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Abstract. In this article we focus on constructing an algorithm that automatizes
the generation ofLPN solving algorithms from the considered parameters. When
searching for an algorithm to solve anLPN instance, we make use of the existing
techniques and optimize their use. We formalize anLPN algorithm as a path in a
graphG and our algorithm is searching for the optimal paths in this graph. The
results bring improvements over the existing work by a factor from 28 to 210, i.e.
we improve the results of the covering code from ASIACRYPT’14. Furthermore,
we propose concrete practical codes and a method to find good codes.

1 Introduction

The Learning Parity with Noise (LPN) problem can be seen as a noisy system
of linear equations in the binary domain. More specifically,we have a secrets
and an adversary that has access to anLPN oracle which provides him tuples of
uniformly distributed binary vectorsvi and the inner product betweensandvi to
which some noise was added. The noise is represented by a Bernoulli variable
with a probabilityτ to be 1. The goal of the adversary is to recover the secrets.
TheLPN problem is a particular case of the well-known Learning withErrors
(LWE) [34] problem where instead of working inZ2 we extend the work to a
ring Zq.

The LPN problem is attractive as it is believed to be resistant to quantum
computers. Thus, it can be a good candidate for replacing thenumber-theoretic
problems such as factorization and discrete logarithm (which can be easily bro-
ken by a quantum algorithm). Also, given its structure it canbe implemented in
lightweight devices. TheLPN problem is used in the design of theHB-family
of authentication protocols [10,20,24,25,27,31] and several cryptosystems base
their security on its hardness [1,15,16,17,21,26].

Previous Work. LPN is believed to be hard. So far, there is no reduction from
hard lattice problems to certify the hardness (like in the case ofLWE). Thus, the
best way to assess its hardness is by trying to design and improve algorithms that
solve it. Over the years, theLPN problem was analyzed and there exist several
solving algorithms. The first algorithm to targetLPN is theBKW algorithm [6].
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This algorithm can be described as a Gaussian elimination onblocks of bits
(instead on single bits) where the secret is recovered bit bybit. Improvements
of it were presented in [19,29]. One idea that improves the algorithm is the use
of the fast Walsh-Hadamard transform as we can recover several bits of the se-
cret at once. In their work [29], Levieil and Fouque provide an analysis with the
level of security achieved by differentLPN instances and propose secure param-
eters. UsingBKW as a black-box, Lyubashevsky [30] presents anLPN solving
algorithm useful for the case when the number of queries is restricted to an ad-
versary. The best algorithm to solveLPN was presented at ASIACRYPT’14 [23]
and it introduces the use of the covering codes to improve theperformance. An
analysis on the existingLPN solving algorithms is presented in [7,8].

For the case when the secret is sparse, i.e. its Hamming weight is small, the
classical Gaussian elimination proves to give better results [7,8,9,11].

TheLPN algorithms consist of two parts: one in which the size of the secret
is reduced and one in which part of the secret is recovered. Once a part of the
secret is recovered, the queries are updated and the algorithm restarts to recover
the rest of the secret. When trying to recover a secrets of k bits, it is assumed
thatk can be written asa·b, for a,b∈N (i.e. secretscan be seen asa blocks of
b bits). Usually all the reduction steps reduce the size byb bits and the solving
algorithm recoversb bits. While the use of the same parameter, i.e.b, for all
the operations may be convenient for the implementation, wesearch for an al-
gorithm that may use different values for each reduction step. We discover that
small variations from the fixedb can bring important improvements in the time
complexity of the whole algorithm.

Our Contribution. In this work we firstanalyze the existingLPN algorithms
and study the operations that are used in order to reduce the size of the secret.
We adjust the expressions of the complexities of each step(as in some works
they were underestimated in the literature). For instance,the results from [23]
are displayed on the second column of Table 1. As discussed in[7,8] and in the
ASIACRYPT presentation, the authors of [23] used a too optimistic approxima-
tion for the bias introduced by their new reduction method, the covering codes.
Some complexity terms are further missing (as discussed in Section 2.2) or are
not in bit operations. Adjusting the computation with a correct bias for a con-
crete code and the data complexity to make their algorithm work, results in a
worse time complexity, illustrated on the third column of Table 1 (details for
this computation are provided as an additional material forthis paper).

Second, weimprove the theory behind the covering code reduction, show
the link with perfect and quasi-perfect codes and propose analgorithm to find
good codes(in [23], only a hypothetical code was assumed to be close to a
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(k,τ) [23] [23] corrected our results

(512,0.125)
279.9 (article)

279.7 (presentation)1
289.04

282.27
279.37

(532,0.125) 281.82 290.43 281.64

(592,0.125) 288.07 297.87 288.25

Table 1: Time complexity to solveLPN (in bit operations)

perfect code; the second column of Table 1 is based on this favorable code but
other columns use real codes that we built).

Third, we optimize the order and the parameters used by the operations
that reduce the size of the secret such that we minimize the time complexity re-
quired. Wedesign an algorithm that combines the reduction steps and finds the
optimal strategy to solveLPN. Weautomize the process of findingLPN solving
algorithms, i.e. given a randomLPN instance, our algorithm provides the de-
scription of the steps that optimize the time complexity. In our formalization we
call such algorithms ”optimal chains”. We perform a security analysis ofLPN
based on the results obtained by our algorithm and compare our results with the
existing ones. We discover that we improve the complexity compared with the
results from [7,8,29] and [23]. Applying our algorithm thatimproves the bias
from the covering code and optimizes the reduction steps, gives a much better
performance, illustrated on the fourth column of Table 1.
Preliminaries & Notations. Given a domainD, we denote byx

U←−D the fact
thatx is drawn uniformly at random fromD. By Berτ we denote the Bernoulli
distribution with parameterτ. By Berkτ we denote the binomial distribution with
parametersk andτ. Let 〈·, ·〉 denote the inner product,Z2 = {0,1} and⊕ denote
the bitwise XOR. The Hamming weight of a vectorv is denoted byHW(v).
Organization. In Section 2 we formally define theLPN problem and describe
the main tools used to solve it. We carefully analyze the complexity of each step
and show in footnote where it differs from the existing literature. Section 3 in-
troduces the bias computation for perfect and quasi-perfect codes. We provide
an algorithm to find good codes. The algorithm that searches the optimal strat-
egy to solveLPN is presented in Sections 4 and 5. We illustrate and compare
our results in Section 6 and conclude in Section 7. We put in additional material
details of our results: the complete list of the chains we obtain (for Table 3 and
Table 4), an example of complete solving algorithm, the random codes that we
use for the covering code reduction, and an analysis of the results from [23] to
obtain Table 1.

1 http://des.cse.nsysu.edu.tw/asiacrypt2014/doc/1-1_SolvingLPNUsingCoveringCodes.pdf

3

http://des.cse.nsysu.edu.tw/asiacrypt2014/doc/1-1_Solving LPN Using Covering Codes.pdf


2 LPN

2.1 LPN Definition

TheLPN problem can be seen as a noisy system of equations inZ2 where one is
asked to recover the unknown variables. Below, we present the formal definition.

Definition 1 (LPN oracle).Let s
U←−Z

k
2, let τ∈]0, 1

2[ be a constant noise param-
eter and letBerτ be the Bernoulli distribution with parameterτ. Denote by Ds,τ
the distribution defined as

{(v,c) | v U←− Z
k
2,c= 〈v,s〉⊕d,d← Berτ} ∈ Z

k+1
2 .

An LPN oracle OLPN
s,τ is an oracle which outputs independent random samples

according to Ds,τ.

Definition 2 (SearchLPN problem). Given access to anLPN oracle OLPN
s,τ ,

find the vector s. We denote byLPNk,τ theLPN instance where the secret has
size k and the noise parameter isτ. Let k′ ≤ k. We say that an algorithmM
(n, t,m,θ,k′)-solvesthe searchLPNk,τ problem if

Pr[M OLPN
s,τ (1k) = (s1 . . .sk′) | s U←− Z

k
2]≥ θ,

andM runs in time t, uses memory m and asks at most n queries from theLPN

oracle.

Remark that we consider here the problem of recovering only apart of the
secret. Throughout the literature this is how theLPN problem is formulated. The
reason for doing so is that the recovery of the firstk′ bits dominates the overall
complexity. Once we recover part of the secret, the new problem of recovering
a shorter secret ofk−k′ bits is easier.

TheLPN problem has a decisional form where one has to distinguish be-
tween random vectors of sizek+1 and the samples from theLPN oracle. In this
paper we are interested only in finding algorithms for the search version.

We defineδ = 1− 2τ. We call δ the bias of the error bitd. We haveδ =
E((−1)d), with E(·) the expected value. We denote the bias of the secret bits
by δs. As s is a uniformly distributed random vector, at the beginning we have
δs = 0.

2.2 Reduction and Solving Techniques

Depending on how many queries are given from theLPN oracle, theLPN
solving algorithms are split in 3 categories. With alinear number of queries,
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the best algorithms are exponential, i.e. withn = Θ(k) the secret is recov-
ered in 2Θ(k) time [32,36]. Given apolynomial number of queries n= k1+η,
with η > 0, one can solveLPN with a sub-exponential time complexity of

2O( k
log logk ) [30]. Whenτ = 1√

k
we can improve the result of [30] and have a com-

plexity of e
1
2

√
k(lnk)2+O(

√
k lnk) [9]. The complexity improves but remains in the

sub-exponential range with asub-exponential number of queries. For this cat-
egory, we have theBKW [6], LF1, LF2 [29], FMICM [19] and the covering
code algorithm [23]. All these algorithms solveLPN with a time complexity of

2O( k
logk ) and require 2O( k

logk ) queries. In the special case when the noise is sparse,
a simple Gaussian elimination can be used for the recovery ofthe secret [7,11].
LF2, covering code or the Gaussian elimination prove to be the best one, de-
pending on the noise level [7].

All these algorithms have a common structure: given anLPNk,τ instance
with a secrets, they reduce the originalLPN problem to a newLPN problem
where the secrets′ is of sizek′ ≤ k by applying severalreduction techniques.
Then, they recovers′ using asolving method. The queries are updated and the
process is repeated until the whole secrets is recovered. We present here the
list of reduction and solving techniques used in the existing LPN solving algo-
rithms. In the next section, we combine the reduction techniques such that we
find the optimal reduction phases for solving differentLPN instances.

We assume for all the reduction steps that we start withn queries, that the
size of the secret isk, the bias of the secret bits isδs and the bias of the noise bits
is δ. After applying a reduction step, we will end up withn′ queries, sizek′ and
biasesδ′ andδ′s. Note thatδs averages over all secrets although the algorithm
runs with one target secret. In our analysis we make the following heuristic
assumption:

Stochastic equivalence approximation: The average probability of suc-
cess of the solving algorithm over the distribution of the key is not af-
fected by considering the average bias.

We will see that complexities only depend onk, n, and the parameters of the
steps. Actually, only the probability of success is concerned with this heuristic.

We have the following reduction steps:

– sparse-secret changes the secret distribution. In the formal definition ofLPN,
we take the secrets to be a random row vector of sizek. When other re-
duction steps or the solving phase depends on the distribution of s, one
can transform anLPN instance with a randoms to a new one wheres
has the same distribution as the initial noise, i.e.s← Berkτ. The reduc-
tion performs the following steps: from then queries selectk of them:
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(vi1,ci1), . . . ,(vik ,cik) where the row vectorsvi j , with 1≤ j ≤ k, are linearly
independent. Construct the matrixM as M = [vT

i1 · · ·vT
ik] and rewrite thek

queries assM+ d′ = c′, whered′ = (di1, . . . ,dik). With the rest ofn− k
queries we do the following:

c′j = 〈v j(M
T)−1,c′〉⊕c j = 〈v j(M

T)−1,d′〉⊕d j = 〈v′j ,d′〉⊕d j

We haven−k new queries(v′j ,c
′
j) where the secret is nowd′. In [23], the au-

thors use an algorithm which is unappropriately called “thefour Russians al-

gorithm” [2]. This way, the complexity should be ofO
(

minχ∈N
(

kn′⌈ k
χ⌉+k3+kχ2χ

))

.1

Instead, we use the Bernstein algorithm [4]. Thus, we have:

sparse-secret : k′ = k; n′ = n−k; δ′ = δ; δ′s = δ
Complexity:O

(

n′k2

log2 k−log2 log2 k +k2
)

– partition-reduce(b) is used by theBKW algorithm. Recall that the queries
received from the oracle are of the form(v,〈v,s〉⊕d). In this reduction, the
v vectors are sorted in equivalence classes according to their values on a
block of b bits. Theseb positions are chosen randomly. Two queries in the
same equivalence class have the same values on theb positions. In each
equivalence class, we choose a representative vector and xor it with the rest
of the queries. This will give vectors with only 0 on this window of b bits.
Afterwards the representative vector is dropped. This operation reduces the
secret tok−b effective bits (sinceb bits of the secret are always xored with
zero). The new bias isδ2 as the new queries are xor of two initial ones and
the number of queries is reduced by 2b (as there are 2b equivalence classes).

partition-reduce(b) : k′ = k−b; n′ = n−2b; δ′ = δ2; δ′s = δs

Complexity:O(kn)

The next reduction,xor -reduce(b), is always better thanpartition-reduce(b).
Nevertheless, we keep this operation in our analysis for backward compat-
ibility with existing algorithms (e.g. to fill our Table 1 with the algorithms
from [23]).

– xor -reduce(b) was first used by theLF2 algorithm. Similar topartition-reduce,
the queries are grouped in equivalence classes according tothe values onb
random positions. In each equivalence class, we perform thexoring of every
pair of queries. The size of the secret is reduced byb bits and the new bias is
δ2. The expected new number of queries isE(∑i< j 1vi matchesvj on theb-bit block)=
n(n−1)

2b+1
2. Whenn ≈ 1+ 2b+1, the number of queries are maintained. For

n> 1+2b+1, the number of queries will increase.

1 but thek3+kχ2χ terms is missing in [23].

2 In [8], the number of queries was approximated to
n

2b

(

n
2b−1

)

2 which is less favourable.
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xor -reduce(b) : k′ = k−b; n′ = n(n−1)
2b+1 ; δ′ = δ2; δ′s = δs

Complexity:O(k ·max(n,n′))

– drop-reduce(b) is a reduction used only by theBKW algorithm. It consists in
dropping all the queries that are not 0 on a window ofb bits. Again, theseb
positions are chosen randomly. In average, we expect that half of the queries
are 0 on a given position. Forb bits, we expect to haven2b queries that are 0
on this window. The bias is unaffected and the secret is reduced byb bits.

drop-reduce(b) : k′ = k−b; n′ = n
2b ; δ′ = δ; δ′s = δs

Complexity:O(n(1+ 1
2 + . . .+ 1

2b−1 ))

The complexity ofn(1+ 1
2 + . . .+ 1

2b−1 ) = O(n) comes from the fact that we
don’t need to check all theb bits: once we find a 1 we don’t need to continue
and just drop the corresponding query.

– code-reduce(k,k′,params) is a method used by the covering code algorithm
presented in ASIACRYPT’14. In order to reduce the size of thesecret, one
uses a linear code[k,k′] (which is defined byparams) and approximates the
vi vectors to the nearest codewordgi . We assume that decoding is done in
linear time for the code considered. (For the considered codes, decoding is
indeed based on table look-ups.) The noisy inner product becomes:

〈vi ,s〉⊕di = 〈g′iG,s〉⊕ 〈vi −gi,s〉⊕di

= 〈g′i ,sGT〉⊕ 〈vi−gi,s〉⊕di

= 〈gi ,s
′〉⊕d′i ,

whereG is the generator matrix of the code,gi = g′iG, s′= sGT ∈{0,1}k′ and
d′i = 〈vi −gi,s〉⊕di . We denotebc= E((−1)〈vi−gi ,s〉) the bias of〈vi−gi,s〉.
We will see in Section 3 how to construct a[k,k′] linear code makingbc as
large as possible.
Here,bc averages the bias over the secret althoughs is fixed bysparse-secret .
It gives the correct average biasδ over the distribution of the key. The
Stochastic equivalence approximation justifies this analysis.
By this transform, no query is lost.

code-reduce(k,k′,params) : k′; n′ = n; δ′ = δ ·bc; δ′s depends onδs andG
Complexity:O(kn)

The wayδ′s is computed is a bit more complicated than for the other types
of reductions. However,δs only plays a role in thecode-reduce reduction, and
we will not consider algorithms that use more than onecode-reduce reduction.

It is easy to notice that with each reduction operation the number of queries
decreases or the bias is getting smaller. In general, for solving LPN, one tries to
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lose as few queries as possible while maintaining a large bias. We will study in
the next section what is a good combination of using these reductions.

After applying the reduction steps, we assume we are left with anLPNk′,δ′

instance where we haven′ queries. The two main solving techniques encoun-
tered in theLPN algorithms are:

– majority is used by theBKW algorithm. For this solving algorithm we have
queries of the form(1,si ⊕d j), wheresi is theith bit of the secret andd j ←
Ber(1−δ′)/2. For this, from then′ queries, we chose only those that have
Hamming weight 1. Given that the probability for a noise bit to be set on
1 is smaller than1

2, most of the queries will be(1,si). The majority of the
n′

2k′ queries decide what is the value ofsi . The number of queries needed to
make the correct guess is given by the Chernoff bounds. According to [7],

themajority needsn′ = 2ln
(

k′
θ

)

·δ′−22k′ queries in order to bound the failure

probability of guessing wrong any ofk′ bits by θ, with 0 < θ < 1. The
complexity ofmajority is O(n′). As the next solving method is always better
thanmajority , we do not detail this further.

– Walsh Hadamard Transform (WHT) is used by most of theLPN algorithms.
This method recovers a block of the secret by computing the fast Walsh
Hadamard transform on the functionf (x)=∑i 1vi=x(−1)〈vi ,s〉⊕di . The Walsh-
Hadamard transform is

f̂ (ν) = ∑
x
(−1)〈ν,x〉 f (x) = ∑

i

(−1)〈vi ,s+ν〉⊕di

Forν = s, we havef̂ (s) = ∑i(−1)di . We know that most of the noise bits are
set to 0. So,̂f (s) is large and we suppose it is the largest value in the table of

f̂ . Using again the Chernoff bounds, we need to haven′ = 8ln(2k′

θ )δ′−2 [7]
queries in order to bound the probability of guessing wrongly thek′-bit se-
cret by θ. We can improve further by applying directly the Central Limit

Theorem and obtain a heuristic boundϕ(−
√

n′
2δ′−2−1) ≤ 1− (1− θ)

1

2k′−1 ,

whereϕ(x) = 1
2 +

1
2erf(

x√
2
) anderf is the Gauss error function. We obtain

that

√
n′ ≥−

√

2δ′−2−1·ϕ−1
(

1− (1−θ)
1

2k′ −1

)

. (1)
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We can derive the approximation of Selçuk [35] thatn′ ≥ 4ln(2k′

θ )δ′−2. We
give the details of our results in Appendix A. Complexity of theWHT(k′)
is O(k′2k′ +k′n′) as we use the fast Walsh Hadamard Transform3 4.

WHT(k′);

Requires
√

n′ ≥−
√

2δ′−2−1·ϕ−1

(

1− (1−θ)
1

2k′ −1

)

Complexity:O(k′2k′ log2 n′+1
2 +k′n′)

Given the reduction and solving techniques, anLPNk,τ solving algorithm
runs like this: we start with ak-bit secret and withn queries from theLPN
oracle. We reduce the size of the secret by applying several reduction steps and
we end up withn′ queries where the secret has sizek′. We use one solving
method, e.g. theWHT, and recover thek′-bit secret with a probability of failure
bounded byθ. We choseθ = 1

3. We have recovered a part of the secret. To
fully recover the whole secret, we update the queries and start another chain to
recover more bits, and so on until the remainingk− k′ bits are found. For the
second part of the secret we will require for the failure probability to beθ2 and
for the ith part it will be θi . Thus, if we recover the whole secret ini iterations,
the total failure probability will be bounded byθ+θ2+ · · ·+θi . Given that we
takeθ = 1

3, we recover the whole secret with a success probability larger than
50%. Experience shows that the time complexity for the first iteration dominates
the total complexity.

As we can see in the formulas of each possible step, the computations of
k′, n′, and of the complexity do not depend on the secret weight. Furthermore,
the computation of biases is always linear. So, the correct average bias (over
the distribution of the key made by thesparse-secret transform) is computed.
Only the computation of the success probability is non-linear but the Stochastic
equivalence approximation is invoked to solve this issue. As is only matters in
WHT, we will see in Appendix A that the approximation is justified.

3 Bias of the Code Reduction

In this section we present how to compute the bias introducedby a code-reduce.
Recall that the reductioncode-reduce(k,k′) introduces a new noise:

〈vi ,s〉⊕di = 〈g′i ,s′〉⊕ 〈vi−gi,s〉⊕di ,

3 The second termk′n′ illustrates the cost of constructing the functionf . In cases wheren′ > 2k′

this is the dominant term and it should not be ignored. This was missing in [23,8]. For the
instanceLPN592,0.125 from [23] this makes a big difference ask′ = 64 andn′ = 269; the
complexity ofWHT with the second term is 275 vs 270 from [23]. Given that is must be
repeated 213 (as 35 bits of the secret are guessed), the cost ofWHT is 288.

4 Normally, the valueŝf (ν) have an order of magnitude of
√

n′ so we have1
2 log2n′ bits.
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wheregi = g′iG is the nearest codeword ofvi ands′ = sGT . Then the noisebc
can be computed by the following formula:

bc= E((−1)〈vi−gi ,s〉) = ∑
e∈{0,1}k

Pr[vi −gi = e]E((−1)〈e,s〉)

=
k

∑
w=0

∑
e∈{0,1}k,
HW(e)=w

Pr[vi −gi = e]δw
s = E

(

δHW(vi−gi)
s

)

for a δs-sparse secret. (We recall that thesparse-secret reduction step randomizes
the secret and that we make the Stochastic equivalence approximation.)

From this formula, we can see that the decoding algorithmvi → gi making
HW(vi−gi) minimal makesbc maximal. In this case, we obtain

bc= E
(

δd(vi ,C)
s

)

, (2)

whereC is the code andd(vi ,C) denotes the Hamming distance ofvi from C.
For a codeC, thecovering radiusis ρ = maxvd(v,C). Thepacking radiusis

the largest radiusR such that the balls of this radius centered on all codewords
are non-overlapping. So, the packing radius isR=

⌊

D−1
2

⌋

whereD is the min-
imal distance. We further haveρ ≥

⌊

D−1
2

⌋

. A perfect codeis characterized by
ρ =

⌊

D−1
2

⌋

. A quasi-perfect codeis characterized byρ =
⌊

D−1
2

⌋

+1.

Theorem 1. We consider a[k,k′,D] linear code C, where k is the length, k′ is
the dimension, and D is the minimal distance. For any integerr and any positive
biasδs, we have

bc≤ 2k′−k
r

∑
w=0

(

k
w

)

(δw
s −δr+1

s )+δr+1
s

wherebc is a function ofδs defined by (2). Equality for anyδs ∈]0,1[ implies
that C is perfect or quasi-perfect. In that case, we do have equality when taking
the packing radius r= R=

⌊

D−1
2

⌋

.

By taking r as the largest integer such that∑r
w=0

(

k
w

)

≤ 2k−k′ (which is the

packing radiusR=
⌊

D−1
2

⌋

for perfect and quasi-perfect codes), we can see that
if a perfect[k,k′] code exists, it makesbc maximal. Otherwise, if a quasi-perfect
[k,k′] code exists, it makesbc maximal.

Proof. Letdecode be an optimal deterministic decoding algorithm. The formula
gives us that

bc= 2−k ∑
g∈C

∑
v∈decode−1(g)

δHW(v−g)
s
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We definedecode−1
w (g) = {v∈ decode−1(g);HW(v−g) =w} anddecode−1

>r (g)
the union of alldecode−1

w (g) for w> r. For all r, we have

∑
v∈decode−1(g)

δHW(v−g)
s

=
r

∑
w=0

(

k
w

)

δw
s +

r

∑
w=0

(

#decode−1
w (g)−

(

k
w

))

δw
s + ∑

w>r
δw

s #decode−1
w (g)

≤
r

∑
w=0

(

k
w

)

δw
s +

r

∑
w=0

(

#decode−1
w (g)−

(

k
w

))

δw
s +δr+1

s #decode−1
>r (g)

≤
r

∑
w=0

(

k
w

)

δw
s +δr+1

s

(

#decode−1(g)−
r

∑
w=0

(

k
w

)

)

where we usedδw
s ≤ δr+1

s for w > r, #decode−1
w (g) ≤

(

k
w

)

andδw
s ≥ δr+1

s for

w≤ r. We further have equality if and only if the ball centered ong of radius
r is included indecode−1(g) and the ball of radiusr +1 containsdecode−1(g).
By summing over allg∈C, we obtain the result.

So, the equality case implies that the packing radius is at least r and the
covering radius is at mostr + 1. Hence, the code is perfect or quasi-perfect.
Conversely, if the code is perfect or quasi-perfect andr is the packing radius,
we do have equality. ⊓⊔

So, for quasi-perfect codes, we can compute

bc= 2k′−k
R

∑
w=0

(

k
w

)

(δw
s −δR+1

s )+δR+1
s (3)

with R=
⌊

D−1
2

⌋

. For perfect codes, the formula simplifies to

bc= 2k′−k
R

∑
w=0

(

k
w

)

δw
s (4)

3.1 Bias of a Repetition Code

Given a[k,1] repetition code, the optimal decoding algorithm is the majority
decoding. We haveD = k, k′ = 1, R=

⌊

k−1
2

⌋

. Fork odd, the code is perfect so
ρ = R. Fork even, the code is quasi-perfect soρ = R+1. Using (3) we obtain

bc=















∑
k−1

2
w=0

1
2k−1

(k
w

)

δw
s if k is odd

∑
k
2−1
w=0

1
2k−1

(k
w

)

δw
s +

1
2k

( k
k/2

)

δ
k
2
s if k is even

We give below the biases obtained for some[k,1] repetition codes.
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[k,1] bias

[2,1] 1
2δs+

1
2

[3,1] 3
4δs+

1
4

[4,1] 3
8δ2

s +
1
2δs+

1
8

[5,1] 5
8δ2

s +
5
16δs+

1
16

[6,1] 5
16δ3

s +
15
32δ2

s +
3
16δs+

1
32

[7,1] 35
64δ3

s +
21
64δ2

s +
7
64δs+

1
64

[8,1] 35
128δ4

s +
7
16δ3

s +
7
32δ2

s +
1
16δs+

1
128

[9,1] 63
128δ4

s +
21
64δ3

s +
9
64δ2

s +
9

256δs+
1

256
[10,1] 63

256δ5
s +

105
256δ4

s +
15
64δ3

s+
45
512δ2

s +
5

256δs+
1

512

3.2 Bias of a Perfect Code

In [23], the authors assume a perfect code. In this case,∑R
w=0

(k
w

)

= 2k−k′ and we
can use (4) to computebc. There are not so many binary linear codes which are
perfect. Except the repetition codes with odd length, the only ones are the trivial
codes[k,k,1] with R= ρ = 0 andbc= 1, the Hamming codes[2ℓ−1,2ℓ− ℓ−
1,3] for ℓ≥ 2 with R= ρ = 1, and the Golay code[23,12,7] with R= ρ = 3.

For the Hamming codes, we have

bc= 2−ℓ
1

∑
w=0

(

2ℓ−1
w

)

δw
s =

1+(2ℓ−1)δs

2ℓ

For the Golay code, we obtain

bc= 2−11
3

∑
w=0

(

23
w

)

δw
s =

1+23δs+253δ2
s +1771δ3

s

211

Formulae (2), (4), (3) forbc are new. In [23,8],bc was approximated to

bc(w) = 1−2
1

S(k,ρ) ∑
i≤ρ,

i odd

(

w
i

)

S(k−w,ρ− i),

wherew is the Hamming weight of thek-bit secret andS(k′,ρ) is the num-
ber of k′-bit strings with weight at mostρ. Intuitively the formula counts the
number ofvi −gi that produce an odd number of xor with the 1’s of the secret.
(See [7,8,23].) So, [23] assumes a fixed value for the weightw of the secret and
considers the probability thatw is not correct. Ifw is lower, the actual bias is
larger but ifw is larger, the computed bias is overestimated and the algorithm
fails. The advantage of our formula is that we average overw and do not have a
probability of failure.
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For instance, with a[3,1] repetition code, the correct bias isbc = 3
4δs+

1
4

following our formula. With a fixedw, it is of bc(w) = 1− w
2 following [7,23].

The probability ofw to be correct is
(k

w

)

τw(1− τ)k−w. We take the example of
τ = 1

3 so thatδs =
1
3 andδ = 1

2.

w bc(w) Pr[w] Pr[w],τ = 1
3

0 1 (1− τ)3 0.2963
1 1

2 3τ(1− τ)2 0.4444
2 0 3τ2(1− τ) 0.2222
3 −1

2 τ3 0.0370

So, by takingw= 1, we haveδ = bc(w) but the probability of failure is about
1
4. Our approach uses the same bias with no failure.

To solveLPN512,0.125, [23] uses a[124,64] perfect code withρ = 14 (note
that such a code does not exist) andw= 16. Our formula givesbc≈ 2−5.74 but
bc(w) ≈ 2−7.05 and Pr[≤ w] ≈ 0.6189. So, our analysis predicts better perfor-
mances (a larger bias on average instead of a smaller one in 62% of cases and
a failure otherwise). In the presentation of [23] at the conference, the authors
rather used a[180,60] perfect code (ρ = 33) with w such thatbc(w) ≥ εset =
2−14.78. We havebc(w)≈ 2−13.56 and Pr[success]≈ 0.17.

3.3 Using Quasi-Perfect Codes

If C′ is a[k−1,k′,D] perfect code withk′> 1 and if there exists some codewords
of odd length, we can extendC′, i.e., add a parity bit and obtain a[k,k′] code
C. Clearly, the packing radius ofC is at least

⌊

D−1
2

⌋

and the covering radius is
at most

⌊

D−1
2

⌋

+ 1. For k′ > 1, there is up to one possible length for making
a perfect code of dimensionk′. So,C is a quasi-perfect, its packing radius is
⌊

D−1
2

⌋

and its covering radius is
⌊

D−1
2

⌋

+1.
If C′ is a [k+ 1,k′,D] perfect code withk′ > 1, we can puncture it, i.e.,

remove one coordinate by removing one column from the generating matrix.
If we chose to remove a column which does not modify the rankk′, we obtain
a [k,k′] codeC. Clearly, the packing radius ofC is at least

⌊

D−1
2

⌋

− 1 and the
covering radius is at most

⌊

D−1
2

⌋

. Fork′ > 1, there is up to one possible length
for making a perfect code of dimensionk′. So,C is a quasi-perfect, its packing
radius is

⌊

D−1
2

⌋

−1 and its covering radius is
⌊

D−1
2

⌋

.
Hence, we can use extended Hamming codes[2ℓ,2ℓ− ℓ− 1] with packing

radius 1 forℓ ≥ 3, punctured Hamming codes[2ℓ−2,2ℓ− ℓ−1] with packing
radius 0 forℓ≥ 3, the extended Golay code[24,12] with packing radius 3, and
the punctured Golay code[22,12] with packing radius 2,

There actually exist many constructions for quasi-perfectlinear binary codes.
We list a few in Table 2. We took codes listed in [14, Table 1], [33, p. 122], [22,
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p. 47], [18, Table 1], [13, p. 313], and [3, Table I]. In Table 2, k, k′, D, andR
denote the length, the dimension, the minimal distance, andthe packing radius,
respectively.

Table 2: Perfect and Quasi-Perfect Binary Linear Codes

name type [k,k′ ,D] R comment ref.
P [k,k,1], k≥ 1 0 [∗, . . . ,∗]

r P [k,1,k], k odd k−1
2 repetition code

H P [2ℓ−1,2ℓ− ℓ−1,3], ℓ≥ 3, 1 Hamming code
G P [23,12,7] 3 Golay code

QP [k,k−1,1] 0 [∗, . . . ,∗,0]
r QP [k,1,k], k even k

2 −1 repetition code
eG QP [24,12,8] 3 extended Golay code
pG QP [22,12,6] 2 punctured Golay code
eH QP [2ℓ,2ℓ− ℓ−1,4], ℓ≥ 2 1 extended Hamming code

QP [2ℓ−1,2ℓ− ℓ,1], ℓ≥ 2, 0 Hamming with an extra word
pH QP [2ℓ−2,2ℓ− ℓ−1,2], ℓ≥ 2 0 punctured Hamming
HxH QP [2∗ (2ℓ−1),2∗ (2ℓ− ℓ−1)], ℓ≥ 2 1 Hamming× Hamming [14]
upack QP [2ℓ−2,2ℓ− ℓ−2,3], ℓ≥ 3 1 uniformly packed [14]
2BCH QP [2ℓ−1,(2ℓ−1)− (2∗ ℓ)], ℓ≥ 3 2 2-e.c. BCH [14]
Z QP [2ℓ+1,(2ℓ+1)− (2∗ ℓ)], ℓ > 3 even 2 Zetterberg [14]
rGop QP [2ℓ−2,(2ℓ−2)− (2∗ ℓ)], ℓ > 3 even 2 red. Goppa [14]
iGop QP [2ℓ,(2ℓ)− (2∗ ℓ)], ℓ > 2 odd 2 irred. Goppa [14]
Mclas QP [2ℓ−1,(2ℓ−1)−2∗ ℓ], ℓ > 2 odd 2 Mclas [14]
S QP [5,2], [9,5], [10,5], [11,6] 1 Slepian [33]
S QP [11,4] 2 Slepian [33]
FP QP [15,9], [21,14], [22,15], [23,16] 1 Fontaine-Peterson [33]
W QP [19,10], [20,11], [20,13], [23,14] 2 Wagner [33]
P QP [21,12] 2 Prange [33]
FP QP [25,12] 3 Fontaine-Peterson [33]
W QP [25,15], [26,16], [27,17], [28,18], [29,19],

[30,20], [31,20]
1 Wagner [33]

GS QP [13,7], [19,12] 1 GS85 [22]
BBD QP [7,3,3], [9,4,4], [10,6,3], [11,7,3], [12,7,3],

[12,8,3], [13,8,3], [13,9,3], [14,9,3],
[15,10,3], [16,10,3], [17,11,4], [17,12,3],
[18,12,4], [18,13,3], [19,13,3], [19,14,3],
[20,14,4]

1 BBD08 [3]

BBD QP [22,13,5] 2 BBD08 [3]

3.4 Finding the Optimal Concatenated Code

The linear code[k,k′] is typically instantiated by a concatenation of elementary
codes for practical purposes. They are indeed easy to implement and to decode.
For [k,k′] we have the concatenation of[k1,k′1], . . . , [km,k′m] codes, wherek1 +
· · ·+ km = k andk′1+ · · ·+ k′m = k′. Let vi j ,gi j ,s′j denote thejth part ofvi ,gi ,s′
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respectively, corresponding to the concatenated[k j ,k′j ] code. The bias of〈vi j −
gi j ,sj〉 in the code[k j ,k′j ] is denoted bybc j . As 〈vi − gi ,s〉 is the xor of all
〈vi j − gi j ,sj〉, the total bias introduced by this operation is computed asbc =

∏k′
j=1bc j and the combinationparams = ([k1,k′1], . . . , [km,k′m]) is chosen such

that it gives the highest bias.
The way theseparams are computed is the following: we start by computing

the biases for all elementary codes. I.e. we compute the biases for all codes
from Table 2. We may add random codes that we found interesting.5 Next, for
each[i, j] code we check to see if there is a combination of[i−n, j−m],[n,m]
codes that give a better bias, where[n,m] is either a repetition code, a Golay
code or a Hamming code. We illustrate below the algorithm to find the optimal
concatenated code.

Algorithm 1 Finding the optimalparams and bias
1: Input : k
2: Output : table for the optimal bias for each[i, j ] code, 1≤ j < i ≤ k

3: initialize allbias(i, j) = 0
4: initializebias(1,1) = 1
5: initialize the bias for all elementary codes
6: for all j : 2 tok do
7: for all i : j +1 tok do
8: for all elementary code[n,m] do
9: if |bias(i−n, j−m) ·bias(n,m)|> |bias(i, j)| then

10: bias(i, j) = bias(i−n, j−m) ·bias(n,m)
11: params(i, j) = params(i−n, j−m)∪params(n,m)

UsingO(k) elementary codes, this procedure takesO(k3) time and we can
store allparams for any combination[i, j], 1≤ j < i ≤ k with O(k2) memory.

4 The Graph of Reduction Steps

Having in mind the reduction methods described in Section 2,we formalize an
LPN solving algorithm in terms of finding the best chain in a graph. The intu-
ition is the following: in anLPN solving algorithm we can see each reduction
step as an edge from a(k, log2 n) instance to a new instance(k′, log2 n′) where
the secret is smaller,k′ ≤ k, we have more or less number of queries and the
noise has a different bias. For example, apartition-reduce(b) reduction turns an
(k, log2n) instance with biasδ into (k′, log2 n′) with biasδ′ wherek′ = k− b,

5 The random codes that we used are provided as an additional material to this paper.
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n′ = n−2b andδ′ = δ2. By this representation, the reduction phase represents
a chain in which each edge is a reduction type moving fromLPN with parame-
ters(k,n) to LPN with parameters(k′,n′) and that ends with an instance(ki ,ni)
used to recover theki-bit length secret by a solving method. We choose the fast
Walsh-Hadamard transform as the solving method as it was proven to be more
efficient than the majority phase used by theBKW algorithm.

As described before, we formalize the reduction phase as a chain of re-
duction steps in a graphG = (V,E). The set of verticesV is composed of
V = {1, . . . ,k} × L whereL is a set of real numbers. For instance, we could
takeL = R or L = N. For efficiency reasons, we could even takeL = {0, . . . ,η}
for some boundη. Every vertex saves the size of the secret and the logarith-
mic number of queries; i.e. a vertex(k, log2n) means that we are in an instance
where the size of the secret isk and the number of queries available isn. An edge
from one vertex to another is given by a reduction step. An edge from(k, log2n)
to a (k′, log2 n′) has a label indicating the type of reduction and its parameters
(e.g.partition-reduce(k−k′) or code-reduce(k,k′,params)). This reduction defines
someα andβ coefficients such that the biasδ′ after reduction is obtained from
the biasδ before the reduction by

log2δ′2 = α log2δ2+β

whereα,β ∈R.
We denote by⌈λ⌉L the smallest element ofL which is at least equal toλ

and by⌊λ⌋L the largest element ofL which is not larger thanλ. In general,
we could use a rounding functionRoundL(λ) such thatRoundL(λ) is in L and
approximatesλ.

The reduction steps described in Subsection 2.2 can be formalized as fol-
lows:

– sparse-secret : (k, log2 n)→ (k,RoundL(log2(n−k))) andα = 0,β = 0
– partition-reduce(b): (k, log2 n)→ (k−b,RoundL(log2(n−2b)) andα= 2,β=

0
– xor -reduce(b): (k, log2 n)→ (k−b,RoundL(log2

(

n(n−1)
2b+1

)

)) andα= 2,β = 0

– drop-reduce(b): (k, log2 n)→ (k−b,RoundL(log2 (
n
2b ))) andα = 1,β = 0

– code-reduce(k,k′,params): (k, log2n)→ (k′, log2n) andα = 1,β = log2bc
2,

wherebc is the bias introduced by the covering code reduction using a[k,k′]
linear code defined byparams.

Below, we give the formal definition of a reduction chain.

Definition 3 (Reduction chain).LetR = {sparse-secret ,partition-reduce(b), xor -reduce(b),
drop-reduce(b), code-reduce(k,k′,params)} for k,k′,b∈ N . A reduction chain is
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a sequence

(k0, log2 n0)
e1−→ (k1, log2n1)

e2−→ . . .
ei−→ (ki , log2 ni),

where the change(k j−1, log2 n j−1)→ (k j , log2n j) is performed by one reduction
from R , for all 0< j ≤ i.

A chain issimple if it is accepted by the automaton from Figure 1.

initial state 1 2

3

4

accepting state

accepting state

accepting state

accepting state

WHT

WHT

WHT

WHT

drop-reduce partition-reduce
xor -reduce

partition-reduce
xor -reduce

sparse-secret

xor -reduce
partition-reduce

drop-reduce

code-reduce

xor -reduce
partition-reduce

drop-reduce

Fig. 1: Automaton accepting simple chains

Definition 4 (Exact chain). An exact chain is a simple reduction chain for
L = R. I.e.RoundL is the identity function.

A chain which is not exact is calledrounded.
Remark:Restrictions for simple chains are modelled by the automaton in

Figure 1. We restrict to simple chains as they are easier to analyze. Indeed,
sparse-secret is only used to raiseδs to makecode-reduce more effective. And, so
far, it is hard to analyze sequences ofcode-reduce steps as the first one may de-
stroy the uniform and highδs for the next ones. This is why we exclude multiple
code-reduce reductions in a simple chain. So, we use up to onesparse-secret reduc-
tion, always one beforecode-reduce. And sparse-secret occurs beforeδ decreases.
For convenience, we will add a state of the automaton to the vertex inV.

For solvingLPN we are interested in those chains that end with a vertex
(ki , log2ni) which allows to call aWHT solving algorithm to recover theki-bit
secret. We call these chains valid chains and we define them below.
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Definition 5 (Valid reduction chain). Let

(k0, log2n0)
e1−→ (k1, log2n1)

e2−→ . . .
ei−→ (ki , log2ni)

be a reduction chain. Letδi = 1− 2τi be the bias corresponding to the edge
(ki , log2ni). We say the chain is aθ-valid reduction chain if ni satisfies (1) for
solving anLPNki ,τi instance.

Thetime complexityof a chain(e1, . . . ,ei) is simply the sum of the complex-
ity of each reduction stepe1,e2, . . . ,ei andWHT. We further define themax-
complexity of a chain which is the maximum of the complexity of each reduc-
tion step andWHT. The max-complexity is a good approximation of the com-
plexity. Our goal is to find a chain with optimal complexity. What we achieve is
that,given a set L, we find aroundedchain with optimalmax-complexityup to
some given precision.

4.1 Towards Finding the BestLPN Reduction Chain

In this section we present the algorithm that helps finding the optimal valid
chains for solvingLPN. As aforementioned, we try to find the valid chain with
optimal max-complexity for solving anLPNk,τ instance in our graphG.

The first step of the algorithm is to construct the directed graphG= (V,E).
We take the set of verticesV = {1, . . . ,k}× L×{1,2,3,4} which indicate the
size of the secret, the logarithmic number of queries and thestate in the automa-
ton in Figure 1. Each edgee∈ E represents a reduction step and is labelled with

the following information:(k1, log2 n1,st)
α,β,t→ (k2, log2n2,st′) wheret is one of

the reduction steps andα andβ save information about how the bias is affected
by this reduction step.

The graph hasO(k · |L|) vertices and each vertex hasO(k) edges. So, the
size of the graph isO(k2 · |L|).

Thus, we construct the graphG with all possible reduction steps and from
it we try to see what is the optimal simple rounded chain in terms of max-
complexity. We present in Algorithm 2 the procedure to construct the graphG
that contains all possible reduction steps with a time complexity bounded by 2η

(As explained below, Algorithm 2 is not really used).
The procedure of finding the optimal valid chain is illustrated in Algo-

rithm 3. The procedure of finding a chain with upper bounded max-complexity
is illustrated in Algorithm 4.

Algorithm 4 receives as input the parametersk andτ for theLPN instance,
the parameterθ which represents the bound on the failure probability in re-
covering the secret. Parameterη represents an upper bound for the logarithmic
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Algorithm 2 Construction of graphG
1: Input : k,τ,L,η
2: Output : graphG= (V,E) containing all the reduction steps that have a complexity smaller

than 2η

3: V = {1, . . . ,k}×L×{1, . . . ,4}
4: E is the set of all((i,η1,st),( j ,η2,st′)) labelled by(α,β, t) such that there is ast

t−→ st′

transition in the automaton and for
5: t = sparse-secret :
6: for all η : 1 such thatlcomp≤ η do set the edge
7: where i = k, ( j ,η2) = (i,RoundL(log2(2

η1 − i))), α = 1, β = 0, lcomp =

log2(
(2η1−i)i2

log2i−log2log2i + i2)

8: t = partition-reduce :
9: for all (i,η1,b) such thatb≥ 1 andlcomp≤ η do set the edge

10: where( j ,η2) = (i−b,RoundL(log2(η1−2b))), α = 2, β = 0, lcomp= log2 i+η1

11: t = xor -reduce :
12: for all (i,η1,b) such thatb≥ 1 andlcomp ≤ η do set the edge
13: where( j ,η2) = (i−b,RoundL(η1−1+ log2(

2η1

2b −1))), α = 2, β = 0, lcomp= log2 i+
max(η1,η2)

14: t = drop-reduce :
15: for all (i,η1,b) such thatb≥ 1 andlcomp ≤ η do set the edge
16: where( j ,η2) = (i−b,RoundL(η1−b)), α = 1, β = 0, lcomp= log2 b+η1

17: t = code-reduce :
18: for all (i,η1, j) such thatj < i andlcomp≤ η do set the edge
19: whereη2 = η1, α = 1, β = log2bc

2, lcomp= log2 i+η1, bc is the bias from the optimal
[i, j ] code

complexity of each reduction step. Givenη, we build the graphG which con-
tains all possible reductions with time complexity smallerthan 2η (Step 4). Note
that we don’t really call Algorithm 2. Indeed, we don’t need to store the edges of
the graph. We rather keep a way to enumerate all edges going toa given vertex
(in Step 11) by using the rules described in Algorithm 2.

For each vertex, we iteratively define∆st andBestst, the best reduction step
to reach a vertex and the value of the corresponding error bias. The best reduc-
tion step is the one that maximizes the bias. We define these values iteratively
until we reach a vertex from which theWHT solving algorithm succeeds with
complexity bounded by 2η. Once we have reached this vertex, we construct the
chain by going backwards, following theBest pointers.

We easily prove what follows by induction.

Lemma 1. At the end of the iteration of Algorithm 4 for( j,η2,st′), ∆st′
j,η2

is the
maximum oflog2δ2, whereδ is the bias obtained by anRoundL-rounded simple
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Algorithm 3 Search for a rounded chain with optimal max-complexity
1: Input : k,τ,θ,precision
2: Output : a valid simple rounded chain in which rounding uses a given precision

3: setfound= bruteforce ⊲ found is the best found algorithm
4: setincrement= k
5: setη = k ⊲ 2η is a bound on the max-complexity
6: repeat
7: setincrement← 1

2 increment

8: defineL = {0,precision,2×precision, . . .}∩ [0,η− increment]
9: run(out,success) = Search(k,τ,θ,L,η− increment) with Algorithm 4

10: if success then
11: setfound= out

12: setη = η− increment

13: until increment≤ precision

14: outputfound

chain from a vertex of form(k,η1,0) to ( j,η2,st′) with max-complexity bounded
by 2η (∆st′

j,η2
=−∞ if there is no such chain).

Lemma 2. If there exists a simpleRoundL-rounded chain c ending on state
(k j ,η j ,stj) and max-complexity bounded by2η, there exists one c′ such that
∆sti

i,ηi
= log2δ2

i at each step.

Proof. Let c′′ be a simple chain ending on(k j ,η j ,stj) with ∆stj
jη j

= log2 δ2
j . Let

(k j−1,η j−1,stj−1) be the preceding vertex inc′′. We apply Lemma 2 on this
vertex by induction to obtain a chainc′′′. Since the complexity of the last edge
does not depend on the bias andα ≥ 0 in the last edge, we construct the chain
c′, by concatenatingc′′′ with the last edge ofc′′. ⊓⊔

Theorem 2. Algorithm 4 finds aθ-valid simpleRoundL-rounded chain forLPNk,τ
with max-complexity bounded by2η if there exists one.

Proof. We use Lemma 2 and the fact that increasingδ2 keeps constraint (1)
valid. ⊓⊔

If we usedL = R, Algorithm 4 would always find a valid simple chain with
bounded max-complexity when it exists. Instead, we use rounded chains and
hope that rounding still makes us find the optimal chain.

So, we build Algorithm 3. In this algorithm, we look for the minimal η for
which Algorithm 4 returns something by a divide and conquer algorithm. First,
we setη as being in the interval[0,k] where the solution forη = k corresponds
to a brute-force search. Then, we cut the interval in two pieces and see if the
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Algorithm 4 Search for a bestLPN reduction chain with max-complexity
bounded toη
1: Input : k,τ,θ,L,η
2: Output : a valid simple rounded chain with max-complexity bounded to η

3: δ = 1−2τ
4: Construct the graphG using Algorithm 2 with parametersk,τ,L,η
5: for all η1 ∈ L do
6: set∆0

k,η1
= log2 δ2, Best0k,η1

=⊥
7: set∆st

k,η1
=−∞, Bestst

k,η1
=⊥ ⊲ ∆st stores the best bias for a vertex(k,η1,st) in a chain,

andBestst is the edge ending to this vertex in this chain

8: for j : k downto 1do ⊲ Search for the optimal chain
9: for η2 ∈ L in decreasing orderdo

10: set∆st
j,η2

= 0,Bestst =⊥ for all st

11: foreach st’ and each edgee to ( j ,η2,st′)
12: set(i,η1,st) to the origin ofe andα andβ as defined bye
13: if α∆st

i,η1
+β≥ ∆st′

j,η2
then set∆st′

j,η2
= α∆st

i,η1
+β, Bestst = e

14: if η2 > 1−∆st′
j,η2

+2log2

(

−ϕ−1(1− (1−θ)
1

2 j−1 )
)

and j + log2 j ≤ η then

15: Construct the chainc ending byBestst′
j,η2

and output(c,true)

16: output(⊥, false)

lower interval has a solution. If it does, we iterate in this interval. Otherwise, we
iterate in the other interval. We stop once the amplitude of the interval is lower
than the requested precision. The complexity of Algorithm 3is of log2

k
precision

calls to Algorithm 4.

Theorem 3. Algorithm 3 finds aθ-valid simpleRoundL-rounded chain forLPNk,τ
with parameterprecision, with optimal rounded max-complexity, where the round-
ing function approximateslog2 up toprecision if there exists one.

Proof. Algorithm 3 is a divide-and-conquer algorithm to find the smallest η
such that Algorithm 4 finds a valid simpleRoundL-rounded chain of
max-complexity bounded by 2η. ⊓⊔

We can see that the complexity of Algorithm 4 is ofO
(

k2 · |L|
)

iterations
as vertices havek possible values for the secret length and|L| possible values
for the logarithmic number of equations. So, it is linear in the size of the graph.
Furthermore, each type of edge to a fixed vertex hasO(k) possible origins. The
memory complexity isO (k · |L|), mainly to store the∆k,η andBestk,η tables.
We also use Algorithm 1 which has a complexityO(k3) but we run it only once
during precomputation. Algorithm 3 sets|L| ∼ k

precision
. So, the complexity of

Algorithm 3 isO
(

k3+ k3

precision
× log k

precision

)

.
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5 Chains with a Guessing Step

In order to further improve our valid chain we introduce two new reduction
steps to our algorithm. As it is done in [23,5], we guess part of the bits of the
secret. More precisely, we assume thatb bits of the secret have a Hamming
weight smaller or equal tow. The influence on the whole algorithm is more
complicated: it requires to iterate theWHT step∑w

i=0

(w
i

)

times. The overall

complexity must further be divided by∑w
i=0

(w
i

)

(

1−δs
2

)i (
1+δs

2

)w−i
. Note that

this generalizedguess-secret step was used in [23].
We formalize this step as following:

– guess-secret(b,w) guesses thatb bits of the secret have a Hamming weight
smaller or equal tow. Theb positions are chosen randomly. The number of
queries remains the same, the noise is the same and the size ofthe secret is
reduced byb bits. Thus, for this step we have

guess-secret(b,w) : k′ = k−b; n′ = n; δ′ = δ; δ′s = δ
Complexity:O(nb) (included insparse-secret ) and
the Walsh transform has to be iterated∑w

i=0

(w
i

)

times and
the complexity of the whole algorithm is divided by

∑w
i=0

(w
i

)

(

1−δs
2

)i (
1+δs

2

)w−i

This step may be useful for a sparse secret, i.e.τ is small, as when we reduce
the size of the secret with a very small cost. In order to accommodate this new
step we would have to add a transition from state 3 to state 3 inthe automaton
that accepts the simple chains (See Figure 1).

To find the optimal chain usingguess-secret(b,w), we have to make a loop
over all possibleb and all possiblew. We run the full searchO(k2) times. The

total complexity is thusO
(

k5

precision
× log k

precision

)

.

The second reduction technique is denoted bytrunc-reduce. Given the queries
(v,〈v,s〉⊕d), one can just pick a random position,j, and reduce the secret by 1
bit if the jth bit of v is 0. If the jth bit is 1, then we can still reduce the size by
1 by addingsj to the error term; i.e. the updated query is(v′,〈v′,s′〉⊕ d⊕ sj),
wheres′(v′) is s( respectivelyv) vector without thejth bit. When the bit ofv
is 0 this change does not affect the original query. When it is1, then the new
bias introduced isδs, the bias ofsj . We can takeδs= 1−2τ. Thus, the expected
bias is 1+δs

2 . We can generalize this reduction and zerob bits of the secret by

introducing an error term that has a bias of(1+δs
2 )b. One point is that we must

make the secret sparse (thus usesparse-secret ) and also randomize theb bits
which are truncated so that they do have a bias ofδs and are not constant. We do
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this by a special treatment during thesparse-secret step: for each output equation
we useb new input equations and use these errors bits as the randomized b
secret bits. The Stochastic equivalence approximation helps again.

We have the following:

– trunc-reduce(b) introducesb bits of the secret in the error term. We can easily
see that, by this operation, the number of queries remains the same, the size
of the secret is reduced byb bits and the new bias isδ · (1+δs

2 )b.

trunc-reduce(b) : k′ = k−b; n′ = n; δ′ = δ · (1+δs
2 )b; δ′s = δs

Complexity:O(1)

As we do not follow the evolution ofδs beyondcode-reduce, thetrunc-reduce

step can only be done in betweensparse-secret andcode-reduce in a chain. When
consideringtrunc-reduce(b) outside this case, we under-estimateδs to 0 and have
δ′ = δ ·2−b. As for guess-secret , the trunc-reduce step requires a transition from
state 3 to itself in the automaton.

6 Results

We illustrate in this section the results obtained by running Algorithm 4 for
different LPN instances taken from [7,8]. They vary from takingk = 32 to
k= 768, with the noise levels: 0.05,0.1,0.125,0.2 and 0.25. In Table 3 we dis-
play the logarithmic time complexity we found for solvingLPN without using
guess-secret .6

τ k

32 48 64 100 256 512 768

0.05 13.8911.26
0.1 14.5112.94

0.1ct 16.0414.43
0.1c 20.4718.46

0.1c 36.8534.68
0.1c 58.0055.27

0.1c 77.0774.24
0.1c

0.1 15.0412.70
0.1 18.5816.43

0.1 21.5819.38
0.1c 27.8325.44

0.1c 47.1344.61
0.1c 74.1571.33

0.1c 99.4896.58
0.1c

0.125 15.6613.52
0.1 19.2917.00

0.1 22.9420.50
0.1 28.9126.30

0.1 50.3647.90
0.1c 79.4676.66

0.1c 106.45103.48
0.1c

0.2 17.0114.80
0.1 21.2519.23

0.1 24.4222.00
0.1 32.0629.75

0.1 56.8654.28
0.1c 89.6386.86

0.1c 121.20118.43
0.1

0.25 18.4216.30
0.1 22.3420.43

0.1 26.8624.58
0.1 32.9430.75

0.1 59.4756.88
0.1 94.9892.21

0.1 128.32125.58
0.1ct

entry of formab
c···: a= log2 complexity,b= log2max-complexity,c= precision

subscriptc means that acode-reduce is used
subscriptt means that atrunc-reduce is used

Table 3: Logarithmic time complexity on solvingLPN without guess-secret

6 Complete results are provided as an additional material to this paper.
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τ k

32 48 64 100 256 512 768

0.05 11.8510.90
0.1g13o 13.0112.52

0.1g23o 14.4413.74
0.1g38o 17.2016.19

0.1g75o 30.1328.02
0.1g178o 49.5647.29

1g417o 68.1565.98
1g682o

0.1 12.4111.65
0.1g23o 15.2314.25

0.1g37o 17.7116.76
0.1g52o 24.0222.14

0.1g77o 46.5043.87
0.1g132o 74.1371.47

1g1 99.6396.79
1g2

0.125 13.3012.40
0.1g26o 16.4915.49

0.1g39o 20.5718.61
0.1g36o 27.2624.93

0.1g48o 50.3647.90
0.1 79.7177.01

1g1 106.51103.68
1

0.2 17.0114.80
0.1 21.2519.23

0.1 24.4222.00
0.1 32.0629.75

0.1 56.8654.28
0.1 89.6587.04

1 121.12118.57
1

0.25 18.4216.30
0.1 22.3420.43

0.1 26.8624.58
0.1 32.9430.75

0.1 59.4756.88
0.1 95.0092.53

1 128.40125.77
1g1

entry of formab
c···: a= log2 complexity,b= log2 max-complexity,c= precision

subscripto means that a only 1 bit of the secret is found byWHT

subscriptgb means that aguess-secret (b, ·) is used

Table 4: Logarithmic time complexity on solvingLPN with guess-secret

Sequence of chains.If we analyze in more details one of the chains that we ob-
tained, e.g. the chain forLPN512,0.125, we can see that it first uses asparse-secret .
Afterwards, the secret is reduced by applying 5 times thexor -reduce and one
code-reduce at the end of the chain. With a total complexity of 279.46 andθ < 33%
it recovers 65 bits of the secret.

(512,62.2)
sparse-secret−−−−−−→ (512,61.2)

xor-reduce(54)−−−−−−−→ (458,67.4)
xor-reduce(66)−−−−−−−→

(392,67.8)
xor-reduce(67)−−−−−−−→ (325,67.6)

xor-reduce(66)−−−−−−−→ (259,68.2)
xor-reduce(67)−−−−−−−→

(192,68.4)
code-reduce−−−−−→ (65,68.4)

WHT−−−→

The code used is a[192,65] concatenation made of the[25,15] quasi-perfect
Wagner code, some[19,4], [16,5], and[18,5] random codes that we found and
6 copies of a[19,6] random code that we found. By manually tuning the number
of equations without rounding, we can obtain withn= 261.1915 a complexity of
279.37. This is the value from Table 1.

On theguess-secret reduction. Our results show that theguess-secret step does not
bring any significant improvement. If we compare Table 3 withTable 4 we can
see that in few cases the guess step improves the total complexity. For k≥ 512,

24



some results are not better than Table 3. This is most likely due to the lower
precision used in Table 4.

We can see several cases where, at the end of a chain withguess-secret , only
one bit of the secret is recovered byWHT. If only 1 bit of the secret is recovered
by non-bruteforce methods, the next chain forLPNk−1,τ will have to be run
several times, given theguess-secret step used in the chain forLPNk,τ. Thus, it
might happen that the first chain does not dominate the total complexity. So, our
strategy to use sequences of chains has to be revised, but most likely, the final
result will not be better than sequences of chains withoutguess-secret . We want
to avoid these chains ending with 1 bit recovery.

There is only one case where aguess-secret without a chain ending with 1 bit
brings a little improvement:LPN512,0.1: 274.15 vs. 274.13 with b= 1. Most likely,
this performance withguess-secret can be cancelled by finding better codes.

On thetrunc-reduce reduction. We did not see much use of thetrunc-reduce step.
The only use is in the chain forLPN48,0.05 andLPN768,0.25 (see Table 3) where
one bit is truncated. Again, a better code would most likely lead us to better
chains with notrunc-reduce.

Comparing the results.For practical values we compare our results with the
previous work. We take as reference the analysis done in [23,29] and [7,8].

In Tables 5 and 6 we display the analysis conducted in [29,7,8]. In [29],
only the query complexity is given. We took the query complexity from [29]
and computed what is the time complexity in order to compare with our results.
Our results are better by a factor of 23 up to 28, depending on the parameters.

τ k

256 512 768

0.05 50 79 102

0.125 56 88 125

0.25 64 100 142

Table 5: Security ofLPN [29]

τ k

256 512 768

0.05 42 65 87

0.125 52 82 109

0.25 64 99 139

Table 6: Security ofLPN [7,8]

The comparison with [23] was shown in Table 1 in Introduction. From the
work [23] from ASIACRYPT’14 we have thatLPN512,0.125 can be solved in time
complexity of 279.7 (in fact, more as some complexities were underestimated).
We do better, provide concrete codes and we even remove theguess-secret step
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with an optimized use of a code. Thus, the results of Algorithm 4 improve all
the existing results on solvingLPN.

7 Conclusion

In this article we have proposed an algorithm for creating reduction chains with
the optimal max-complexity. The results we obtain bring improvements to the
existing work and to our knowledge we have the best algorithmfor solving
LPN512,0.125. For instance, we improve the results from ASIACRYPT’14 [23]
by showing how to select the code and to optimize the sequenceof reduction
steps. Furthermore, for the covering codes, we propose concrete codes for dif-
ferentLPN instances. We believe that our algorithm could be further adapted
and automatized if new reduction techniques would be introduced.

As future works, we could look at applications to theLWE problem. Kirch-
ner and Fouque [28] improve theLWE solving algorithms by refining the mod-
ulus switching. We could also look at ways to keep track of biases of secret
bits bitwise, in order to allow cascades ofcode-reduce steps and random use of
trunc-reduce.
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A Approximating n by using Central Limit Theorem

In order to approximate the number of queries needed to solvetheLPN instance
we consider when the Walsh Hadamard Transform fails to give the correct se-
cret. This scenario happens when for anothers′ 6= s, we have thatf̂ (s′)> f̂ (s).
Following the analysis from [7] this translates toHW(y) ≤ HW(d′), for y =
A′s′T +c′T andd′ = A′sT +c′T . For eachs′, we takey as a uniformly distributed
random vector. I.e.

Pr[ f̂ (s′)> f̂ (s)] = Pr

[

n′

∑
i=1

(yi −d′i )≤ 0

]

.

LetX1, . . . ,Xn′ be random variable corresponding toXi = yi−d′i . SinceE(yi)=
1
2, E(d′i ) =

1
2− δ′

2 andyi andd′i are independent, we have thatE(Xi) =
δ′
2 and

Var(Xi) =
2−δ′2

4 . By using the Central Limit Theorem we obtain that

Pr[X1+ . . .+Xn′ ≤ 0]≈ ϕ

(

−
√

n′δ′√
2−δ′2

)

,

and ϕ can be calculated byϕ(x) = 1
2 +

1
2erf(

x√
2
), whereerf is the Gauss er-

ror function. Applying the reasoning for anys′ 6= s we obtain that the failure
probability is bounded byθ if

(1−Pr[X1+ . . .+Xn′ ≤ 0])2k′−1≥ 1−θ
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From this inequality and the previous approximation we deduce the following

(1−Pr[X1+ . . .+Xn′ ≤ 0])2k′−1≥ 1−θ⇔

ϕ

(

−
√

n′δ′√
2−δ′2

)

≤ 1− (1−θ)
1

2k′ −1 ⇔

√
n′ ≥−

√

2δ′−2−1ϕ−1
(

1− (1−θ)
1

2k′ −1

)

Thus, we require to have
√

n′ ≈−
√

2δ′−2−1ϕ−1

(

1− (1−θ)
1

2k′ −1

)

. If we use

the approximationϕ
(

−
√

n′δ′√
2−δ′2

)

≈ 1√
n′

√
2−δ′2
δ′

e
− n′δ′2

2(2−δ′2)√
2π

, we obtain thatn′≥ 2(2δ′−2−

1) ln(2k′−1
θ ). This brings an improvement of factor two over the Hoeffdingbound

that requiresn′ ≥ 8ln(2k′

θ )δ′−2.

On the validity of the Stochastic independence approximation. The above com-
putation makes sense when we can use the Stochastic independence approxima-
tion. We now look at how to avoid using it. So, the secretd generated by the
sparse-secret reduction is randomly sampled once. The biasδ′(d) now depends
on this secretd. We only knowE(δ′(d)) = δ′. The above computation is only
making sure that

1− (1−ϕ(E(Z)))2k′−1≤ θ

whereZ = −
√

n′δ′(d)√
2−δ′(d)2

which depends ond. We now want to study the average

probability of failure

p= E
(

1− (1−ϕ(Z))2k′−1
)

Typically,δ′(d) is concentrated around an average value depending onHW(d).
So, if E(Z)≪ 0, values ofZ close to 0 occur with rare probability.

The value ofk′ in WHT is typically not too small. Since we want the proba-
bility of failure to be below 33%, we needϕ(Z) to be very small. In this region of
the curve, of theϕ function, we can thus approximateE(ϕ(Z))≈ ϕ(E(Z)). The

t 7→ 1− (1− t)2k′−1 is concave. So, thanks to the Jensen inequality, the average
probability of failure is

p≤ 1− (1−E(ϕ(Z)))2k′−1≈ 1− (1−ϕ(E(Z)))2k′−1≤ θ

So, fork′ not too small, what we obtain with the Stochastic independence ap-
proximation is a safe condition for having an average probability of failure be-
low θ.
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