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Abstract

Indistinguishability obfuscation is a central primitive in cryptography. Security of existing
multilinear maps constructions on which current obfuscation candidates are based is poorly
understood. In a few words, multilinear maps allow for checking if an arbitrary bounded degree
polynomial on hidden values evaluates to zero or not. All known attacks on multilinear maps
depend on the information revealed on computations that result in encodings of zero. This
includes the recent annihilation attacks of Miles, Sahai and Zhandry [EPRINT 2016/147] on
obfuscation candidates as a special case.

Building on a modification of the Garg, Gentry and Halevi [EUROCRYPT 2013] multilinear
maps (GGH for short), we present a new obfuscation candidate that is resilient to these vulner-
abilities. Specifically, in our construction the results of all computations yielding a zero provably
hide all the secret system parameters. This is the first obfuscation candidate that weakens the
security needed from the zero-test.

Formally, we prove security of our construction in a weakening of the idealized graded en-
coding model that accounts for all known vulnerabilities on GGH maps.
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1 Introduction

The goal of program obfuscation is to make computer programs “unintelligible” without affect-
ing their functionality. Defining obfuscation formally turns out to be rather tricky. It was first
formalized by Hada [Had00] and Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and
Yang [BGI+01]. The first candidate construction for obfuscation was provided by Garg, Gentry,
Halevi, Raykova, Sahai and Waters [GGH+13b]. Subsequently, several other candidates [BR14,
BGK+14, PST14, AGIS14, Zim15, AB15, GLSW15, Lin16] have been proposed. However, all these
constructions rely on the conjectured security of new computational assumptions on multilinear
maps [GGH13a, CLT13, GGH15], the security of which is poorly understood.

In short, multilinear maps allow homomorphic computation of a priori bounded degree (say
κ) arbitrary polynomials on “encrypted” values (in R/I in the case of [GGH13a], where R =
Z[X]/(Xn+1) and I is a prime ideal in R) and a mechanism for publicly checking if the polynomial
yields a zero or not. From a high-level, obfuscation of a program involves mapping the program to
a sequence of values in R/I which are then encrypted using multilinear maps. Evaluation of the
program on a specific input y corresponds to evaluating a public polynomial py (of degree κ) on
the encrypted values and checking if it yields a zero or not.

Starting with the multilinear map candidate of Garg, Gentry and Halevi [GGH13a], two other
proposals [CLT13, GGH15] have been made and a few variants of them [LSS14, CLT15] are
also considered. Several vulnerabilities in all these candidate constructions have been demon-
strated [GGH13a, CHL+15, HJ15, CGH+15, CLLT15, MSZ16a]. We are most interested in the
attacks against the GGH construction [GGH13a, HJ15, MSZ16a]. One common aspect of all these
three attacks on GGH (and in principle, also for the attacks against the other multilinear map
candidates) is that they arise when the attacker gets hold of the so-called “zero-encodings” or
encryptions of zero in the above description.

These attacks on GGH can be categorized into two broad classes. The basic ones [GGH13a,
HJ15] where “low-level”1 zero-encodings are provided (or can be obtained) and the more sophisti-
cated ones [MSZ16a] where zero-encodings can be obtained only at the “highest-level.” Nonetheless,
both categories of attacks follow the same generic strategy of applying the zero-testing procedure
on the zero-encodings that reveals ring elements (in the ring R). Known attacks exploit the cor-
relations among these ring elements. These correlations are much harder to leverage in the case
where only “highest-level” zero-encodings can be obtained, which is the case for known obfusca-
tion candidates. The only known attacks against obfuscation schemes are the recent annihilation
attacks of Miles, Sahai and Zhandry [MSZ16a]. However, not all the obfuscation candidates are
broken by the annihilation attacks (See [AJN+16, Appendix A] for a detailed account on the current
status of the iO constructions). For example, it is not known if the annihilation attacks directly
extend to the first iO candidate of Garg et al. [GGH+13b]. The difficulty stems from the extra “de-
fenses” they apply, namely appending random elements to the diagonal of the branching program.
This randomization of the branching program makes it hard to find an annihilating polynomial.
However, since this (and other obfuscation candidates that are not immediately broken) weren’t
constructed to handle this direction of attacks, it will not be surprising if a more sophisticated
version of annihilation breaks these obfuscation candidates as well in near future. This raises the
following natural question:

1Here “low-level” encodings are such that more computation can be performed on it whereas no further compu-
tation can be performed on an encoding at “highest-level.”
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Can we realize an obfuscation candidate that provably defends against
attacks that exploit information leaked from any zero-encoding?

Our Result. In this work, we provide a new obfuscation candidate that resists such attacks.
Our construction is based on a modification of the GGH multilinear map, which is crucial for the
construction and its security. We argue security in the so-called hybrid graded encoding model that
captures all known attacks against the GGH map.2

1.1 Technical Ideas: Self-Fortifying Obfuscation

GGH Multilinear Maps. We start by recalling the GGH multilinear maps briefly. An instance
of the GGH scheme is parameterized by the security parameter λ and the required multi-linearity
level κ ≤poly(λ). Based on these parameters, consider the 2n-th cyclotomic ring R = Z[X]/(Xn+1)
where n is a power of 2 (n is set to be “large enough” to ensure security), and a modulus q that
defines Rq = R/qR (with q large enough to support functionality). An instance of the GGH scheme
relative to the parameters above encodes elements of a quotient ring R/I, where I is a principal
prime ideal I = 〈g〉 ⊂ R, generated by a “short” vector g. Namely, the “ring elements” that are
being encoded are cosets of the form e+ I for some vector e. The short generator g itself is kept
secret, and no “good” description of I is made public in this scheme. In addition, GGH system
depends on another secret element z, which is chosen at random in Rq (and hence is not short).

A level-zero (“plaintext”) encoding of a coset e+ I ∈ R/I is just a short vector in that coset.
For higher-level encodings, a level-i encoding of the same coset is a vector of the form

[
c/zi

]
q

(We

use the notation [·]q to denote operations in Rq.) with c ∈ e+I short. The GGH encoding scheme
provides a public zero-testing parameter to check if any given level-κ encoding is an encoding of 0.
This zero-testing parameter is of the form pzt = [hzκ/g]q where h is of size

√
q. System parameters

are setup in a way so that u is an encoding of zero if and only if u · pzt is “small.”

Template of the attacks. As mentioned earlier, all known attacks [GGH13a, HJ15, MSZ16a]
on the GGH map exploit the correlations among the ring elements obtained after performing zero-
tests on several encodings of 0. Among the attacks, the most potent ones against the candidate
obfuscations are the annihilation attacks [MSZ16a]. For certain obfuscation candidates, this attack
can distinguish between obfuscations of two specially constructed functionally equivalent branching
programs, say BP0 and BP1. We now give an intuitive explanation of the attack.

An attacker against the obfuscation candidate proceeds by evaluating the challenge obfuscation
(which is either an obfuscation of BP0 or BP1) on specific inputs x1, x2, · · · (where the branch-
ing program evaluates to 0) to obtain “top-level” encodings of zero. Any such encoding of zero
corresponding to the input xi is of the form:

ei =
γi,1 · g + γi,2 · g2 + · · ·+ γi,κ · gκ

zκ

where γi,j ’s are ring elements that depend on the obfuscated program as well as the randomness
generated by the encoding procedure of the GGH multilinear maps. The attacker then zero-tests

2Our model is a strict weakening of the ideal graded encoding model considered in the previous works [BGK+14,
AGIS14, BMSZ16]. We note that the ideal graded encoding model, as the name suggests, assumes no vulnerability
in the underlying multi-linear map construction.
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on the encoding ei to obtain a ring element f i given by:

f i = [ei · pzt]q = h ·
(
γi,1 + γi,2 · g + · · ·+ γi,κ · gκ−1

)
The main crux of the attack is to come up with a specific polynomial p (called as the annihilating
polynomial) such that p(f1,f2, · · · ) is identically 0 modulo I for BP0 and is not identically 0 for
BP1 which obviously enables the attacker to distinguish between obfuscations of BP0 and BP1.

Our Idea. Our high level idea for avoiding this attack is to set up the obfuscation in a manner
such that the ring elements obtained via such successful zero-tests are “uncorrelated”, at least
against a computationally bounded attacker.

In more detail, in our new construction, any “top-level” encoding of zero (corresponding to an
honest evaluation of the obfuscation on an input xi) is of the form:

e′i =
(γi,1 + βi) · g + γi,2 · g2 + · · ·+ γi,κ · gκ

zκ
(1.1)

where βi is a “blinding” factor. This is essentially output of a special PRF computation3 (on
the same input xi) that occurs within our obfuscation construction. As a result, a successful
zero-test like above on e′i would yield a value f ′i = γi,1 + βimod I which is a computationally
close to a uniform random value mod I. For several such inputs x1, x2, . . . the adversary obtains
f ′1,f

′
2, . . . all of them being close to uniform random mod I and hence uncorrelated to each other

to a computationally bounded adversary. Notice that, here we invoke a new strategy, that we call
“self-fortification”, to modify the obfuscation construction such that it evaluates a pseudorandom
function within itself in addition to the main computation. Realizing this intuition involves building
a new obfuscation construction and a corresponding multilinear maps that support it.

Modifying GGH Maps and realizing our construction. Recall that the GGH construction
supports computation only in the ring R/I where I = 〈g〉. Therefore, the structure of computation
outside this ring is not preserved. In our construction, we want to randomize the ring elements
that are obtained after a zero-test. This corresponds to computing a PRF value in the ideal of g
i.e we want the obfuscation to compute g · PRF(x) on an input x alongside the computation of the
actual program. Therefore, we modify the GGH construction to support this change. In particular,
we set the multilinear maps in such a way that all encodings are generated in a larger ring R/J
where J = 〈g2〉. On the other hand, identical to GGH, zero-test is done in the smaller ring R/I.
Concretely, our zero-testing procedure checks if the final encoding is 0mod I.

Notice that due to the special choice of the ideals even if the encodings are generated in R/J ,
the main computation (corresponding to the given program) is preserved in R/I. On the other
hand, the pseudorandom function computation is preserved only in R/J but not in R/I as it is
computed only in those cosets of J which are in the ideal of I. Therefore even if we generate
encodings in R/J our zero-test works only in R/I. In addition to that, when zero-test succeeds,
the revealed ring element is “masked” by the output of the pseudorandom function. Hence, as

3Looking ahead, the PRF computation outputs a pseudorandom value modulo I. Also, we remark that, although
the security argument in our idealized model works for any PRF in a blackbox manner, while instantiating in the
plain model, a “natural” PRF like AES should be used, otherwise there could be a plausible direction of attack by
exploiting the fact that the adversary gets to execute the PRF on arbitrary values. For example the PRF can be run
on its own circuit as input, in which case the pseudorandomness of its output is not guaranteed from its definition.
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observed above, the adversary ends up obtaining uniform random values (in R/I) corresponding
to different inputs rendering it infeasible to launch an annihilation attack.

One additional technical difficulty shows up in the choice of the pseudorandom function. Look-
ing ahead, to prove security in our model, we need the output of the pseudorandom function to
be random mod I. A natural method for that would be to use Gaussian sampling. However,
the length of the branching program for performing this sampling, grows with n. This forces the
multilinearity needed to grow with n. This ultimately ends up creating a circularity in how the
parameters q and n need to grow in order to ensure functionality and preserve security respectively.
Instead we present an alternative (and much simpler) sampling procedure for which the length of
the branching program is independent of n. This allows to avoid this circularity issue. We refer
the reader to the main body of the paper for details.

1.2 The Security Model: Hybrid Graded Encoding

We prove that our construction is (VBB) secure in the hybrid4 graded encoding model, that is
a weakening of the ideal graded encoding model used in the previous works [BGK+14, BMSZ16,
AGIS14]. We remark that the major difference is that the ideal graded encoding model assumes
no vulnerability in the underlying multi-linear map construction whereas our model captures all
known vulnerabilities found till date to the best of our knowledge against the GGH encoding.
Similar weaker ideal models have been considered in the literature [MSZ16a, CGH+15] prior to
our work. However, our work is the first one to prove the security of an obfuscation candidate in a
weaker model.

A brief overview. First we provide an informal overview of our model and then briefly explain
how it captures the existing attacks.

In order to capture all known attacks on the GGH encoding scheme we explicitly work over the
2n-th cyclotomic ring R = Z[X]/(Xn + 1) and the ideal I = 〈g〉 where g is a “short” element in
R. Similar to [BGK+14], our encodings are leveled with respect to the sets ⊆ U for some universe
U. An encoding e is denoted as LtMS for some t ∈ R and S ⊆ U. Looking ahead, t is a “short
ring element” representing the coset to be encoded. For any such e the element t is called its
representation and S its level.

Similar to the ideal model, we implement our security model via an oracle which does not give
the adversary direct access to any encoding, instead only gives a corresponding handle. It maintains
a handle-table where it stores all the encoding-handle pairs generated at any time. The adversary
can compute arbitrary algebraic operations querying via the handles. Like the ideal model, the
adversary is allowed to zero-test. However, while in the ideal model the oracle just returns whether
the zero-test succeeds or not, here we go one step further. If any zero-test succeeds our oracle
returns a second type of handle, called ring-handle corresponding to the ring element resulting from
that successful zero-test. Moreover, we allow the adversary to perform arbitrary bounded-degree
polynomial computations on those ring elements via the corresponding ring-handles. Formalizing
this a bit more, the adversary can make the following queries via handles.

• Addition in the same level as Lt1MS + Lt2MS → Lt1 + t2MS . The oracle returns a new handle
corresponding to Lt1 + t2MS

4Note that our model lies somewhere in between the actual GGH encoding and the ideal graded encoding and
hence called hybrid.
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• Multiplication among the disjoint levels as Lt1MS1 · Lt2MS2 → Lt1 · t2MS (where S1 ∩ S2 = ∅ and
S = S1 ∪ S2). The oracle returns a new handle corresponding to Lt1 · t2MS1∪S2 .

• Ring multiplication, that is multiplication of an encoding LtMS with an arbitrary ring element
r ∈ R to produce an encoding Lt · rMS , corresponding to which the oracle returns a new
handle.5

• Zero-testing an encoding LtMS which succeeds if and only if t = 0 (mod I) and S = U. Now
only if it succeeds the oracle returns a ring-handle to the element a where t = ag (this form
is guaranteed by the zero-test).

• Post-zeroizing computations on the ring elements a1,a2, · · · all of which are produced via
successful zero-tests. The adversary simply asks the oracle to compute a non-zero bounded-
degree polynomial over those elements via corresponding ring-handles. If the evaluation
outputs an element in the ideal I then the adversary wins.6

We remark that if in any case adversary queries on any handle that is not found in the cor-
responding handle-table then the oracle returns nothing which ensures that all the handles were
already generated by the oracle before.

Capturing existing attacks. Now we briefly discuss how our model captures all existing attacks
against the GGH multilinear map. First note that, an encoding of an element r ∈ R in the GGH
construction can be expressed as LtMS such that t = r (mod I). It is easily observed that any
attack which uses low-level encodings7 of zero (referred to as the “basic attacks” earlier) immediately
extends to our model as follows: given handles for two zero-encodings e1 = La1gMS1 and e2 = La2gMS2

for some a1,a2 ∈ R and S1 ∩ S2 = ∅ and another arbitrary encoding e′ = LuMU\{S1∪S2} for some
u ∈ R \ I the adversary first asks the oracle to compute the product ẽ = e1 · e2 · e′ = Lcg2MU for
some c ∈ R. Subsequently, zero-testing on ẽ returns a ring-handle to the element cg ∈ I that
belongs to the ideal. Therefore adversary wins trivially by providing the ring-handle even without
any non-trivial computation on that. Recall that both the weak discrete log attack [GGH13a] and
the attack by Hu and Jia [HJ15] on the multi-linear map based key-agreement scheme [GGH13a]
inherently requires low-level zeros and hence can be easily launched successfully in our model.

Furthermore, the most recent (and seemingly more powerful) attack, namely the annihilation
attack [MSZ16a], can also be successfully executed in our model. The annihilation attack is ap-
plicable to several candidate obfuscation schemes [BGK+14, BMSZ16, AGIS14] that are based on
the GGH map. In those constructions, the obfuscator just outputs the GGH encodings of all the
elements in the branching program.8 Recall that, the main idea behind an annihilation attack is to
first evaluate a program on several inputs, all of which leads to encodings of zeros in the top-level,

5Notice that in the ideal graded encoding model such operation is implicit as they consider integer rings and hence
an integer multiplication is equivalent to multiple additions.

6In order to formalize the winning event of the adversary, we make the oracle output its entire state including the
secret g and the actual encodings in this case. For any meaningful security definition such event must trigger a total
break as it is impossible to simulate these values.

7Such encodings are provided publicly for a public encoding procedure which is necessary for certain applications
of multi-linear maps. However, the obfuscation constructions do not require such feature. Hence those basic attacks
do not extend to the obfuscation setting.

8In reality the branching programs are first randomized and then encoded, but here we ignore the randomizers
for simplicity of exposition.
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and then compute a so-called annihilation polynomial on the corresponding elements produced as
a result of successful zero-tests on those top-level zeros. For specific programs the annihilation
polynomial evaluates to an element in the ideal.

Now we briefly explain how such attack can be launched against those obfuscation constructions
in our hybrid model. Consider the branching program consisting only of identity matrices, a specific
set of inputs µ1, µ2, . . . , µτ identical to the inputs considered by [MSZ16a] and the corresponding
annihilation polynomial p. Clearly on those inputs (in fact on any input) the branching program
trivially evaluates to 0. Now initially the adversary gets hold on all the encodings generated by
the obfuscator via encoding handles. Observe that, a correct evaluation of the encoded program
on any input µi leads to an encoding of zero, say ei = LaigMU at the top level for some ai ∈ R.
Such evaluation can be performed through the algebraic queries with the corresponding encoding
handles. Subsequently, a zero-test query on such ei returns a ring-handle to ai. Once the adversary
completes the zero-test queries for all inputs µ1, . . . µτ it gets the ring-handles corresponding to
a1,a2, . . . ,aτ . Finally the adversary queries a post-zeroizing computation asking the oracle to
compute the annihilation polynomial p over the ring elements a1,a2, . . . ,aτ via the ring-handles.
As shown by [MSZ16a], such annihilation polynomial outputs a non-trivial element in the ideal I
and hence the adversary wins in our model.

Proving security. Now we briefly explain the main ideas in the security argument. Recall
that, our modified encoding procedure encodes in R/〈g2〉. Therefore, in our hybrid model an
encoding LtMS is corresponding to a coset t (mod g2). Also recall that, our construction consists
of two parts. The main part evaluates the main branching program (on an input) that we want
to obfuscate. Additionally we put a auxiliary branching program which evaluates a PRF (on the
same input). The PRF computation outputs a “random” element modulo the ideal 〈g〉 whereas
the main program outputs a ring element.9 Now, we encode the combined branching program
using the modified GGH encoding.10 Performing the computation correctly on some input x yields
an encoding ex = Lwmain + gwauxMU where wmain is the output of the main program and waux is
the output of the PRF computation both on input x. The pseudorandomness of the PRF ensures
that the value r := waux (mod g) is computationally close to a uniform random sample element
in R/〈g〉. So, in our model a zero-test query on ex would make the oracle return a ring-handle to
the ring element r + cg such that r is computationally indistinguishable from a uniform random
sample from R/〈g〉. Therefore, repeating the above steps many times for different inputs x1, x2, . . .
the adversary only gets ring-handles to the ring elements r1 + c1g, r2 + c2g, · · · each of which
is computationally indistinguishable from a uniform random element in the ring R/〈g〉 and have
no correlations (except with negligible probability) to a computationally bounded attacker. Now
since the post-zeroizing computation is done in R/〈g〉, intuitively we can conclude that the no
post-zeroizing computation outputs an element in the ideal I except with a negligible probability
using Schwartz-Zippel lemma.

We remark that, however, the formal proof is much involved as we have to argue that the ad-
versary can not learn anything “useful” by any other means, for example by some partial/incorrect
computations. Nonetheless, formalizing above intuition and combining that with the formal tech-
niques from the previous works we are able to prove that our construction is indeed VBB secure in
the hybrid graded encoding model. The formal proof is presented in Section 7.

9We generalize the notion of Branching programs to work over arbitrary rings instead of {0, 1}.
10We ignore the Killian randomization here for simplicity of our exposition.
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2 Notations

The natural security parameter throughout this paper is λ, and all other quantities are implicitly
assumed to be functions of λ. We use standard big-O notation to classify the growth of functions,
and say that f(λ) = Õ(g(λ)) if f(λ) = O(g(λ) · logc λ) for some fixed constant c. We let poly(λ)
denote an unspecified function f(λ) = O(λc) for some constant c. A negligible function, denoted
generically by negl(λ), is an f(λ) such that f(λ) = o(λ−c) for every fixed constant c. We say that
a function is overwhelming if it is 1− negl(λ).

The statistical distance between two distributions X and Y over a domain D is defined to be
1
2

∑
d∈D |Pr[X = d] − Pr[Y = d]|. We say that two ensembles of distributions {Xλ} and {Yλ} are

statistically indistinguishable if for every λ the statistical distance between Xλ and Yλ is negligible
in λ.

Two ensembles of distributions {Xλ} and {Yλ} are computationally indistinguishable if for every
probabilistic poly-time non-uniform (in λ) machine A, |Pr[A(1λ, Xλ) = 1] − Pr[A(1λ, Yλ) = 1]| is
negligible in λ. The definition is extended to non-uniform families of poly-sized circuits in the
standard way.

3 Modified GGH Graded Encodings

In this work we propose a slightly modified version of the GGH graded encoding scheme. This
modification is essential for our new obfuscation scheme. We stress that our modification is rather
syntactic than structural and hence does not leave new vulnerabilities. In fact, it is easy to see that
any vulnerability in our map translates to a vulnerability for the original GGH map. We present
the overview of our modification in this section. The detail scheme is presented in Appendix B.

GGH construction: Short Introduction. An instance of the GGH scheme is parameterized
by the security parameter λ and the required multi-linearity level κ = O(poly(λ)). Based on these
parameters, consider the 2n-th cyclotomic ring R = Z[X]/(Xn+1) where n is a power of 2 (n is set
large enough to ensure security), and a modulus q that defines Rq = R/qR (with q large enough to
support functionality). An instance of the GGH scheme relative to the parameters above encodes
elements of a quotient ring R/I, where I is a principal prime ideal I = 〈g〉 ⊂ R, generated by
a “short” vector g. The short generator g itself is kept secret, and no “good” description of I is
made public in this scheme. In addition, GGH system depends on another secret element z, which
is chosen at random in Rq (and hence is not short).

A level-zero (“plaintext”) encoding of a coset e + I ∈ R/I is just a short vector r ∈ e + I in
that coset. For higher-level encodings, a level-i encoding of the same coset is a vector of the form
[c/z]q (We use the notation [·]q to denote operations in Rq.) with c ∈ e + I short. GGH provide
a public zero-testing mechanism to check if any given level-κ encoding is an encoding of 0 (which
suffices for checking equality). This zero-testing parameter is of the form pzt = [hzκ/g]q where h
is “somewhat small”, in particular of size

√
q. System parameters are setup in a way so that u is

an encoding of zero if and only if [u · pzt]q is “small”.

Our modification at high level. Our scheme is very similar to the original GGH scheme except
that unlike the GGH scheme which encodes elements of the quotient ring R/I we will encode
elements in the quotient ring R/J where J =

〈
g2
〉
. Furthermore, we setup the scheme in such
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a way that the homomorphic computation over R performed on the encoded values is preserved
in R/J (equivalently, (mod J )). In more detail, any “valid” computation on encodings of ring
elements r1 ∈ e1J and r2 ∈ e2 +J results in an encoding of an element r ∈ e+J where e+J is
the output of the same computation operation on e1 + J and e2 + J over R/J . Note that even
though the plaintext space has been changed to R/J , the zero-test parameter is same as before.
In particular, the zero-testing only checks if the encoded values is in I (that’s where it differs from
“standard” GGH map). It is not hard to see that such zero-test works as any computation that is
preserved in R/J is also preserved in R/I. Finally, q needs to be setup to support this functionality.
For completeness we present the detailed description of our modified scheme in Appendix B.

4 Preliminaries for our Obfuscation Candidate

4.1 Branching Programs

Similar to previous works, we focus on obfuscating poly-length branching programs, which are
known to be powerful enough to emulate all NC1 circuits via Barrington’s theorem [Bar86] (see
below for a formal statement). A branching program consists of a sequence of steps, where each
step is defined by a pair of permutation matrices. In each step the program examines one input
bit, and depending on its value the program chooses one of the permutations. Then computing
on these permutations yields the result. Here we use the dual-input variant first introduced by
Barak et al.[BGK+14].

Definition 4.1 (Dual-Input Oblivious Branching Program [BGK+14]) A dual-input obliv-
ious branching program of width d, length ` over m-bit inputs is given by a sequence,

BP = (inp1, inp2,A0, {Ai,b1,b2}i∈[`],b1,b2∈{0,1},A`+1)

where inp1(·), inp2(·) : [`] → [m] are functions such that inp1(i) and inp2(i) are the bits examined
in step i, A0 ∈ {0, 1}1×d \ (0d)T , A`+1 ∈ {0, 1}d×1 \ 0d and Ai,b1,b2 are permutation matrices over
{0, 1}d×d. The output of the matrix branching program on an input x ∈ {0, 1}m is given by:

BP(x) =

1 if A0

(∏
i∈[`]Ai,xinp1(i),xinp2(i)

)
A`+1 = 1

0 if A0

(∏
i∈[`]Ai,xinp1(i),xinp2(i)

)
A`+1 = 0

A dual-input branching program is said to be input-oblivious if the functions inp1 and inp2 are fixed
and independent of the program being computed by A0,Ai,b1,b2 i∈[`],b1,b2

,A`+1.

Remark 4.2 We will generalize the notion of permutation branching program to be over an arbi-
trary ring K instead of being over {0, 1}. More formally, we have A0, {Ai,b1,b2},A`+1 to be elements
in K1×d,Kd×d,Kd×1 respectively. We have the correctness criterion modified as follows:

BP(x) =

1 if A0

(∏
i∈[`]Ai,xinp1(i),xinp2(i)

)
A`+1 6= 0

0 if A0

(∏
i∈[`]Ai,xinp1(i),xinp2(i)

)
A`+1 = 0

where 0 represents the additive identity in the ring K.
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Remark 4.3 A dual input branching program is called non-shortcutting if for any input x ∈ {0, 1}n

A0 ×A1,xinp1 (1),xinp2 (1) · · ·A`,xinp1 (`),xinp2 (`) 6= 0T

A1,xinp1 (1),xinp2 (1) · · ·A`,xinp1 (`),xinp2 (`) ×A`+1 6= 0

Notice that any permutation branching program is non-shortcutting since A0 6= (0d)T , A`+1 6= 0d

and Ai,b1,b2 are permutation matrices.

Barrington [Bar86] showed that all circuits in NC1 can be equivalently presented by a branching
program of polynomial length. We provide the theorem statement below for completeness.

Theorem 4.4 ([Bar86]) For any depth-d, fan-in-2 boolean circuit C, there exists an oblivious
branching program of width 5 and length at most 4d that computes the same function as the circuit
C.

4.2 Straddling Sets

The straddling set system comprises of a system of sets satisfying specific combinatorial properties.
In [BGK+14] Barak et al. formalize straddling sets and provide an instantiation.11

Definition 4.5 (Straddling Set System [BGK+14]) A set system S := {Sj,b}j∈[n],b∈{0,1} with
n entries over an universe U is said to be straddling if

• ∪j∈[n]Sj,0 = U = ∪j∈[n]Sj,1

• For every non-empty sets C,D ⊂ S such that C and D contain only disjoint sets and ∪S∈CS =
∪S∈DS then,

C = ∪j∈[n]Sj,b and D = ∪j∈[n]Sj,(1−b)

for some b ∈ {0, 1}

We refer the reader to [BGK+14, Section 3] for a construction of a straddling set system.

5 Our Construction

In this section, we describe our candidate construction of indistinguishability obfuscation. We
describe our construction only for the setting of NC1 circuits. We note that the construction
extends to general circuits using bootstrapping technique of [GGH+13b].

Input circuit to be obfuscated. Let R be the ring Z[X]/(Xn + 1). Let P : {0, 1}m → {0, 1}
be the input circuit and

BPmain :=
{
inp1, inp2,P 0, {P i,b1,b2}i∈[`],b1,b2∈{0,1},P `+1

}
denote the corresponding oblivious branching program over the ring R. In the remainder of
the paper, for ease of notation, we use {P i,b1,b2} to denote {P i,b1,b2}i∈[`],b1,b2∈{0,1}. Note that
P 0, {P i,b1,b2},P `+1 belong to R1×5, R5×5, R5×1 respectively.

11Through the straddling sets were formally defined in [BGK+14] they were used implicitly in [GGH+13b].
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Sampling the parameters for modified GGH multilinear maps. Generate the parameters
for multilinear map ((n, q), (g, {zi}),pzt)← InstGen(1λ, 1κ), where κ = 4`+ 2.

Randomizing Program. We start with description of the randomizing program which com-
putes the PRF. For an input x ∈ {0, 1}m and a key ψ ∈ {0, 1}λ let Cψ(x) be the circuit that
outputs the first bit of PRFψ(x), where PRF is a pseudorandom function which on input any m
bit string (with a λ bit key ψ) outputs λ pseudorandom bits.12 Let the sequence of matrices

{Cψ
0 , {C

ψ
i,b1,b2

}i∈[`],b1,b2∈{0,1},C
ψ
`+1} represent the oblivious input branching program of width 5

corresponding to the circuit Cψ.
Next consider the following branching program13 Bψ

0 , {B
ψ
i,b1,b2

}i∈[`],b1,b2∈{0,1},B
ψ
`+1 of width 5s

with ψi = PRFψ(i) for each i ∈ {1, . . . s}.

Bψ
0 :=

(
1 ·Cψ1

0 , · · · , 2s−1 ·Cψs
0

)
Bψ
i,b1,b2

:=


Cψ1

i,b1,b2
. . .

Cψs
i,b1,b2

 Bψ
`+1 :=

 Cψ1

`+1
...

Cψs
`+1


(5.1)

where Bψ
0 ∈ R1×5s,Bψ

i,b1,b2
∈ R5s×5s and Bψ

`+1 ∈ R
5s×1.

Let ei be the element in the ring R corresponding to the i-th unit vector ei in Zn.14 Then define
the branching programs Qχ

0 , {Q
χ
i,b1,b2

}i∈[`],b1,b2∈{0,1},Q
χ
`+1 of width 5ns with χi = PRFχ(i) for each

i ∈ {1, . . . n}:

Qχ
0 := (e1 ·Bχ1

0 , · · · , en ·Bχn
0 ) Qχ

i,b1,b2
:=

 Bχ1

i,b1,b2
. . .

Bχn
i,b1,b2

 Qχ
`+1 :=

 Bχ1

`+1
...

Bχn
`+1


(5.2)

where Qχ
0 ∈ R1×5ns, Qi,b1,b2 ∈ R

5ns×5ns and Qχ
`+1 ∈ R

5ns×1. The unspecified values in the above
matrices are set to 0.

Now, without loss of generality, we will assume that

• Each of the oblivious branching programs described above have same length `.

• Every step of the branching program inspects two different bits. That is for all i ∈ [`] we
have inp1(i) 6= inp2(i).

• Every pair of bits is inspected in some step of the branching program. That is, for every pair of
input bits i1, i2 ∈ [n] such that i1 6= i2 there exists j ∈ [`] such that (inp1(j), inp2(j)) = (i1, i2)

12Note that for appropriate choice of the PRF the size of the circuit C is poly(λ) and it can be computed in NC1.
13Here we abuse the terminology branching program slightly by referring to combinations of multiple branching

programs that are input-aligned.
14Note that the PRF is computed bit-wise, hence the combined branching programs can only output the PRF value

in integer ring Zn. However our encoding scheme encodes elements from the ring R = Z[X]/(Xn + 1). Therefore
appropriate multiplications with the ring elements ei’s are required to convert the PRF output in Zn to a ring
element.
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• Every input bit is examined in exactly `′ steps. More precisely, if ind(j) denotes the set of
steps that inspect input bit j:

ind(j) = {i ∈ [`] : inp1(i) = j} ∪ {i ∈ [`] : inp2(i) = j}

then we assume that for each j ∈ [n] we have |ind(j)| = `′.

It is straightforward to see that the above conditions are indeed without loss of generality, as they
can be ensured by padding or inserting identity matrices whenever necessary without affecting the
functionality. We keep it informal for simplicity.

Main Branching Program. Sample uniform random χ← {0, 1}λ and random discrete gaussian
samples α0, {αi,b1,b2}i∈[`],b1,b2∈{0,1},α`+1 ← DR,σ′ for appropriate σ′ (as stated in Table 1) such that
each α is uniform random in R/I. Define the branching programs A0, {Ai,b1,b2}i∈[`],b1,b2∈{0,1},A`+1

of width d = 5ns+ 5:

A0 := α0 · (g ·Qχ
0 , P 0) Ai,b1,b2 := αi,b1,b2 ·

(
Qχ
i,b1,b2

0

0 P i,b1,b2

)
A`+1 := α`+1 ·

(
Qχ
`+1

P `+1

)
(5.3)

where A0 ∈ R1×d, Ai,b1,b2 ∈ Rd×d and A`+1 ∈ Rd×1 and d = 5ns+ 5.

Kilian Randomization. Sample Killian matrices {R0, · · · ,R`}
$←− (DR,σ′′)

d×d for all i ∈ [`], b1, b2 ∈
{0, 1} from appropriate discrete gaussian distribution (σ′′ is specified in Appendix B) such that each
entry is uniform random in R/J . Compute:

Ã0 := A0 ×R0 ; Ãi,b1,b2 := Radj
i−1 ×Ai,b1,b2 ×Ri ; Ã`+1 := Radj

` ×A`+1 (5.4)

where Radj is the adjoin of R in R/J . We have Ã0 ∈ R1×d, Ãi,b1,b2 ∈ Rd×d and Ã`+1 ∈ Rd×1.

Straddling Sets. For every j ∈ [n], let Sj be a straddling set system with `′ entries over a set
Uj , such that the sets U1, . . . ,Un are disjoint. Let U =

⋃
j∈[n] Uj , and let Us and Ut be sets such

that U, Us, Ut are disjoint. We associate the set system Sj with the j’th input bit. We index the
elements of Sj by the steps of the branching program BP that inspect the j’th input. Namely,

Sj =
{
Sjk,b : k ∈ ind(j), b ∈ {0, 1}

}
,

for each j ∈ [n]. For every step i ∈ [`], we denote by S(i, b1, b2) the union of pairs of sets that are
indexed by i:

S(i, b1, b2) = S
inp1(i)
i,b1

∪ S inp2(i)
i,b2

S0 = Us

S`+1 = Ut .

Note that κ = |U ∪ Us ∪ Ut|.
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Obfuscation. Let M be a matrix over the ring R. Then JMKS denotes a matrix of the same
dimensions where each entry is a modified GGH encoding15 of the corresponding entry in M at
the level S.

The obfuscation consists of the encodings of Ã0, Ãi,b1,b2 , Ã`+1 at levels S0, Si,b1,b2 and S`+1.

• Compute
r
Ã0

z

S0

← enc(params, S0, Ã0),
r
Ãi,b1,b2

z

S(i,b1,b2)
← enc(params, Si,b1,b2 , Ãi,b1,b2)

for all i ∈ [`], b1, b2 ∈ {0, 1} and
r
Ã`+1

z

S`+1

← enc(params, S`+1, Ã`+1).

• Output the obfuscation as:{r
Ã0

z

S0

,

{r
Ãi,b1,b2

z

S(i,b1,b2)

}
i∈[`],b1,b2∈{0,1}

,
r
Ã`+1

z

S`+1

}
.

Evaluation The evaluation works as follows:

• To evaluate O(BP) on some input x ∈ {0, 1}m compute (in Rq):

ux :=
r
Ã0

z

S0

·

(∏̀
i=1

r
Ãi,xinp1(i),xinp2(i)

z

S(i,xinp1(i),xinp2(i))

)
·
r
Ã`+1

z

S`+1

(5.5)

• Output 1− isZero(params,pzt,ux).

5.1 Correctness

In this section, we argue the correctness of our construction. Note that for arguing correctness it
suffices to show that for all x, ux is an encoding of 0 (mod I) at the highest level U iff P (x) = 0.
We will start by proving the following lemma that will be useful for the proof.

Lemma 5.1 For any input x ∈ {0, 1}λ we have ux = JcxKU (as in Equation 5.5) such that,

cx = αxδ (Qχ(x) · g + P (x)) (5.6)

where αx = α0

(∏
i∈[`]αi,xinp1(i),xinp2(i)

)
α`+1 and δ =

∏`
i=0RiR

adj
i modJ .

Proof From our construction first recall Eq. 5.3.

A0 := α0 · (g ·Qχ
0 , P 0) Ai,b1,b2 := αi,b1,b2 ·

(
Qχ
i,b1,b2

0

0 P i,b1,b2

)
A`+1 := α`+1 ·

(
Qχ
`+1

P `+1

)
where α0,αi,b1,b2 ,α`+1 ← DR,σ′ , which in turn implies that

A0 ×

∏
i∈[`]

Ai,xinp1(i),xinp2(i)

×A`+1 = αx · (g ·Qχ(x) + P (x)) (5.7)

15Note that this notations are different from the notations LaMb used for hybrid graded encoding (of an element a
at level b) in the security proof in Sec. 7. Those notations are defined in Sec. 6.1.
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Also recall Eq. 5.4 from our construction,

Ã0 := A0 ×R0 ; Ãi,b1,b2 := Radj
i−1 ×Ai,b1,b2 ×Ri ; Ã`+1 := Radj

`+1 ×A`+1 (5.8)

where each entry of the Killian randomizers Ri ← Dd×d
R,σ′′ and the matrix Radj

i ∈ Rd×d is an adjoin
of Ri in R/J . Now from Eq. 5.5 we get,

ux =
r
Ã0

z

S0

·

(∏̀
i=1

r
Ãi,xinp1(i),xinp2(i)

z

S(i,xinp1(i),xinp2(i))

)
·
r
Ã`+1

z

S`+1

=

t

Ã0 ×

(∏̀
i=1

Ãi,xinp1(i),xinp2(i)

)
× Ã`+1

|

U

(5.9)

=

t

δ ·A0 ×

(∏̀
i=1

Ai,xinp1(i),xinp2(i)

)
×A`+1

|

U

(5.10)

= Jαxδ (Qχ(x) · g + P (x))KU (5.11)

where Eq. 5.9 follows from the definition of straddling set and the properties of the underlying
graded encoding, Eq. 5.10 follows from Eq. 5.8 and Eq. 5.11 follows from Eq. 5.7.

Combining Eq. 5.9, Eq 5.8 and Eq. 5.7 we get the desired statement which proves the claim.

The fact that ux is at level-U = {1, . . . , κ} follows by inspection and all we need to prove is
that for all x, cx = 0 (mod I) iff P (x) = 0. Formally,

Lemma 5.2 cx = 0 (mod I) (as in Equation 5.6) if and only if P (x) = 0.

Proof From Lemma 5.1 we have that cx (mod I) = δ · αx · P (x) (mod I). Now we have two
cases to consider:

• P (x) = 0: In this case, cx ∈ I and hence from zero test property we have:

isZero(params,pzt,ux) = 1

• P (x) = 1: In this case, we argue that cx /∈ I with overwhelming probability and the re-
sult follows from the zero test property. Since P (x) = 1, cx ∈ I if and only if δαx ∈ I.
Since α0,αi,b1,b2 ,α`+1 and the entries of Ri’s are sampled from DR,σ′′ and σ′′ is chosen
(c.f. Appendix B) to be “sufficiently larger” than the smoothing parameter of the lattice
corresponding to J , from the properties of the ideal lattice (see Lemma A.2 for a formal
statement) we have that α0,αi,b1,b2 ,α`+1 and the entries of Ri are uniform in R/J . Hence,
the probability that any one of α0,αi,b1,b2 or α`+1 or any of the determinants of the matrices
Ri is 0 (mod I) is negligible in λ. This along with the fact that I is a prime ideal, implies
that for every x ∈ {0, 1}λ, αx /∈ I with overwhelming probability.

This concludes the proof.

15



6 Preliminaries for Security Arguments

6.1 The Hybrid Graded Encoding Model

In this section, we describe our security model which we call the Hybrid Graded Encoding Model.
Similar models have been considered in prior works [MSZ16a, CGH+15]. In [CGH+15], the authors
presented a so-called “refined generic model”(c.f. Appendix A of [CGH+15]) as a natural weakening
of the ideal graded encoding model. In [MSZ16a] the authors used a slightly different weakened
ideal model, so-called “abstract attack model” to demonstrate attacks against specific obfuscation
candidates. In particular, none of the works use the weaker ideal model for proving security of
obfuscations. In contrast, in this work, for the first time, we use a weaker ideal model (i.e. hybrid
graded encoding model) to prove security of a obfuscation candidate (namely, our construction
described in Sec. 5).

Informally, similar to [BGK+14], where all parties have access to an oracle M implementing
the graded encoding scheme and M will allow algebraic operations to be performed on encodings
through so-called “handles” on the encodings. However, unlike [BGK+14], it will also allow arbi-
trary polynomial computation on the ring elements produced via “successful zero-tests,” through
a second type of handles.16

Similar to [BGK+14] we start by defining the hybrid graded encoding system.

Definition 6.1 (Hybrid Graded Encoding System) Let R = Z[X]/Xn + 1 be the 2n-th cy-
clotomic ring of integers and g ∈ R be a “short” element in the ring such that |R/〈g〉| is a prime
of size ω(poly(λ)). Let U be a universal set. Then an encoding e of an element t ∈ R at the level
S ⊆ U is denoted as e = LtMS. For any such encoding e = LtMS, the corresponding ring element
t is called its representation and the set S its level. We define the following operations over the
encodings.

Addition: Given two encodings e1 = Lt1MS1 and e2 = Lt2MS2 where S1 = S2, e1 + e2 is defined to
be the encoding given by Lt1 + t2MS1. Similarly, e1 − e2 is defined to be the encoding given by
Lt1 − t2MS1.

Multiplication: Given two encodings e1 = Lt1MS1 and e2 = Lt2MS2 where S1 ∩ S2 = φ, e1 · e2 is
defined to be the element given by Lt1 · t2MS1∪S2.

Ring Multiplication: Given a ring element a ∈ R and an encoding e = LtMS, the ring multipli-
cation a · e is defined to be the encoding given by e′ = La · tMS.17

Zero Testing: For any encoding e = LtMS, it returns 1 if and only if:

t (mod I) = 0 and S = U

We now proceed to describe the hybrid graded encoding model. Similar to [BGK+14] we
consider a stateful oracleM mapping encodings to “generic” representations called handles. There
are two types of handles that M generates: encoding handles that are corresponding to encodings
and ring handles that are corresponding to the elements in the ring R (obtained after successful
zero-tests). The handles are denoted by HEnc (e) for an encoding e and HRng (a) for any ring element

16A reader familiar with [MSZ16a] can note that this step is analogous to the type-2 query in that model.
17Note that we abuse the notation “·” to denote both ring multiplication and multiplication between encodings.
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a ∈ R. We do not specify how the handles are generated. However, we require that the value of the
handles, HEnc (e) ,HRng (a) are independent of the corresponding encoding e and the corresponding
ring element a respectively. The oracle maintains two tables Lenc and Lrng where Lenc stores
encoding-handle pairs (e,HEnc (e)) and similarly Lrng stores pairs of the form (a,HRng (a)) where
HRng (a) is a ring handle corresponding to ring element a ∈ R. M provides the user with the
following interfaces.

• Initialization. The oracle M is initialized with the parameters of the hybrid graded en-
coding system. Additionally, it is initialized with the encoding-handle table Lenc of initial
encodings-handles pair and the ring-handle table Lrng with ∅. After M has been initialized,
all subsequent calls to the initialization interfaces fail.

• Algebraic operations. Depending on the type of query it executes the following steps.

– Both are encoding handles: Given two encoding handles HEnc (e1) ,HEnc (e2) and an op-
eration ◦ ∈ {+,−, ·}, M first locates the relevant encodings e1 = Lt1MS1 , e2 = Lt2MS2

in the handle table Lenc. If any of the input handles does not appear in the table Lenc

(that is, if the handle was not previously generated by M) the call to M fails. If the
expression e1 ◦ e2 is undefined (i.e., S1 6= S2 for ◦ ∈ {+,−}, or S1 ∩ S2 6= φ for ◦ ∈ {·})
the call fails. Otherwise, M generates a new encoding handle HEnc (e′) for e′ = e1 ◦ e2.
It appends the pair (e′,HEnc (e′)) into the table Lenc and returns HEnc (e′).

– An encoding handle and a ring element: Given a ring element a ∈ R, an encoding
handle HEnc (e) and a multiplication operation · first it checks if the encoding handle
already exists in the corresponding table Lenc.

18 If it does not exist then this call fails.
Otherwise, it computes the new encoding e′ = a · e via ring multiplication and generates
the new handle HEnc (e′). It appends the entry (e′,HEnc (e′)) into the table Lenc and
outputs HEnc (e′).

• Zero testing. Given a encoding-handle HEnc (e) as input, M first locates the corresponding
encoding e = LtMS in Lenc. If it is not found then (that is, if HEnc (e) was not previously
generated by M) then call to M fails. Otherwise, it performs zero-test on e. If the zero
test fails, then this call fails. If it passes (i.e. returns 1) then recall from Definition 6.1 that
t = 0 mod g which, in turn implies that t must be of the form t = a′g. So it computes the
ring element a′ = t/g, generates the corresponding ring handle HRng (a′), appends the pair
(a′,HRng (a′)) into the table Lrng and outputs HRng (a′).

• Post-zeroizing computation. Given a non-zero polynomial p of bounded degree and a
sequence of ring handles HRng (a1) , · · · ,HRng (at),M first locates the corresponding elements
a1, · · · ,at in the table Lrng. If any of them is not found in Lrng (that is not generated by
the above zero-test query) then call to M fails. Otherwise, M evaluates the polynomial
â := p(a1, · · · ,at). Then it checks if â = 0 (mod I) and â 6= 0. If the check fails then
it returns 0. Otherwise, it returns 1. Furthermore, in this case M reveals its entire state
including both lists Lenc and Lrng and the secret g.19

18Note that the only operation we allow is the multiplication. Moreover, for GGH construction (and for its
modification that we consider) addition of a ring element to an encoding is not well-defined.

19Intuitively, if the adversary is able to query such a polynomial then it wins. Formally, this is captured in the
model by making the oracle to output the entire state of the oracle.
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Note that the construction does not need access to the post-zeroing computation. Only the
attacker gets access to these queries.

Remark 6.2 One natural restriction that is implicitly placed on the attacker is that the attacker is
not allowed to use the ring elements stored in the handle-table Lrng in multiplying with the encodings
itself. This is a reasonable restriction because all ring elements generated after zero-test (the ones
with corresponding handles in Lrng) are “large” and multiplying it with any encoding makes the
numerator in that encoding large enough such that no zero-test can be performed on it.

6.2 Virtual Black box Obfuscation in the Hybrid Graded Encoding Model

We now define the virtual black box obfuscation property in an idealized model where all algorithms
have access to an oracleM. Later we will prove that our construction achieves this definition in the
hybrid graded encoding model in which M is an oracle as described above. As mentioned earlier,
our construction doesn’t need the post-zeroing computation and these queries are meant to provide
the attacker with additional power.

Definition 6.3 (“Virtual Black-Box” Obfuscation in an M-idealized model [BGK+14])
For a (possibly randomized) oracle M, and a circuit class {C`}`∈N, we say that a uniform PPT
oracle machine O is a “Virtual Black-Box” Obfuscator for {C`}`∈N in the M-idealized model, if the
following conditions are satisfied:

• Functionality: For every ` ∈ N, every C ∈ C`, every input x to C, and for every possible coins
for M:

Pr[(OM(C))(x) 6= C(x)] ≤ negl(|C|),

where the probability is over the coins of O.

• Polynomial Slowdown: there exist a polynomial poly such that for every ` ∈ N and every

C ∈ C`, we have that |OM(C)| ≤ poly(|C|).

• Virtual Black-Box: for every PPT adversary A there exists a PPT simulator Sim, and a
negligible function µ such that for all PPT distinguishers D, for every ` ∈ N and every
C ∈ C`:

|Pr[D(AM(OM(C))) = 1]− Pr[D(SimC(1|C|)) = 1]| ≤ µ(|C|) ,

where the probabilities are over the coins of D, A, Sim, O and M.

6.3 The Sampling Lemma

Recall that, in our construction, a pseudorandom function is being computed in a specific manner.
For our proof, we need the output of this function to be uniform over mod I. We prove that under
appropriate choice of parameters this is indeed true.

Lemma 6.4 Let EZn,s be the distribution that outputs a random point in the {0, 2s − 1}n and let
I ⊂ Zn be such that diam(P(I)) = poly(λ, n), where P(I) is the fundamental parallelepiped of I and
diam(P(I)) is the maximum distance between any two points in P(I). The distribution EZn,smod I
for any s ≥ λ is statistically close to uniform over Znmod I.
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Proof For any a ∈ Zn, we define P(I,a) to be the set of points obtained by adding (addition
performed in Qn) a′ to each point in P(I) where a′ = a− (amodP(I)). Let S = {0, 2s− 1}n. Let
us define a partition Sint,Sbnd of S where

Sbnd := {a ∈ S : ∃b ∈ P(I,a) s.t. b 6∈ S}

and Sint = S \ SSbnd . Let ξ be an arbitrary element in Znmod I.
Note that conditioned on r ∈ Sint, rmod I is uniform in Znmod I. Therefore, the statistical

distance between EZn,smod I and UZnmod I (uniform distribution over Znmod I) is

1

2

∑
ξ∈Znmod I

∣∣∣∣ Pr
r←S

[rmod I = ξ]− Pr
r←UZn mod I

[r = ξ]

∣∣∣∣
=

1

2

∣∣∣∣ Pr
r←S

[rmod I = ξ | r ∈ Sint] · Pr[r ∈ Sint]− Pr
r←UZn mod I

[r = ξ | r ∈ Sint] · Pr[r ∈ Sint]
∣∣∣∣

+
1

2

∣∣∣∣ Pr
r←S

[rmod I = ξ | r ∈ Sbnd] · Pr[r ∈ Sbnd]− Pr
r←UZn mod I

[r = ξ | r ∈ Sbnd] · Pr[r ∈ Sbnd]

∣∣∣∣
≤ 1

2
Pr
r←S

[r ∈ Sbnd]

(6.1)

and it suffices to argue that Prr←S [r ∈ Sbnd] is negligible. Let S− := {0, 2s − 1 − diam(P(I))}n.
Note that for any a ∈ S− we have that P(I,a) ⊂ S. This follows since a, b ∈ P(I,a) we have
‖a− b‖ ≤ diam(P(I)). Note that,

|Sbnd|
|S|

≤ |S| − |S
−|

|S|
≤ 2sn − (2s − diam(P(I)))n

2sn
= 1−

(
1− diam(P(I))

2s

)n
≤ diam(P(I))n/2s

which is negligible as 2s � diam(P(I))n.

7 The Security proof

In this section we prove that our construction is VBB-secure in the hybrid graded encoding model.
In particular, we show that our construction as described in Sec. 5 achieves Def. 6.3 for all NC1

circuits when M is the oracle in the hybrid graded encoding model. We start by describing our
construction in that model. A formal description of the model is provided in Section 6.1.

7.1 Our construction in the Hybrid Graded Encoding model

Setup. Recall that we work in the 2n-th cyclotomic ring over integers R = Z[X]/(Xn + 1) and
consider the following ideals I = 〈g〉 and J = 〈g2〉 generated by g where g ∈ R is a “short” ring
element. We restate the following equations from our construction (Equations 5.3, 5.4 of Section 5):

A0 := α0 · (g ·Qχ
0 , P 0) Ai,b1,b2 := αi,b1,b2 ·

(
Qχ
i,b1,b2

0

0 P i,b1,b2

)
A`+1 := α`+1 ·

(
Qχ
`+1

P `+1

)
(7.1)
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Ã0 := A0 ×R0 ; Ãi,b1,b2 := Radj
i−1 ×Ai,b1,b2 ×Ri ; Ã`+1 := Radj

`+1 ×A`+1 (7.2)

where the P matrices are the parts of the main branching program that is to be obfuscated and
Q matrices are parts of the auxiliary programs evaluating the PRF, α’s and the entries of the R
matrices are random elements from discrete gaussian DR,σ′′ (for an appropriate σ′′ as specified in
Appendix B) and Radj ’s are the adjoins of R’s computed in R/J .

We define:

B̃0 := A0×R0+W 0·g2 ; B̃i,b1,b2 := Radj
i−1×Ai,b1,b2×Ri+W i,b1,b2 ·g2 ; B̃`+1 := Radj

`+1×A`+1+W `+1·g2

(7.3)
for some matrices W 0, {W i,b1,b2}i∈[`],b1,b2∈{0,1},W `+1 with entries from the ring R.20 Let us denote

the A, Ã matrices without the α’s as:

C0 := (g ·Qχ
0 , P 0) Ci,b1,b2 :=

(
Qχ
i,b1,b2

0

0 P i,b1,b2

)
C`+1 :=

(
Qχ
`+1

P `+1

)
(7.4)

C̃0 := C0 ×R0 ; C̃i,b1,b2 := Radj
i−1 ×Ci,b1,b2 ×Ri ; C̃`+1 := Radj

`+1 ×C`+1 (7.5)

Abusing notation slightly we will use {M i,b1,b2} to denote the set {M i,b1,b2}i∈[`],b1,b2∈{0,1} for
any matrix M used in this section.

Initialization. The oracle M is initialized with the encoding parameters R, I, g,U and the fol-
lowing encodings:21 {

LB̃0MS0 ,
{

LB̃i,b1,b2MS(i,b1,b2)

}
, LB̃`+1MS`+1

}
Obfuscation. Let HEnc

(
LB̃0MS0

)
,
{
HEnc

(
LB̃i,b1,b2MS(i,b1,b2)

)}
, HEnc

(
LB̃`+1MS`+1

)
be the corre-

sponding encoding handles returned byM. Then we define the output of the obfuscation algorithm
to be:

OM :=
{
HEnc

(
LB̃0MS0

)
,
{
HEnc

(
LB̃i,b1,b2MS(i,b1,b2)

)}
,HEnc

(
LB̃`+1MS`+1

)}
Evaluation. To evaluate the obfuscation on input x ∈ {0, 1}m we compute (using oracle calls to
M):

Hop
x := HEnc

(
LB̃0MS0

)
×

(∏̀
i=1

HEnc

(
LB̃i, xinp1(i), xinp2(i)MS(i,xinp1(i),xinp2(i))

))
× HEnc

(
LB̃`+1MS`+1

)
and zero test on the output encoding handle Hop

x . If the call to zero test outputs 0 then we
return 1. Else, we return 0. The correctness of the evaluation follows from Lemma 5.1, 5.2 in a
straightforward manner.

20In the actual construction the matrices W 0, {W i,b1,b2}i∈[`],b1,b2∈{0,1},W `+1 are generated from the encoding
procedure of our multilinear map construction (see Sec. 3 for details). Note that we do not explicitly mention the
actual distributions from which W 0,W i,b1,b2 ,W `+1 are sampled as that is not important in order to prove security.

21Note that, here we use the hybrid encoding notations, that are different from the modified GGH encoding
notations used in the construction in Sec. 5.
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7.2 Proof of Security in the Hybrid Encoding Model

Formally we prove the following theorem.

Theorem 7.1 Let P be an arbitrary circuit in NC1. Let OM be the obfuscation of P in the Hybrid
Graded Encoding Model with respect to the oracle M. Then for every probabilistic polynomial time
(PPT) adversary AM, there exists a poly time simulator Sim such that the following holds:

AM(OM(P ))
c
≈ SimP (1|P |)

Road Map. First in Section 7.2.1 we describe our simulator. In section 7.2.2 we prove the
correctness of the simulation of the zero-testing queries. Finally, in section 7.2.3 we prove the
correctness of the simulation of the post-zeroizing queries.

7.2.1 Description of the Simulator

We remark that many of our techniques are analogous to [BGK+14, BMSZ16, AGIS14]. However,
we diverge in simulating the zero-testing and post zeroizing queries.

To prove VBB security, for every adversary A, we construct a PPT simulator Sim, given 1|P |,
the description of an adversary A and oracle access to the circuit P , is able to simulate the view of
A that is computationally close to its view in the real-world execution. Sim starts by emulating the
obfuscation algorithm O. Note that, Sim is not given the actual circuit P as input but only oracle
access to P . Therefore, it does not know the P i,b1,b2 matrices that are used in the obfuscation.
Hence, similar to the earlier works, instead of initializing the actual matrices, Sim initializes M
with formal variables corresponding to each entry of the matrices.

Towards that, first we extend the definition of an encoding (defined formally in Sec. 6.1) such
that its representation can also be a formal variable. When performing an operation ◦ on encodings
e1 = Lt1MS1 , e2 = Lt2MS2 for formal variables t1, t2, the value of the resulting element e1 ◦ e2 is
naturally defined as Lt1 ◦ t2MS(for an appropriate S and assuming the operation is defined for
such levels). We represent formal expressions as arithmetic circuits, thereby guaranteeing that the
representation size remains polynomial in the security parameter.

Sim emulates O by instantiating with appropriate R, I,U as in the obfuscation construction
(Section 5) and creates random handles corresponding to the encodings:{

LB̃0MS0 ,
{

LB̃i,b1,b2MS(i,b1,b2)

}
, LB̃`+1MS`+1

}
where the encodings themselves are represented by corresponding formal variables.

Sim proceeds to emulate the execution of the adversary A on input handles corresponding to
the formal variables defined above. It is straightforward to observe that when A makes an oracle
call that is neither a zero test nor a post-zeroizing query, Sim perfectly emulatesM’s answer as the
distribution of handles generated during the simulation and during the real execution are identical
and the simulated obfuscation consists only of handles (as opposed to the actual encodings).

So the only things left to explain are how Sim correctly simulates the zero test queries and post
zeroizing queries.
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Simulation of Zero Testing Queries. When the adversary A makes a zero-test query with a
handle h, Sim looks up the corresponding polynomial p (represented as an arithmetic circuit) in
the handle table. In this work, we would be interested in the polynomial p modulo J (denoted by
pJ ).22 Like in previous works [BGK+14, BMSZ16, AGIS14] we first decompose pJ into the so-called
“single-input” elements over the quotient ring R/J . Formally we define single-input elements as
follows.

Definition 7.2 A single input element for an input x is a polynomial px ∈ R/J [C̃0, C̃1,xinp1(1),xinp2(1)
,

· · · , C̃`,xinp1(`),xinp2(`)
, C̃`+1] that is expressible as

px =
∑

(j0,i1,j1,··· ,i`+1)

cj0,··· ,i`+1
· (C̃0)1,j0 · (C̃1,xinp1(1),xinp2(1)

)i1,j1 · · · (C̃`+1)i`+1,1 modJ

where cj0,··· ,i`+1
∈ R/J and j0, i1, · · · , i`+1 ∈ [d].

The following proposition, adapted from [BGK+14, BMSZ16] to our setting, states that for any
polynomial p which an adversary submits as a zero testing query, the corresponding pJ can be
efficiently decomposed into polynomial number of single-input elements.

Proposition 7.1 ([BGK+14, Claim 2] [BMSZ16, Lemma 5.3]) For every polynomial p ∈ R[B̃0,
{B̃i,b1,b2}, B̃`+1], pJ := pmodJ can be efficiently decomposed into a sum pJ =

∑
x∈D αx · px where

px is a single input element for the input x, αx = α0 ·
(∏

iαi,xinp1(i),xinp2(i)

)
· α`+1 and D is a set

containing polynomially (in λ) many input x.

Sim’s strategy to answer A’s zero-test queries is described in detail in Figure 1.

Remark 7.3 In this section whenever we mention about sampling a uniform random value from
the ring R/I (resp. R/J ) we implicitly mean that this is done by sampling a random value from
the discrete gaussian DR,σ′ (resp. DR,σ′′) for an appropriate σ′ (as in Table 1) (resp. σ′′).

Simulating post zeroizing queries. For every post zero testing query that the adversary A
gives Sim returns 0.

7.2.2 Correctness of Zero Testing in the Simulation

We start by proving some general results on the structure of “allowable” polynomials. These results
will be used to prove simulation correctness. Before that we introduce some notation:

Notation. LetA0,A1, · · · ,A`+1,Qχ
0 ,Q

χ
1 , · · · ,Q

χ
`+1, P 0,P 1, · · · ,P `+1 be such thatAi = Ai,b1,b2 ,

Qχ
i = Qχ

i,b1,b2
, P i = P i,b1,b2 for some choice of b1, b2 and for all i ∈ [`] (c.f. Equations 7.1, 7.2).

For the sake of proving Theorem 7.7, we will assume that A0,A1, · · · ,A`+1, Qχ
0 ,Q

χ
1 , · · · ,Q

χ
`+1,

22Notice that, in modJ , any term with a g2 multiplier (namely the W matrices in the Eqn. 7.3) vanishes.
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Input: A polynomial p over (B̃0, {B̃i,b1,b2}, B̃`+1).

1. Let pJ := pmodJ . Decompose pJ into polynomially many single input elements as per
Lemma 7.1. Express pJ as:

pJ =
∑
x∈D

αx · pxmodJ

where px is a single input element for the input x and αx = α0 ·
(∏

iαi,xinp1(i),xinp2(i)

)
α`+1.

2. For every x ∈ D do the following:

(a) Choose random matrices D̃0, {D̃i,xinp1(i),xinp2(i)
}i∈[`], D̃`+1 from R/I and evaluate the

polynomial pxmod I (over R/I) on these values. Let Valx be the evaluated output
(mod I). If Valx = 0 then choose a new x′ ∈ D among the remaining ones, if no
such x′ remains then go to Step 3. Otherwise if Valx 6= 0 then go to the next step.

(b) Query the oracle P to learn the output of P on input x. If P (x) = 1 then return 0.
Otherwise if P (x) = 0 then go to the next step.

(c) Choose D̃0, {D̃i,xinp1(i),xinp2(i)
} uniformly at random from R/I. Let v = (v1 · · · vd) be

the row vector corresponding to D̃0×
∏
i∈` D̃i,xinp1(i),xinp2(i)

. Then choose w2, · · · , wd
uniformly at random from R/I and define:

D̃`+1 =


−
∑d

i=2 viwi
v1w2

...
v1wd

 (7.6)

Evaluate the polynomial pxmod I (over R/I) on these (randomly) chosen values.
Let Evalx be the evaluation (in mod I). Now if Evalx 6= 0 then return 0. Otherwise
continue the loop with a new x′ ∈ D. If no such x′ remains then go to Step 3.

3. If for every x ∈ D, Valx = 0 (computed in Step 2a) then create a ring handle corresponding
to 0 ∈ R and return the handle. Otherwise, in the case when Evalx = 0 for some x ∈ D,
create a ring handle to the formal variable rp such that p = rpg (which is guaranteed by
the construction) denoted by rp and return the handle.

Figure 1: Sim’s zero testing strategy
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P 0,P 1, · · · ,P `+1 have entries from an arbitrary ring K (i.e Theorem 7.7 is agnostic to the under-
lying ring that we are working with), more precisely, Ã0 ∈ Kd×1, Ã1 ∈ Kd×d, · · · , Ã`+1 ∈ K1×d.
We define R−1 = R`+2 = 1. Then for all i ∈ {0, · · · , `+ 1} we have:

Ãi = Radj
i−1 ×A×Ri

Let us now define the notion of an allowable polynomial which would correspond to polynomials
on a “single-input” x.

Definition 7.4 A polynomial p ∈ K[Ã0, Ã1, · · · , Ã`+1] is said to be allowable if it can be expressed
as

p =
∑

(j0,i1,j1,··· ,i`+1)

cj0,··· ,i`+1
· (Ã0)1,j0 · (Ã1)i1,j1 · · · (Ã`+1)i`+1,1

for some cj0,··· ,i`+1
∈ K where j0, i1, · · · , i`+1 ∈ [d]

Remark 7.5 In the future references to allowable polynomials we do not refer to the explicit bounds
on j0, i1, · · · , i`+1.

We now state and prove a theorem regarding the structure of allowable polynomials over
(Ã0, Ã1, · · · , Ã`+1).

Remark 7.6 The theorem stated below is similar to the Theorem 4.2 in [BMSZ16]. The only
difference is that we consider conditions 1, 2 to be on the P matrices instead of the A matrices.
Concretely, our conditions state that P 0×P 1 · · ·×P `+1 6= 0 and P 0×P 1 · · ·×P `+1 = 0 instead of
stating A0×A1 · · ·×A`+1 6= 0 and A0×A1 · · ·×A`+1 = 0 respectively. Moreover, our “non-short
cutting” condition in the statement of the Theorem is based on P matrices rather than A matrices.

Theorem 7.7 (Adapted from [BMSZ16, Theorem 4.2]) Consider an allowable polynomial
p ∈ K[Ã0, Ã1, · · · , Ã`+1] such that after making the substitutions

Ã0 → A0 ×R0 ,
{
Ãi → Radj

i−1 ×Ai ×Ri

}
i∈[`]

for all i ∈ [`] , Ã`+1 → Radj
` ×A`+1,

p is identically zero over {Rk}k∈{0,··· ,`}. Moreover assume that,

P 0 × P 1 · · · × P ` 6= 0

and

P 1 × P 2 · · · × P `+1 6= 0T

Then the following is true:

1. If P 0×P 1 · · ·×P `+1 6= 0 then p is identically zero as a polynomial over its formal variables,
namely (Ã0, Ã1, · · · , Ã`+1).

2. If P 0×P 1 · · ·×P `+1 = 0 then p can be expressed as a constant multiple of γ·Ã0×Ã1×· · · Ã`+1

where γ is a constant in the ring K.

Proof We prove the claim by induction on `.
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Base case: ` = −1.
There is just one matrix namely Ã0 matrix with a single entry a where a is a formal variable

and there are no {Rk} matrices (since R−1 = R1 = I in this case). Then any allowable polynomial
p is of the form c ·a. Since we are given that p is identically 0 over the non-existent {Rk} matrices,
we infer that c · a = 0. This implies that either c = 0 or a = 0. If a 6= 0 then c = 0 and this
corresponds to Item 1. In the other case, p is trivially a multiple of the matrix product. Thus we
have proved the assertion for the base case.

Inductive Hypothesis. We assume that the hypothesis is true for `− 1.

Inductive step: We prove for the case ` assuming the hypothesis is true for ` − 1. We assume
that A0 has all non-zero entries and later show that this can be assumed without loss of generality.
Any allowable polynomial over (Ã0, Ã1, · · · , Ã`+1) can be expressed as:

p =
∑

(j0,i1,j1,··· ,i`+1)

cj0,··· ,i`+1
· (Ã0)1,j0 · (Ã1)i1,j1 · · · (Ã`+1)i`+1,1

Note that (Ã0)1,j0 =
∑

m (A0)1,m · (R0)m,j0 and (Ã1)i1,j1 =
∑

k (Radj
0 )i1,k · (A1 ·R1)k,j1 .

Hence,

p =
∑
j,i,m,k

α′j,i,k · (A0)1,m · (R0)m,j · (Radj
0 )i,k

where
α′j,i,k =

∑
j1,··· ,i`+1

cj,i,j1,i2,··· ,i`+1
(A1 ×R1)k,j1 · (Ã2)i2,j2 · · · (Ã`+1)i`+1,1

Observe that:

(Radj
0 )i,k =

∑
σ:σ(i)=k

sign(σ)

∏
t6=i

(R0)σ(t),t


Hence, we can express p as:

p =
∑
j,i,m,σ

sign(σ) · α′j,i,σ(i) · (A0)1,m · (R0)m,j ·

∏
t6=i

(R0)σ(t),t

 (7.7)

We are given that p is identically 0 over the matrices {Rk}. In particular p is identically 0 over
the variables corresponding to R0 entries. In Equation 7.7, we collect the terms corresponding to

p that are coefficients of the product (R0)m,j ·
(∏

t6=i(R0)σ(t),t

)
and equate them to 0.

We now give details on how the products (R0)m,j ·
(∏

t6=i(R0)σ(t),t

)
are formed. This process

can be thought of as choosing a permutation σ and selecting entries according to the permutation.
That is, for each column t choose the entry in the row given by σ(t). Then for some i, we unselect
the selected entry (R0)σ(i),i and instead select some other entry given by (R0)m,j . Depending on the
concrete values of i, j,m, σ we get the different products and thus we consider the cases described
below.
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• m = σ(i), j = i: This corresponds to re-selecting the un-selected entry from column i. Given
the final list of selected entries, we observe that σ gets fixed but i can vary. The reason behind
this is that reselecting an unselected entry does not depend on which column the entry was
unselected. Given σ, j = i,m = σ(i), we determine the coefficients of these products to be:

∑
i

α′i,i,σ(i) · (A0)1,σ(i) = 0 for all σ (7.8)

• j 6= i and m 6= σ(i): This corresponds to after unselecting an entry from column i, reselecting
an entry from a different row and a column. Given the final list of selected entries, we
can determine the unselected entry as the only one that shares no row or column with any
another entry. Also, we can determine the reselected entry as the one that shares both
a row and a column with another selected entry. This observations help us deduce that
given the list of selected entries the permutation σ, i, j 6= i and m 6= σ are completely
determined. Hence, there does not exist another (i′, j′,m′, σ′) that leads to the same product

(R0)m,j ·
(∏

t6=i(R0)σ(t),t

)
. Thus, the coefficients of these products to be:

α′j,i,σ(i) · (A0)1,m = 0 for all i, j 6= i, m, σ where σ(i) 6= m

Given any i, j 6= i, m and s 6= m we pick a σ such that σ(i) = s. Since we are given that
(A0)1,m 6= 0 for all m and d > 1 we get:

α′j,i,s = 0 for all i, j 6= i and for all s (7.9)

• j = i and m 6= σ(i): This means that there exists a row (which is given by m) that has two
entries and the row corresponding to σ(i) does not have any entry. Let (i′, σ′,m′) be some

other triplet that leads to the same product (R0)m,j ·
(∏

t6=i(R0)σ(t),t

)
. We first observe that

m = m′ as otherwise the product will correspond to different rows having two entries and
hence they cannot be equal. Similarly, we can argue that σ(i) = σ′(i′) as otherwise different
rows will have no entries selected and hence the product cannot be equal. Given the final
selection of entries corresponding to (i, σ,m) it is possible to determine m = m′ as the only
row with two selected entries. Furthermore, it is possible to determine σ(i) = σ′(i) as the only
row with no selected entry. Additionally, i is one of the selected columns in row m. Let us
call the other selected column as i′′. Apart from, i and i′′ all other selected entries correspond
to selection given by the permutation given by σ. Furthermore, it is straightforward to argue
that σ(t) = σ′(t) for all t 6∈ {i, i′′} (as otherwise the products would be different). Let use
consider following two cases:

– i = i′: In this case, since σ(i) = σ′(i′) = σ′(i). Hence, σ and σ′ are equal to on all but
one entry and since σ and σ′ are permutations it must be the case that σ = σ′. Hence,
we can infer that (i, σ,m) = (i′, σ′,m′).

– i 6= i′. In this case, we deduce that i′′ = i′ (recall that i′′ is the other selected column in
row m). This means σ(i′) = m. Analogously, we can argue that σ′(i) = m′ = m. Since
σ and σ′ are permutations we can deduce from the fact that (i, σ,m) and (i′, σ′,m′) lead
to the same product that σ′ = σ ◦ (i, i′) where (i, i′) is the transposition swapping i and
i′. Since σ and σ′ differ by a transposition they differ in their signs.
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Thus, the coefficients of these products in this case correspond to:

(α′i,i,σ(i) − α
′
i′,i′,σ(i)) · (A0)1,m = 0 for all i, i′ 6= i, σ where σ(i) 6= m

Given any i, i′, s 6= m we pick a σ such that σ(i) = s. Since we are given that (A0)1,m 6= 0
for all m we get:

α′i,i,s = α′i′,i′,s for all i, i′ and for all s (7.10)

Combining Equation 7.10, 7.8 we get:

∑
s

α′i,i,s(A0)1,s = 0 (7.11)

• j 6= i and m = σ(i): The coefficients correspond to linear combinations of αj,i,s for i 6= j
which we already know to be 0.

Consider the following polynomial pj,i,s for i, j where j 6= i and s:

pj,i,s = α′j,i,s =
∑

j1,··· ,i`+1

cj,i,j1,i2,··· ,i`+1
(A1 ×R1)s,j1 · (Ã2)i2,j2 · · · (Ã`+1)i`+1,1

We first note that α′j,i,s is an allowable polynomial over {(A1)s × R1, Ã2, · · · , Ã`+1}. From
Equation 7.9, we have α′j,i,s is identically 0 for all s, j, i where j 6= i. We also observe conditions of
the theorem that P 1 × P 2 · · ·P `+1 6= 0. Hence, there is at least one t such that (P 1)t × P 2 · · · ×
P `+1 6= 0. We can also observe that (P 1)t × P 2 · · · × P ` 6= 0T and P 2 × P 3 · · · × P `+1 6= 0.
Hence, there exists a t′ such that the polynomial α′j,i,t′ satisfies the conditions required by Item 1.
Therefore, by induction hypothesis we get:

cj,i,j1,i2,··· ,i`+1
= 0 for all i, j 6= i, j1, · · · , i`+1 (7.12)

We consider another polynomial β′i for all i:

β′i =
∑
s

α′i,i,s(A0)1,s =
∑

s,j1,··· ,i`+1

ci,i,j1,i2,··· ,i`+1
(A0)1,s(A1 ×R1)s,j1 · (Ã2)i2,j2 · · · (Ã`+1)i`+1,1

=
∑

j1,··· ,i`+1

ci,i,j1,i2,··· ,i`+1
(A0 ×A1 ×R1)1,j1 · (Ã2)i2,j2 · · · (Ã`+1)i`+1,1(7.13)

Let us denote A′1 = A0 × A1 and Ã
′
1 = A′1 × R1. We correspondingly get P ′1 = P 0 × P 1.

Then the above polynomial given in Equation 7.13 is allowable over Ã
′
1, Ã2, · · · Ã`+1. Moreover,

from Equation 7.8 that β′i = 0. We now have two cases to consider:

• P 0 × P 1 · · ·P `+1 6= 0. This means that P ′1 × P 2 · · ·P `+1 6= 0. We also observe that
P ′1 × P 2 · · ·P ` 6= 0T and P 2 × P 3 · · · × P `+1 6= 0. Hence, the polynomial β′i satisfies the
conditions of Item 1. Therefore, by induction hypothesis we get, that (β′i) is identically 0 over
its formal variables,
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ci,i,j1,i2,··· ,i`+1
= 0 for all i, j1, · · · , i`+1 (7.14)

Combining Equations 7.12 and 7.14 we get p is identically 0.

• P 0 × P 1 · · · × P `+1 = 0: This means that P ′1 × P 2 · · · × P `+1 = 0. We observe that
P ′1 × P 2 · · · × P ` = P 0 × P 1 · · · × P ` 6= 0T and P 2 × P 3 · · · × P `+1 6= 0 (as otherwise
P 1 × P 2 · · · × P `+1 = 0 contradicting the condition given in the theorem statement) Hence,
the polynomial β′i satisfies the conditions of Item 2. Therefore, by induction hypothesis we
get:

(β′i) = (γi) · Ã
′
1 × Ã2 · · · × Ã`+1

As a result from Equation 7.13 we get,

ci,i,j1,i2,··· ,i`+1
= 0 if jk 6= ik+1 for any k (7.15)

ci,i,i2,i2,··· ,i`+1
= γi (7.16)

The Equations 7.15, 7.16 enforce the condition that β′i is a matrix product. We already know
from Equation 7.12 that

cj,i,j1,i2,··· ,i`+1
= 0 for all i, j 6= i, j1, · · · , i`+1

We also know as result of Equations 7.15 and 7.16 that

α′i,i,s = γi
∑

i2,··· ,i`+1

(A1R1)s,i2 · (Ã2)i2,i3(Ã)i`+1,1

= γi
∑

i3,··· ,i`+1

(A1)s ×R1 · (Ã2)i2,i3(Ã)i`+1,1

= γi((A1)s ×A3 · · · ×A`+1)

= γi(A1 · · ·A`+1)s,1 for all i, s

Also we know that α′i,i,s = α′i′,i′,s for all i 6= i′. Therefore, we have for all s,

γi(A1 · · ·A`+1)s,1) = γi′(A1 · · ·A`+1)s,1)

Hence, we have γi = γ since there exists an t such that (P 1 · · ·P `+1)t,1 6= 0. Therefore, we
get

ci,i,i2,i2,··· ,i`+1
= γ for all i, i2, i3, · · · , i`+1 (7.17)

Combining Equations 7.15 and 7.17 we get:

p = γ ·C0 · · ·C`+1
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We still need to show the proof goes through even if A0 has zero entries. We are also given that
A0 is not identically zero (otherwise the matrix P 0 would not satisfy the conditions of theorem).
Given a non-zero vector we can construct an invertible matrixB such thatA?

0 = A0×B is non-zero
in every coordinate.

We now define A?
1 := B−1 ×A1, R?

0 := B−1 ×R0, Ã
?

0 := A?
0 ×R?

0 and Ã
?

1 := R?adj
0 ·A

?
1 ·R1.

Now the set of matrices A?
0,A

?
1,A2, · · · ,A`+1 satisfy the set of constraints given by the statement

of Theorem 7.7. In particular, they satisfy that P ?
0×P ?

1×P 2 · · · ×P ` = P 0×P 1× · · ·P `+1 6= 0T

and P ?
1 ×A2 · · · ×A`+1 = B−1 × P 1 × P 2 · · · × P `+1 6= 0. We observe that p is allowable over

Ã0, Ã1, · · · , Ã`+1 if and only if it is allowable over Ã?
0, Ã

?
1, Ã2, · · · , Ã`+1. We can also relate the

polynomial p over R0, · · · ,R`+1 to the a polynomial over R?
0,R1, · · · ,R`+1 as a linear combi-

nation over the R1 variables. As a result, we can conclude that p is identically zero over {Rk}
matrices if and only if it is identically zero over R?

0,R1, · · · ,R`+1. Hence, we can invoke the The-

orem to work for the set of matrices given by Ã?
0, Ã

?
1, Ã2, · · · , Ã`+1 using the same polynomial p

and arrive at the desired conclusion.

Now, recall from Equation 7.2,7.3 that:

Ã0 := A0 ×R0 ; Ãi,b1,b2 := Radj
i−1 ×Ai,b1,b2 ×Ri ; Ã`+1 := Radj

`+1 ×A`+1 (7.18)

B̃0 := A0×R0+W 0·g2 ; B̃i,b1,b2 := Radj
i−1×Ai,b1,b2×Ri+W i,b1,b2 ·g2 ; B̃`+1 := Radj

`+1×A`+1+W `+1·g2

(7.19)
We define B̃i = B̃i,b1,b2 for i ∈ [`] and for some choice of b1, b2. We analogously define Ãi :=

Ãi,b1,b2 for all i ∈ [`] and for the same choice of b1, b2 that was used to select B̃i. Note that for

every i ∈ {0, · · · , `+ 1}, the entries of B̃i, Ãi are from the specific ring R (instead of any arbitrary
ring). We consider allowable polynomials over (B̃0, B̃1, · · · , B̃`+1) to be of the form:

p =
∑

(j0,i1,j1,··· ,i`+1)

dj0,··· ,i`+1
· (B̃0)1,j0 · (B̃1)i1,j1 · · · (B̃`+1)i`+1,1

for some dj0,··· ,i`+1
∈ R which is also presented succinctly as p ∈ R[B̃0, B̃1, · · · , B̃`+1]. Clearly, we

can have
pJ =

∑
(j0,i1,j1,··· ,i`+1)

cj0,··· ,i`+1
· (Ã0)1,j0 · (Ã1)i1,j1 · · · (Ã`+1)i`+1,1 modJ

where each cj0,··· ,i`+1
∈ R/J . Now, the following corollary explicitly shows that if we instantiate

the ring K in Theorem 7.7 with the specific ring R/J then the same result follows.

Corollary 7.8 Consider an allowable polynomial p ∈ R[B̃0, B̃1, · · · , B̃`+1]. Let pJ = pmodJ be

such that after making the substitutions Ã0 → A0 × R0,
{
Ãi → Radj

i−1 ×Ai ×Ri

}
i∈[`]

, Ã`+1 →

Radj
` ×A`+1, pJ is identically 0modJ over {Rk}k∈{0,··· ,`}. Moreover assume that,

P 0 × P 1 · · · × P ` 6= 0modJ

and
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P 1 × P 2 · · · × P `+1 6= 0T modJ
then the following is true:

1. If P 0 × P 1 · · · × P `+1 6= 0modJ then pJ is identically 0modJ as a polynomial over its
formal variables, namely (Ã0, Ã1, · · · , Ã`+1).

2. If P 0 × P 1 · · · × P `+1 = 0modJ then pJ can be expressed as γ · Ã0 × Ã1 × · · · Ã`+1 modJ
where γ is a constant in the ring R/J .

Proof Follows directly from Theorem 7.7 where K is instantiated with R/J .

We set up some notation for the rest of the proof.

Some notations. In the remainder of the security proof, Ã0, {Ãi,b1,b2}, Ã`+1 refers to formal

variables. We refer to evaluation of a polynomial pJ ∈ R/J [Ã0, {Ãi,b1,b2}, Ã`+1] as the value (in

R/J ) the polynomial pJ takes when the formal variables {Ã} are substituted with the values as
given in Equation 7.2 modulo J . We shall succinctly refer the evaluation of pJ as Eval(pJ ) where
we implicitly assume the formal variables takes the values as given in Equation 7.2 modulo J .
Note that all the evaluations of a polynomial is over R/J . We also denote Eval(px) and Eval(p)
to denote evaluation of the respective polynomials where the formal variables again take values as
given in Equation 7.4 and Equation 7.3 respectively.

Now, we now argue that the adversary’s view in the real world execution of the zero test queries
is computationally close to the simulated view. Formally we prove the following lemma.

Lemma 7.9 For every polynomial p ∈ R[B̃0, {B̃i,b1,b2}, B̃`+1] (defined in Equation 7.3) let pJ =
pmodJ . Then we have,

1. Eval(p)mod I 6= 0⇔ Eval(pJ )mod I 6= 0⇔ Sim returns 0 with overwhelming probability.

2. Let HRng (rSim) denote the handle returned by Sim23 if Eval(pJ )mod I = 0. p is identically 0
if and only if rSim = 0.

Proof Eval(p)mod I 6= 0⇔ Eval(pJ )mod I 6= 0 can be easily seen. The remaining part of Step 1
of the statement follows from Claims 7.12, 7.19. Step 2 of this lemma follows from Claims 7.20.
We prove the claims next which finishes the proof.

We prove the following claim regarding the structure of a single-input allowable polynomial
which would be useful to prove Claim 7.12.

Claim 7.10 ([BMSZ16]) For any x, let px be an allowable polynomial in K[Ã0, {Ãi,xinp1(i),xinp2(i)
}, Ã`+1]

where K is an arbitrary ring such that after making the substitution

Ã`+1 =


−
∑d

i=2 viwi
v1w2

...
v1wd


23Notice that here rSim denotes either the ring element 0 ∈ R or the formal variable rp over the ring R as defined

in Fig. 1.

30



px is identically 0 where (v1, · · · , vd) = Ã0 ×
∏
i∈` Ãi,xinp1(i),xinp2(i)

, then px is of the form γ · Ã0 ×(∏
i∈[`] Ãi,xinp1(i),xinp2(i)

)
Ã`+1 for some γ ∈ K.

Proof We recall the proof from [BMSZ16]. px being identically 0 after the substitution given in
claim means that px becomes identically 0 after the substitution

(Ã`+1)1,1 ←
−
∑d

i=2 vi(Ã`+1)i,1
v1

If this substitution gives the zero polynomial then it means that the polynomial is divisible by

(Ã`+1)1,1 +

∑d
i=2 vi(Ã`+1)i,1

v1

Since p is a polynomial, we can remove v1 in the denominator and conclude that in fact

v1(Ã`+1)1,1 +
d∑
i=2

vi(Ã`+1)i,1 =
d∑
i=1

vi(Ã`+1)i,1

divides px. But the polynomial
∑d

i=1 vi(Ã`+1)i,1 is exactly the matrix product polynomial. Since

px is allowable it is of the form γ · Ã0 ×
(∏

i∈[`] Ãi,xinp1(i),xinp2(i)

)
Ã`+1 where γ ∈ K.

In the following corollary we explicitly state that the above property holds when K is instanti-
ated with the specific ring R/I.

Corollary 7.11 For any x, let pxmod I be an allowable polynomial in R/I[Ã0, {Ãi,xinp1(i),xinp2(i)
}, Ã`+1]

such that after making the substitution

Ã`+1 =


−
∑d

i=2 viwi
v1w2

...
v1wd

 mod I (7.20)

pxmod I is identically 0mod I where (v1, · · · , vd) = Ã0 ×
∏
i∈` Ãi,xinp1(i),xinp2(i)

, then px is of the

form γ · Ã0 ×
(∏

i∈[`] Ãi,xinp1(i),xinp2(i)

)
Ã`+1 mod I where γ ∈ R/I.

Next we prove Claim 7.12 which implies “⇒” direction of Step 1 of Lemma 7.9.

Claim 7.12 For every allowable polynomial p ∈ R[B̃0, {B̃i,b1,b2}, B̃`+1] let pJ := pmodJ . If
Eval(pJ )mod I 6= 0 then Sim returns 0 with overwhelming probability.

Proof Since we are given that Eval(pJ )mod I 6= 0, there exists at least one x ∈ D such that
Eval(px)mod I is not zero. In particular, this implies that pxmod I as a formal polynomial (i.e
∈ R/I[Ã0, {Ãi,xinp1(i),xinp2(i)

}i∈[`], Ã`+1]) is not identically 0. We have two cases to consider:
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• P (x) = 1 : In this case, the simulator evaluates pxmod I on randomly chosen D̃0,
{D̃i,xinp1(i),xinp2(i)

}i∈[`], D̃`+1 from R/I and outputs 0 if evaluation of pxmod I is not 0 on these
inputs. Since pxmod I is not identically 0 as a polynomial and it has poly(λ) degree (which is
ensured by our multilinear structure), evaluation of pxmod I on the random inputs is not 0
with overwhelming probability by Schwartz-Zippel Lemma. Hence, in this case Sim outputs
0 with overwhelming probability.

• P (x) = 0: Since we are given that Eval(px)mod I is not zero we infer that pxmod I is not

of the form γ · Ã0 ×
(∏

i∈[`] Ãi,xinp1(i),xinp2(i)

)
Ã`+1 mod I where γ ∈ R/I \ 0. This means

that by Corollary 7.11 we have that pxmod I is not identically 0 after making the substi-
tution in Equation 7.20. Hence, except with negligible probability over the random choice
of D̃0, {D̃i,xinp1(i),xinp2(i)

}i∈[`], D̃`+1 and w2, · · · , wd we have from Schwartz-Zippel lemma that

evaluation of px on inputs D̃0, {D̃i,xinp1(i),xinp2(i)
}i∈[`], D̃`+1 is not 0 over R/I. Hence, Sim

outputs 0 with overwhelming probability.

We now set the machinery to prove “⇐” of Step 1 of Lemma 7.9.

Claim 7.13 Let x ∈ D be such that Eval(px)mod I 6= 0. Then with overwhelming probability over
the choices of α0, {αi,xinp1(i),xinp2(i)

},α`+1 we have Eval(pJ )mod I 6= 0

Proof Since for at least one x ∈ D it holds that, Eval(px)mod I 6= 0, we can see that (from the
algebraic independence of αx) pJ mod I is not identically 0 with overwhelming probability over the
random choice of αx. Moreover, we note that since α’s are sampled from DR,σ′ where σ′ is larger
than the smoothing parameter of the lattice I, α0 mod I, {αi,b1,b2}mod I,α`+1 mod I are uniform
in R/I (from Lemma A.2). Hence by Schwartz-Zippel lemma we have that Eval(pJ )mod I 6= 0
with overwhelming probability.

Claim 7.14 If px = γ · B̃0 ×
(∏

i∈[`] B̃i,xinp1(i),xinp2(i)

)
B̃`+1 where γ ∈ R then pxmod I = γ′ · B̃0 ×(∏

i∈[`] B̃i,xinp1(i),xinp2(i)

)
B̃`+1 mod I where γ′ ∈ R/I.

Proof It is straightforward to see this Claim.

Next we present three claims, which intuitively follow from the observation that if A obtains
a non-zero element in the ideal I he would be able to win the game without making further zero
testing queries.

Claim 7.15 If px after substitution as given in Equation 7.3 is not identically 0 over the {Rk}
matrices then pxmod I is not identically 0 over the {Rk} matrices with overwhelming probability.

Proof For every adversary A that queries a polynomial p for zero testing such that statement
of the Claim is not true, we will construct an adversary A′ that wins the game with probability 1
and does not issue such a zero testing query.24 So without loss of generality we can consider that
no adversary makes such zero testing queries.

24By “winning” we imply that the adversary makes a post-zeroizing query that invokes the oracleM to reveal the
entire secret state.
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Assume for the sake of contradiction that pxmod I is identically 0 over {Rk} matrices. It
means that there exists at least one coefficient in the monomial representation of pxmod I (after
substitution given in Equation 7.3) that is in the ideal I and is not equal to 0 in the ring R. We
will construct an adversary A′ that does not issue the zero testing query on the polynomial p and
has a “winning strategy.” A′ (with non-uniform advice x) runs A until it queries the zero testing
oracle on p. It then obtains px by setting all variables that are not in the matrices corresponding
to evaluation of x to 0 and variables in the expansion of αx to 1 i.e it sets all variables that are not
equal to B̃0, {B̃i,xinp1(i),xinp2(i)

}, B̃`+1 to 0. It obtains ring handle h1 after a zero testing query (It
can obtain such an handle after evaluating the obfuscation on an input where the program’s output
is 0). A′ constructs a new arithmetic circuit: qx by substituting B̃0 → Ã0, {B̃i,xinp1(i),xinp2(i)

} →
{Ãi,xinp1(i),xinp2(i)

} and B̃`+1 → Ã`+1 where

Ã0 := A0 ×R0 ; Ãi,b1,b2 := Radj
i−1 ×Ai,b1,b2 ×Ri ; Ã`+1 := Radj

`+1 ×A`+1

Note that qx is not identically 0 over {Rk} matrices. Let q′x be equal to qx with the restriction
that all variables corresponding to A is set to 1. It is clear that q′x is not identically 0 over {Rk}
matrices. A′ makes a post zeroizing query on q′x with all variables (corresponding to {Rk} matrices)
instantiated with the handle h1. Since q′x is not identically 0 and qxmod I is equal to 0, qx is valid
winning post zeroizing query.

Claim 7.16 If px is not identically 0 then pxmod I is not identically 0.

Proof The proof will be similar to that of Claim 7.15.
Assume for the sake of contradiction that pxmod I is identically 0. It means that there exists

at least one coefficient in the monomial representation of pxmod I that is in the ideal I and is not
equal to 0 ∈ R. We will construct an adversary A′ that can trivially “win” even without issuing
a zero-testing query on the polynomial p. A′ (with non-uniform advice x) runs A until it queries
the zerotesting oracle on p. It then obtains px by setting all the variables that are not in the
matrices corresponding to the evaluation of x to 0 i.e it sets all variables that are not equal to
B̃0, {B̃i,xinp1(i),xinp2(i)

}, B̃`+1 to 0. It obtains some ring handle h1 after an appropriate zero testing

query (by legitimately evaluating the program to 0). A′ makes a post zeroizing query on px with
all variables instantiated with the handle h1. Since px is not identically 0 and pxmod I is equal to
0, px is valid post zeroizing query.

Claim 7.17 If p is not identically 0 then pJ is not identically 0.

Proof The proof is identical to the proof of Claim 7.16 and hence omitted.

Claim 7.18 Let x ∈ D be such that the simulator outputs 0 in the iteration corresponding to x in
the “for” loop in Figure 1. Then Eval(px)mod I 6= 0 with overwhelming probability.

Proof We again have two cases to consider.

• P (x) = 1 : In this case the simulator outputs 0 if the evaluation of pxmod I, that is Valx on
randomly chosen matrices C̃0, {C̃i,xinp1(i),xinp2(i)

}i∈[`], C̃`+1 from R/I is not 0. This in partic-
ular means that polynomial pxmod I is not identically 0. In particular, px is not identically
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0. By contrapositive of Item 1 in Corollary 7.8 and the definition of non-shortcutting ma-
trices (c.f. Remark 4.3) we have that px is not identically 0 over the {Rk} matrices. From
Claim 7.15 we have pxmod I is not identically 0 over {Rk} matrices. Note from the construc-
tion that each of the Rk matrices are sampled from (DR,σ′)

d×d where σ′ is larger than the
smoothing parameter of the lattice generated by I. Hence, each entry of Rkmod I is uniform
in R/I (by Lemma A.2). Therefore, Eval(px)mod I is not 0 with overwhelming probability
by Schwartz-Zippel lemma.

• P (x) = 0 : We first claim that the simulator outputs 0 then the polynomial pxmod I is not of

the form γ · Ã0 ×
(∏

i∈[`] Ãi,xinp1(i),xinp2(i)

)
Ã`+1 mod I. This can be seen as follows: suppose

pxmod I is of the above form, then from the relationship between C̃0, {C̃i,xinp1(i),xinp2(i)
} and

C̃`+1 (Equation 7.6) we infer that simulator’s evaluation would yield 0. From the contra-
positive of Claim 7.14 we infer px is not a constant multiple of the matrix product. Hence
from Item 2 of Corollary 7.8 and the definition of non-shortcutting matrices (see Remark 4.3)
we get px is not identically 0 over {Rk} matrices. From Claim 7.15 we have pxmod I is not
identically 0 over {Rk} matrices. Now as in Case-1 of this proof we infer that Eval(px)mod I
is not 0 with overwhelming probability from Schwartz-Zippel lemma.

The following claim proves the “⇐” of Step 1 of Lemma 7.9.

Claim 7.19 If Sim outputs 0 on zero testing on some polynomial p then with overwhelming prob-
ability Eval(pJ )mod I is not 0.

Proof Follows directly from Claims 7.18, 7.13.

We now prove Step 2 of Lemma 7.9.

Claim 7.20 p is identically 0 if and only if Sim returns HRng (0) with overwhelming probability.

Proof “⇒”: If p is identically 0 then pJ is identically 0. By algebraic independence of αx it
follows that each of px for every x ∈ D is identically 0. Hence, from Figure 1 we infer that Simulator
outputs a ring handle to 0 in that case.

“⇐” If Sim returns HRng (0) then it means that for every x ∈ D, evaluation of pxmod I on
random inputs in R/I is 0. Then by Schwartz-Zippel, we conclude that pxmod I is identically 0
except with negligible probability for any arbitrary x ∈ D. Hence, by union bound (since |D| is
poly(λ)) we conclude that for all x ∈ D, pxmod I is identically 0 except with negligible probability.
Therefore, for every x ∈ D, px is identically 0 with overwhelming probability (from Claim 7.16)
and therefore pJ is identically 0 with overwhelming probability. Hence, p (from Claim 7.17) is
identically 0 with overwhelming probability.

7.2.3 Correctness of the post-zeroizing queries in the simulation

We now prove that the simulator’s responses are computationally indistinguishable to that of the
oracle M’s responses, that is, we argue that M also returns 0 on all the post zero testing queries
with overwhelming probability.
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Claim 7.21 Consider the set of matrices B̃0, {B̃i,b1,b2}, B̃`+1 from the Eq. 7.3. Let

p = c · B̃0 ×

∏
i∈[`]

B̃i,yinp1(i),yinp2(i)

× B̃`+1

for some c ∈ R and y ∈ {0, 1}λ such that P (y) = 0. Then, p can be expressed as c·(g ·Qχ(y)+k·g2).

Proof From the definition of B̃’s in Equation 7.3 we have

p = c · B̃0 ×

∏
i∈[`]

B̃i,yinp1(i),yinp2(i)

× B̃`+1

= c ·

Ã0 ×

∏
i∈[`]

Ãi,yinp1(i),yinp2(i)

× Ã`+1 + k · g2


= c · (g · δ ·Qχ(y) + k · g2)

where δ =
∏`
i=0RiR

adj
i mod I.

Corollary 7.22 Consider the set of matrices B̃0, {B̃i,b1,b2}, B̃`+1 from the Eq. 7.3. Let

p = c · B̃0 ×

∏
i∈[`]

B̃i,yinp1(i),yinp2(i)

× B̃`+1

for some c ∈ R and y ∈ {0, 1}λ such that P (y) = 0. Then pJ = d · (g ·Qχ(y)).

The following claim proves that the ring handles returned by the oracleM are indistinguishable
from uniform random elements in R/I.

Claim 7.23 If p is not identically 0 and Eval(p)mod I = 0, let HRng (rM) denote the handle
returned by M. Then,

UR/I
c
≈ rM

Proof First notice that since p is not identically 0, pJ is not identically 0 by Claim 7.17. Then,
there exists at least one x ∈ D where D refers to the single input decomposition of pJ such
that px is not identically 0. In particular, pxmod I (from Claim 7.16) is not identically 0. Since
we are also given that Eval(p)mod I = 0, we conclude that Eval(pJ )mod I = 0. Hence, from
Claim 7.13 we infer that with overwhelming probability for each x ∈ D, Eval(px)mod I = 0. In
particular, Eval(px∗)mod I = 0. We first argue that with overwhelming probability P (x∗) 6= 1.
If P (x∗) = 1 and since px∗ is not identically 0, from Item 1 of Corollary 7.8 and Remark 4.3
we get px∗ is not identically 0 over {Rk} matrices. Hence from Claim 7.15 we get px∗ mod I is
not identically 0 over {Rk} matrices. Since each entry of {Rk} matrix mod I is uniform (from
Lemma A.2) we get Eval(px∗)mod I is not 0 with overwhelming probability from Schwartz-Zippel
lemma. Hence we conclude that P (x∗) = 0. We now claim that px∗ is a constant multiple of

B̃0 ×
(∏

i∈[`] B̃i,xinp1(i),xinp2(i)

)
B̃`+1. If it is not the case, then from Item 2 of Corollary 7.8 and

35



Remark 4.3 we infer that px∗ is not identically 0 over {Rk} matrices. Hence by a similar argument
as made above we infer that with overwhelming probability that Eval(px∗)mod I is not 0. We

have px∗ is a constant multiple of B̃0 ×
(∏

i∈[`] B̃i,xinp1(i),xinp2(i)

)
B̃`+1. From Corollary 7.22 we can

deduce that px∗ = c · (g · δ ·Qχ(x∗)). Hence, px∗
g mod I = δ ·Qχ(x∗)mod I.

Let us define the randomized procedure samp(γ; r) that samples uniformly [−γ/2 + 1, γ/2]n us-
ing r as random coins. Notice that Qχ(y) from our construction is equivalent to samp(γ;PRFχ(y))
where PRFχ(y) = (PRFψ1(y), · · · ,PRFψ(y)). Hence, Z = Qχ(y)mod I = samp(γ;PRFχ(y))mod I.
From the security of PRF we observe that Z is computationally indistinguishable from Z ′ where
Z ′ = samp(γ; r) where r is chosen uniformly at random. Observe from Lemma 6.4 that Z ′ is
statistically close to uniform distribution in R/I.

Therefore, δ ·Qχ(x∗)mod I is computationally indistinguishable from uniform distribution over
R/I.

Finally, note that from Claim 7.23 M returns a ring handle to a non zero element then the
distribution of the element is computationally indistinguishable from uniform distribution in R/I.
Hence, any non-zero polynomial (with poly(λ) degree) on such ring elements evaluate to 0 with
negligible probability from Schwartz-Zippel lemma which implies that only with negligible proba-
bility the post-zeroizing query will be successful. Hence, with overwhelming probability the oracle
M would return 0 for the post-zeroizing queries.
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A Preliminaries for our modified GGH construction

Most parts of this section are taken verbatim from [Gar15]. We keep this part for completeness.

A.1 Lattices

We denote set of complex number by C, real numbers by R, the rationals by Q and the integers
by Z. For a positive integer n, [n] denotes the set {1, . . . , n}. By convention, vectors are assumed
to be in column form and are written using bold lower-case letters, e.g. x. The ith component
of x will be denoted by xi. We will use xT to denotes the transpose of x. For a vector x in

Rn or Cn and p ∈ [1,∞], we define the `p norm as ‖x‖p =
(∑

i∈[n] |xi|p
)1/p

where p < ∞, and

‖x‖∞ = maxi∈[n] |xi| where p = ∞. Whenever p is not specified, ‖x‖ is assumed to represent the
`2 norm (also referred to as the Euclidean norm).

Matrices are written as bold capital letters, e.g. X, and the ith column vector of a matrix X is
denoted xi. Finally we will denote the transpose and the inverse (if it exists) of a matrix X with
XT and X−1 respectively.

A lattice Λ is an additive discrete sub-group of Rn, i.e., it is a subset Λ ⊂ Rn satisfying the
following properties:

(subgroup) Λ is closed under addition and subtraction,

(discrete) there is a real ε > 0 such that any two distinct lattice points x 6= y ∈ Λ are at distance
at least ‖x− y‖ ≥ ε.

Let B = {b1, . . . , bk} ⊂ Rn consist of k linearly independent vectors in Rn. The lattice generated
by the B is the set

L(B) = {Bz =

k∑
i=1

zibi : z ∈ Zk},

of all the integer linear combinations of the columns of B. The matrix B is called a basis for the
lattice L(B). The integers n and k are called the dimension and rank of the lattice. If n = k then
L(B) is called a full-rank lattice. We will only be concerned with full-rank lattices, hence unless
otherwise mentioned we will assume that the lattice considered is full-rank.

For lattices Λ′ ⊆ Λ, the quotient group Λ/Λ′ (also written as ΛmodΛ′) is well-defined as the
additive group of distinct cosets v+ Λ′ for v ∈ Λ, with addition of cosets defined in the usual way.
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A.2 Gaussians on Lattices

Review of Gaussian measure over lattices presented here follows the development by prior works [Reg04,
AR05, MR07, GPV08, AGHS12]. For any real s > 0, define the (spherical) Gaussian function
ρs : Rn → (0, 1] with25 parameter s as:

∀x ∈ Rn, ρs(x) = exp(−π〈x,x〉/s2) = exp(−π‖x‖2/s2).

For any real s > 0, and n-dimensional lattice Λ, define the (spherical) discrete Gaussian distri-
bution over Λ as:

∀x ∈ Λ, DΛ,s(x) =
ρs(x)

ρs(Λ)
.

Smoothing Parameter. Micciancio and Regev [MR07] introduced a lattice quantity called the
smoothing parameter, and related it other lattice parameters.

Definition A.1 (Smoothing Parameter, [MR07, Definition 3.1]) For an n-dimensional lat-
tice Λ, and positive real ε > 0, we define its smoothing parameter denoted ηε(Λ), to be the smallest
s such that ρ1/s(Λ

∗ \ {0}) ≤ ε.

Intuitively, for a small enough ε, the number ηε(Λ) is sufficiently larger than a fundamental paral-
lelepiped of Λ so that sampling from the corresponding Gaussian “wipes out the internal structure”
of Λ. The following Lemma A.2 formally provide this claim. Finally Lemma A.3 provides bounds
on the length of a vector sampled from a Gaussian.

Lemma A.2 ([GPV08, Corollary 2.8]) Let Λ,Λ′ be n-dimensional lattices, with Λ′ ⊆ Λ. Then
for any ε ∈ (0, 1

2), any s ≥ ηε(Λ
′), the distribution of (DΛ,smodΛ′) is within a statistical distance

at most 2ε of uniform over (ΛmodΛ′).

Lemma A.3 ([MR07, Lemma 4.4] and [BF11, Proposition 4.7]) For any n-dimensional lat-
tice Λ, and s ≥ ηε(Λ) for some negligible ε, then for any constant δ > 0 we have

Pr
x←DΛ,s

[
(1− δ)s

√
n

2π
≤ ‖x‖ ≤ (1 + δ)s

√
n

2π

]
≥ 1− negl(n).

A.3 Number Fields and Ring of Integers

A number field can be defined as field extensionK = Q(ζ) obtained by adjoining an abstract element
ζ to the field of rationals, where ζ satisfies the relation f(ζ) = 0 for some irreducible polynomial
f(X) ∈ Q[X], which is a monic (a polynomial whose leading coefficient is 1) polynomial without
loss of generality. The polynomial f(X) is called the minimal polynomial of ζ, and the degree n
of the number field is the degree of f . Because f(ζ) = 0, the number field K can be seen as an
n-dimensional vector space over Q with basis {1, ζ, . . . , ζn−1}. Associating ζ with indeterminate X
yields an isomorphism between K and Q[X]/f(X).

The ring of integers OK , of a number field K of degree n, is a free Z-module of rank n, i.e., the
set of all Z-linear combinations of some integral basis {b1, . . . , bn} ⊂ OK . Such a set is called an
integral basis, and it is also a Q-basis for K.

25The Gaussian function can be defined more generally as being centered around a specific vector c instead of 0 as
done here. The simpler definition considered here suffices for our purposes.
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The case of Cyclotomic Number Fields. Let ζm = e2π
√
−1/m ∈ C denote a primitive m-th

root of unity. (Recall that an mth root of unity is said to be a primitive root if it is not a kth
root for some 0 < k < m.) The m-th cyclotomic polynomial, denote by Φm(X), is defined as the
product

Φm(X) =
∏
k∈Z∗m

(X − ζkm).

Observe that the values ζk run over all the primitive mth roots of unity in C, thus Φm(X) has
degree n = ϕ(m), where ϕ(m) denotes the Euler’s totient or phi function. Recall that if m is a
positive integer, then ϕ(m) is the number of integers in the set {1, 2, . . . ,m} that are relatively
prime to m.

The cyclotomic polynomial Φm(X) may be computed by (exactly) dividing Xn − 1 by the cy-
clotomic polynomials of the proper divisors of n previously computed recursively (setting, Φ1(X) =
X − 1) by the same method:

Φm(X) =
Xm − 1∏
d|m
d<m

Φd(X)
.

We will be most interested in the case when m ≥ 2 is a power of 2 in which case Φm(X) = Xm/2 +1.
The mth cyclotomic field Q(ζm) (with m > 2) is obtained by adjoining ζm to Q. The ring of integers
in Q(ζm) is Z(ζm). This ring Z(ζm) is called the cyclotomic ring.

Coefficient Embedding. There is also a coefficient embedding τ : K → Qn. As mentioned
earlier, since f(ζ) = 0, there is an isomorphism between Q[X]mod f(X) and K given by X → ζ. So,
K can be represented as a n-dimensional vector space over Q using the power basis {1, ζ, . . . , ζn−1},
and τ maps an element of K to its associated coefficient vector. When identifying an element a ∈ K
as a coefficient vector, i.e., τ(a) we denote it as a boldface vector a. Note that the addition of
vectors is done component-wise, while the multiplication is done as polynomials modulo f(X). We
define the coefficient norm of a as the norm of the vector a. Specifically, we define the `p coefficient

norm of a, denoted as ‖a‖p or ‖a‖p as
(∑

i∈[n] a
p
i

) 1
p

for p <∞, and as maxi∈[n] |ai| for p =∞. (As

always we assume the `2 norm when p is omitted.) We will use the following lemma.

Lemma A.4 Let K = Q[X]/(Xn + 1), for any positive integer n. ∀a, b ∈ K and c = a × b we
have that

‖c‖ ≤
√
n · ‖a‖ · ‖b‖.

Definition A.5 (Ideal) An (integral) ideal I ⊆ OK is a nontrivial (i.e., nonempty and nonzero26)
additive subgroup that is closed under multiplication by OK – that is, r · g ∈ I for any r ∈ OK and
g ∈ I. A fractional ideal I ⊂ K is a set such that d · I is an integral ideal for some d ∈ OK . The
inverse I−1 of an ideal I is the set {a ∈ K : a · I ⊆ OK}.

Definition A.6 An ideal I is principal if I = 〈g〉 for g ∈ OK – that is, if one generator suffices.

26Some texts also define the trivial set {0} as an ideal, but in this work it is more convenient to exclude it.
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Invertibility of ring elements. Let R denote the 2nth cyclotomic ring and let Rq denote R/qR
for a prime q. We note that Rq is also a ring and not all elements in it are invertible. Let R×q denote
the set of elements in Rq that are invertible. We next provide a lemma of Stehlé and Steinfeld that
points out that a (large enough) random element is Rq is also in R×q with large probability.

Lemma A.7 ([SS11, Lemma 4.1]) Let n ≥ 8 be a power of 2 such that Xn + 1 splits into n
linear factors modulo q ≥ 5. Let σ ≥

√
n ln(2n(1 + 1/δ))/π · q1/n, for an arbitrary δ ∈ (0, 1/2).

Then
Pr

f←DZn,σ
[f mod q /∈ R×q ] ≤ n(1/q + 2δ).

B Our modified scheme

Preliminaries for this section can be found in Appendix A We will now describe our modified GGH
scheme more formally. Just liked the GGH construction we use the rings R = Z[X]/(Xn + 1) and
Rq = R/qR.

Instance generation: (params, sparams,pzt)← InstGen(1λ, 1κ). Chooses z1, . . . ,zκ uniformly at

random in Rq such that for all i ∈ [κ], ‖1/zi‖ < n2/q27 (in K = Q[X]/(Xn + 1)) and zi invertible
in Rq (Lemma A.7). Sample g ← DZn,σ with σ =

√
λn repeatedly till: (i) ‖g‖ ≤ σ

√
n and g

is invertible in Rq, (ii) ‖g−1‖ ≤ nc (in K)28 for an appropriate constant c, and (iii) |R/ 〈g〉 | is a
prime ≥ 2O(n). As argued in GGH such a g can be obtained in polynomially many trials.

Draw a “somewhat small” ring element h ← DZn,√q, such that h /∈ I and set the zero-testing
parameter as pzt = [h

∏κ
i=1 zi/g]q. For security, pzt needs to be sampled differently. This is

described later.
The instance-generation procedure outputs the public parameters params = (n, q), the secret

parameters sparams = (g, {zi}) and pzt.

Sampling level-zero encodings: d← samp(params). To sample a level-zero encoding of a ran-

dom coset of I, just draw a random short element in R, d← DZn,σ′ , where σ′ = σn
√
λ (for σ that

was used to sample g). The sampled value d corresponds to a random coset of I and the size of
this level-zero encoding is bounded by σ′

√
n (and we use this as our noise-bound for this encoding).

Our Encoding of a ∈ R/J at level S: u← enc(params, S,a). Sample d ← Da+J ,σ′′ , for some
parameter σ′′, and compute the encoding as [d/

∏
i∈S zi]q. For security, encoding needs to done

differently. This is described later.

Adding and multiplying encodings. It is easy to see that the encoding as above is additively
homomorphic, in the sense that adding encodings yields an encoding of the sum at the same level.
This follows since if we have many short cj ’s then their sum is still short, ‖

∑
j cj‖ � q, and

therefore the sum c =
∑

j cj = [
∑

j cj ]q ∈ Rq belongs to the coset
∑

j(cj +J ). Hence, if we denote
uj = cj/z ∈ Rq then each uj is an encoding of the coset cj + J , and the sum [

∑
j uj ]q is of the

form c/z where c is still a short element in the sum of the cosets.
Moreover, since J is an ideal then multiplying up to κ encodings can be interpreted as an

encoding of the product, by multiplying the denominators together. Namely, for uj = cj/zj ∈ Rq
27This technical condition is needed for the secure sampling procedure.
28This technical condition is needed for the zero-test to work.
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as above, we have

u =

 κ∏
j=1

uj


q

=

[∏
j cj∏
j zj

]
q

.

As long as the cj ’s are small enough to begin with, we still have ‖
∏
j cj‖ � q, which means that

[
∏
j cj ]q =

∏
j cj (where the product

∏
j cj is computed in R), hence [

∏
j cj ]q belongs to the product

coset
∏
j(cj +J ). Thus, if each uj is an encoding of the coset cj +J with short-enough numerator,

then their product is an encoding of the product coset.

Zero testing: isZero(params,pzt,uκ)
?
= 0/1. Recall that we are testing if the encoding is 0mod I

(and not 0modJ ).29

To test if a level-S encoding u = [c/
∏κ
i=1 zi]q is an encoding of 0mod I, we just multiply it in

Rq by pzt and check whether the resulting element w = [pzt · u]q is short (e.g., shorter than q3/4).
Namely, we use the test

isZero(params,pzt,u) =

{
1 if ‖[pztu]q‖∞ < q3/4

0 otherwise
(B.1)

GGH argue that argue that encodings of 0mod I (such that the numerator is less than q1/8)
always pass the zero test and that encodings of non-zero cosets pass the zero test only with a
negligible probability.

Secure encoding and zero-test. Following [GGH13a] we describe a modification of the en-
coding procedure and the zero-test generation procedure in order to defend against averaging at-
tacks [GS02, NR06, DN12]. We describe how an encoding is done at level {1} with noise bound
nO(1). Encoding at any level-S can be done in an analogous manner with the noise nO(|S|).

Now we describe how to encode the a at level {1}. We assume that a is already reduced
modJ and so |a| ≤ σ2 · n3/2. Let L be the the fractional principal ideal 〈a/z1〉. Note that
‖a/z1‖ < σ2n7/2/q. And we can use the GPV sampling procedure to sample elements from L
according to the Gaussian distribution u← DL,s with parameter s = σ2n4/q (say). Note that the
u is of the form u = a′/z1 for some (integral) a′ ∈ R. Moreover we can bound the size of the a′ by
‖a′‖ ≤

√
n · ‖u‖ · ‖z1‖ <

√
n · (σ2n4/q) · q

√
n = σ2n5. Next we map this elements to Rq and output

[a′/z1]q, where the size of the numerator is bounded by σ2n5. By an analogous tedious calculation
one can show that encoding at level S corresponds to an encoding with noise bound nO(|S|).

The value h in pzt is also sampled analogously. We use [GPV08] to prevent the attacker
analyzing the zero-tester h·

∏κ
i=1 zi/g geometrically to extract useful information about h. Roughly,

once g and zis are chosen, one chooses h according to an ellipsoid Gaussian of the same “shape”
as g/

∏κ
i=1 zi, so that the distribution of the zero-tester is a spherical Gaussian.

B.1 Setting the parameters

In this section we provide the parameters for the scheme presented in Table 1.

29One may observe that the syntax of our zero-test procedure diverges slightly from the syntax of zero-testing in
known candidates of multilinear maps, because we only test if the encoding belongs to the ideal I but not J whereas
our encoding encodes cosets of J . Notice that this indeed captures the standard notion of zero-test when the encoding
space is corresponding to R/I and all computations are done mod I. Looking ahead, in our construction we exploit
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Parameter Value Set

σ
√
nλ

σ′ λn3/2

q ≥ 28κλnO(κ)

n ≥ λ2 log2 q

Table 1: Parameters for our graded encoding scheme.

Note that the size of the numerator in an encoding provided at any level-S is nO(|S|) which
is less than 2λ·|S|, for large enough λ. Therefore the size of the numerator of an encoding at the
highest level obtained by computing on the provided encodings will be less than 2λ·κ ·nO(κ). Hence,
as in [GGH13a] it suffices to set q larger than 28λ·κ · nO(κ) for the zero-test to work.30

the additional encoding space only to achieve our security goal whereas the correctness is preserved in mod I like the
previous multilinear maps.

30We note that the noise is an encoding at level-S is much smaller than 2λ·|S|. Therefore, by careful calculation
one can set q to be a much smaller value. This is better both for security and efficiency. However for the sake of
simplicity we skip this optimization.
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