryption oracle samples
uniformly at random IV և IV and computes C ← EIVK (M). The real oracle
outputs (IV, C), whereas $E outputs |(IV ‖C)| random bits.

Definition 5 (ivE Advantage). Let Π = (E ,D) be an IV-based encryption
scheme and K և K. Let A be a computationally bounded adversary with access
to an oracle. Then, the ivE advantage of A with respect to Π is defined as
Adv

ivE

Π (A) := ∆A(EK ; $E).

4.5 Security Definitions for DAE Schemes

A deterministic AE scheme [34] is a tuple Π̃ = (Ẽ , D̃) of deterministic algorithms

Ẽ : K×A×M→ C and D̃ : K×A×C →M∪{⊥} with associated non-empty key
space K, associated-data space A, and message/ciphertext spaceM, C ⊆ {0, 1}∗.

For each K ∈ K, A ∈ A, M ∈ M, ẼAK(M) maps (A,M) to an output C

such that |C| = |M | + τ for fixed stretch τ . D̃A
K(C) outputs the corresponding

message M iff C is valid, and ⊥ otherwise. We assume correctness, i.e., for all
K,A,M ∈ K × A ×M, it holds that D̃A

K(ẼAK(M)) = M . Moreover, we assume

tidiness, i.e., if there exists an M such that D̃A
K(C) = M , then it holds that

ẼAK(D̃A
K(C)) = C.

Definition 6 (detPriv, detAuth, and DAE Advantages [34]). Let

Π̃ = (Ẽ , D̃) be a DAE scheme and K և K. Let A1, A2, A3 denote computation-
ally bounded adversaries; A1 has access to one oracle; A2 and A3 have access to
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two oracles O1 and O2 each. A2 and A3 never submit queries O1 →֒ O2. Then,
the detPriv, detAuth, and DAE advantages of A1, A2, and A3 with respect
to Π̃, are defined as

Adv
detPriv

Π̃
(A1) := ∆

A1

(ẼK ; $Ẽ),

Adv
detAuth

Π̃
(A2) := Pr

[
A
ẼK ,D̃K

2 forges
]
, and

Adv
DAE

Π̃
(A3) := ∆

A3

(ẼK , D̃K ; $Ẽ ,⊥),

where “forges” means that D̃K returns anything other than ⊥ for a query.

Theorem 2 (Proposition 8 in [35]). Let Π̃ = (Ẽ , D̃) be a DAE scheme and

K և K. Let A be a computationally bounded DAE adversary on Π̃ with ac-
cess to two oracles O1 and O2 such that A never queries O1 →֒ O2, and A

runs in time at most t and submits at most q queries of at most ℓ blocks in
total. Then, there exist a computationally bounded detPriv adversary A1 and
a computationally bounded detAuth adversary A2 both on Π̃, such that

Adv
DAE

Π̃
(A) ≤ Adv

detPriv

Π̃
(A1) +Adv

detAuth

Π̃
(A2),

where A1 and A2 make at most q queries of at most ℓ blocks and run in time
O(t) each.

5 Security Results for the Generic DCT Construction

This section summarizes the security bounds for the generic DCT construction.

Theorem 3 (DAE Security of Generic DCT). Let Π̃ = DCTH,E,Π be as
defined in Definition 1. Let A be a computationally bounded DAE adversary on
Π̃ that asks at most q queries of at most ℓ blocks in total, and runs in time at
most t. Then, Adv

DAE

Π̃
(A) is upper bounded by

3q2ǫ

2
+

2q2

22n
+

3qǫ · 22n

2τ
+ 3 ·Adv

SPRP

E,E−1 (q, O(t)) + 2 ·Adv
ivE

Π (q, ℓ, O(t)).

The proof of Theorem 3 follows from Theorem 2 and the individual bounds
for the detPriv and detAuth security in Lemmata 1 and 2. The proofs are
deferred to Appendices A and B.

Lemma 1 (detPriv Security of Generic DCT). Let Π̃ = DCTH,E,Π

be as defined in Definition 1. Let A be a computationally bounded detPriv

adversary on Π̃ that submits at most q queries of at most ℓ blocks in total and
runs in time at most t. Then

Adv
detPriv

Π̃
(A) ≤ q2

(
ǫ+

2

22n

)
+ 2

(
Adv

PRP

E
(q, O(t)) +Adv

ivE

Π (q, ℓ, O(t))
)
.
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Lemma 2 (detAuth Security of Generic DCT). Let Π̃ = DCTH,E,Π

be as defined in Definition 1. Let A be a computationally bounded detAuth

adversary on Π̃ that submits at most q queries of at most ℓ blocks in total, and
runs in time at most t. Then

Adv
detAuth

Π̃
(A) ≤ ǫ ·

(
q2

2
+

3q · 22n

2τ

)
+Adv

SPRP

E,E−1 (q, O(t)).

6 Instantiation

Our proposed instantiation of DCT requires (1) an efficient 2n-bit SPRP, (2) a
beyond-birthday-bound-secure IV-based encryption scheme, and (3) an ǫ-AXU
family of hash functions. This section describes the components in detail.

6.1 Components

Efficient Tweakable Block Ciphers. The TWEAKEY framework by Jean et
al. [22] provides a set of software-efficient tweakable block ciphers based on the
AES. Therefore, they allow to exploit AES native instructions on current x64
processor architectures. Among the three available TWEAKEY ciphers Kiasu-
BC, Joltik-BC, and Deoxys-BC, we concentrate on Deoxys-BC-128-128 [23]

for its support of 128-bit tweaks. In the remainder, we denote it as Ẽ : K×T ×
{0, 1}n → {0, 1}n, with a state size of n = 128 bits, and with K = T = {0, 1}n.

2n-bit SPRP. Simpira [15] is a recently proposed family of 128b-bit crypto-
graphic permutations based on the AES round function by Gueron and Mouha.
We employ Simpira with two-block inputs (b = 2), which is similar to a Feis-
tel network with 15 rounds (the output halves are swapped). The round func-
tion F consists of two AES rounds (an AES round is also denoted by aesenc

in the pseudocode); the first AES round in F uses a round counter c and
b = 2 as key; the second round an all-zeroes key. The construction is used
in an Even-Mansour design, so that a 256-bit ciphertext is computed by CL ←
Simpira(Y ⊕ (K ‖ 0128)) ⊕ (K ‖ 0128), with a 128-bit secret key K, and where
Y ←ML ⊕X .
Since it is hard to prove the security of Simpira, a possible provably secure 2n-
bit SPRP would be the Ψ3 construction by Coron et al. [11], which consists of
three invocations of a tweakable block cipher; though, this construction is a little
less performant than our current choice and requires the inverse for decryption.

Encryption Scheme. The recently proposed CTRT mode by Peyrin and
Seurin [29] is an IV-based encryption scheme that can provide security for
close to 2n blocks encrypted under the same key. Originally, the authors pro-
posed it as a nonce-IV -based mode that requires an n-bit nonce V as input
to the block cipher Ẽ and an n-bit IV as tweak that is converted by a regu-
lar function2 Conv : {0, 1}n → T to an (n − d)-bit tweak for a fixed d ≤ n.

2 F : X → Y is called regular iff all outputs Y ∈ Y are produced by an equal number
of preimages X ∈ X .
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Fig. 2: The components of our instantiation of DCT: the two-block Simpira construc-
tion [15] for E (left) and the CTRT[Ẽ] mode [29] (right) for E . F denotes two AES

rounds used in the Simpira construction.

Basically, CTRT represents a counter mode built upon a tweakable block ci-
pher, where only the tweak is incremented for each block. We denote encryp-
tion and decryption algorithms, instantiated with a tweakable block cipher Ẽ,
by CTRT[Ẽ] = (CTRT.E [Ẽ],CTRT.D[Ẽ]). The i-th message block Mi is en-

crypted to a ciphertext block Ci by Ci ← Ẽ
D ‖T+i
K (V )⊕Mi, where D ∈ {0, 1}d

denotes the domain. For our instantiation of DCT, we adopt the purely IV-based
variant of CTRT from [29, Appendix C], with a minor modification: to eliminate
carry-bit concerns, we XOR the counter to the tweak instead of adding it modulo
2n. Clearly, since the IV is expected to be random, this modification does not
change the probability distribution of tweaks to occur. Thus, the bounds from
[29] apply to our adapted mode in a straight-forward manner. Our variant is
defined in Algorithm 2; the encryption process is depicted in Figure 2.
Similar to [23,29], we encode a domain into the tweak to simplify our security

analysis and to avoid multiple keys for the instances of Ẽ inside CTRT[Ẽ] and

for key generation. For the calls to Ẽ inside CTRT[Ẽ], we set the most significant
bit to 1 as domain and truncate the most significant bit of the IV U to derive
the tweak: T ← U [2..n].

Universal Hash Function. We considered several approaches for efficient
hashing. Recent works pointed out weak-key issues [1,30,37] of Horner-based
polynomials (e.g. GHASH or Poly1305) that modern AE schemes should avoid,
which motivated our choice of BRW polynomials [5,31]. If it will turn out that
similar attacks apply also to Bernstein-Rabin-Winograd (BRW) polynomials,
one can easily switch to a different family of hash functions with similar security
guarantees as our construction.
BRW polynomials require only a single n-bit key, half the number of multi-
plications compared to Horner-based polynomials, and a negligible number of
⌈log2(m)⌉ additional squarings. Hereafter, we denote by GF(2n) the Galois Field
with a given irreducible polynomial p(x) of degree n. We represent the elements
in the field by n-bit strings. In this context, we use big-endian encoding where
the most significant bit is on the left, e.g., M = (10000111)2 represents the poly-
nomial x7+x

2+x+1. For n = 128, we fix p(x) = x
128+x

7+x
2+x+1. Given an

10



Algorithm 2 Definition of our instantiation of DCT, with n = 128 and τ ≤ 2n.

101: function ẼSK(A,M)
102: (K1

1 ,K
2
1 ,K2,K3)← KeyGen(SK)

103: (ML,MR)← Encodeτ (M)
104: X ← H

K1
1 ‖ K2

1
(A,MR)

105: Y ←ML ⊕X
106: CL ← SimpiraK2 (Y )

107: CR ← CTRT.E[Ẽ]K3(CL,MR)
108: return (CL ‖CR)

111: function Encodeτ (M)
112: µ← 2n− τ
113: ML ← 0τ ‖M [1..µ]
114: MR ←M [(µ + 1)..|M|]
115: return (ML,MR)

121: function SimpiraK(Y )

122: (Y 0, Y 1)
n
←− Y

123: Y 1 ← Y 1 ⊕K
124: for c← 1 to 15 do

125: l ← (c− 1) mod 2
126: r ← c mod 2
127: Y r ← Y r ⊕ Simpira.Fc,2(Y

l)

128: C0
L ← Y 0 ⊕K

129: C1
L ← Y 1

130: return (C0
L ‖C

1
L)

131: function Simpira.Fc,b(X)
132: a← c⊕ b
133: L← (a, 0x10⊕ a, 0x20⊕ a, 0x30⊕ a)
134: return aesenc(aesenc(X,L), 0)

141: function CTRT.E[Ẽ]K(IV,MR)

142: (U, V )
n
←− IV

143: T ← U [2..n]
144: m← ⌈MR/n⌉

145: (M1
R, . . . ,Mm

R )
n
←− MR

146: for i← 1 to m− 1 do

147: Ci
R ← Ẽ

1,T⊕〈i−1〉
K

(V )⊕Mi
R

148: κm ← Ẽ
1,T⊕〈m−1〉
K

(V )
149: Cm

R ← κm[1..|Mm
R |]⊕Mm

R

150: return (C1
R ‖ · · · ‖C

m
R )

161: function CTRT.D[Ẽ]K(IV, CR)

162: return CTRT.E[Ẽ]K(IV,CR)

171: function ẼD,T

K
(X)

172: return Deoxys-BC-n-n
D ‖ T

K
(X)

201: function D̃SK(A,C)
202: (K1

1 ,K
2
1 , K2,K3)← KeyGen(SK)

203: (CL, CR)← C

204: MR ← CTRT.D[Ẽ]K3 (CL, CR)
205: X ← H

K1
1

‖ K2
1
(A,MR)

206: Y ← Simpira
−1
K2

(CL)

207: ML ← X ⊕ Y
208: return Decodeτ (ML,MR)

211: function Decodeτ (ML,MR)
212: R←ML[1..τ ]
213: M ← ML[(τ + 1)..2n] ‖MR

214: if R = 0τ then return M
215: return ⊥

221: function Simpira
−1
K

(CL)

222: (C0
L, C1

L)
n
←− CL

223: Y 0 ← C0
L ⊕K

224: Y 1 ← C1
L

225: for c← 15 downto 1 do

226: l← (c− 1) mod 2
227: r ← c mod 2
228: Y r ← Y r ⊕ Simpira.Fc,2(Y

l)

229: Y 0 ← Y 0 ⊕K
230: return (Y 0 ‖Y 1)

231: function KeyGen(SK)
232: for i← 1 to 4 do

233: Ki ← Ẽ
0,〈i〉
SK

(〈i〉)

234: return (K1,K2,K3,K4)

241: function HK(A,MR)
242: W ← Encode

′(A,MR)

243: (K1
1 ,K

2
1)

n
←− K

244: H1 ← K1
1 · BRW

K1
1
(W )

245: H2 ← K2
1 · BRW

K2
1
(W )

246: return (H1 ‖H2)

251: function Encode
′(A,M)

252: A← padn(A)

253: M ← padn(M)
254: L← 〈|A|〉64 ‖ 〈|M|〉64
255: return (A ‖M ‖L)

261: function padn(X)
262: if |X| mod n = 0 then return X

263: return (X ‖ 0n−(|X| mod n))

m-word message M = (M1, . . . ,Mm) and a key K ∈ {0, 1}n, the hash function
BRWK(M) is defined recursively by

– BRWK(ε) := 0n if m = 0,
– BRWK(M1) := M1 if m = 1,
– BRWK(M1,M2) := (M1 ·K)⊕M2 if m = 2,
– BRWK(M1,M2,M3) := (M1 ⊕K) · (M2 ⊕K2)⊕M3 if m = 3,
– BRWK(M1, . . . ,Mm) := BRWK(M1, . . . ,Mt−1) · (Mt ⊕Kt) ⊕

BRWK(Mt+1, . . ., Mm) if t ≤ m < 2t for t ∈ {4, 8, 16, 32, . . .},

where all multiplications are in GF(2n). Since BRW hashing XORs the final
block Mm when m is not a multiple of four, we perform an additional multipli-
cation, K · BRWK(M), to prevent predictable output differences.
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Our family of hash functions – H or BRW-256 hereafter – takes as inputs the
associated data A and the variable-length part of the message MR. Therefore, we
define an injective encoding function Encode

′ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ for
merging both inputs to a single bit string before hashing. First, Encode

′ pads
A← padn(A) and MR ← padn(MR) with the minimal number of trailing zeroes
such that their lengths after padding are multiples of n. Next, their original
lengths in bits are encoded as two 64-bit big-endian-encoded integers: L ←
〈|A|〉64 ‖ 〈|MR|〉64. Finally, Encode

′ returns (A ‖MR ‖L), which is used as input
to H. The procedure is given in Algorithm 2.

Key Schedule and Change of Key. Our instantiation requires a 128-bit user-
supplied secret key SK. In total, our instantiation of DCT uses four independent
128-bit key words: a 256-bit key K2

1 ‖K
2
1 for H, a 128-bit key K3 for E, and a

128-bit key K3 for Ẽ used in the CTRT mode. We borrow the idea from [19]

of deriving the keys for the individual components with Ẽ under the secret SK
in counter mode with distinct tweaks; neither those tweaks nor SK are used
any further in our mode. So, the derived keys are pairwise independent. We
recommend a default stretch of τ = 128 bits, at most 264 bits be encrypted
under the same key, and the maximum query length be limited to 240 blocks.

6.2 Concrete Security Bounds

We derive the following conjecture from the existing analysis of Simpira [16].

Conjecture 1 (Security of two-block Simpira). Let n = 128 and b = 2. Let E

denote Simpira for 2n-bit inputs. Let A be a computationally bounded SPRP

adversary on E with access to two oracles, where A asks at most q queries and
runs in time at most t. Then, there exists an absolute constant c such that

Adv
SPRP

E,E−1 (A) ≤
c · q

2n
.

Theorem 1 and Appendix C in [29] provide the following theorem.

Theorem 4 (ivE Advantage of CTRT [29]). Fix n ≥ 1. Let T be a non-

empty set and π̃ և P̃erm(T , {0, 1}n). Let A be an ivE adversary with access to
an oracle, where A runs in time at most t and poses at most q queries to its
oracles with at most 8 ≤ ℓ ≤ |T | blocks in total. Then

Adv
ivE

CTRT[π̃](A) ≤
1

2n
+

1

|T |
+

4ℓ log2(q)

|T |
+

ℓ log2(ℓ)

2n
.

Theorem 5.4 in [5] and Theorem 1 in [39] show that BRWK(M1, . . ., Mm)
is a monic polynomial of degree 2⌊log2 m⌋+1 − 1 ≤ 2m − 1. The additional
multiplications for the length-encoding block and the final multiplication with
K ·BRWK(M) lead to a monic polynomial of degree 2(m+1). For our proposed
instantiation for H, we can derive the following statement:

12



Theorem 5 (BRW Hashing). Let n,m ≥ 1, and let X =
⋃m

i=0 GF(2n)i.
Then, the family of hash functions G = {BRW |BRW : X → GF(2n)} is
ǫ-AXU for ǫ ≤ 2(m + 1)/2n. Moreover, the family of hash functions H =
{BRW1,BRW2 և G ×G |H(M) := BRW1(M) ‖BRW2(M)} with independent
BRW1 and BRW2 is ǫ′-AXU for ǫ′ ≤ 4(m+ 1)2/22n.

Inserting the concrete bounds from Conjecture 1 and Theorems 4 and 5 into those
from Lemmata 1 and 2, we can derive the following security statements for our
proposed instantiation DCT

BRW-256,Simpira,CTRT[Ẽ]. Appendix C discusses how

the quadratic dependency on m′ can be reduced to a linear one for τ ≤ n.

Theorem 6. Let K և K and let Π̃ denote DCT
BRW-256,Simpira,CTRT[Ẽ] as

defined in Algorithm 2. Let n = 128, τ ≤ 2n, |T | = 2n−1, m be the sum of the
maximal number blocks of message and associated data for each query, and c be
an absolute constant. Define m′ = m+ 1. Then, for 8 ≤ ℓ ≤ |T |, it holds that

Adv
detPriv

Π̃
(q, ℓ, t) ≤ 2

(
q2(2m′2+1)

22n
+

3+cq+8ℓ log2(q)+ ℓ log2(ℓ)

2n
+δTPRP

Ẽ

)

Adv
detAuth

Π̃
(q, ℓ, t) ≤

2q2m′2

22n
+

12qm′2

2τ
+

cq

2n
+ δSTPRP

Ẽ,Ẽ−1 ,

where δTPRP

Ẽ
and δSTPRP

Ẽ,Ẽ−1
denote Adv

TPRP

Ẽ
(q, O(t)) and Adv

STPRP

Ẽ,Ẽ−1 (q, O(t)),

respectively.

6.3 Software Performance on x64 Processors

We implemented an optimized version of our proposed instance in C.3 Table 1
summarizes the results of our benchmarks. Our code was compiled using gcc

v5.2.1 with options -O3 -maes -mavx2 -mpclmul -march=native, and run (1)
on an Intel Core i5-4200M (Haswell) at 2.50 GHz, and (2) on an Intel Core
i5-5200U (Broadwell), both with TurboBoost, SpeedStep, and HyperThreading
options disabled. For measuring, we used the mean from 100 medians of 10000 en-
cryptions each in the single-message setting, where we omitted the cost for key
setup, and used the rdtsc instruction. Starting from 512 bytes, the values in
Table 1 have a standard deviation of less than 0.02 cycles per byte (cpb). The
results show that our proposed instance approaches a performance of less than
two cpb on current x64 processors for messages of eight KiB and longer. The
difference stems from the fact that the inverse throughput of the pclmulqdq

instruction is two cycles per instruction on Intel Haswell, but only a single cycle
on Broadwell processors.
While we are not aware of faster previous beyond-birthday AE schemes, we
note the comparison with Simpirav2 which was updated on ePrint while this
work was under review [16]. While the leftmost Feistel lane in Simpirav1 was
sequential in the single-message setting for messages of b > 8 blocks, Simpi-

rav2 resolved this limitation. So, an optimal implementation of Simpirav2

3 The source code is publicly available at https://github.com/medsec/dct.
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Message length (bytes)

Construction 128 256 512 1024 2048 4096 8192 16384

Haswell 6.17 4.48 3.28 2.65 2.28 2.09 2.00 1.96

Broadwell 6.15 4.45 3.16 2.51 2.14 1.98 1.86 1.81

Table 1: Performance results in cycles per byte for optimized implementations of
DCT

BRW-256,Simpira,CTRT[Ẽ] on Haswell and Broadwell, respectively. Details of our
benchmarking setup are given in the text.

could achieve a performance of a little less than 1.5 cpb for arbitrary-length mes-
sages in the single-message setting, which is a little faster than our instantiation.
Though, future implementations might further reduce our currently achieved
1.07 cpb for Deoxys-BC-128-128 (the theoretical optimum is 0.875 cpb for its
14 AES rounds). Additionally, more aggressive optimizations similar to those for
GHASH [14] could further improve the performance of our hash function.

7 Discussion and Conclusion

This work proposed Deterministic Counter in Tweak (DCT), a beyond-birthday-
bound-secure DAE scheme that combines an almost-XOR-universal family of
hash functions with a single call to a double-block-length SPRP, and a beyond-
birthday-bound-secure encryption scheme. DCT produces the minimal stretch,
e.g., τ = 128 bit for 128-bit security. Our generic construction comes with a
straight-forward security proof. We proposed a software-efficient instantiation
that profits greatly from the recent progress in the domain of tweakable block
ciphers and encryption schemes; in particular, from the TWEAKEY framework,
the tweaked counter mode as encryption scheme, and the Simpira construction
as 2n-bit SPRP – both of which allow to exploit AES-NI instructions. As a
result, our instantiation can encrypt at speeds of less than two cycles per byte
on current x64 processors in the single-message setting. While our generic design
employs three independent keys, our instantiation requires only a single 128-bit
key and provides security close to that of our generic proposal. Moreover, the
use of tweaked counter mode and the Feistel-based Simpira as SPRP yields
an inverse-free decryption. DCT is currently defined for messages of ≥ 2n − τ
bits; one solution to also allow smaller messages could be to use a padding
and two additional distinct tweaks T for long and small messages, respectively.
For example, Gueron and Mouha proposed to use K · T instead of K as key
for Simpira, using a multiplication in GF(2128). Yet, the detailed security and
efficiency implications of this approach are interesting aspects for future work.

Acknowledgments. We would like to thank the reviewers of the ACISP 2016
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A Proof of Lemma 1

Proof. Wlog., we assume that A asks no pointless queries, i.e. queries to which
it already knows the answer or that are prohibited by the detPriv definition.

In the following, we upper bound ∆A(ẼK ; $Ẽ) by a game-based approach, using
a sequence of Games G1 through G4, where the encryption oracle of the first an
final game are provided in Algorithm 3. It also shows the procedure Initialize

and function Finalize for all games.
We start with an initial Game G1 with an oracle Ẽ that represents the det-

Priv encryption oracle for the generic DCT construction. We denote by X ←
HK1(A,MR) the outputs of H, and by Y ← X⊕ML the inputs to E. The oracle
collects the values Y in a set QY and the values CL in a set QCL

. Both sets are
initialized as empty sets. Additionally, the oracle sets a flag bad1 if a value Y re-
peats and a flag bad2 if a value CL repeats, respectively. Since G1 simply models
the detPriv experiment for DCT and since the outputs of G1 are influenced
neither by the values collected in the sets nor by the bad flags, it holds that

∆
A

(ẼK ; $Ẽ) ≤ 2 · |Pr [G1(A)⇒ 1]− 0.5| .
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We define a second Game G2, which is identical to G1, but which replaces all
calls to E by calls to a uniform random function $E և Func({0, 1}2n, {0, 1}2n).
We omit a separate algorithmic definition due to the minor change. We can
upper bound the difference between both games by the maximal advantage of a
PRP adversary A1 on E that submits at most q queries to its oracles and runs
in time O(t), plus a term

(
q
2

)
· 1
22n from the PRP-PRF switching lemma:

Pr [G1(A)⇒ 1] ≤ Pr [G2(A)⇒ 1] +

(
q

2

)
1

22n
+Adv

PRP

E
(q, O(t)).

Next, we define a third Game G3, which is identical to G2, but which replaces
all calls to E by calls to a uniform random function $E(·, ·) և Func({0, 1}2n ×
{0, 1}∗, {0, 1}∗), which, for a given input tuple (CL,MR), outputs a uniformly
random chosen value with the length of the second input: CR և {0, 1}|MR|. For
brevity, we omit a separate algorithmic definition for G3. Since the inputs CL are
chosen uniformly at random (by $E in Line 411 of Algorithm 3), the difference
between both games can be upper bounded by the maximal ivE advantage of
an adversary A2 on Π = (E ,D), where A2 submits at most q queries of at most
ℓ blocks in total to its oracles and runs in time O(t):

Pr [G2(A)⇒ 1] ≤ Pr [G3(A)⇒ 1] +Adv
ivE

Π (q, ℓ, O(t)).

For the remainder, we define a fourth Game G4, which is identical to G3, except
for the fact that the encryption oracle resamples Y from the set of values that did
not occur in previous queries of A if Y repeats, i.e. Y և {0, 1}2n\QY . Similarly,
G4 resamples CL if it repeats, i.e. CL և {0, 1}2n\QCL

. The encryption function
of G4 is shown in Algorithm 3. One can see that the outputs of both games G3

and G4 differ only if a bad flag gets set. For brevity, we define a compound event
bad := bad1 ∨ bad2. It holds that

Pr [G3(A)⇒ 1] ≤ Pr [G4(A)⇒ 1|¬bad] + Pr[bad].

Since HK1(·, ·) is an ǫ-AXU hash function, it follows from Theorem 1 that the
derived hash function H′K1

(A,ML,MR) := HK1(A,MR) ⊕ML is ǫ-AU. Hence,
the probability that bad1 gets set for the i-th query is given by (i− 1) · ǫ. Using
the union bound, the probability over all q queries of the adversary is at most
Pr[bad1] ≤

(
q
2

)
ǫ.

It remains to bound Pr[bad2]. Since we have replaced E by a uniform random
function $E, its outputs may repeat and we need to bound the probability that
a collision Ci

L = Cj
L occurs for some 1 ≤ j < i ≤ q. Since the 2n-bit outputs of

$E are chosen uniformly at random, the collision probability of any two values
for the i-th query is (i− 1) · 1/22n, and – using the union bound – over q queries
at most Pr[bad2] ≤

(
q
2

)
· 1/22n. We obtain

Pr[bad] ≤ Pr[bad1] + Pr[bad2] ≤

(
q

2

)
·

(
ǫ+

1

22n

)
.

It remains to bound Pr[G4(A)⇒ 1|¬bad]. Since A asks no duplicate queries, all

outputs from the oracle Ẽ are drawn independently and uniformly at random.
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Algorithm 3 Games G1 (Lines 301-315) and G4 (Lines 401-417) for our det-

Priv proof. The procedure Initialize and function Finalize are identical for
all games. Games G1, G2, and G3 lack the boxed statement, which is only part
of Game G4.

101: procedure Initialize

102: QY ← QCL ← ∅
103: bad1 ← bad2 ← false

104: b և {0, 1}
105: if b = 1 then

106: K1 և K1; K2 և K2; K3 և K3

201: function Finalize(b′)
202: bad← bad1 ∨ bad2

203: return b = b′ ∨ bad

301: function Ẽ(A,M)
302: if b = 0 then

303: return $Ẽ(A,M)

304: (ML,MR)← Encodeτ (M)
305: X ←HK1(A,MR)
306: Y ← X ⊕ML

307: if Y ∈ QY then

308: bad1 ← true

309: QY ← QY ∪ {Y }
310: CL ← EK2(Y )
311: if CL ∈ QCL

then

312: bad2 ← true

313: QCL
← QCL

∪ {CL}
314: CR ← EK3(CL,MR)
315: return (CL ‖CR)

401: function Ẽ(A,M)
402: if b = 0 then

403: return $Ẽ(A,M)

404: (ML,MR)← Encodeτ (M)
405: X ←HK1(A,MR)
406: Y ← X ⊕ML

407: if Y ∈ QY then

408: bad1 ← true

409: Y և {0, 1}2n \ QY

410: QY ← QY ∪ {Y }
411: CL ← $E(Y )
412: if CL ∈ QCL

then

413: bad2 ← true

414: CL և {0, 1}2n \ QCL

415: QCL
← QCL

∪ {CL}
416: CR ← $E(CL,MR)
417: return (CL ‖CR)

The probability that A wins Game G4 is therefore limited by that of correctly
guessing b. It follows

Pr [G4(A)⇒ 1|¬bad] = 0.5.

The bound in Lemma 1 follows then from

2 ·

∣∣∣∣
(
q

2

)(
ǫ +

2

22n

)
+Adv

PRP

E
(q, O(t)) +Adv

ivE

Π (q, ℓ, O(t)) + 0.5− 0.5

∣∣∣∣ .

B Proof of Lemma 2

Proof. Wlog., we assume that A asks no queries to which it already knows the
answer or that are prohibited from the detAuth security definition. We say
that A’s queries are maintained in a query history Q wherein they are stored
together with their corresponding responses of A’s available oracles as tuples
Qi = (Ai,M i, Ci

L, C
i
R). We denote by Qi the state of A’s query history before A

asked its i-th query, i.e. after A has posed i− 1 queries. We use the symbol ∗ to
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represent any string (of expected length, when required from the context) at its
used position. For example, given A,CL, CR, the statement (A, ∗, CL, CR) ∈ Q
represents ∃M ∈M: (A,M,CL, CR) ∈ Q and the statement (A, ∗, CL, CR) 6∈ Q
means ∀M ∈M: (A,M,CL, CR) 6∈ Q.
We apply again a game-based proof in the following, using a sequence of Games
G1 through G4, where the encryption and decryption oracles of the first an final
game are provided in Algorithm 4. Initialize and function Finalize are again
given for all games.
We start with Game G1 that provides access to an encryption oracle Ẽ and a
decryption oracle D̃. G1 collects the values Y and CL that occur in encryption
queries in two sets QY and QCL

, respectively. Both sets are initialized empty.
Moreover, G1 defines a flag bad which is initialized to false and that are set to
true if a value Y or CL repeats over the encryption queries of A, respectively. A
second flag, forge, is also initialized to false and set to true in decryption queries
of A iff A passes a fresh valid ciphertext to the decryption oracle D̃. Since G1

simply models the detAuth setting for DCT, and since the outputs of G1 are
influenced neither by the bad flags nor by the sets, it holds that

Pr
[
A
ẼK ,D̃K forges

]
= Pr [G1(A)⇒ 1] = Pr [forge] .

We define a second game G2, which is identical to G1, except that G2 replaces all
calls to E by calls to a uniform random 2n-bit permutation π և Perm({0, 1}2n)
and its inverse, respectively. We omit a separate definition due to the minor
change. The difference between both settings can be upper bounded by the
maximal advantage of an SPRP adversary on E, E−1 that submits at most q
queries to its oracles and runs in time O(t):

Adv
SPRP

E,E−1 (q, O(t)).

We consider a third game G3, which functions again almost identical to G2,
except that G3 replaces the IV-based encryption scheme Π = (E ,D) by a family
of permutations $ : {0, 1}2n × {0, 1}∗ → {0, 1}∗ in the encryption oracle and its
inverse $−1 in the decryption oracle, respectively, with IV space {0, 1}2n. This
means, for all CL ∈ {0, 1}

2n, $(CL, ·) is a permutation. We assume that $ and $−1

implement lazy sampling, i.e. they collect their inputs and corresponding outputs
in a setQ$ as tuples (Ci

L,M
i
R, C

i
R). For a given tuple (CL,MR), $

E(CL, ·) samples
an output CR և {0, 1}|MR| uniformly at random from the set of all values that
have not previously been asked for this CL, and maps CR to (CL,MR) by storing
the relation into Q$. Its inverse $−1 works similarly such that both produce
consistent outputs. In the remainder, we say that A can choose the outputs of $
and its inverse $−1 as long as they are consistent to the above. This is equivalent
to giving A the key K3 for Π . Clearly, this change makes A strictly stronger:

Pr [G2(A)⇒ 1] ≤ Pr [G3(A)⇒ 1] .

Next, we consider a Game G4, which is provided in Algorithm 4. G4 functions
again almost identical to G3, except that the encryption oracle Ẽ in G4 resamples
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Algorithm 4 Games G1 (Lines 301-413) and G4 (Lines 501-613) for our de-

tAuth proof. Games G1, G2, and G3 lack the boxed statements, which are only
part of Game G4.

101: procedure Initialize

102: QY ← QCL ← ∅
103: bad← forge← false

104: K1 և K1; K2 և K2; K3 և K3

201: function Finalize

202: return forge ∨ bad

301: function Ẽ(A,M)
302: (ML,MR)← Encodeτ (M)
303: X ←HK1(A,MR)
304: Y ← X ⊕ML

305: if Y ∈ QY then

306: bad← true

307: QY ← QY ∪ {Y }
308: CL ← EK2(Y )
309: QCL

← QCL
∪ {CL}

310: CR ← EK3(CL,MR)
311: return (CL ‖CR)

401: function D̃(A,C)
402: (CL, CR)← C

403: MR ← D̃K3(CL, CR)
404: X ←HK1(A,MR)
405: Y ← E

−1
K2

(CL)
406: if CL 6∈ QCL

then

407: QCL
← QCL

∪ {CL}
408: QY ← QY ∪ {Y }

409: ML ← X ⊕ Y

410: M ← Decodeτ (ML,MR)
411: if M 6= ⊥ then

412: forge← true

413: return M

501: function Ẽ(A,M)
502: (ML,MR)← Encodeτ (M)
503: X ←HK1(A,MR)
504: Y ← X ⊕ML

505: if Y ∈ QY then

506: bad← true

507: Y և {0, 1}2n \ QY

508: QY ← QY ∪ {Y }
509: CL ← π(Y )
510: QCL

← QCL
∪ {CL}

511: CR ← $(CL,MR)
512: return (CL ‖CR)

601: function D̃(A,C)
602: (CL, CR)← C

603: MR ← $−1(CL, CR)
604: X ←HK1(A,MR)
605: Y ← π−1(CL)
606: if CL 6∈ QCL

then

607: QCL
← QCL

∪ {CL}
608: QY ← QY ∪ {Y }

609: ML ← X ⊕ Y

610: M ← Decodeτ (ML,MR)
611: if M 6= ⊥ then

612: forge← true

613: return M

Y from the domain of all 2n-bit values except those that previously occurred
at the place of Y , i.e. Y և {0, 1}2n \ QY as in our detPriv proof. Since π is
a permutation, having always distinct values Y and Y ′ implies that the values
CL ← π(Y ) are also always distinct over all encryption queries of A. So, we do
not need to consider the bad2 event as in our detPriv proof. Moreover, it holds:

– If A chooses a value CL in a decryption query that collides with C′L from a
previous query, then trivially, their corresponding values Y ← π−1(CL) and
Y ′ ← π−1(C′L) also collide.

– If A chooses a value CL in a decryption query that has not occurred before,
it is mapped to a fresh value Y ← π−1(CL) that also has not occurred before.
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Therefore, we do not have to consider bad events in the decryption oracle, but
only have to store values CL and Y in the sets QCL

and QY if they have not
occurred previously.
One can see from Algorithm 4 that the outputs of G3 and G4 differ only if a bad

flag is set. So, we can upper bound

Pr [G3(A)⇒ 1] ≤ Pr [G4(A)⇒ 1|¬bad] + Pr[bad].

We can apply a similar argument as in our detPriv proof to upper bound

Pr[bad] ≤

(
q

2

)
· ǫ.

It remains to upper bound Pr[forge]. In the following, we consider a query Qi =
(Ai, Ci

L, C
i
R) which we denote as winning query. This means, we assume Qi is

a valid query by A to the decryption oracle that has not been asked by A

before and that makes the game set the flag forge to true. We conduct a case
analysis in the following, where the individual cases differ in the fact whether
or not associated data Ai and ciphertext components Ci

L and Ci
R (or subsets

thereof) of A’s winning query occurred together in any previous query of A or
not. We identify three disjoint cases C1, C2, and C3, which cover all possibilities.
Analogous to the cases, we define three events E1, E2, and E3, where Ei = true iff
A wins in the correspondingly indexed case Ci and false otherwise, for 1 ≤ i ≤ 3.

Case C1: (Ai, ∗, ∗, ∗) 6∈ Qi. In this case, we assume that the associated data of
A’s winning query is fresh, i.e. has not occured in any previous query of A. For
A to win, it must hold that Decodeτ (M

i
L,M

i
R) 6= ⊥. This holds for a fraction

of 1/2τ of the 22n values M i
L, which are computed by

M i
L = H′K1

(Ai,M i
R, Y

i) := HK1(A
i,M i

R)⊕ Y i.

A can compute the values M i
R, and choose Ai; though, it does not see the

values X i nor Y i. Since the values Ai are always fresh and HK1(·, ·) is an ǫ-
AXU hash function, it follows from Theorem 1 that H′K1

(·, ·, ·) is an ǫ-AU hash

function. Thus, it holds that the probability for each value M i
L to occur is at

most ǫ. So, the probability that A wins with the i-th query is upper bounded
by ǫ · 22n/2τ . Over q queries, the success probability for A in this case is at
most Pr[E1] ≤ q · ǫ · 22n/2τ . In the remainder, we can safely assume that the
associated data Ai of A’s winning query is old, i.e. has already occurred before
in A’s queries.

Case C2: (Ai, ∗, Ci
L, ∗) 6∈ Q

i. In this case, the tuple (Ai, Ci
L) is fresh, i.e. did

not occur before together in any previous query of A. Since π−1 is a uniform
random permutation, it maps Ci

L to Y i ← π−1(Ci
L) such that the tuple (Ai, Y i)

has also not occurred before. For a successful forgery, it must hold that M i
L is

valid, which holds for a fraction of 1/2τ of the 22n values M i
L = H′K1

(Ai,M i
R, Y

i).
Since H′K1

(·, ·, ·) is ǫ-AU, the probability that A wins with the i-th query is again
upper bounded by ǫ · 22n/2τ . Over q queries, the success probability for A in
this case is at most Pr[E2] ≤ q · ǫ · 22n/2τ .
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Case C3: (Ai, ∗, Ci
L, ∗) ∈ Q

i. In this case, Ai and Ci
L already occurred together

in some previous query of A. It is easy to see that (Ai, ∗, Ci
L, C

i
R) 6∈ Q

i must hold;
otherwise, the winning query of A would have occurred before. Since $−1(Ci

L, ·)
is a permutation, it follows that the tuple (Ai, Ci

L,M
i
R) has not occurred before

in any of A’s queries. This implies itself that the tuple (Ai, Y i,M i
R) has not

occurred before since π−1 is a permutation. Again, the fact that M i
L is computed

using the ǫ-AU hash function H′K1
(·, ·, ·), the probability that A wins with the

i-th query can be upper bounded by ǫ · 22n/2τ . Over q queries, the success
probability for A in this case is at most Pr[E3] ≤ q · ǫ · 22n/2τ . It follows that

Pr[E1 ∨ E2 ∨E3] ≤

3∑

i=1

Pr[Ei] ≤ 3q · ǫ ·
22n

2τ
.

Summing up, our claim in Lemma 2 follows from

(
q

2

)
· ǫ+ 3q · ǫ ·

22n

2τ
+Adv

SPRP

E,E−1 (q, O(t)).

C Security Bound from the Universal Hash Function

Depending on the choice of τ , the term q2(4m′2)/22n may be limited by the
birthday bound. This stems from the fact that BRW hashing is an ǫBRW-AXU
hash function with ǫBRW ≤ 2m′/2n, which depends linearly on the number of
blocks of a query. So, the concatenation of two independent n-bit hashes depends
quadratically on the maximal number of blocks of a query: ǫ2

BRW
≤ 4m′2/22n.

For stretch lengths τ of τ ≤ n bits, we can reduce the quadratic dependency on
m′ to a linear one. Recall from Algorithm 2, that we computed ML by ML ←
X ⊕ Y , where X ← HK1 ‖K2

(A,MR) and Y ← E
−1
K3

(CL). Let us write ML =

(M1
L ‖M

2
L) such that |M1

L| = |M
2
L| = n, and analogously, let us denote the halves

of X and Y by X = (X1 ‖X2) and Y = (Y 1 ‖ Y 2). As given in Algorithm 2,
for τ ≤ n, the redundancy is included completely in one part of ML. So, the
probability that M1

L is valid can be computed as follows. Since HK1(·, ·) is ǫBRW-
AXU, the family of hash functions HK1(·, ·) ⊕ Y 1 is ǫBRW-AU. There are 2n

possible values X1 each of which is valid with probability 1/2τ . The probability
for each to occur is at most ǫBRW. So, the probability that M1

L contains the
expected τ bits of redundancy can be upper bounded by

2n

2τ
· ǫBRW ≤

2m′

2τ
.
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