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Abstract

Our new Access Control Encryption is an implementation of CP-ABE, when used as part of
a key delivery mechanism for an encrypted Data Base. It focuses on improving performance. In
ACE the access policies are any predicates over the set of object attributes. E¢ ciency gains are
most pronounced when the DNF representations of policies are compact. In ACE, within the life
span of the keys, each user has to perform very few ABE decryptions, regardless of the number
of policies accessible to her. Keys to most objects are then computed using only symmetric key
decryptions.

ACE is not the �rst to utilize symmetric key cryptography to reduce the number of CP-ABE
operations, when access policies form a multi-level partially ordered set. However, in addition
to this signi�cant saving, ACE also takes advantage of overlaps among policies on clauses of the
policies, thus further reducing computational complexity.
Let R denote the number of user roles, N be the number of object access policies, k the

ratio between the cost of CP-ABE encryption and symmetric key encryption complexities (for
10 attributes k � 106), and N = cR: The gain factor of ACE vs. a competing hybrid system
is � = kc=(k + c): Usually c >> 1; but in some systems it may happen that c < 1:

ACE is composed of two sub systems encrypting the same messages: A CP-ABE and a
symmetric key encryption system. We prove that ACE is secure under a new Uniform Security
Game that we propose and justify, assuming that its building blocks, namely CP-ABE and
block ciphers are secure. We require that CP-ABE be secure under the Selective Set Model,
and that the block cipher be secure under Multi-User CPA, which we de�ne.

We present Policy Encryption (PE) that can replace CP-ABE as a component of ACE.
In many cases, PE is more e¢ cient than CP-ABE. However PE does not prevent collusions.
Instead it limits collusions. PE is useful in those cases where owners can compartmentalize
objects and subjects, so that within each compartment the owners can tolerate collusions. PE
prevents inter compartmental collusions. PE has also the following appealing properties: It
relies on older hence more reliable intractability assumption, the Computational Di¢ e-Hellman
assumption, whereas CP-ABE relies on the newer Bilinear Di¢ e-Hellman assumption. PE uses
o¤-the shelf standard crypto building blocks with one small modi�cation, with proven security.
For a small number of compartments PE is much faster than CP-ABE. PE and CP-ABE can
coexist in the same system, where ABE is used in high security compartments.

We apply ACE to a practical �nancial example, the Consolidate Audit Trail (CAT),
which is expected to become the largest repository of �nancial data in the world.

Keywords: Access Control, Attribute Based Encryption, Hierarchical Key Derivation, Monotone
Access Structures, Semantic Security, Hybrid Argument proof technique.
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1 Introduction

E¢ cient cryptographically enforced high granular access control and secure communication are
among the main security challenges facing the Cloud Security industry [11]. Our new system,
Access Control Encryption (ACE) aims at improving the computational e¢ ciency of such systems.
It uses a combination of CP-ABE sub-systems and symmetric key cryptography to accelerate com-
putations.

attributes are binary variables. Their real world meaning can be �works in the payroll
department�, �is a Smith family member�, etc.

The Players in ACE are writers, readers, and owners. The owners set up the system, decide
read and write access policies (aka access structures) for their objects, and create the Key Delivery
layers accordingly. The owners are fully trusted, and have full access to their protected objects.
During ordinary user�s transaction owners may be o¤-line.

In ACE, access may mean read or write, a user is granted access to an object by getting a
symmetric payload cryptographic key. The read and the write access policies may be distinct.
In order to prevent a legitimate reader from impersonating a legitimate writer the writers sign
their encrypted objects and the readers verify the signatures. We assume that writers are always
legitimate readers of the objects that they wrote.

The other o¤-line Trusted Third Parties (TTP) are Certi�cation & Revocation Authorities
(CRA, aka Accreditation Authority) that issue certi�cates and secret CP-ABE keys, and revoke
them when necessary. The various CRAs may be autonomous and uncoordinated.

Attribute Based Encryption (ABE [6, 9, 8, 13, 15, 17, 19]) is a way to encrypt data in multi-
tenant storage, such as byte-oriented �le system, record-oriented �le system, and database system.
It can enforce compliance with diverse highly granular, possibly distinct, read and write access
polices. Compared with classic access control mechanisms it reduces the amount of trust required
in the central facility and its personnel. CP-ABE is a type of public-key encryption in which the
secret key of a user and the ciphertext are dependent upon attributes. In such a system, the
decryption of a ciphertext is possible only if the set of attributes of the user key matches the
attributes of the ciphertext.

In this paper we use Ciphertext Policy ABE. In CP-ABE objects are associated with access
polices, which are subsets of subsets of attributes, and users with subsets of attributes. Suppose
that some user is associated with a subset of attributes ! and that some object is associated with
access policy A. The user has access to that object i¤ ! 2 A. Sometimes it is convenient to write
it in terms of predicates. Viewing A() as a predicate over the attributes, the condition for access
is A(!) = True: For more details about access policies see the appendix.

CP-ABE is best used as part of an Authenticated Key Exchange (AKE), so that users get
cryptographic keys to perform read and write operations on data i¤ they are authorized to do so.
Our goal is to achieve this functionality more e¢ ciently than by straightforward encrypting those
keys using CP-ABE. A few versions of CP-ABE were proven secure in [6] and in the other references
already mentioned above. We do not describe any particular CP-ABE in this paper.

ACE can be viewed also in the context of ABAC (NIST Special Publication 800-162, January
2014 1). ABAC is worth mentioning, since it includes a detailed explanation of a rich environment
with many players that are needed in practice. In the ACE model given here we abstracted many
of them into fewer entities.

1http://dx.doi.org/10.6028/NIST.SP.800-162
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Partially Ordered Sets: We assume that protected objects and their access policies are
organized as a partially ordered set (posets 2), where each element corresponds to a subset of
attributes, each object�s access policy corresponds to some subset of its elements, and a user�s role
is associated with an element of the set. This is a common view in applications of CP-ABE.

ACE is applicable to any poset, however, for the sake of concreteness we consider two such
posets. Let A denote the set of attributes, and let X = 2A be its powerset. The poset (X,�)
orders the elements of X by their subsets (of attributes) inclusion relations. Throughout most of
this paper we discuss (X,�); and in section 5 we discuss another poset, denoted (L,�): In (X,�)
if node x corresponds to a subset of attributes that include the subset of attributes of node y then
x � y: In that case it is convenient to describe posets using Hasse Diagrams, where in the above
example, the direction of the edge is from x to y. In (L,�), which we use in the �nancial example
in section 5; there is in addition a hierarchy among basic attributes, which in�uences the poset
hierarchy.

ACE has the following properties over any poset: Let x � y be elements of the poset. Each
node of the poset is associated with a secret symmetric key. (i) If a user can access the symmetric
key of node x then she can access the symmetric key of node y and thereby gain access to any
object whose access policy includes node y. (ii) We use symmetric key cryptosystems to enforce
the one-wayness of the symmetric key derivation implied in (i) . (iii) Each user gets a maximal
symmetric key using a single CP-ABE decryption. (iv) Another mechanism that we use to
improve e¢ ciency, and which we view as our main contribution, is utilizing overlaps among access
policies. The symmetric key of each poset element is encrypted only once using ABE, regardless
of the number of object access policies in which it is involved. The saving is proportional to the
accumulated size of the overlaps as shown later.

In [1, 2], the symmetric key systems that we use to accelerate key delivery computations are
called �Key Management for Access Hierarchies�. In [7] they are called �Cryptographic Enforce-
ment of Information Flow Control.�Elsewhere it is called �Hierarchical Key Derivation� (HKD)
and we adopt here this shortened name. For m = 10 attributes, for reasonable security para-
meters, HKD is about a million times faster than ABE encryption (the factor grows linearly in
m). For detailed descriptions of the operations carried out by each player in the system see section
2.3.2.

Let R denote the number of user roles, N be the number of object access policies, k the
ratio between the cost of CP-ABE encryption and symmetric key encryption complexities (for 10
attributes k � 106), and N = cR: The gain factor of ACE vs. a competing hybrid system is
� = kc=(k + c): Usually c >> 1; but in some systems it may happen that c < 1:

In this paper we use the following terminology: (a) ABE always means CP-ABE. (b)
AKE stands for Authenticated Key Exchange. We can use any secure Encryption Based 1-pass
AKE protocol such as [16], PP. 510. (c) Modi�ed Crampton system [7] (or in short Modi�ed [7])
is the system in [7] (also surveyed brie�y in Appendix E) modi�ed to be used as the encryption
component of AKE, and such that each user gets her most privileged key using ABE.

ACE is an AKE whose encryption component is composed of two sub systems encrypting the
same messages: a CP-ABE and a symmetric key encryption system, denoted (HKD jj ABE).
In section 3 we prove that ACE is secure in the following sense: We prove that (HKD jj ABE) is
secure under a new Uniform Security Game that we propose and justify, assuming that its building

2A partial order is a binary relation "�" over a set S which is re�exive, antisymmetric, and transitive, i.e., which
satis�es for all a, b, and c in S: a � a; if a � b and b � a then a = b; if a � b and b � c then a � c.
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blocks, namely CP-ABE and block ciphers are secure. We require that CP-ABE be secure under
the Selective Set Model, and that the block cipher be secure under Multi-User CPA, which we
de�ne. Therefore, if the AKE protocol is secure assuming its encryption component is secure then
ACE is secure.

We present Policy Encryption (PE) that can replace ABE as a component of ACE. In many
cases, PE is more e¢ cient than ABE. However PE does not prevent collusions. Instead it limits
collusions. PE is useful in those cases where owners can compartmentalize objects and subjects
(namely, these compartments apply to access policies and to user�s roles), so that within each
compartment the owners can tolerate collusions by users. PE prevents inter-compartmental collu-
sions. PE comes at the cost of adding new dummy attributes. For m PE compartments we need
2m � 1 additional dummy attributes. Computational complexity, while linear in the number of
attributes; has very small constants. PE has also the following appealing properties: PE relies on
older hence more reliable intractability assumption, the Computational Di¢ e-Hellman assumption,
whereas CP-ABE relies on the newer Bilinear Di¢ e-Hellman assumption. PE uses o¤-the shelf
standard crypto building blocks with one small modi�cations, with proven security. For a small
number of compartments PE is much faster than CP-ABE. For example, for 10 real attributes and
5 compartments, for reasonable security parameters, it takes about 4 millisecond (worst case on
high end PC) to encrypt a poset node using PE, Vs. 300 ms when using CP-ABE on comparable
machines with comparable security. Above 20 compartments there is no advantage to PE. PE and
CP-ABE can coexist in the same system, where CP-ABE is used in high security compartments.

We apply ACE to a practical �nancial example, the Consolidate Audit Trail (CAT3 section 5).
We create a special partially ordered set (poset) (L,�) over which each user�s subset of attributes
is a node, each object�s access policy is a subset of incomparable nodes, each query is a node, and
each object is a leaf.

Related work: ABE was �rst published by Goyal, Pandey, Sahai, and Waters in [9]. It is
a KP-ABE. In [6] Bethencourt, Sahai, and Waters presented the �rst CP-ABE system. In [19]
Waters presented a new methodology for realizing Ciphertext-Policy Attribute Encryption (CP-
ABE) under concrete and noninteractive cryptographic assumptions in the standard model. In [8]
Goyal, Jain, Pandey and Sahai presented the �rst construction of a ciphertext-policy attribute based
encryption scheme having a security proof based on a number theoretic assumption and supporting
advanced access structures. Previous CP-ABE systems could either support only very limited
access structures or had a proof of security only in the generic group model. In [17] Ostrovsky,
Sahai and Waters constructed an Attribute-Based Encryption scheme that allows a user�s private
key to be expressed in terms of any access formula over attributes. Previous ABE schemes were
limited to expressing only monotonic access structures. In [13] Lewko, Okamoto, Sahai, Takashima
and Waters presented two fully secure functional encryption schemes: A fully secure ABE scheme
and a fully secure attribute hiding predicate encryption scheme for inner-product predicates. For
an exposition of many other types of ABE see [11]. Identity Based Encryption (IBE) is related
to ABE, and preceded it. GIBE, which generalizes IBE was published by Boneh and Hamburg in
[5]. It gives the proper intuition of viewing IBE over poset (X;�); where X is the set user roles,
where each role is associated with a unique subset of attributes, and � is the natural subset
(of attributes) inclusion relation. HIBE [14] by Lewko and Waters is a way to generate an IBE
secret key for a lower ID given the keys of a dominating ID. It is not ABE, but the hierarchy

3http://catnmsplan.com/
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is similar. It is based on expensive bilinear operations, whereas we accelerate by utilizing cheap
symmetric key operations, and by taking advantage of overlaps among access policies. Hierarchical
Key Derivation (HKD;[1, 2, 3], Atallah et. al., Akl et. al.)) is a symmetric key method for key
distribution over any poset. We use a version that Crampton uses in [7], where he showed that
most ABE operations over poset (X;�) can be replaced by symmetric key operations. However,
we use it with much smaller posets. Crampton did not suggest how to deliver maximally privileged
keys to users. Also, formally [7] is wrong; ABE is an asymmetric system while HKD is symmetric.
All our comparisons to [7] are made with respect to modi�ed [7] (see terminology above).

The structure of the rest of the paper: In section 2 we explain the meaning of basic
terms like attributes, and access policies, and de�ne the players and their roles and include formal
de�nitions and system details. In section 3 we prove that ACE is secure. In section 4 we present
Policy Encryption and in section 5 we apply ACE to a practical example: The Consolidated Audit
Trail (CAT).

2 System

2.1 Background

The CRA publishes certi�cates linking attributes with unique public keys, and gives eligible users
the corresponding secret keys. The policy setter (aka owner) decides access policies and provides
keying material to eligible users based on their credentials, with which they can access objects.
The users communicate with the protected data base without the need for real time involvement
of either CRA or the owner. See Figure 1. Recall that we use ACE as the encryption component
of an AKE protocol (see terminology in 1).

Our system has two layers of encryption. At the lower layer, the payload (PL) layer, eligible
writers encrypt data, and eligible readers decrypt data. A higher layer, the key delivery (KD) layer,
delivers PL crypto keys to eligible users. The KD layer has its KD algorithms and KD data, to
be detailed in subsection 2.3. We proceed to concentrate on the KD layer. Our KD layer can
support any PL layer.

Owners decide the access policies of each object. For a given object, the read and write access
policies may be distinct. The owners create the Key Delivery layers for each object accordingly.
When an owner initiates an object, she picks a payload key and (in a �rst simple naive incarnation),
CP ABE encrypts them according to her chosen object read/write access polices, so that exactly
users possessing matching secret CP-ABE keys can decrypt the payload keys. The encrypted
payload keys are part of the Key Delivery data. Each object is associated with a capsule
containing a description of its access polices, the corresponding key delivery data, and additional
AKE data, such as a signature by the owner, and her certi�cate4. Eligible users can decrypt the
PL keys. Capsules are de�ned precisely below.

4The owner signs every cryptogram that she creates on the nodes and on the edges of the poset, and links the
signature to the corresponding node, edge, resp. It is su¢ cient however to link the owner�s certi�cate to the poset
just once.
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Figure 1: A general block diagram of the ACE system.

2.2 Formal de�nitions of HKD, CP-ABE, and Access

As we already mentioned, ACE can run over any poset, however, for the sake of concreteness we
describe it over the poset (X;�): As before, let A denote the set of attributes. Let X = 2A:
As before, we use (X;�) to denote a poset were partial orders are dictated by the natural subset
of attributes inclusion relations. When running CP-ABE over (X;�) objects are associated with
subsets of nodes of X; and users with single nodes of X: In the body of the paper we focus on
(X;�); while in the CAT example (Section 5) we use another poset. In the appendix we formally
de�ne w.l.g. access policies as Monotone Access polices (MAS).

The sets U and O represent users and object, resp. For CP-ABE, let � : U ! X; and
�0 : O ! 2X : The former function assigns a subset of attributes to each user, and the latter
function assigns a policy to each object.

Let E = (F;D) be a secure symmetric-key encryption function de�ned over spaces (K;M; C);
the key, message and cryptogram spaces, resp. Let F (�;M) denote the symmetric encryption of
message M with key �. We next de�ne Hierarchical Key Derivation (HKD) for any poset
represented by a directed loopless graph G = (V;E); where V is the set of nodes and E is the set
of edges. In particular it applies to the posets (X;�) and to (L;�) which is de�ned in section
5. The HKD de�ned below was used for example in [7].

De�nition 1 (Hierarchical Key Derivation (HKD) ): Let G = (V;E); be any directed loopless
graph, where V is the set of nodes and E is the set of edges. Assign a secret random symmetric
key h(x) to each x 2 V , and for each directed edge (x; y) 2 E include F (h(x); h(y)) in the public
information.

As we show in subsection 2.3, in ACE a user u can derive the key for any y 2 V if there exists
a directed path from some x 2 �(u) to y in V: If node y is included in the access policy of object
o then the ability to derive the key for y implies access to o: We accelerate users�computations
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using symmetric key HKD. We proceed to de�ne CP-ABE. The following generic description is
taken from [6].

A generic ABE system

De�nition 2 An (Ciphertext-Policy) Attribute Based Encryption scheme consists of four algo-
rithms.
Setup. This is a randomized algorithm that takes no input other than the implicit security parame-
ter. It outputs the public parameters PK and a master secret key MK.
Encryption. This is a randomized algorithm that takes as input a message M , an access policy A,
and the public parameters PK. It outputs the ciphertext E. Notation: E  Encrypt(PK;A;M);
KeyGen . This is a randomized algorithm that takes as input a set of attributes , the se-
cret master key MK and the public parameters PK. It outputs a decryption key D. D  
KeyGen(PK;MK; )
Decryption. This algorithm takes as input the ciphertext E that was encrypted according to access
policy A, the decryption key D for the set  of attributes and the public parameters PK. It outputs
the message M with overwhelming probability i¤  2 A. Notation: M  Decrypt(PK; D;E):

We now de�ne the meaning of a user�s permission to access an object. Access to read and to
write may be distinct, but are handled the same way, so here we do not specify the type of access.

De�nition 3 (Access in CP-ABE) Let ! 2 2Att and A � 2Att be a set of attributes associated
with user u; and object o0s access policy, respectively. User u can access object o i¤ ! 2 A:5

We can use any ABE as a component in ACE, and therefore we do not describe any particular
ABE in this paper. ABE was proven secure under SSM (see de�nition in sec. 3.1) in [9] for one
version, and elsewhere for other versions (e.g. [6, 15]).

2.2.1 The Total Number of ABE Operations

Let Att denote the set of attributes, and let X = 2Att. A Monotone Access Structure (MAS) is a
collection S � 2Att; s.t. for A;B � 2Att; if A 2 S; and A � B then B 2 S: This implies that for
MAS S, if a chain C 2 S then it is fully represented by its minimal element. Therefore every MAS
S is fully represented by an antichain over Att. Let AAtt denote the set of antichains over Att.
Let the cardinality of Att be jAttj = m: Clearly the number of possible MAS over Att is upper
bounded by 2(2

m); since jXj = 2m; and the number of binary vectors of length 2m is 2(2
m): This

upper bound is not tight, since we have to count only antichains over Att (see de�nition 26). Let
M(m) = jAAttj. M(m) is the Dedekind number of m. It is well known that log2M(m) �

�
m

bm=2c
�
:

From Stirling�s approximation
�

m
bm=2c

�
�
q

2
�m � 2

m: Therefore M(m) � 2
(
q

2
�m

�2m)
: Assuming

that system [7] uses ABE to deliver top keys to users, the upper bound on the number of such
operations is M(m); while for ACE it is 2m:

5This means that in CP-ABE, ! must dominate in (X;�) at least one element of A in order to allow user u
access to object o:
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2.2.2 The meaning of running ABE together with HKD

Description Each node of (X;�) may correspond to the most privileged node for some user,
therefore we run ABE and HKD together. Each node  of (X;�) is associated with a secret
HKD key h(); which is encrypted once using ABE and once using HKD, to be de�ned precisely
in section 3.3.2. We denote this system as (ABE jj HKD). Our system, ACE, is an Authenticated
Key Exchange so that writers and readers get assurance that the owner, who sets access policies, is
who they expect her to be. In a store-and-forward system it is natural to use a 1-pass AKE (such
as [16], pp. 510). (ABE jj HKD) is the encryption component of this AKE. In section 3 we prove
that (ABE jj HKD) is semantically secure; a necessary condition for AKE security. Below we give
a description of ACE. This version is suitable for small objects of high value. For a large system we
recommend replacing public key encryption at the payload level with symmetric key encryption,
and adding writer�s signature on the payload.

1. An object class6 may have distinct read and write access policies. Therefore we use asym-
metric key cryptosystems to encrypt them. Payload encryptions and decryptions are done
by writers and readers resp. The system must have the additional property that given any
of the keys it must be infeasible to �nd its counterpart matching key7.

2. The owner associates each node in (X;�) with a unique HKD symmetric-key drawn indepen-
dently from a uniform distribution and a unique ABE secret-key.

3. In each node the HKD key of the node is accessible via both HKD and ABE. Namely, the
owner encrypts it using both HKD (with the HKD key of a parent node, using symmetric-key
encryption8), and using ABE with the ABE key of that node (see section 3.3.2 for details).
In addition, the owner signs these cryptograms as required in a 1-pass AKE ([16], pp. 510).

4. Let  R(o) and  W (o) denote the read and write access structures of object class o resp.
The owner encrypts the read (write) payload key of object-class o using a symmetric key
cryptosystem in each of the nodes corresponding to  R(o) ( W (o)) using the HKD key of
that node.

5. A plurality of access structures may intersect on a node, each having its own payload key
encrypted under the same HKD key of that node.

2.3 System Details

2.3.1 The two savings

For the sake of concreteness we use here the poset (X,�): The ACE system works for any poset.
Each node  2 (X;�); which is associated with some user or belongs in an object�s access policy
is associated with a symmetric key, denoted h(). We encrypt h() a few times. Once using
CP-ABE and then using the HKD key of each father of , and we keep these cryptograms in the

6Recall that all the objects that have the same read and the same write access policies comprise an object class.
7A simple modi�cation of RSA meets this additional condition; have both exponents long and secret, and do not

divulge the factorization of the modulus to the users. The writer gets one of the exponents and a reader gets its
matching counterpart.

8We associate that cryptogram to the proper edge.
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public domain (to be de�ned precisely below). The ABE encryption consists of one cryptogram
per node, while the number of HKD encryptions is equal to the number of ancestor nodes of node
: Therefore, in each node other than the root the HKD key of the node is accessible via HKD
and via ABE. The HKD key of the root is accessible only via ABE. We denote this system as
(ABE jj HKD). Our system, ACE, is part of an Authenticated Key Exchange so that writers and
readers get assurance that the owner, who sets access policies, is who they expect her to be. In a
store-and-forward system it is natural to use a 1-pass AKE (such as [16], pp. 510). (ABE jj HKD)
is the encryption component of this AKE. ACE reduces computational complexity in two ways:

1st saving: In ACE, using CP-ABE, each user does a single CP-ABE decryption (in a key update
cycle). After accessing her maximally privileged HKD key using CP-ABE decryption, the user
proceeds to �nd less privileged HKD keys using the HKD key derivation algorithm (Def. 30).

2nd saving: We take advantage of overlaps on nodes among access polices. The overlaps mean
that access polices can share the same ABE and HKD encryptions of the shared node.9

Each overlap replaces a CP-ABE encryption (i.e. pairing operation) with a few symmetric key
encryptions which are about a million times faster for realistic parameter sizes. Below we give a
detailed description of ACE.

2.3.2 Detailed player�s routines

In poset (X,�) we assign each node of the poset a unique integer, i = 1; 2; :::: Since each such
node is also associated with a unique subset of attributes !(i) we treat i and !(i) synonymously.
Let A(o) denote the access policy of object o; corresponding to nodes �0(o) = fj1; j2; ::::jkg of the
poset (X,�), namely A(o) = f!(j1); :::!(jk)g: The owner encrypts the payload key of object o k
times, once for each of the nodes in �0(o) using the HKD key of each node. Below we describe
the process in detail for a single node j:

Let f2; f3; f4 be three symmetric encryption functions, where f2 is the basic HKD encryption
function, f3 is used to encrypt a payload key p, and f4 is used to encrypt the payload using key
p. Their corresponding decryption functions are f�i ; i = 2; ::4: We use the syntax cryptogram  
fi(key;message); message  f�i (key; cryptogram): As before, let h(j) denote the HKD key of
node j: We may use the same symmetric key encryption to implement all three functions fi .
However we �nd that these distinct notations help in understanding the system.

De�nition 4 Suppose that object o is associated with access policy A(o) = f!(1); !(2); :::!(k)g:
The capsule for object o; is a collection of k individual capsules, one for each subset of attributes
!(i); i = 1; 2; :::k: For each i = 1; 2; :::k the individual capsule of !(i) is capsule(!(i)) =
fc1;fc2g; c3; c4g; where c1 is the ABE encryption of the HKD key h(!(i)) associated with node
!(i) using the attributes of node !(i): c1  Encrypt(PK; !(i); h(!(i))); fc2g is a subset of
HKD cryptograms: for each node x such that x is a direct ancestor of !(i) in poset (X;�);
c2(x; !(i)) f2(h(x); h(!(i))): Cryptogram c3 is the payload key p of object o encrypted under
key h(!(i)); namely, c3  f3(h(!(i)); p): The same payload key is encrypted in each of the k
individual capsules of nodes !(1); !(2); :::!(k). A node may be associated with more than one

9Usually, unlike in ACE, CP-ABE systems do an ABE encryption operation for each policy, without utilizing the
overlap among policies.
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object. Finally, c4 is the object o itself encrypted under p : c4  f4(p; o): The Key Delivery
algorithms are f1 =ABE, f2 =HKD, and f3, while the Key Delivery data is a triple of cryptograms
(c1; c2; c3) that these encryption functions output.

Signatures
To the simpli�ed diagram of Figure 1 we have to add the following signatures:

1. CRA certi�es the linkages between attributes and their associated public attribute keys, as
usual. Owners and users verify the certi�cates.

2. Owners sign (certify) capsules, and users verify them10.

3. Writers sign encrypted payloads, and readers verify these signatures. Within capsules, owners
deliver to writers the signature key and to readers the corresponding veri�cation keys. Users
trust owners. All the legitimate writers of an object use the same signature key.

In the rest of this paper we ignore the above signatures, and focus on the encryptions.
On each key update cycle the players do:

Certi�cation & Revocation Authority (CRA):

1. Publish fresh public attribute keys;

2. Give each user the secret attribute keys that she deserves.

3. Publishes certi�cates linking attributes and unique public keys and gives eligible users the
corresponding secret keys.

Each Owner:

1. Chooses the set of attributes, Att: Let X = 2Att: Constructs the poset (X;�): Prune
unused nodes. Let !(j) denote the subset of attributes associated with node j 2 X:

2. Run the CP-ABE Setup procedure to produce the public parameters PK and a master secret
key MK.

3. To each node j 2 X (a) compute its ABE key D(j)  KeyGen(PK;MK; !(j)); (b)
Associate a random HKD key h(j), (c) Compute c1(j)  Encrypt(PK; !(j); h(j)); (d) For
every i a direct ancestor of j in poset (X;�). Compute c2(i; j) f2(h(i); h(j)):

4. For each object o, pick a payload key p(o):

5. In general, each object is associated with two access policies, one corresponds to its write
access, and the other to its read access. An access policy may include a plurality of nodes.
The owner does:

10This is the AKE signature. In [16], pp. 510 the signed message looks simpler. It is just a single encrypted key.
Here it is a set of encrypted keying material (the KD data).

10



(a) For each node j1 in the write access policy compute:

c3;w(j1) f3(h(j1); p); (1)

(b) For each node j2 in the read access policy compute:

c3;r(j2) f3(h(j2); p); (2)

Each eligible writer for node j :
Below we describe the process for eligible writers. A writer is eligible for node j 2 X if she is

associate with a set of attributes corresponding to a node equal or higher in the hierarchy in (X;�)
than node j: When a writer wants to write into an object, she sends the data center an object-ID,
and gets in return the object capsule.

1. Acquire HKD key h(j) :

If the writer already has h(j) then goto 2.

Else, if the writer has h(i) for some direct ancestor i of node j, then compute h(j)  
f�2 (h(i); c2(i; j)); goto 2. If node i is an indirect ancestor of node j then repeat the process
iteratively along the path (i! j);goto 2.

Else, compute ; h(j) Decrypt(PK; D(j); c1(j)) ; this succeeds when j � i in the poset,
where i is the writer�s node.

2. Decrypt payload key p f�3 (h(j); c3;w(j)) ;

3. Encrypt object o using c4  f4(p; o); (c4 replaces object o in the DB and is linked to node
j).

Each eligible reader for node j :
To simplify we exclude here the issues of queries. In the example in section 5 we include queries.

When a reader wants to read an object, he sends the data center an object-ID, and gets in return
the object capsule. A reader (like a writer) is eligible for node j 2 X if she is associate with a set
of attributes corresponding to a node equal or higher in the hierarchy in (X;�) than node j:

1. Acquire key h(j) (same as for writer):

2. Decrypt payload key p f�3 (h(j); c3;r(j));

3. Decrypt object o using o f�4 (p; c4) ;
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2.3.3 Computational Complexity

Recall that a MAS (sec. 24) is represented over (X;�) as a subset of nodes  (o) 2 2X ;
comprising an antichain, and that from Lemma 31 user u can access object o i¤  (u) dominates
at least one element of  (o) in poset (X;�): Recall also that in ACE we run ABE in parallel
to HKD over the same poset (X,�): Saving for owners comes from taking advantage of overlaps
on (X;�) nodes among access structures. The overlaps mean that access structures can share the
same ABE and HKD encryptions of that node. In ACE each user does just one ABE decryption
(in a key update cycle). Then after accessing her top HKD key using ABE decryption, the user
proceeds to �nd lower HKD keys using the HKD key derivation algorithm (see section 30).

We compare ACE to C�(Crampton�s system to which we add ABE and they run together over
the same poset [7]). For m = jAttj = 10 a single ABE encryption costs about k � 106 times as
much as symmetric key encryption of comparable strength. For users, both ACE and C� save a
factor ~k over pure CP-ABE.

For owners, C�is about the same as pure ABE (since any poset node can be the top key of some
user, any node needs ABE encryption). ACE is more e¢ cient than C�since we work with the smaller
poset (X;�) while C�works with the much larger poset (Auth;v): Let R denote the number of

roles and N the number of MAS. The tight upper bounds are R � 2m; and N � 2
q

2
�m

�2m (see
section 2.2.1). In C�the total number of ABE operations and symmetric key operations (for owners
during setup) is upper bounded by N; whereas in ACE owners do up to R ABE operations and up
to N symmetric key operations. We now look at the gain factor for particular cases rather than
on asymptotics. For a particular case, let N = cR: Then the saving factor, �; for owners of ACE
over C�is:

� � kN

kR+N
=

kc

(k + c)
(3)

Note that cases where c < 1 are possible, however, the upper bounds suggest that usually c > 1;
in which case � > 1: In fact we believe that usually c >> 1; and � >> 1:

The upper bounds on R and on N are speci�c to poset (X;�); whereas the non asymptotic
expression for � is true for any poset, including (L;�) used for CAT (see 5.3).

3 Security of ACE

We de�ne and prove the semantic security of running HKD together with ABE. This is a necessary
condition for the security of ACE. The system should be used as the encryption component of an
Encryption-Based 1-pass Authenticated Key Exchange (AKE) protocol (e.g. [16], PP. 510).

3.1 De�nition of Security for ABE

We can use any ABE as a component in ACE, and therefore we do not describe any particular
ABE in this paper. For a de�nition of generic ABE see section 2.2. ABE was proven secure under
the security game Selective Set Model (SSM) de�ned below in [9] for one version, and elsewhere
for other ABE versions (e.g. [6, 15]).

A crucial observation, made �rst in [5] and later in [7] is that it is very natural to describe ABE
over a poset of roles, where each role is associated with a subset of attributes. All of ABE, HKD,
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or ACE, are considered over the same poset (X;�). The following de�nition is equivalent to the
Selective Set Model of [6], although the poset (X;�) is not mentioned there (the posets re�ect the
natural partial order of roles; A user having the secret keys for role � associated with a subset of
attributes s � Att has the keys for role �0 � �; since �0 is associated with attributes s0 � s.

Attack Game (Selective Set Model (SSM)). For a given ABE system, and for a given
adversary A, we de�ne:

Init. The adversary declares the node, 2 X, that he wishes to be challenged upon.
Setup. The challenger runs the Setup algorithm of ABE and gives the public parameters to

the adversary. The challenger does not expose secret keys.
Phase 1. The adversary is allowed to issue queries for secret keys for polynomially many nodes

vj 2 (X;�), where for all j, vj does not dominate  in (X;�) (this is equivalent to saying that
role vj is not included in monotone access structure ; in the standard ABE terminology).

Challenge. The adversary submits two equal length messages p0 and p1: The challenger �ips
a random coin b, and encrypts pb using the encryption of node . The ciphertext is passed to the
adversary.

Phase 2. Same as Phase 1.
Guess. The adversary outputs a guess b0 of b.
The advantage of adversary A in attacking ABE system E in this game is

AdvSSM [A; E ] = jPr[b0 = b]� 1
2 j:

De�nition 5 ABE system E is secure under the Selective Set Model if for all polynomial time
adversaries A AdvSSM [A; E ] is negligible.

3.2 HKD

3.2.1 A Topological De�nition of Security for HKD

We motivate a new de�nition of semantic security of HKD and prove that the HKD system of
[7] (section 30) is secure under this de�nition. The current de�nitions of security of HKD (Key
recovery and Key Indistinguishability [1, 2]) are not close enough to the SSM de�nition to allow the
combination of HKD and ABE and its security analysis . Therefore we propose a new de�nition
of HKD security which is similar enough to SSM to allow the de�nition of semantic security game
for (HKD jj ABE), and prove its security under this game. The most notable new element of this
game is that in the challenge phase the challenger does not return a single cryptogram as usual.
Rather she returns a neighborhood of distance 1 (notation 6 below) around the attacked node of
poset (X;�), complete with its topology and the cryptograms linked to its edges.

Notation 6 Let N(; x) denote a neighborhood of distance 1 around node  of (X;�): It consists
of the edges connected to node  (ingoing and outgoing) and their labels when the secret HKD key
of node  has value x:

Let S() denote the set of directed edges in the neighborhood of distance 1 from node ;
and (i; j) denote a directed edge going from node i to node j: Then S() = f(i; j)g2fi;jg:
S() is just the topology of the neighborhood. The neighborhood includes the topology and the
cryptograms associated with the edges of this neighborhood (we use �edge-labels� and �edge-
cryptograms� synonymously), namely, let the HKD key of node i be h(i): Then N(; h()) =
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f(i; j); E(h(i); h(j))g (i;j)2S(). There is a somewhat unorthodox �avor to the new de�nition below.
When the attacker issues a challenge (m0;m1) against node  the challenger�s response is N(;mb)
for a random bit b; rather than a single cryptogram as usual.

Attack Game Topological Selective Set Model (TSSM) for HKD
Given poset (X;�) :
Init. The adversary declares the node, 2 X, that he wishes to be challenged upon,
Setup. The challenger runs the Setup algorithm of system HKD except for N(; :); and

gives the public parameters (edge labels) to the adversary. The challenger does not expose secret
keys.

Phase 1. The adversary is allowed to issue queries for secret keys for polynomially many nodes
vj 2 (X;�), where for all j, vj does not dominate  in (X;�) (this is equivalent to saying that
role vj is not included in monotone access structure ; in the standard ABE terminology).

Challenge: Attacker selects equal length messages (m0;m1) as candidates for h() and passes
(m0;m1) to the challenger. The challenger �ips a coin b, assigns h()  mb, computes N(;mb)
and passes it to the attacker.

Phase 2. Repeat Phase-1.
Guess. The adversary outputs a guess b0 of b.
The advantage of adversary A against HKD system S in this game is

AdvTSSM (A; S) = jPr[b0 = b]� 1
2 j:

De�nition 7 HKD system S is secure under TSSM if for all polynomial time adversaries A
AdvTSSM (A; S) is negligible.

3.2.2 Extended Multi-key CPA security

We are not aware of publicly available de�nition of Multi-User CPA security for symmetric key
cryptosystems, so we adapt and modify de�nition 3 of [4], which is written for asymmetric cryp-
tosystems. We use the name Multi-key CPA security (MCPA). The di¤erences are that, of course,
instead of generating matching asymmetric key pairs, symmetric keys are chosen independently
from a uniform distribution on the key space K. Each such key has a public selector, s; where
the key itself is denoted h(s): We denote the process: h(s) 2R K. We extend the MCPA game to
allow additional type of queries, and use EMCPA to denote Extended MCPA security. In MCPA
the attacker uses queries of the form (si;mi;o;mi;1) i = 1; 2; :::; where for each i the messages have
equal length, to which the challenger (�oracle�) responds with E(h(si);mi;b); where the left input
is the key and the right input is the message and the same bit b 2 f0; 1g is used for all the responses.
We call these queries type (i) queries. In EMCPA attackers can issue type (i) and type (ii) queries,
where a type (ii) query is of the form (si; sj); to which the challenger�s response is E(h(si); h(sj)):
Type (ii) queries represent the additional data that attackers of HKD have, namely they can read
the edge cryptograms on poset (X;�) (see [7], and the end of section 30). Clearly for HKD to be
secure it is necessary that the underlying cryptosystem upon which HKD is built, E = (E;D); be
EMCPA secure. We prove the other way; that if E is EMCPA secure then HKD is TSSM secure.
Formally:

Attack Game (Extended Multi-key CPA security, EMCPA). For a given symmetric
key cipher E = (E;D), de�ned over spaces (K;M; C) (key, message, cryptogram, resp.), and for a
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given adversary A, we de�ne two experiments, Experiment 0 and Experiment 1. For b = 0; 1; we
de�ne

Experiment b:
� Initially, the challenger sets r  0.
� The adversary submits a sequence of queries to the challenger. For i = 1; 2; :::;the ith query

is either (i) a pair of messages, (mi;0;mi;1) 2M2, of the same length, along with a key selector si;
where 1 � si � r + 1, or (ii) a pair of selectors 1 � si; sj � r + 1: W.l.g we assume that si � sj :

The challenger then does the following:
if si = r + 1 then
r  r + 1
kr 2R K
For type (i) query the challenger�s response is E(h(si);mib): The same value of bit b is used for

all the type (i) queries. for type (ii) query the response is E(h(si); h(sj)): The challenger sends
the response to the adversary.
� The adversary outputs a bit eb 2 f0; 1g:
�

For b = 0; 1, letWb be the event that A outputs eb = 1 in Experiment b. We de�ne A�s advantage
with respect to E as AdvEMCPA[A; E ] := jPr[W0]� Pr[W1]j:

De�nition 8 (Extended Multi-key CPA security). A cipher E is called Extended Multi-key CPA
secure (or EMCPA secure in short) if for all e¢ cient adversaries A, the value AdvEMCPA[A; E ] is
negligible.

Remark 9 An instance of EMCPA where there is not even one type (i) query with mi0 6= mi1 is
trivially easy to solve (any value of eb is �correct�).

Consider HKD built using E = (E;D) in the sense of [7] (De�nition 30).

Theorem 10 If E = (E;D) is EMCPA secure then HKD built using E over any poset (X;�) is
TSSM secure.

Proof. See Appendix B (7).

3.3 The security of parallel Connections

We start with a simple case of semantically secure block ciphers having the same message space
and prove that the parallel connection of semantically secure block ciphers is semantically secure.
Then we de�ne precisely the combination of HKD and ABE as key allocation system and generalize
the proof to cover it.

3.3.1 The security of parallel connection of simple Block Ciphers

Let E1 = (E1; D1); E2 = (E2; D2) be symmetric block ciphers over K;M; C, the key, message and
cryptogram spaces, resp. (Appendix A Sec. 6). The two ciphers have the same message space, but
not necessarily the same key and the same cryptogram spaces. Let Ki; Ci denote the corresponding
key and cryptogram spaces of cipher Ei; i = 1; 2:
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De�nition 11 We say that E1 and E2 having the same message space are connected in parallel
(denoted (E1jjE2)) if they encrypt the same messages, namely, for all m 2M; ki 2 Ki; their output
is a pair (c1; c2) 2 C1 � C2; where ci  Ei(ki;m):

In this section, for the sake of simplicity, we use the most basic de�nition of semantic security
of symmetric-key block ciphers (Appendix A, Sec. 6).

Lemma 12 Let E1 and E2 be semantically secure block ciphers having the same message space.
Then (E1jjE2) is semantically secure.

Proof. See Appendix C (Sec. 8).

3.3.2 The security of combining HKD and ABE

In section 3.2.1 we proposed a new semantic security model for HKD (TSSM), which is similar to
the standard SSM model of ABE. Then in Theorem 10 we showed that HKD of [7] is secure under
TSSM if the underlying block cipher E = (E;D) is EMCPA secure. We now de�ne another model,
USM, which generalizes both SSM and TSSM, and show that our combination of ABE and HKD
is secure under USM.

We �rst de�ne Key Allocation system uniformly to capture HKD;ABE and then give a
precise de�nition of the meaning of running HKD together with ABE over the same poset (X;�):
We take the liberty of using the notation (ABE jj HKD) for this combination of larger systems
because of its similarity to parallel combination of basic cryptosystems. We then formally de�ne
and prove the security of (ABE jj HKD) under a game that generalizes the standard Selective
Set Model (SSM) of ABE. In the descriptions below each step specializes to ABE;HKD; and
(ABE jj HKD). We put them together to highlight their structural similarities.

AUniform Key Allocation (UKA) Let the basic ABE algorithms be Setup;Encrypt;Decrypt.
as de�ned in Sec. 2.2. HKD is built around encryption function E = (E;D) de�ned over spaces
(K;M; C) (de�nition 30). For a given poset of roles (X;�) (Sec. 10.1) we describe the treatment
of any node j with direct ancestor i: Let PP and MK denote the Public Parameters and secret
Master Key of the ABE system. We equate a node name with the subsets of attributes corre-
sponding to that node and with the access policy of that node. For �; j 2 X a user with role
� � j has secret ABE key KABE(�) that enables the decryption of ABE cryptograms in node j:
In (ABE jj HKD) h(j) of node j (the HKD key of node j) is encrypted independently of other
nodes belonging to the same access policy. Therefore in the description below, we treat each node
independently11. Recall that (i; j) denotes a directed edge going from node i to node j in (X;�):

Set: In (i) below Certi�cation & Revocation Authority (CRA) sets up the ABE system, while
the owner sets up the HKD system.

(i) Setup the underlying cryptosystem for security parameter � :
(a) ABE: Generate PP and MK.
(b) HKD: 8 j 2 X; pick a random secret key h(j);
(c) (ABE jj HKD): Do (a) and (b) as above.

11Recall that in all the nodes belonging to the same MAS (represented as an antichain) the same PL key is
encrypted. In node j it is symmetrically encrypted under h(j) (Section 2.2.2).
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(ii) Owner does 8 j 2 X; Encrypt h(j) :
(a) ABE: c1(j) Encrypt(PP; j; h(j)):
(b) HKD: 8 directed edge (i; j) do: c2(i; j) E(h(i); h(j)):
(c) (ABE jj HKD): 8 edge (i; j) compute (c1(j); c2(i; j)) as in (a) and (b).

Derive:
Readers and writers having role � � j do the steps below.

(a) ABE: Given c1(j) and KABE(�) do: h(j) Decrypt(PP; �;KABE(�); c1(j)):
(b) HKD: For directed edge (i; j) given h(i) and c2(i; j); do: h(j) D(h(i); c2(i; j));
(c) (ABE jj HKD): Do (a) or (b) above.12

Remark 13 In addition to c1(j) and c2(i; j) node j is associated with plurality of cryptograms
c3(j) which are the symmetric encryptions of payload keys, whose access structure includes node j,
under key h(j): Another set of cryptograms is c4(:; :) which are the encryption of payload (content)
of an object under the payload key whose encryption is c3(j): For lack of space we do not discuss
these additional cryptograms any further in this paper.

A Uniform Security Game (USG)
Init: Attacker picks challenged node :

Setup: Challenger sets up the system except for node : h() remain unspeci�ed. Also:
(a) ABE: c1() remain unspeci�ed;
(b) HKD: c2() = N(; :) remain unspeci�ed13.
(c) (ABE jj HKD): c1() and c2() remain unspeci�ed;

Phase-1: The attacker asks the challenger to expose the secret keys of nodes in a set
V � X, none of which dominates  in (X;�) and the challenger exposes the secret keys of V .

(a) ABE: Expose KABE(i); 8i 2 V:
(b) HKD: Expose h(i); 8i 2 V:
(c) (ABE jj HKD): Do (a) and (b) above.

Challenge: The attacker chooses a pair of equal length (m0;m1) and sends them to the
challenger. The challenger picks a random bit b; and sets h() mb, he then computes:

(a) ABE: c1;b() Encrypt(PP; ;mb);
(b) HKD: c2;b() N(;mb) , // N(; x) is de�ned in Notation (6).
(c) (ABE jj HKD): Compute (c1;b(); c2;b()); as above.

The challenger sends the results to the attacker.
Phase-2: Same as Phase-1.
Guess: The attacker guesses bit eb. The attacker wins if eb = b:

�
Let F be any of ABE;HKD, or (ABE jj HKD): The advantage of attacker A in attacking F

is AdvUSG(A;F) = jPr[eb = b]� 1
2 j: Obviously, AdvUSG(A;F) =AdvSSM (A;F) when F = ABE,

and AdvUSG(A;F) =AdvTSSM (A;F) when F = HKD.

De�nition 14 System F is secure under USG if for all polynomial time adversary A, AdvUSG(A;F)
is negligible.
12Each user uses c1(:) for her most privileged node, and continues down the poset using the much faster c2(:; :):
13Do not confuse the notations c2(i; j) and c2(j): The former is a single cryptogram on edge (i; j); the latter is

the neighborhood of distance 1 of node j:
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The Main Result: We assume an HKD built using block cipher E = (E;D) as de�ned in [7]
(Def. 30), and ABE stands for any SSM secure ABE system, such as the one in [9].

Theorem 15 If HKD is TSSM secure and ABE is SSM secure then (ABE jj HKD) is secure
under the Universal Security Game (USG).

Proof. ABE is secure under SSM ([9]) hence also under USG (Sec. 3.3.2). HKD is secure under
TSSM (Sec. 10) hence also under USG. In each node  of (X;�) ABE and HKD encrypt the same
message h(); i.e. they run in parallel.

We mimic the proof of Lemma 12 (Appendix C, Sec. 8) where USG security replaces the simple
de�nition of Appendix A (Sec. 6). This has the following consequences: (i) Within each game,
setup ABE and HKD rather than F and G. (ii) In each of the three games in the proof add
Phases 1,2 of (ABE jj HKD) before and after the challenge-response, resp. (iii) Replace cf;b with
c1;b() Enc(PP; ;mb) and replace cg;b with c2;b() N(;mb)):

The Hybrid Argument proof of Lemma 12 is oblivious to the distinct semantics of the cryp-
tograms, so change (iii) does not a¤ect the proof. As for change (ii): In equation 10 the probabilities
qi; i = 0; ::3 are taken under the side information of Phases 1,2 of either ABE or HKD, while the
probabilities pj ; j = 0; ::2 are taken under the side information of Phases 1,2 of (ABE jj HKD).
All the HKD keys are chosen independently, hence the ABE and HKD side information are in-
dependent of each other. Hence the probabilities qi; i = 0; ::3 remain the same under the side
information of Phases 1,2 of (ABE jj HKD), and the probability analysis remains valid.

We remind the reader that if E = (E;D) is EMCPA secure then HKD built from E is TSSM
secure (Theorem 10). From this and from Theorem 15 we get:

Conclusion 16 If E = (E;D) is EMCPA secure and ABE is SSM secure then (ABE jj HKD)
is secure under USG.

4 Policy Encryption

4.1 Background

Policy Encryption (PE) can replace ABE as a component of ACE. In many cases, PE is more
e¢ cient than ABE. However PE does not prevent collusions. Instead it limits collusions. PE
is useful in those cases where owners can compartmentalize objects and subjects (namely, these
compartments apply to access policies and to user�s roles), so that within each compartment the
owners can tolerate collusions by users. Usually, in a hierarchical organization, a compartment
is a connected subset of the nodes of the poset that has a greatest element g and all the nodes
that are dominated by g; or a union of several such structures. PE comes at the cost of adding
new dummy attributes. For m PE compartments we need 2m � 1 additional dummy attributes.
Computational complexity is linear in the number of attributes; but has very small constants, as
shown later.

In ACE owners decide on whether to use ABE or PE as part of the de�nition of each access pol-
icy. For example, within the same system, a critical high-security compartment may use ABE, and
another less critical compartment may use PE. Within the ABE compartment collusions are im-
possible, while within each PE compartment collusions are possible. Inter-compartment collusions
are not possible.
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PE has also the following appealing properties: PE relies on older hence more reliable in-
tractability assumption, the Computational Di¢ e-Hellman assumption, whereas ABE relies on the
newer Bilinear Di¢ e-Hellman assumption. PE uses o¤-the shelf standard crypto building blocks
with one small modi�cation, with proven security. For a small number of compartments PE is
much faster than ABE. For example, for 10 real attributes and 5 compartments, for reasonable
security parameters, it takes about 4 millisecond (worst case on a high performance PC) to encrypt
a poset node using PE, Vs. 300 ms when using ABE on comparable machines with comparable
security. Above 20 compartments there is no advantage to PE.

4.2 Method

4.2.1 Coloring

The goal in ABE is to assure that no collusion of subjects can exceed the union of their legiti-
mately accessible objects. In PE after creating m compartments we want to assure that any
collusion of representative subjects from i � m compartments cannot exceed the union of the ob-
jects legitimately accessible from those compartments. The method is to assign for each subset
of i compartments a new dummy attribute to �color� the poset elements in the complement of
the union of these compartments. Since members of the collusion by de�nition do not have that
dummy attribute they cannot exceed the union of their legitimately accessible objects. However,
this method explodes very quickly, since the number of new attributes is

Pm�1
i=0

�
m
i

�
= 2m�1. For

small m the PE method is practical14.
Here in more detail: PE works for any poset but we describe it for poset (X,�)): User roles

and objects access policies are de�ned over the poset as before. A compartment is composed of a
subset of users U and the subset of objects O that the users in U can access. The compartment
is represented by a set of nodes as we de�ne next. As in section 2.2, let � : U ! X be the
mapping that assigns to each user her subset of attributes (i.e. her role).

De�nition 17 For a given poset (X;�); the compartment D(U) of a subset of users U and the
objects that they can legitimately access is the subset of all the nodes of the poset x � u; for all
u 2 �(U).

Considerm compartments C1; C2; :::Cm: Every subset of i � m of compartments Cj1 ; Cj2 ; :::Cji
represents a potential collusion. It has a complement XnfCj1 [ Cj2 [ :::Cjig: We color this com-
plement with a new color; i.e add a new dummy attribute to the nodes of the complement.

This assures that members of any collusion are missing at least one attribute needed to access
objects that are not in the union of objects that each member can legitimately access. This
coloring has no e¤ect on the access patterns of users not in the collusion, since when a user gets a
new attribute (color) all the nodes accessible to her, which are not in the collusion, also get that
new attribute. Other nodes may get that attribute too, but if they were not accessible beforehand
then they are still not accessible.

14 In a system that uses both ABE in some compartments and PE in other compartments, we have to include in m
only the number of compartments that use PE.
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4.2.2 Key Computation

Here we assume that the owner already added the dummy attributes as described above. Let
G be a multiplicative cyclic group of prime order p, and let � 2 G be a public generator of
G: Let x; y; y1; :::yk 2 Zp be secret keys. For each poset node the owner establishes a node
symmetric key that is computable by any user that has the secret keys of the subset of attributes
corresponding to that node. Let the owner�s secret key be x 2 Zp; and the secret key of attribute
i; be yi 2 Zp; i = 1; 2; ::k: The owner�s public key is �x 2 G, and the public key of attribute i
is �yi 2 G. The owner computes the secret symmetric key for the node as

w = (
Qk
i=1�

yi)x 2 G (4)

and a user that has all the secret keys of that node computes the same value using

w = (�x)
Pk
i=1 yi 2 G (5)

By the claim in the next section, a user that misses even one of the secret attribute keys is cut
out, and cannot compute w; assuming the intractability of CDH as shown below. From equation
(5) the reader can see that the user�s complexity is only slightly higher than that of one DH
computation. The owner�s computation (equation 4) is slightly higher, but still much faster than
ABE. We use w to symmetrically encrypt the HKD key of the node, creating c1: The rest of the
cryptograms of the node (c2; c3; c4) (section 2.3) are not a¤ected by this change. We can further
improve the e¢ ciency of PE using a twist on the standard ECIES15. For lack of space we defer the
details to the full version.

4.3 Security of Policy Encryption

The security of PE is based on a variant of the Di¢ e-Hellman problem. We use CDH and ADH to
denote the classic Computational DH problem and the new Aggregate DH problem, resp.

Problem CDH: Let x; y 2 Zp; and a; b; u 2 G, where a = �x; b = �y: Given a; b; Find
u = �xy 2 G:

Problem ADH: Let c = �x; yi 2 Zp; �yi 2 G; i = 1; 2; ::k; Given c, �yi ; i = 1; 2; ::k; and

all the yi except for yj ; for some 1 � j � k: Find w = �x
Pk
i=1 yi 2 G:

Problem CDH is a special case of ADH with yi = 0 for all 1 � i � k; i 6= j; thus in the worst
case ADH is at least as hard as CDH, which is well established (since 1976). But Discrete Log
problems are self reducible, hence as hard on the average as on the worst case. Thus it seems safe
to use a cryptosystem based on ADH with large enough security parameter.

From the coloring method (sec. 4.2.1) we are assured that any collusion misses at least one
dummy attribute key when trying to access an object not in the union of their permissible objects.
Hence the collusion faces the ADH problem when trying to violate their permissible access patterns.

15Standards for E¢ cient Cryptography,SEC 1: Elliptic Curve Cryptography, Certicom Research, May 21, 2009,
Version 2.0.
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5 Consolidated Audit Trail

5.1 Background

The Consolidated Audit Trail (CAT)16 will be the world�s largest data repository of securities
transactions. It will ingest 58 billion records of quote, order and executions quote life-cycles for
equities and options on a daily basis with additional asset classes to be added in the future. It should
securely maintain data on more than 100 million customer accounts and associated unique customer
information. It will grow to an estimated 21 petabyte footprint within �ve years of operation. It will
maintain and support thousands of daily data and communication interfaces across the industry. It
will require approximately 2,000 �rms and 19 Self Regulatory Organizations to report data (CAT
Reporters). It will have about 3,000 users (�readers� from SEC, SRO, FINRA, EXCHANGES).
Naturally computationally e¢ cient security is mandatory. We illustrate how ACE can provide
e¢ cient cryptographically enforced high granular access control and secure communication to such
a vast system.

{{
A reader interested in CAT may �nd the following of interest: The o¢ cial CAT proposed

plan17; The SEC rule requiring CAT 18; The "Information for CAT Bidders" 19 in particular has
a nice section (4.9) which deals with the types of queries.

}}
The following are example CAT queries: (i) All transactions issued by trader x in time interval

T1: (ii) All transactions with ticker MSFT issued in time interval T1, where the seller is x and
the buyer is y. The system places limitations on what queries each player can issue, based on user
attributes and object access policies.

The owners decide object�s access policies. An individual �nancial transaction has components,
such as: Ticker symbol, time, ask price, o¤er price, trader, brokerage, seller, buyer,...The following
is a proposal for de�nitions of user attributes, and object access policies. On each component we
de�ne intervals. On non-numerical components intervals are lexicographic. The intervals are of
sizes � 1. An attribute is a component together with its interval, e.g. all the ticker symbols in
lexicographic interval R: In addition we allow �external�attributes, such as �manager at level h
in the SEC�.

5.2 Implementation

5.2.1 Attributes and intervals

Attributes An individual attribute is of the form (ci; di); where ci is the title of the attribute,
such as ticker, time, etc. and di is its interval, jdij � 1: An interval is de�ned by a pair of
values: di = [�

0
i; �i"]: In the case of non-numerical variables, such as ticker symbols, the interval

is lexicographic. Its size jdij = 1 if �i" = �0i: For example, when the interval of the ticker is of size
one the interval includes at most one particular ticker symbol, such as MSFT. Once we agree on
the meaning of each component, e.g. that c1 is always the ticker symbol, c2 is the time, etc. we

16A search for "Summary of the Consolidated Audit Trail, January 2015" would �nd it. The link itself was very
long and did not compile nicely into pdf.
17http://www.catnmsplan.com/web/groups/catnms/@catnms/documents/appsupportdocs/cat_nms_plan_12_23_15.pdf
18http://www.sec.gov/rules/�nal/2012/34-67457.pdf
19http://www.catnmsplan.com/process/p197697.pdf
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can denote a subset of attributes as a k�tuple using just the intervals: (d1; d2; :::dk): We adopt
this notation henceforth.

Intervals An interval can be represented in detail by all its components, each having interval of
size 1. For example, suppose that k = 2; d1 contains two elements, �1; �2 and d2 contains �ve
elements, �1; �2; :::�5. Let �+� denote a logical OR and ��� denote a logical AND. The elements
in d1 are connected using logical OR, d1 = (�1 + �2) and so do the elements contained in d2;
d2 = (�1+:::�5): The 2-tuple is equivalent to the expression d1 �d2 = (�1+�2)�(�1+:::�5). Written
in set theoretic terms: d1 = f�1; �2g and d2 = f�1; :::�5g: Suppose we have another interval
corresponding to the �rst item in the 2-tuple with d01 = f�1g . Then d01 � d1: We henceforth use
this set theoretic inclusion relation in this context. A poset node is of the form x = (d1; d2; :::dk):
To summarize, we use the following notations: For size 1 intervals inside bigger intervals small
Greek letters �; �: For general intervals of sizes � 1 : di: And for poset nodes the letters x; y:

An object access policy may look like: A(o) = d1 � d2+ d3 � d4 � d7+ d11: This expression is in
DNF, but additional internal layer exists inside each general interval, as explained above. We treat
each interval di and d0i as distinct attribute even if d

0
i � di:

5.2.2 The poset

De�nition 18 Poset (L,�) : For a given system the poset elements are all the k-tuples of intervals
of the form ! = (d1; :::dk) that are used to de�ne user roles or objects access policies such that for
every two nodes x = (d1; d2; ::::dk) and y = (d01; d

0
2; ::::d

0
k); y � x; if for all i = 1; 2; :::k; d0i � di:

The resulting poset (L;�) is di¤erent from (X;�): The hierarchy among nodes of (L;�) is
in�uenced by the hierarchy among the basic attributes. This is di¤erent from the partial order of
(X;�) which stems solely from subset inclusion relations among attributes, and where there is no
hierarchy among basic attributes.

A node of (L;�) is usable if it is used in some user role or in some object access policy. The
owner decides which nodes are usable when constructing (L;�):

Constructing (L;�): Start with the top node where every component has its maximal usable
interval. Below it put each of the usable nodes that di¤er from the father in just one element,
and in this element use a maximally usable interval which is strictly included in the corresponding
interval of the father. Proceed downwards iteratively. In the leaves all the intervals are of size 1.
The leaves correspond to the objects, as explained below in more detail.

Truncating (L;�): In order to make the system practical we may have to throw away a few
of the lowest layers20. This de�nes the granularity with which we can express policies and queries.
This is the reason that we may have overlaps among object policies.

As explained in section 30, HKD works on any poset. In particular it works on the poset
(L;�):

5.2.3 Objects

Objects are associated with subsets of attributes ! = (d1; :::dk); where for i = 1:::k; jdij = 1:
Each object�s access policy is represented by a subset of nodes of the poset. For example, let x; y;
20Didactically it is nice to keep the leaves and identify them with the protected objects, however, to keep in line

with general ACE (and to save a bit on complexity) we may exclude the leaves from the poset.
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([A,D],[0,4])

([A,B],[0,4]) ([C,D],[0,4])([A,D],[0,2]) ([A,D],[3,4])

([A,B],[0,2]) ([A,B],[3,4])([C,D],[0,2]) ([C,D],[3,4])

([A],[0]) ([A],[1]) ([A],[2]) ([B],[0]) ([B],[1]) ([B],[2])

… … … … … … … … … … … … … …

Figure 2: A partial description of the lattice (L,�) of the CAT example.

be nodes where x = (d1; d2; ::::dk) and y = (d01; d
0
2; ::::d

0
k): If the access policy is A = fx; yg It

means in DNF predicate terms A = (d1 � d2 � :::dm) + (d01 � d02 � :::d0m). Remember that each interval
di is of the form (�1 + �2 + :::) as explained above.

5.2.4 Access

In CP-ABE (hence in ACE) an object�s access policy is a subset of incomparable nodes of (L;�):
A user u having subset of attributes ! can access object o having access policy A=fx1; x2; :::xmg
i¤ there exists j; 1 � j � k; such that ! � xj in (L;�): Recall that here each xi is a k� tuple
of intervals of the form (d1; :::dk):

5.2.5 Example

Assume just two components: (ticker, time), where the ticker�s maximal lexicographic interval is
[A,D], and the time�s maximal interval is [0,4]. The top node of the poset (L,�) is ([A,D],[0,4]).
The leaves are (i; j), where i 2[A,D], and j 2[0,4]. We assume that the usable intervals are: Tickers
[A,D],[A,B], [C,D]; Time: [0,4],[0,2], [3,4]. Note that we truncated the poset by excluding one
layer above the leaves, see Figure 2. In this example, each leaf (=object) has just one ancestor,
and a possible object access policy could be that unique ancestor. However, if we truncate one
more layer then we get 2 ancestors for each object. For example, object ([A],[0]) has the 2 ancestors
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([A,D],[0,2]) and ([A,B],[0,4]). Now a policy is composed of 2 nodes, and overlaps among policies
exist. ACE takes advantage of those overlaps. For example, node ([A,B],[0,4]) is both in the
access policy of object (leaf) ([A],[0]) and of object ([B],[3]).

5.2.6 Auxiliary nodes

We can add auxiliary nodes such as �level h manager at SEC�and map them into subsets of nodes
of (L,�). Each such node gets an ABE and HKD keys as ordinary nodes. And HKD is used
as before to create cryptograms attached to the edges going from the auxiliary node into ordinary
nodes of (L,�). We do not see a reason for having edges from ordinary (L,�) nodes to auxiliary
nodes (the auxiliary nodes are shorthand for the subsets of ordinary nodes that represent them in
(L,�).

5.2.7 Users with multiple roles

A user that has multiple roles is associated with the corresponding multiple nodes of (L,�); and
gets a CP-ABE key to each of these nodes. A user having CP-ABE keys to 2 incomparable nodes
may or may not get the key to an ancestor of these nodes, de�ned by the union of attributes of
these two nodes. Such an ancestor may or may not exist. In unpruned (X,�) it exists. In (L,�)
it may not exist, since the union is replaced by a new attribute. For example, in Figure 2 a user
having the ABE keys to nodes ([A,B],[0,2]) and to ([C,D],[0,2]) is entitled to get the key to node
([A,D],[0,2]) but this in not automatic.

5.2.8 The player�s routines

The players�routines remain as before (see section 2.3.2), with the poset (L;�) replacing the poset
(X;�). CAT is a special case, where the objects themselves can be viewed as leaves in the poset
(L,�): The object is a descendent of each of the nodes in its access policy.

5.2.9 Queries:

A query in CAT is represented as a node Q 2 L: A user must have access to the node representing
query Q in order to invoke it. The user expects to receive all the objects which fall in all the
speci�ed intervals of Q: Namely, if the user can access Q then ACE returns all the objects whose
leaves are accessible in (L;�) from the node representing query Q. Formally a query must specify
all the k components, possibly some of them with maximal intervals. The meaning of a query
that does not specify all the components is that the unspeci�ed components are there and have
the maximal interval. In the example above suppose that a query is Q = ([A;D]; [0; 2]): Then
a response to this query includes all the leaves shown in Figure 2 plus all the leaves coming from
node ([C;D]; [0; 2]) (not shown).

Deterministic Encrypted search (=encrypted queries) leaks a lot of information, since it is very
di¢ cult to conceal the shape of (L,�) and still remain practical. Non-deterministic encrypted
search is too slow for practical usage. Thus we recommend to avoid query encryption. This is a
practical compromise.
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5.3 CAT complexity

We compare ACE for CAT over (L,�) to a modi�ed Crampton [7] (see terminology in 1) and
to [12]: These other systems need extra nodes in the poset; one for each object access policy (as
is done in [7] for poset (X,�)). ACE does not need those extra nodes.

The subset of all queries leading to an object de�ne its access policy. Its most compact
de�nition includes just an antichain comprised of the minimal incomparable elements of the subset.

The non-asymptotic analysis in section 2.3.3 covers ACE for CAT over (L,�) complexity as well
(although, as mentioned there, the upper bounds do not apply).

Also, when assessing the size of (L,�) the leaves can be dropped, since a leaf does not need
ABE and HKD keys. All it needs is a PL key. The leaves correspond to the objects, and are
helpful in explaining the system and its uniform presentation.

5.4 CAT security

This is covered in the general discussion in subsection 3.
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6 APPENDIX A: Symmetric Encryption

The following de�nitions of semantic security is taken from [18].
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De�nition 19 (Symmetric Encryption Scheme). A symmetric encryption scheme with a key-
length k, on messages of length l, consists of 2 algorithms E=(Esym� ; Dsym

� ) which depends on
the k-bit string �, the secret key: the encryption algorithm Esym� (m) outputs a ciphertext c
corresponding to the plaintext m 2 f0; 1gl in a deterministic way; the decryption algorithm
Dsym
� (c) gives back the plaintext m associated with the ciphertext c.

De�nition 20 (Semantic Security). A symmetric encryption scheme is said to be semantically
secure if no polynomial-time attacker can learn any bit of information about the plaintext from the
ciphertext, excepted the length. More formally, a symmetric encryption scheme is said (t; �)-IND
if for any adversary A = (A1;A2) with running time bounded by t, Adv(A; E) < �; where

Adv(A; E) = 2 � Pr
�2Rf0;1gk
b2Rf0;1g

[(m0;m1; s) A1(1k); c Esym� (mb) : A2(c; s) = b]� 1 (6)

in which the probability is also taken over the random coins of the adversary, and m0;m1 are
two identical-length plaintexts chosen by the adversary in the message-space f0; 1gl (there is
also an asymptotically unimportant factor 2 di¤erence between this de�nition and our standard
jPr[b0 = b]� 1

2 j):

7 Appendix B: Proof of Security for HKD

Notation 21 (C $ A) denotes a security game, where C is a challenger, and A is an attacker.
The challenger is always on the left side and the attacker is on the right side.

Theorem 10 Let E = (E;D) be EMCPA secure (Sec. 3.2.2). Then HKD built using E
(Def. 30) over any poset (X;�) is TSSM secure (Sec. 3.2.1).

Proof. We use a proof technique which is similar to Hybrid Argument ([20]). Let A be any
e¢ cient TSSM-attacker of HKD, CE be an E�Challenger in an EMCPA game, and B be an
EMCPA attacker of E and a TSSM challenger of A. We show a reduction from EMCPA of E to
TSSM of HKD built from E , proving that the existence of e¢ cient attacker A of HKD implies the
existence of e¢ cient attacker B of E that uses A as an oracle.
It is su¢ cient to prove that all the leaves of (X;�) are secure since if a non-leaf node is not secure
then all its descendents including leaves are not secure. We can always add dummy leaves to any
node, and if the system with dummy leaves is secure then so is the system without the dummy
leaves (by a trivial reduction). Let r 2 X denote the root of (X;�) (we can always complete
the poset to have a unique root even if it does not represent a usable role). W.l.g. we assume
that Xnr is not empty. A node of (X;�) that is already assigned an HKD key is called assigned
node. Node names are arranged in some linear order and serve as key selectors so that node s is
associated with HKD key h(s): The reduction consists of the following steps (a)! (h)

(a) A picks a leaf  2 Xnr to be attacked: Let u be the direct ancestor of  in (X;�):

(b) B acting as an attacker of E issues type (ii) EMCPA queries to CE to determine edge cryptograms
on each of the edges on all the paths leading to u. //The corresponding node keys are implicitly
assigned by CE .
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(c) B acting as an attacker of E issues type (i) EMCPA queries to CE using identical twin messages
(the query is of the form (s;m;m)21) for each unassigned descendent s0 of each node s that was
assigned in step (b). // B uses it to assign HKD key m to s0 and get the (s; s0) edge-cryptogram.
Note that by de�nition s0 does not dominate  in (X;�):

(d) B picks random node keys for all the yet unassigned nodes and computes all the remaining
edge cryptograms, except for neighborhood N(; :). // They are all descendents of nodes that
were assigned in step (c) above.

(e) A does phase-1 of a TSSM game. B knows the keys of those nodes from (c,d) above and can
expose them. // Every node that does not dominate  was assigned by B.

(f) A picks a challenge of equal length message pair (m0;m1) against leaf : B transfers (u;m0;m1)
to CE & Gets cb  E(h(u);mb): //This is a standard type (i) EMCPA query.

(g) A does phase-2 of a TSSM game, which is handled like Phase-1 above.

(h) A guesses a bit eb & sends it to B who passes it to CE as his guess in the EMCPA attack on E .
The bits eb and b are common to the above two games: (CE  ! B) and (B  ! A): Therefore
Pr[A returns eb = b in TSSM of HKD] = Pr[B returns eb = b in the EMCPA game of E ] (7)

implying
AdvTSSM (A;HKD) = AdvEMCPA[B; E ]: (8)

Therefore if for all e¢ cient B, AdvEMCPA[B; E ] is negligible then for all e¢ cientA, AdvTSSM (A;HKD)
is negligible.

8 Appendix C: Proof of Security of Parallel Connection of Simple
Block Ciphers

Lemma 12: Let F and G be semantically secure block ciphers (see Def. in Appendix A Sec. 6)
having the same message space. Then (F jj G) is semantically secure.

Proof. We use a Hybrid Argument22 ([20]). Let A be an e¢ cient attacker of (F jj G). And let
C(F jjG) denote a challenger in the following game:

Game (C(F jjG) $ A):
� C(F jjG) sets F and G using secret keys kf ; kg 2R K;
� A picks equal length messages m0;m1 2M and sends them to C(F jjG):
� C(F jjG) picks secret b 2R f0; 1g; and returns to A the pair ( cf;b; cg;b);
where cf;b  F (kf ;mb); cg;b  G(kg;mb):

21These are �trick�queries, where the value of the �guessed�bit is unimportant.
22http://cs.nyu.edu/courses/fall08/G22.3210-001/lect/lecture5.pdf
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� A outputs eb 2 f0; 1g, his guess of b.
Let p0 = Pr[A returns eb = 1 j b = 0] and p2 = Pr[A returns eb = 1 j b = 1] in the above game.

The advantage of attacker A in the above game is

Adv(A; (F jjG)) = jp2 � p0j (9)

System (F jjG) is semantically secure if for all e¢ cient attackers A, Adv(A; (F jjG)) is negligible.
In addition we consider a case where A is presented with a �hybrid�pair ( cf;1; cg;0): This event
is impossible for C(F jjG) but can happen in the hybrid experiments that we describe next. Let

p1 = Pr[A returns eb = 1 when presented with a �hybrid�pair ( cf;1; cg;0)]: Let BF denote an
attacker of F and a challenger of A. We denote these two simultaneous games as (CF $ BF $ A)
and de�ne them as follows:

Game (CF $ BF $ A) :
� CF sets F using secret key kf 2R K;
� BF sets G using kg 2R K;
� A picks equal length messages m0;m1 2M and sends them to BF who sends them to CF :
� CF picks secret b 2R f0; 1g; and returns to BF cf;b  F (kf ;mb):
� BF computes cg;0  G(kg;m0) and sends to A the pair ( cf;b; cg;0):
� A outputs eb 2 f0; 1g, his guess of b and BF transfers it to CF :

Likewise, let BG be an attacker of G and a challenger of A de�ned as follows:

Game (CG $ BG $ A) :
� CG sets G using secret key kg 2R K;
� A picks equal length messages m0;m1 2M and sends them to BG who sends them to CG:
� CG picks secret b 2R f0; 1g; and returns to BG cg;b  G(kg;mb):
� BG sets F using kf 2R K; computes cf;1  F (kf ;m1)
and sends to A the pair ( cf;1; cg;b):
� A outputs eb 2 f0; 1g, his guess of b and BG transfers it to CG:

The essence of the reduction is showing that an e¢ cient A that breaks (FjjG) with non negligible
probability can be used as an oracle to e¢ ciently break at least one of F or G with non-negligible
probability. Clearly BF and BG are e¢ cient. In the reduction we �ips a fair coin w 2 fF;Gg and
play game (Cw $ Bw$ A) as de�ned above. So with probability 1

2 we play (CG $ BG $ A) and
with probability 1

2 we play (CF $ BF $ A):
Recall the de�nitions of pi; i = 0; 1; 2: of game (C(F jjG) $ A). The values of eb and b of the two

simultaneous games within (CF $ BF $ A) are the same. Therefore in this game Pr[(BF returnseb = 1) � (CF chooses b = 0) � (w = F )] = p0: Let q0 = Pr[(BF returns eb = 1) � (CF chooses
b = 0)]: Then q0 �Pr[w = F ] = p0; hence q0 = 2 �p0: We de�ne and analyze qi; i = 1; 2; 3 likewise:
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q0 = Pr[(BF returns eb = 1) � (CF chooses b = 0)] = 2 � p0
q1 = Pr[(BF returns eb = 1) � (CF chooses b = 1)] = 2 � p1
q2 = Pr[(BG returns eb = 1) � (CG chooses b = 0)] = 2 � p1
q3 = Pr[(BG returns eb = 1) � (CG chooses b = 1)] = 2 � p2

(10)

Given that each of F and G is semantically secure Adv(BF ; F ) = jq1 � q0j = 2 � jp0 � p1j is
negligible and Adv(BG; G) = jq3�q2j = 2 � jp2�p1j is negligible. Let p1 = p0+�1; and p2 = p1+�2
where �1; �2 are negligible. Then p2 = p0 + �1 + �2: Adv(A; (F jj G)) = jp2 � p0j (Eq. 9).
Therefore Adv(A; (F jj G)) = j�1 + �2j is also negligible.

9 Appendix D: Monotone Access policies and their upper bound

We consider here w.l.g. Monotone Access Structures (aka monotone access policies). A MAS is a
collection of non-empty subsets of the set of attributes, such that for every element in the MAS all
its supersets are also elements of the MAS, implying that the whole set of attributes is an element
of every MAS. The following de�nition is due to Ito, Saito and Nishizaki ([10]). This appendix
is con�ned to poset (X;�):

De�nition 22 Let Att denote a set of binary attributes, and let X = 2Att. A Monotone Access
Structure is a collection S � 2Attn�; s.t. for A;B � 2Att; if A 2 S; and A � B then B 2 S:

An element of a MAS, � 2 A, is minimal, if there is no other element � 2 A s.t. � � �
(where inclusion is over the set of attributes Att): Every MAS A is completely de�ned by its minimal
elements. This description is an anti-chain in the poset (X;�): This anti-chain corresponds to a
minimized predicate P () in Disjunctive Normal Form, such that for every ! � Att; P (!) = True
i¤ ! 2 A.

For example, let Att = fx; y; zg; and let A = ffx; yg; fy; zg; fx; y; zgg: One can easily verify
that A includes every superset of each of its elements, and therefore A is a MAS. Like every MAS
it includes the full set of attributes, which in this case is Att = fx; y; zg: However some elements
of 2Att are missing, e.g. fx; zg =2 A. The corresponding DNF predicate P = xy+ yz+xyz can be
minimized into P = xy + yz: Now the clause xyz which corresponds to element fx; y; zg doesn�t
show. Yet, for every element ! � Att; P (!) = True i¤ ! 2 A.

10 APPENDIX E: Comparison to Crampton

10.1 A short survey of Crampton�s relevant de�nitions and results

We compare ACE to [7]. Let Att denote the set of attributes. A role r is isomorphic to a subset
of attributes, we view a role and the corresponding subset of attributes synonymously and write
r � Att: The set of roles is X: We use (X;�) to denote a poset were partial orders are dictated
by the natural subset inclusion of subsets of attributes. Directed edges represent these relations.
The sets U and O represent users and objects, resp. We next de�ne Role Based Access Control
(RBAC).
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De�nition 23 A core RBAC policy is represented by a function � : U [ O ! 2X : A user u 2 U
is authorized to access object o 2 O i¤ �(u) \ �(o) is not empty.

When �(u) = fr1; r2g Crampton denotes it as a conjunction r1 ^ r2; and when �(o) = fr1; r2g
he denotes it as a disjunction r1 _ r2: This re�ects a semantics that when �(u) = fr1; r2g user u
has both roles, and when an object o has �(o) = fr1; r2g it means that it is su¢ cient for users to
have at least one of the roles to access o: Let r = fr1; r2; :::rkg: Crampton uses the notation _r
to denote (r1 _ r2 _ ::: _ rk); and likewise ^r denotes (r1 ^ r2 ^ ::: ^ rk):

For every non-empty chain C � X; _C is the minimum element in C and ^C is the maximum
element in C: Therefore the most compact representation of the set of roles authorized for a
user and the set of roles authorized for a permission (�access policies�or �access structures�) are
antichains over X. W.l.g. we focus in this paper on Monotone Access Structures (MAS). The
following de�nition is due to Ito, Saito and Nishizaki ([10]).

De�nition 24 Let Att denote the set of attributes, and let X = 2Att. A Monotone Access Structure
(MAS) is a collection S � 2Att; s.t. for A;B � 2Att; if A 2 S; and A � B then B 2 S:

The notation (8b 2 B)(9a 2 A)[a � b] is the usual shorthand for �for all b in B there exists a
in A such that a � b:"

Lemma 25 Let AX denote the set of antichains in poset (X;�): For A;B 2 AX de�ne:
� A �1 B i¤ (8b 2 B)(9a 2 A)[a � b]; and
� A �2 B i¤ (8a 2 A)(9b 2 B)[a � b];
Then �1and �2de�ne partial orders on AX :

De�nition 26 Given a poset of roles (X;�) and a hierarchical RBAC policy � : U [ O ! AX ;
de�ne (Auth(X);v); the authorization poset induced by (X;�) and �; as follows:

�8x 2 X; x 2 Auth(X);
�A = �(u) for some A 2 AX ) ^A 2 AX ;
�B = �(o) for some B 2 AX ) _B 2 AX ;
�_A v _B i¤ A �1 B;
�^A v ^B i¤ A �2 B;
�_A v ^B i¤ (9x 2 X)[A �1 fxg AND fxg �2 B];
�It is never the case that ^A v _B:

We next de�ne Ciphertext Policy ABE (CP ABE).

De�nition 27 An instance of CP ABE is de�ned by a function  : U [O ! 22
Att
, where

-  (u); u 2 U; is equal to fAg for some A � Att;
-  (o); o 2 O; is equal to some monotone access structure S de�ned over Att.
- A user u is authorized for object o i¤  (u) 2  (o):

De�nition 28 An information �ow policy speci�es which �ows of information are authorized [14].
To specify such a policy, we de�ne:
�a partially ordered set (poset ) of security labels (L;�);
�a set of users U and a set of objects O;
�a security function � : U [O ! L, where �(x) denotes the security label of entity x.
A user u is authorized to read o if and only if �(u) � �(o).
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De�nition 29 Generic Cryptographic Enforcement of Information Flow Policies:
Given a set of security labels L and a function �:
1. associate a cryptographic key �(x) with each x 2 L,
2. encrypt every object o such that �(o) = x with �(x), and
3. for every user u such that �(u) = x, ensure that u can derive key �(y) i¤ y � x.

Then user u can decrypt any object o with security label y � x, but cannot decrypt any
other object. There are several generic techniques that can be used to realize such cryptographic
enforcement schemes for information �ow (called key assignment, key allocation, key distribution,
or key agreement schemes). In this paper, we focus on key assignment schemes that use iterative key
derivation (which is de�ned by the traversal of some path in an appropriate directed, acyclic graph,
in our case the Hasse-Diagram representing (L;�)). In such schemes, each user is given a single key
and the scheme administrator publishes additional information that enables the derivation of other
keys. We use the name Hierarchical Key Derivation (HKD) for such a scheme. We build HKD
around symmetric-key encryption function E = (E;D) de�ned over spaces (K;M; C); the key,
message and cryptogram spaces, resp. Let E(�;m) denotes the symmetric encryption of message
m with key �.

De�nition 30 (A concrete cryptographic enforcement of information �ow policy): Given a di-
rected graph G = (V;A) and a function � : U [O ! V , assign a key h(x) to each x 2 V , and for
each edge (x; y) 2 A include E(h(x); h(y)) in the public information.

A user u such that �(u) = x can derive the key for any y 2 V if there exists a directed path
from x to y in G. Clearly, such a scheme can be used to enforce an information �ow policy, where
G is the Hasse diagram [12] of (L;�).

Crampton showed how to implement RBAC using Cryptographic Enforcement of Information
Flow Policies, and how to use RBAC to implement CP ABE (hence use Cryptographic Enforcement
of Information Flow Policies to implement CP ABE). Implying that we can use symmetric key
cryptography to implement CP ABE. Crampton proved his claim in detail for CP ABE, however
the proof applies to KP ABE as well (Key Policy ABE; a detailed de�nition appears in sec. 2.2).
See a comment on pp. 201 (11) in [7]. In this paper when we write ABE we mean KP ABE.

None of these methods explains how users get their top keys. It could of course come from
a trusted Certi�cation Authority. However, when roles are equated with subsets of attributes,
ABE is the natural tool to deliver the top keys. This is especially true in the case of multiple
uncoordinated CAs. We consider a design where each user gets her top key using ABE and only
then proceeds down (Auth(X);v) using symmetric key functions.

The size of (Auth(X);v) is upper bounded by the Dedekind number of m = jAttj; which is
almost double exponential in m (see section 2.2.1), while the size of (X;�) is upper bounded by
a single exponential in m: Next we show that in fact it is su¢ cient to work with (X;�) and there
is no need to work with the much larger (Auth(X);v): The signi�cance of this point will become
apparent in section 2.2.2, where we explain how and why we run ABE and HKD over the same
poset of roles. For owners the total number of ABE encryption operations is upper bounded by
the sizes of those posets. For example for m = 8 the upper bound on the size of (Auth(X);v) is
already impractical, while the upper bound on the size of (X;�) is still very practical (272 Vs. 28;
resp. see section 2.2.1).
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10.2 Small Posets are Su¢ cient

Logically this sub-section does not belong under the title �basic,�however, it is easier to read right
after seeing Crampton�s de�nitions.

Our improved e¢ ciency compared with [7] relies on the following Lemma 31. As before, let
Att, denote the set of attributes. Roles correspond to subsets of attributes. Let the set of roles be
X � 2Att. Let AAtt denote the set of antichains over Att; and let  : U �O ! AAtt be a function
describing user roles and objects MAS�. In CP-ABE  (u) is a singleton in AAtt ( (u) � Att )
and  (o) can be a general antichain ( (o) 2 AAtt).

The poset (X;�) depicts role hierarchy, i.e. the usual subset (of attributes) inclusion relations.
A much larger poset where each MAS is associated with a node is (Auth;v), see Def. 26. It
includes the nodes of (X;�) as a subset and maintains their poset relations. In addition it
includes a node for each MAS that the system uses. In (Auth;v) a user u can access object o i¤
 (u) dominates  (o): In (X;�);  (o) is represented by a subset of nodes.

Lemma 31 For any user u and object o;  (u) dominates  (o) in
(Auth;v) i¤  (u) dominates at least one element of  (o) in poset (X;�):

Proof. From the de�nition of the notation �1inside Lemma 25, and De�nition 26, a singleton
element s in (Auth;v) dominates a node _r for r = fr1; r2; :::rkg (i.e. _r v s) i¤ it dominates
at least one element ri in (X;�) (i.e. (9i; 1 � i � k)[ri � s]):

This Lemma means that we can work with poset (X;�) instead of (Auth;v): The size of poset
(X;�) is upper bounded by a single exponential in m; the size of the attribute set, and the upper
bound on the size of (Auth;v) is almost double exponential in m (see Sec. 2.2.1).
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